Self-stabilizing Numerical Iterative Computation

Ezra N. Hoch, Danny Bickson and Danny Dolev
School of Computer Science and Engineering
The Hebrew University of Jerusalem
Jerusalem, Israel

July 10, 2008

Abstract

Many challenging tasks in sensor networks, including sensor calibration, ranking of nodes,
monitoring, event region detection, collaborative filtering, collaborative signal processing, etc.
can be formulated as a problem of solving a linear system of equations. Several recent works
propose different distributed algorithms for solving to these problems, usually by linear iterative
numerical methods.

In this work, we extend the settings of the above approaches, by adding another dimension
to the problem. Specifically, we are interested in self-stabilizing algorithms, that continuously
run and converge to a solution from any initial starting state. This aspect of the problem is
highly important because of the dynamic nature of the network and the frequent changes in the
measured environment.

In this paper, we link together algorithms from two different domains. On the one hand,
we use the rich linear algebra literature of linear iterative methods for solving systems of linear
equations, which are naturally distributed with rapid convergence properties. On the other
hand, we are interested in self-stabilizing algorithms, where the input to the computation is
constantly changing, and we would like the algorithms to converge from any initial state. We
propose a simple novel method called SS-ITERATIVE as a self-stabilizing variant of the linear
iterative methods. We prove that under mild conditions the self-stabilizing algorithm converges
to a desired result. We further extend these results to handle the asynchronous case.

As a case study, we discuss the sensor calibration problem and provide simulation results to
support the applicability of our approach.

Keywords: Self-stabilizing, sensor networks, iterative methods, numerical methods, sensor calibra-
tion, Jacobi Algorithm.

Contact author: Ezra Hoch

Email: ezra.hoch@gmail.com

Tel: +972-523-961-865

Regular Submission

Entitled for Best Student Paper Award.

1 Introduction

Consider a distributed system of sensors measuring real-world data. Sensors are located in different
areas; for example, the senors are spread throughout a building and they measure the temperature
to adjust the heating or cooling. We would like the collected data to be as reliable as possible, re-
flecting closely the changing environmental conditions. One of the obstacles we face when designing
algorithms which collect data from a sensor network are measurement errors. There are two main
types of inaccuracies of sensors’ measurements: noisy environment and sensing equipment which
is not calibrated. It is desirable that sensors could execute a distributed algorithm for calibrating
their environmental readings. In this setting sensors are allowed to communicate among themselves,
using data from other nodes to affect their reported individual reading. Furthermore, we would
like our calibration algorithm to have fault-tolerance properties. Specifically, we are interested in
self-stabilizing algorithms [7] which converge to an optimal solution from any initial state.

In this work we combine techniques from two different domains. On the one hand, our solution
relies heavily on previous research in the field of numerical iterative methods. Following [10],
[12],[9] and many other related works, we show that the calibration of local sensors’ readings can
be formulated as a linear system of equations Ax = b, where x represents the output reading, b
represents the local reading, and A represents a weighted communication graph. This formulation
allows us to utilize the vast results in the field of linear algebra. On the other hand, we would like
our desired algorithm to have self-stabilizing properties.

The main challenge we have faced in this work, is that in the classical linear algebra literature b is
assumed to be constant. In our settings, the environment is constantly changing and the computed
algorithm never terminates, leading to constantly changing values of b. In this paper, we ask the
following question: “Is it possible to devise a self-stabilizing numerical iterative method?” We
answer affirmatively, and show that under minor conditions it is possible to devise a self-stabilizing
algorithm that solves a dynamic system of linear equations, where the input to the system is
constantly changing.

To the best of our knowledge, this is the first work tackling this challenging problem. We
believe that our approach can have numerous applications in the field of distributed self-stabilizing
computation. Among these potential applications are distributed ranking algorithms of nodes and
data items [3], collaborative filtering [1], localization [10], collaborative signal processing [12], region
detection [9], etc.

Other works discuss fault tolerance aspects of the distributed computation. For example, over-
coming faults in sensors by averaging the input was investigated in [11] providing a centralized
algorithm. Quantifying faulty nodes’ effect on the system’s output is discussed in [8] and [5]. These
papers consider bounded input paths and their effect on the stability of the output. In [6] infinite
input paths are considered under the assumption that only specific sensors’ input may change. All
three papers consider discrete input values, as opposed to a continuous set of input values discussed
in this paper.

The paper is constructed as follows. Section 2 defines the model and problem definition.
Section 3 presents our novel algorithm SS-ITERATIVE. Section 4 analyzes our algorithm and gives
bounds on the convergence rate. Section 5 presents experimental results of running SS-ITERATIVE
using sample topologies. Section 6 extends our construction the asynchronous case. We conclude
in Section 7.

2 Model and Problem Definition

We model the sensor calibration problem as follows. Given a directed communication graph G =
(V,E), V is the set of nodes V. = {p1,...,pn}, E is the set of weighted edges connecting them
(weights can be negative). Edge weights are used to model the bidirectional dependence between
nodes’ outputs. For each p; € N(p;) the weighted edge wp, p; specifies the linear gain of p; on p;.
(If pj ¢ N(p;) then wy, ,. = 0.) In addition, we require a non-zero self connected edge, wy, ,, # 0,
which represents the weight of p;’s own input.

Initially, we assume a synchronous system: during a single round of communication, any pair
of connected nodes may send a single message on each directed edge. Each round r, each node p;
has a scalar input value I, (r), which represents the local reading of the sensor.! In addition, p;
outputs its output value, which is denoted by O,,(r). Denote by I(r) the input vector of the entire
system at round r, and by O(r) the output vector of the system at the end of round r. In Section 6
we relax the assumption of synchronous rounds and provide a variant of the algorithm which works
in asynchronous settings.

As an example, consider a network with 3 nodes p1,p2 and p3 located in an oval room. p; is
located in the center of the room, and ps, p3 are located in the opposite sides. We would like py’s
reading to be 1.1 times its own value, and 0.2 times each of its neighbors values. That is, Op, (r) =
1.1- 1, (1) + 0.2(Op, (1) + Op, (7). Thus, we would set wy, », = 1.1 and wy, p, = Wp, p; = 0.2.

In the above example, p;’s output depended on ps and p3’s output. If p3’s output also depends
on pi output, i.e., Wy, p, 7 0, then there is a “circular dependency” of the output values. This
imposes a challenge, since the target is to ensure that in steady state the output vector O(r) satisfies
O(r+1) = O(r) while preserving the linear relations among the different nodes’ outputs and inputs.
We require some definitions to formally state this goal.

The schematic operation of each node p; at round r is composed of the following steps: (a) read
the value of I,,(r); (b) send messages; (c) receive messages; and (d) do some processing and output
Op,(r). Then a new round is started, and the nodes continue so forever.

DEFINITION 2.1. A configuration C of the system at round r consists of the state of each mode
prior to performing any operation at round r; this configuration is denoted by C(r).

The above definition states that the value of the input read at round r is not part of the config-
uration. In addition, when a node sends a message to other nodes, they may contain information
regarding its current input and its previously received messages. Thus, messages sent at round r
may not contain information regarding computations done at other nodes during round 7.

DEFINITION 2.2. An input sequence Z of length ¢ is a list of £ vectors such that each v € T
is a possible input vector of the system (i.e., v € D, the domain of allowed values). An output
sequence O of length ¢ is a list such that each v € O can potentially be an output vector of the
system.

DEFINITION 2.3. A step from configuration C to configuration C' on input vector v is legal if C' is
reached from C by the system when having v as the input vector. u is produced by a legal step if
u is the output vector of the system resulting from such a legal step.

'For simplicity of notations we use scalar variables in the paper. An extension to the vector case is immediate.

DEFINITION 2.4. A run of a system on input sequence T = {v(1),...,v(¢)} starting from configu-
ration C(r) is the sequence C(r),O(r),C(r+1),0(r+1),... s.t. the step from C(r+1i) toC(r+i+1)
on input vector v(i + 1) is legal, and O(r + 1) is produced by that legal step.

The system is said to produce the output sequence O = {O(r),...,O(r +£—1)}.

In the special case when the sensor observations (the input to the system) are fixed, the output
decision of the sensors should converge to a solution that preserves the linear relations among node
inputs and outputs. More formally, consider an input sequence Z of identical input vectors; i.e.,
Z ={v,v,v,...}. It is desired that for such an input a run from any configuration C on Z would
end up producing an output sequence O = {u(1),u(2),...} such that |ju(i) —u|| — 0 as i — oo,
for a u that solves the following linear system of equations:

u; = Wy, p; * Vi + E Wp;,p; ~ Wy - (1)
PjEN(ps)

We assume that the above equations are uniquely solvable, noting u is the solution to v.

One of the most efficient distributed approaches for solving a set of linear equations of the type
Ax = b is by using linear iterative algorithms. Unlike Gaussian elimination, which has a cost of
O(n?), where n is the number of variables, an iterative algorithm usually solves a system of linear
equations in time of O(n?r,) where r is the number of iterations, which is typically logarithmic in
n. These algorithm are naturally distributed and work well in asynchronous settings. Furthermore,
when converging, the algorithms converge to a solution from any initial state. An excellent survey
of such methods is found in [2].

Our main novel contribution in this paper is in borrowing algorithms from the linear iterative
methods domain and analyzing their self-stabilizing properties. In a practical setting, it is highly
unreasonable to assume that sensor readings do not change over time. However, it is reasonable
to assume that at steady state the change in sensor readings is bounded. Informally, in this work
we show that once the input readings are bounded, the output solution is bounded as well. This
useful observation enables us to tie together numerical iterative methods and dynamically changing
environments in a self-stabilizing manner.

The following definition bounds the change in sensor observations:

DEFINITION 2.5. An input sequence T = {v(1),v(2),...,v({)} is §-bounded around v if for any
1 <i </, it holds that ||v(i) — v]||,, < 4.2

Definition 2.5 states that a sequence Z is d-bounded if all the vectors in Z are bounded within
an n dimensional cube with an edge 2§, centered around a point v. We note that once changes
in the input are not bounded, then no efficient algorithm (especially in a network that is sparsely
connected) can calculate the output fast enough. For example, if the diameter of the communication
graph is D, for some system of equations it would take at least D rounds for the information about
readings at one side of the network to propagate to the other side of the network.

DEFINITION 2.6. Let Z be an input sequence that is §-bounded around v and let u be the solution
to input v. A run from configuration C on input sequence I, e-converges to its solution if the
produced output sequence O = {u(1),u(2),... u(At)} satisfies that |[u(At) —u)|| < €(At,§,C);
where € is a function of At,d and C.

oo

*[ello = max{]as|}.

Definition 2.6 requires that if - starting from configuration C - the inputs are in an n dimensional
box of radius § around v then the output in time At is bounded as well within an n dimensional box
around u with radius €(At, §,C). We aim at an €(At, d,C) that decreases as At increases, as long
as the inputs are bounded by the same v-centered, d-radius box. Clearly, for 6 > 0, €(At,§,C) >0
for any At. That is, there is some minimal radius 6’ > 0 around u s.t. we cannot ensure a tighter
bound.

The above definition considers a single initial configuration, and a single input sequence Z. We
are interested in an algorithm that works for all initial configurations and all input sequences.

DEFINITION 2.7. An algorithm A e-converges for 0-bounded input sequence I if every run (from
any configuration) on I, e-converges to its solution. An algorithm A e-always converges if for
every d-bounded input sequence I, A e-converges.

Definition 2.7 formally defines the problem at hand, as an algorithm A that always converges
has the desired self-stabilizing property: for any system state, once the sensors’ readings changes
are bounded, the change in output of the entire system is bounded as well.

Our goal is to find an algorithm A that is e-always converging for a provably “good” e. More-
over, we aim at having A efficient also in its message complexity and simplicity of code, allowing
lightweight sensors to actually implement it.

3 Our Proposed Solution

An equivalent formulation of the update rule Eq. (1) is

U; = Wy, p, " Vi + Z Wp;,p; * Wy -
J#
The above equation states a condition on p;’s output, in regard to p;’s inputs and p;’s neighbors.
Thus, it encapsulates the requirement that different nodes influence each other’s reported readings,
while taking into consideration their local readings as well.
Since wp, p; 7 0, the above equation can be stated as:

1 Wpy,p; .
u; — —_— le =V;.
wpivpi ‘]75@ ij,pi
. Wp;,p;
By denoting w; ; = —- =% and w;; = % we get:
PisP; PisPj

Y wigu = v (2)
J
Let W be the matrix that has w; ; as entries, Eq. (2) can be written in linear algebra notation,
(s.t. it applies to all nodes simultaneously):
Wu=v. (3)

If we consider a non-self-stabilizing system in which the inputs do not change (that is, the input
is fixed to v), then Eq. (3) can be seen as Ax = b, where A and b are given. In such a case, we

are interested in finding the value of x, which is a vector of n unknown variables. However, we are
interested in the case where v changes over time, and thus Eq. (3) does not describe the problem
properly, but rather helps in understanding the motivation for our solution.

We use a modified update rule (relative to Eq. (1)):

Op, (r+1)= Wp, p; * Ip; (r+1)+ Z Wp;,p; Opj (7). (4)
JFi
Clearly, for the case of § = 0, a 0-bounded input sequence Z, if (O,,(r + 1) — O,,(r)) — 0 as
r — oo then Eq. (4) converges to the solution of Eq. (1). Thus, if the update rule of Eq. (4) is
executed simultaneously by all nodes, and for all of the nodes (Op,(r + 1) — O,,(r)) — 0, then it
also solves Eq. (3). That is, if each node locally executes Eq. (4) then the global solution is reached.
This observation motivates algorithm SS-ITERATIVE in Figure 1.

Algorithm SS-ITERATIVE
01: Each round do: /* executed on node p; */

/* send current value of Oy, to all neighbors */
02: for each p; € N(p;)
03: send Oy, to pj;

/* update Op, according to values sent by neighbors */
04: set Op, 1= Wp, p; - Ip;;

05: for each value O, received:
06: update Oy, := Op, + Wy, p; - Op;;
07: od.

Figure 1: A self-stabilizing iterative algorithm.

REMARK 3.1. In SS-ITERATIVE there is no notion of the “current round number r”. That is, p;
reads and writes to the variables I, and O,, without being “aware” of r. When we discuss the
algorithm “from the outside”, we will consider I, (1) and Oy, (r) instead of just I,,, O,,.

Consider p; is running at round r + 1. When p; performs Line 03, it sends the value of O,,.
The last time O, was updated was at Line 04 and Line 06 of round r. Thus, the value sent by p;
at round r + 1 is actually O,,(r). Therefore, the values received from p; by p; and used to update
Op, (r+1) are Oy, (r). However, the value read by p; in Line 04 is the value of I,,,(r+1). Concluding
that p; updates O, (r + 1) exactly according to Eq. (4).

REMARK 3.2. Fach node p; must know the values of wy, ,; as “part of the code”. Thus, these values
cannot be subject to transient faults.

4 Analysis of SS-Iterative

[2] shows that the update rule Eq. (4) can be written in linear algebra form as

O(r +1) = AI(r + 1) + BO(r) , (5)

where A is a diagonal matrix with wy, p, in the main diagonal, and B;;j = wy, p, for i # j
A £ (diag{W})™" , BE (AW — Lxn) (6)

where I, «,, is the identity matrix.

As noted in Section 2, when the input sequence is constant (i.e., I(r) = v for all r) the iterative
execution of the above equations converges to u = Av + Bu, which is the same as u = W~ ly,
thus solving Eq. (3). Following, we analyze the result of iteratively applying these equations for
d-bounded input sequences.

Let 7 be an input sequence of length ¢ that is 6-bounded around vector v. That is, Z =
I(r),I(r +1),...,1(r + £ —1) for some round r. Note that SS-ITERATIVE saves a single scalar
variable at each node, and thus the configuration of round r+1 can be defined by the value of O(r)
at round r. Consider SS-ITERATIVE’s run, starting from an arbitrary configuration at round r. We
aim at showing that O(r+At) is bounded by a cube centered at u. Denote by ¢(At) £ O(r+At)—u.
If we show that ||c(At)]|, is bounded (as At increases), then O(r + At) is within a bounded cube
centered at u. Consider c(1):

c(l) = O(r+1)—u
= AI(r+1)+ BO(r) — (Av + Bu)
= A(I(r+1)—v)+ B(O(r) —u)
= A(I(r+1)—v)+ Bc(0).

Since Z is a -bounded input sequence around v, each I(r+ At) can be denoted as v+ §(r+ At)
s.t. 6(r + At) € R™ is a vector, and ||0(r + At)||, < 0. That is, (r + At) = I(r + At) —v.

Note that neither v nor u are known. However, the following claim states, that if the nodes
follow SS-ITERATIVE, then c(At) is bounded and decreases as At increases.

Claim 1. At round r + At, it holds that c(At) = Zf:tal BIAS(r + At — 7) + B2c(0).

Proof. Proof by induction. Assume that the claim holds for At = k. Thus, c(k) = Z?;é BIAS(r+
k—j)+B*c(0). By the update rule in Eq. (5), we have that O(r+k+1) = AI(r+k+1)+BO(r+k).
Combining the two equations implies

ck+1) = O(r+k+1)—u
= AI(r+k+1)+BO(r+k)— (Av + Bu)
= A(I(r+k+1)—v)+B(O(r+k)—nu)
= Aé(r+k+1)+ Be(k)

k—1

= AS(r+k+1)+) BFA(r+k - j)+ B c(0)
Jj=0

k .

= AS(r+k+1)+) BIAS(r+k+1-j)+ B*c(0)

j=1
k .
= Y BIAS(r+k+1-j)+ B c(0).
j=0

Thus, if the claim holds for At = k it also holds for At = k + 1; and we have that the claim holds
for all At > 0.]

DEFINITION 4.1. A matriz M, ., is diagonally dominant if |M;;| > Z;‘#]MZ-]-]. A matriz My«
is normalized diagonally dominant (normalized, for short) if M is diagonally dominant, and
|Mi;| > 1.

Lemma 1. For a normalized diagonally dominant matriz W, it holds that ||A||, < 1 and ||B||, <

1, where A, B are defined in Eq. (6) and ||A||, = max,-o HIII?L"TIHOO

oo

Proof. A is zero except for its main diagonal for which A;; = wp, p, = ﬁ Since |[Wy| > 1, we

have that |A4;;] < 1. Thus, it holds that ||Ax||,, < ||x||,. Furthermore, maxyg H|‘|L::|c|”°° < 1,

i.e., ||All, < 1. Regarding B, B;; = wp,p, for i # j and 0 for ¢ = j. Since W is assumed
to be normalized diagonally dominant, we have that > ., [W; | < [Wi|, thus 3., [wp, p,| < 1.
Therefore, >, |Bij| = >, [wp, p;| < 1 for all i. In total, for any x we have ||Bx|[,, < [[x]],.:
leading to ||B|| < 1. O

Theorem 1. Given a normalized diagonally dominant and invertible W, there are constants c1, ¢,
where ¢y > 0, and 1 > co > 0, such that SS-ITERATIVE e-always converges with e(At,0,C) =
§- e+ (e2)® - |0(r) —ul| .

Proof. By Lemma 1 it holds that ||A||, < 1 and ||B||, < 1. Consider a é-bounded input sequence
7 around v, and SS-ITERATIVE’s run starting from an arbitrary state O(r). We are interested in
the behavior of ||c(At)

At—1
le(Ab)]loe = || Y. BIAS(r + At — j) + B*'c(0)
7=0 o
At—1 '
< || Y. BIAs(r+ At—j)|| +||Be(0)]],,
j=0 o
At—1 '
< ST BIL IS + At =)] + [|BIIZ 1€(0)]| o
j=0
At—1 ‘
< 5 lAll DB, + 1B le(0)]]
j=0
1—||B|IA! Al
= 6|4l = + 1BII3 Ie(0)]]5 - (7)
1— B

For an input sequence Z that is d-bounded around v, denote by u the solution to original system
of equations Wu = v. By Eq. (7),

A
1 |1Blls

O(r+ At) —ul|, <6-||Al|,, — =1
10 +0) ~ullog <814l T

+ 1Bl 11e(0)]

‘oo'

594.29

3151
3151
w w
kS S
)) 4.57
E 4.57 E
© ©
> >
0.91 0.91
10 20 30 10 20 30 40
iterations # iterations
Figure 2: Simulation of a Circle graph. Figure 3: Simulation of a Unit-Disc graph.
Since ||B||,, < 1, we have that B o 1 and by setting ¢; = 1Al it holds that
oo ’ 1-[[Bllc — 1-1IBlls 1-[IBll

At
Al % < ¢1. By setting ¢y = ||B||,, and recalling that ¢(0) = O(r) — u we are done. [

Theorem 1 states that SS-ITERATIVE e-always converges. Moreover, the algorithm SS-ITERATIVE
is lightweight, as it requires nodes to send only a single value to every neighbor on each round.

5 Experimental Results

We have simulated SS-ITERATIVE using two sample topologies of one hundred nodes. Figure 2
depicts a circular topology where each node is connected to its left and right neighbors. Figure 3
shows a random unit disc graph, where nodes are randomly spread on a plane, and each node is
connected to the nodes that are within a distance of 1. The X-axis shows the number of iterations,
and the Y-axis shows the value of §. Area colors in the heatmap depict the average of the following
procedure: randomly select a vector v and a d-bounded sequence around v, run the simulation for
the randomly selected values and return the L., distance between the last output vector and u
(calculated as u = W~'v). The heatmap uses a loglog scale. Both graphs clearly show that as
0 decreases and the number of iterations increases, the output of SS-ITERATIVE converges to be
bounded by a small cube around u.

Note that the unit disc weighted topology matrix is characterized by ||Al|, = 0.02, || B||,, = 0.97
while the circle graph is characterized by ||Al|, = 0.33,||B||,, = 0.66. As expected, using unit disc
topology requires a larger number of iterations for convergence (depends on ||B||,). In addition,
in the unit disc topology the value of § has a lesser affect on the convergence, due to the value of
||A||, which affects the minimal radius around the output. Since ||A||, is smaller in the unit disc
topology, increasing § does not significantly affect the convergence.

6 Extension to the asynchronous model

Our second novel contribution is in extending our model to support asynchronous communications.
In a large sensor network, it is not reasonable to assume that the sensor operate in synchronous
rounds. Furthermore, as known from the linear iterative algorithms literature, when working in
asynchronous rounds, the algorithms usually converge faster.

When considering the asynchronous model, it is more convenient to discuss shared-memory as
means of communication.®> Thus, assume that for each directed edges between pi,pj there is a
read-write register R, . that is written by p; and read by p.

An asynchronous run is an infinite sequence of of configurations Cy — C; — ... such that some
process p performs an atomic step between configuration C; and C;1+1. An atomic step consists of
reading or writing from a single register. Notice that in the current model a configuration consists
of all of the registers and of the local variables at the different nodes.

In this section we again prove that starting from an arbitrary configuration, when the inputs
are bounded, the outputs are bounded as well. We consider each configuration C, to be assigned
a vector input I(r) such that if node p; reads the input when performing an atomic step on C, it
reads the value of I, (). Equivalently, the output vector of configuration C, is O(r).

Figure 4 outlines ASYNC-SS-ITERATIVE which is a direct translation of SS-ITERATIVE to the
shared-memory model.

Algorithm ASYNC-SS-ITERATIVE

01: Forever do: /* executed on node p; */

/* write current value of Op, to all neighbors */
02: for each p; € N(p;)
03: write Oy, to Ry, p;;

/* update Oy, according to values of neighbors */
04: set Op, 1= Wp, p; - Ip;;
05: for each p; € N(p;):

06: read Rp; p, into temp;
07: update Oy, := Op, + wp, p; - lemp;
08: od.

Figure 4: A self-stabilizing iterative algorithm for asynchronous networks.

ASYNC-SS-ITERATIVE consists of two phases: in the first, the previous value of O, is written
to all its neighbors. In the second phase p; calculates its new value of O, by reading the registers
of all its neighbors.

We consider only “fair” runs, in which each node performs an atomic step infinitely many times.
Thus, each node performs both phases infinitely many times. A round is defined to be the shorted
prefix of a run such that each node has performed all steps (a)-(d) in the algorithm. We number
each atonic step and each round. The first round consists of many atomic steps.

We model a fair run as follows. Each node p; performs infinitely many atomic steps, and
participates in infinitely many rounds. Notice that the registers p; reads in round k£ 4+ 1 have all
been written to, no earlier than during round k. Since a round consists of each node performing all
the steps in the algorithm, each node p; manages to read all of its neighboring registers and write
to all of its neighboring registers every round. Thus, there is some atomic step r (during round

3In [7] it is shown how to convert an algorithm based on shared-memory to a message-passing algorithm with links
of bounded capacity.

k + 1) such that:
Op, (1) = wp, p; - Ip; (1) + Z Wp;,p; pj ,) .
J#

such that r’ ,r] (for the for all p; # p;) are smaller than r and are from at least round k.

Let u be such that u = Av + Bu, and let the inputs be from a J-bounded input sequence
around v. Denote by c¢(r) = O(r) — u. Notice that if p; did not perform the rth atomic step then
Op,(r) = Op,(r — 1) and therefore c,,(r) = cp,(r — 1). Consider the value of cp,(r) when p; did

perform the rth atomic step (during round k + 1).

Cp; (T) = Opz‘ (T) - upi
= Wy, dp,(r) + prz,p] - Op,(,) Wpi,pi " Vp; — pri:pj “Up;
J#i J#i
= Wy, p, Up,(r') —vp,) + prz,pj - (Op, ;) uy,)
JFi
= Wi+ (Lp, (1) = vp,) + pri,pj " Cp; (7“3))
J#1

where 1’ and the different 7’} are smaller than r and are all from round & or round & + 1.
By using Lemma 1 we get:

e (Pl < wpup - (L) = vp)| + macley, (1) 3y,
J#i
< Jwp,p; - (I, (T/) —vp,)| + ||B||oo |Chmaz (Tmaz)|
S 6 + ||B||OO ‘cpmaz (Tmax)‘)

for some pyqr and 70, < 7 that is from round & or k£ + 1.

Therefore, for any p; during round k + 1 there is a list of length ¢ > k of nodes p1,ps,...,p¢
and a sequence of length ¢ of atomic steps r1 > rg > -+ > rp = 0, such that
lepi ()] < 6+ |Bllo [epy (r1)]
< 0+ |Bllo (6 + [[Bll lep, (r2)])
2
= 0-(1+|[Blls) + | Bll% leps (r2)]
-1
)4
< 5-) |IBI5 + 1Bl lep, (re)]
z=0
1—||B]I; ¢
= 0 — = Bl lep (0)] -
1—[Bllo o
Denote by 21 £ max; [cp, (0)], 20 = ﬁ, and z3 = ||B||,. We have that for node p;

performing the rth atomic step during round k it holds that |cp, (r)| < §-2z2+ 2521 < 5 20+ 25 - 2.
In fair runs, there are infinitely many rounds k, thus, as r goes to infinity, we have that [|O(r)]|

is bounded by a cube of length § - 25 around v.

10

7 Discussion

We have shown that the algorithm SS-ITERATIVE is a modification of the Jacobi iterative method
to solve a set of equations Ax = b, where A is given and b is dynamically changing but bounded.
Moreover, Theorem 1 is a generalization of previous analysis of Jacobi’s convergence. Our mo-
tivation for SS-ITERATIVE originates from the sensor calibration problem where sensors need to
calibrate their noisy readings. Unlike previous approaches to this problem, we assume a dynamic
system with an infinite execution of the algorithm. In this setting the readings of the sensors con-
tinuously change. Under the assumption that the readings’ changes are bounded, we have shown
that the calibrated output is bounded as well.

Further application for SS-ITERATIVE can be found in any setting where it is desired to solve
Ax = b in a converging and self-stabilizing manner, while A is given, and b may change slightly
from one round to the next. Notice that the analysis given in Section 4 holds in such a system.

As noted in Remark 3.2 the matrix A is “part of the code”. An optional alternative to the
current solution is to compute A~! (the inverted matrix of A) beforehand and include it “as part
of the code”. Thus, each node could locally solve x = A~'b, and it can be shown that x will be
bounded (as long as b is bounded). The main problem with such a solution is the connectivity
requirements it incurs. In our solution, scalar values are sent in the network only between direct
neighbors. The matrix W represents a weighted adjacency graph. Once inverted, the matrix W ~!
might not be sparse. A non-zero entry wigl € W~! means that node p; needs to communicate with
node p;. This extra communication might cause the algorithm to lose its self-stabilizing properties,
as non-neighboring nodes would require a self-stabilizing overlay network for their communication.

The assumption of a predefined A is suitable for static networks in which the communication
graph is predetermined. For dynamic networks, it would be interesting to adjust SS-ITERATIVE
to discover the connectivity of the network, inferring the optimal weights dynamically. We assume
that after the weights are calculated, the topology of the sensor network remains stable, thus the
convergence analysis of Section 4 should hold.

7.1 Relation to Perturbation Theory

A large amount of research was focus at the problem of solving Ax = b when A and b are not
exactly known. That is, let A = A+ 64 and b = b + éb, and consider the equation Ax = b; what
can be said about x in relation to X?

Our setting is “easier” in one sense, and “harder” in a different sense. In our setting A is known,
i.e., A = 0. However, b is not well defined. That is, the input vector - which is described by b
- changes over time. When solving Ax = b it is assumed that there is some b that is constant
but it was measured with an error. In our case, b is not constant as it changes over time, while it
represents the measurement correctly.

As a future research, tt would be interesting to consider the implications of adding inaccuracy
to the measurements. The vast body of knowledge regarding perturbation theory would definitely
aid in this extension to our model.

7.2 Relation to convex optimization

Many practical optimization problems are given in the quadratic form f(z) = 1/2xAx — b'x,
where the task is to compute miny f(x) distributively over a communication network. A survey

11

showing several applications can be found in [3]. Example applications are monitoring, distributed
computation of trust and ranking of nodes and data items.

A standard way for solving miny f(x) is by computing the derivative and comparing it to zero
to get the global optimum. When the matrix A is symmetric, f'(x) = Ax —b = 0, and we get a
linear system of equations Ax = b. In other words, the convex optimization problem is reduced
into a solution of linear system of equations.

Interior point methods [4, §11] solve linear programming problems by applying Newton method
iteratively. Each computation of the Newton step involves a solution of a linear systems of equations.
An area of future work is to examine the applications of our self-stabilizing algorithm to these
methods. The difficulties arise from the fact that the matrix A needs to be recomputed between
iterations, so nodes need to be synchronized and aware to the current iteration taking place.

Acknowledgements

Fzra N. Hoch would like to thank Golan Pundak for assisting with the simulations.

References

[1] R. M. Bell and Y. Koren. Scalable collaborative filtering with jointly derived neighborhood
interpolation weights. In IEEE International Conference on Data Mining (ICDM’07), 2007.

[2] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Calculation. Numerical Methods.
Prentice Hall, 1989.

[3] D. Bickson and D. Malkhi. A unifying framework for rating users and data items in peer-
to-peer and social networks. In Peer-to-Peer Networking and Applications (PPNA) Journal,
Springer-Verlag, 2008.

[4] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press,
March 2004.

[5] L. Davidovitch, S. Dolev, and S. Rajsbaum. Stability of multivalued continuous consensus.
SIAM Journal on Computing, 37(4):1057-1076, 2007.

[6] D. Dolev and E. N. Hoch. Ocd: Obsessive consensus disorder (or repetitive consensus). In
Proc. of the 27st Int. Symposium on Principles of Distributed Computing (PODC’08), Tornoto,
Canada, Aug. 2008.

[7] S. Dolev. Self-Stabilization. The MIT Press, 2000.

[8] S. Dolev and S. Rajsbaum. Stability of long-lived consensus. J. Comput. Syst. Sci., 67(1):26—
45, 2003.

[9] Jun Fang and Hongbin Li. Distributed event-region detection in wireless sensor networks. In
EURASIP J. Adv. Signal Process, volume 2008, pages 1-10, New York, NY, United States,
January 2008. Hindawi Publishing Corp.

12

oen Langendoen an lels Reijers. Distributed localization in wireless sensor networks: a

10] K L d d Niels Reij Distributed localization in wirel k
quantitative comparison. In Comput. Networks, volume 43, pages 499-518, New York, NY,
USA, November 2003. Elsevier North-Holland, Inc.

[11] Keith Marzullo. Tolerating failures of continuous-valued sensors. ACM Trans. Comput. Syst.,
8(4):284-304, 1990.

[12] R. Olfati-Saber. Distributed kalman filtering for sensor networks. In Proc. of the 46th IEEE
Conference on Decision and Control, December 2007.

13

