
Linear Time Byzantine Self-Stabilizing Clock
Synchronization

Ariel Daliot1, Danny Dolev1?, and Hanna Parnas2

1 School of Engineering and Computer Science, The Hebrew University of Jerusalem,
Israel. {adaliot,dolev}@cs.huji.ac.il

2 Department of Neurobiology and the Otto Loewi Minerva Center for Cellular and
Molecular Neurobiology, Institute of Life Science, The Hebrew University of

Jerusalem, Israel. hanna@vms.huji.ac.il

Abstract. Awareness of the need for robustness in distributed systems
increases as distributed systems become an integral part of day-to-day
systems. Tolerating Byzantine faults and possessing self-stabilizing fea-
tures are sensible and important requirements of distributed systems in
general, and of a fundamental task such as clock synchronization in par-
ticular. There are efficient solutions for Byzantine non-stabilizing clock
synchronization as well as for non-Byzantine self-stabilizing clock syn-
chronization. In contrast, current Byzantine self-stabilizing clock syn-
chronization algorithms have exponential convergence time and are thus
impractical. We present a linear time Byzantine self-stabilizing clock syn-
chronization algorithm, which thus makes this task feasible. Our deter-
ministic clock synchronization algorithm is based on the observation that
all clock synchronization algorithms require events for re-synchronizing
the clock values. These events usually need to happen synchronously at
the different nodes. In these solutions this is fulfilled or aided by having
the clocks initially close to each other and thus the actual clock values
can be used for synchronizing the events. This implies that the clock val-
ues cannot differ arbitrarily, which necessarily renders these solutions to
be non-stabilizing. Our scheme suggests using a tight pulse synchroniza-
tion that is uncorrelated to the actual clock values. The synchronized
pulses are used as the events for re-synchronizing the clock values.

1 Introduction

Overcoming failures that are not predictable in advance is most suitably ad-
dressed by tolerating Byzantine faults. It is the preferred fault model in order
to seal off unexpected behavior within limitations on the number of concur-
rent faults. Most distributed tasks require the number of Byzantine faults, f , to
abide by the ratio of 3f < n, where n is the network size. See [?] for impossibil-
ity results on several consensus related problems such as clock synchronization.
Additionally, it makes sense to require such systems to resume operation af-
ter serious unpredictable events without the need for an outside intervention
or restart of the system from scratch. E.g. systems may occasionally experience
? This research was supported in part by Intel COMM Grant - Internet Net-

work/Transport Layer & QoS Environment (IXA)

2 Daliot, Dolev and Parnas

short periods in which more than a third of the nodes are faulty or messages sent
by all nodes may be lost for some time. Such transient violations of the basic
fault assumptions may leave the system in an arbitrary state from which the
protocol is required to resume in realizing its task. Typically, Byzantine algo-
rithms do not ensure convergence in such cases. Byzantine algorithms focus on
merely preventing Byzantine faults from notably shifting the system state away
from the goal. They sometimes make strong assumptions on the initial state. A
self-stabilizing algorithm overcomes this limitation by converging within finite
time to a correct state from any initial state. Thus, even if the system loses its
consistency due to a transient violation of the basic fault assumptions (e.g. more
than a third of the nodes being faulty, network disconnected, etc.) then once the
system is back within the assumption boundaries the protocol will successfully
realize the task, irrespective of the resumed state of the system. For a short
survey of self-stabilization see [?] and for an extensive study see [?].

The current paper addresses the problem of synchronizing clocks in a dis-
tributed system. There are several efficient algorithms for self-stabilizing clock
synchronization withstanding crash faults (see [?,?,?] or other variants of the
problem [?,?]). There are many efficient classic Byzantine clock synchronization
algorithms (for a performance evaluation of clock synchronization algorithms
see [?]), however strong assumptions on the initial state of the nodes are typically
made, such as assuming all clocks are initially synchronized ([?,?,?]) and thus
are not self-stabilizing. On the other hand, self-stabilizing clock synchronization
algorithms can initiate with arbitrary values which can have a cost in the conver-
gence times or in the severity of the faults contained. There are surprisingly few
self-stabilizing solutions facing Byzantine faults ([?]), which additionally have
unpractical convergence times. Note that self-stabilizing clock synchronization
has an inherent difficulty in estimating real-time without an external time ref-
erence due to the fact that non-faulty nodes may initialize with arbitrary clock
values. Thus self-stabilizing clock synchronization aims at reaching a stable state
from which clocks proceed synchronously at the rate of real-time and not nec-
essarily estimate real-time (assuming that nodes have access to physical timers
that proceed close to real-time rate). Many applications utilizing the synchro-
nization of clocks do not really require the exact real-time notion (see [?]). In
such applications, agreeing on a common clock reading is sufficient as long as
the clocks progress within a linear envelope of any real-time interval.

We present a protocol with the following property: should the system be
initialized with clocks that hold values that are close to real-time then the clocks
stay synchronized while attaining similar real-time accuracy, precision and time
complexity as non-stabilizing clock synchronization protocols. Should the system
initialize with arbitrary clock values or recover from any transient faults then the
clocks synchronize very fast and proceed at real-time rate with high precision.

The protocol we present significantly improves upon existing Byzantine self-
stabilizing clock synchronization algorithms by reducing the time complexity
from expected exponential ([?]) to deterministic O(f). The comparably low com-
plexity is achieved by focusing on a deterministic Byzantine self-stabilizing al-
gorithm for pulse synchronization. The synchronized pulses progress at a pace
that allows the execution of a Byzantine Strong Consensus protocol on the clock
values in between pulses, thus obtaining a common clock reading.

Byzantine Self-Stabilizing Clock Synchronization 3

A special challenge in self-stabilizing clock synchronization is the clock wrap
around. In non-stabilizing algorithms having a large enough integer eliminates
the problem for any practical concern. In self-stabilizing schemes a transient
failure can cause nodes to initialize with arbitrarily large clocks, surfacing the
issue of the clock bounds. The clock synchronization schemes described above
handles this wrap around.

Having access to an outside source of real-time is useful, though it introduces
a single point of failure. Our approach is useful in such a case to overcome periods
in which the outside source fails in order to maintain a consistent system state.

2 Model and Problem Definition

The environment is a network of processors (nodes) that communicate by ex-
changing messages. Individual nodes have no access to a central clock and there
is no global pulse system. The hardware clocks (referred to as the physical timers)
of correct nodes have a bounded drift rate, ρ, from real-time. The communication
network does not guarantee any order on messages.

The network and/or all the nodes can behave arbitrarily, though eventually
the network performs within the defined assumption boundaries in which at most
f out of the n nodes may behave arbitrarily.
Definition 1. The network assumption boundaries are:
1. Message passing allowing for an authenticated identity of the senders.
2. At most f of the nodes are faulty.
3. Any message sent by any non-faulty node will eventually reach every non-

faulty node within δ time units.

Definition 2. A node is correct at times that it complies with the following
conditions:
1. Obeys a global constant 0 < ρglob << 1, such that for every Newtonian time

interval [u, v], (1−ρglob)(v−u) ≤ ‘physical timer’(v)− ‘physical timer’(u) ≤
(1 + ρglob)(v − u). Hereafter ρglob is denoted by ρ (typically ρ ≈ 10−6).

2. Operates according to the instructed protocol.

A node is considered faulty if it violates one or more of the above. A faulty
node recovers from its faulty behavior if it resumes obeying the conditions of a
correct node. For consistency reasons the recovery is not immediate, but rather
takes a certain amount of time during which the node is still considered faulty
although it behaves correctly3.

Basic notations:
We use the following notations to define the quality of the solution, though nodes
do not need to maintain all of them as variables.
– Clocki (the clock of node i) is a function of node pi’s physical timer that

returns a value in the range 0 to M − 1. Thus M − 1 is the maximal value a
clock can hold. The clock is incremented every time unit. Clocki(t) denotes
the value of the clock of node pi at real-time t.

3 For example, a node may recover during the Byzantine Consensus procedure and
violate the validity condition if considered correct immediately.

4 Daliot, Dolev and Parnas

– A “pulse” is an internal event for the re-synchronization of the clocks, ideally
every cycle time units. A cycle is the time interval between two successive
pulses that a node invokes.

– σ represents the upper bound on the real-time between the invocations of
the pulses of different correct nodes (tightness of pulse synchronization).

– γ is the target upper bound on the difference of clock readings of any two
correct clocks at any real-time. Our protocol achieves γ = 5d+c ·ρ, for some
constant c.

– Let a, b, g, h ∈ R+ be constants that define the linear envelope bound of the
clock progression rate on any real-time interval.

– Ψi(t1, t2) is the amount of clock time elapsed on the clock of node pi during a
real-time interval [t1, t2] within which pi was continuously correct. The value
of Ψ is not affected by any wrap around of clocki during that period.

– d ≡ δ + π, where π is the upper bound on message processing time.

Thus, d is an upper bound on the elapsed real-time from sending a message
by a non-faulty node until it is received and processed by every non-faulty node.

Using the above notations, a recovered node can be considered correct once it
goes through a complete synchronization process, which is guaranteed to happen
within cycle+ BYZ_time of correct behavior, where BYZ_time is the time to
complete the Byzantine Consensus algorithm.

Definition 3. Clock_state

– The clock_state of the system at real-time t is given by:
clock_state(t) ≡ (clock0(t), . . . , clockn−1(t)).

– The systems is in a synchronized clock_state at real-time t if
∀correct pi, pj , |clocki(t)−clockj(t)| ≤ γ or4 |clocki(t)−clockj(t)| ≥M−γ.

Definition 4. The Self-Stabilizing Clock Synchronization Problem
As long as the system is within the assumption boundaries:

Convergence: Starting from an arbitrary state, s, the system reaches a syn-
chronized clock_state after a finite time.

Closure: If s is a synchronized clock_state of the system at real-time t0 then
∀real time t ≥ t0,
1. clock_state(t) is a synchronized clock_state,
2. “Linear Envelope”: for every correct node, pi,

a · [t− t0] + b ≤ Ψi(t0, t) ≤ g · [t− t0] + h.

3 Self-Stabilizing Byzantine Clock Synchronization

A major challenge of self-stabilizing clock synchronization is to ensure clock syn-
chronization even when nodes may initialize with arbitrary clock values. This,
as mentioned before, requires handling the wrap around of clock values. The

4 The second condition is a result of dealing with bounded clock variables.

Byzantine Self-Stabilizing Clock Synchronization 5

algorithm we present employs as a building block an underlying Byzantine self-
stabilizing pulse synchronization procedure. In the pulse synchronization prob-
lem nodes invoke pulses regularly, ideally every cycle time units, and the goal is
to do so in tight synchrony. To synchronize their clocks, nodes initiate at every
pulse a Strong Byzantine Consensus to agree on the clock value to be associated
with the time of the next pulse event5. Once pulses are synchronized, then the
consensus results in synchronized clocks. The basic algorithm uses strong con-
sensus to ensure that once correct clocks are synchronized at a certain pulse and
thus enter the consensus procedure with identical values, then they terminate
with the same identical values and thus keep the progression of clocks continuous
and synchronized6.

3.1 The Basic Algorithm

The basic algorithm is essentially a self-stabilizing version of the Byzantine clock
synchronization algorithm in [?]. We call it Pulse-Clock-Synch. The agreed clock
time of the next synchronization is denoted by ET (short for Expected Time, as
in [?]). Synchronization of clocks is targeted to happen every cycle time units,
unless the pulse is invoked earlier7.

Pulse-Clock-Synch
at “pulse” event

begin
Clock = ET ;
Abort possible running instance of Pulse-Clock-Synch and reset all buffers;
Wait σ(1 + 2ρ) time units;
Next_ET = Strong-Byz-Consensus((ET + cycle) mod M);
Clock = (Clock +Next_ET − (ET + cycle)) mod M ;
ET = Next_ET ;

end

The internal pulse event is delivered by the pulse synchronization procedure.
This event stops all on-going agreements and previous invocations of Pulse-
Clock-Synch and resets all buffers. The pulse synchronization procedure ensures
that once pulses are synchronized, the Pulse-Clock-Synch are invoked within σ
real-time units8 of the pulse invocations at all correct nodes.

The “Wait” intends to make sure that all correct nodes enter the Byzantine
Consensus after the invocation of the pulse event at all correct nodes, without
remnants of past invocations. Existence of past remnants may happen only when
the system is not yet synchronized or it is not within the assumption boundaries.

A correct node joins a Byzantine Consensus only concomitant to an inter-
nal pulse event, as instructed by the Pulse-Clock-Synch. The Strong-Byzantine-
5 It is assumed that the time between successive pulses is sufficient for a Byzantine

Consensus algorithm to initiate and terminate in between.
6 The Pulse Synchronization building block does not use the value of the clock to

determine its progress, but rather intervals measured on the physical timer.
7 cycle has the same function as PER in [?].
8 The pulse synchronization presented achieves σ = 2d.

6 Daliot, Dolev and Parnas

Consensus is intended to reach consensus on the next value of ET. One can
use a synchronous agreement algorithm with rounds of size (σ + d)(1 + 2ρ) or
asynchronous style agreement in which a node waits to get n − f messages of
the previous round before moving to the next round. We assume the use of a
Byzantine Consensus algorithm tolerating f faults when n ≥ 3f + 1.

The Strong-Byzantine-Consensus also ensures that when the clocks are syn-
chronized the wrap around of clocks happens at all correct nodes within a short
time and at the same cycle.

The posterior clock adjustment (following the consensus) adds to the clock
value the elapsed time since the pulse and until the end of the consensus, as
if the time at the pulse was in accordance with the relevant time reflected by
the consensus for the next pulse. This intends to expedite the time for reaching
synchronized clocks in the case in which the node’s initial value of ET did not
agree with the value at the rest of the correct nodes.

Notice that when the system is back within the assumption boundaries, fol-
lowing a chaotic state, pulses may arrive to different nodes at arbitrary times, and
nodes’ ET and clocks may differ arbitrarily. At that time not all nodes will join
the Byzantine Consensus and no consistent resultant value can be guaranteed.
Once the pulses become synchronized (guaranteed by the pulse synchronization
procedure to happen within a single cycle) all correct nodes will join the same
execution of the Byzantine Consensus and will agree on the clock value of the
next synchronization. From that time on, as long as the system stays within the
assumption boundaries the clocks remain synchronized, similar to [?].

Note that instead of simply setting the clock value to ET we could use some
Clock-Adjust procedure (cf. [?]), which receives a parameter indicating the target
value of the clock. The procedure runs in the background, it speeds up or slows
down the clock rate to reach the adjusted value within a specified period of time.
The procedure handles clock wrap around.

Theorem 1. Pulse-Clock-Synch solves the Self-Stabilizing Clock Synchroniza-
tion Problem in the presence of at most f Byzantine nodes, where n ≥ 3f + 1.

Proof. Assume that the Pulse Synchronization procedure that invokes the pulses
solves the Self-Stabilizing Pulse Synchronization Problem, as defined in Sec-
tion ??, in the presence of at most f Byzantine nodes, where n ≥ 3f + 1.
Assume that cyclemin ≥ 2σ + byz_time, where byz_time is the maximal time
it takes to complete the consensus algorithm.
Convergence: Let the system be within the assumption boundaries, in an arbi-
trary state, s, with the nodes holding arbitrary clock values. The pulse synchro-
nization procedure is self-stabilizing, thus, independent of the system’s initial
state, within a finite time the pulses are invoked regularly and synchronously
with a tightness of σ. At every pulse all remnants of previously invoked con-
sensus algorithms are flushed by all the correct nodes. A correct node does not
initiate or join the consensus algorithm before waiting σ(1+2ρ) time units, hence
not before all correct nodes have invoked a pulse and subsequently flushed their
buffers. All correct nodes will join the consensus, thus the consensus algorithm
will initiate and terminate successfully.

At termination of the first instance of the consensus algorithm following the
synchronization of the pulses, all correct nodes agree on the clock value to be

Byzantine Self-Stabilizing Clock Synchronization 7

held at the next pulse invocation. Subsequently, all correct nodes adjust their
clocks, post factum, according to the agreed ET. Note that this posterior adjust-
ment of the clocks does not affect the time span until the invocation of the next
pulse but rather updates the clocks concomitantly to and in accordance with
the newly agreed ET. This has an effect if the correct nodes entered the consen-
sus with differing values. Hence if all correct nodes enter the consensus with the
same ET then the adjustment equals zero. Since all correct pulses arrived within
σ of each other, after the posterior clock adjustment of the last correct node, all
correct clocks are within γ1 = σ(1 + 2ρ) + byz_end · 2ρ,9 where byz_end is the
maximal span of time from the first pulse until the last correct node completes
the posterior clock adjustment. Correct clocks will continue to drift apart at a
rate of 2ρ until the next clock adjustment, which will take place in about a cycle
time. The precision of the clocks (the bound on the clock differences), γ ≥ γ1,
equals the bound on the precision of the pulse arrival and the accumulated skew
on the upper bound cycle length. This concludes the Convergence condition.

Closure: Let the system be in a synchronized clock_state. Consider first the
case in which all correct nodes hold the same value for ET. In this case, each
correct node resets its clock when the pulse arrives and doesn’t adjust its clock
after the consensus, since the consensus value will be the same as the value it
entered the consensus with. To simplify the discussion assume that no wrap
around of any correct clock takes place during the time that the pulse arrives at
the first correct node and until it is invoked at the last correct node. Right after
the pulse is invoked at the last correct node and it’s subsequent clock adjustment,
all correct clocks are within γ0 = σ(1 + 2ρ) of each other.

From that point on clocks of correct nodes drift apart at a rate of 2ρ of each
other. As long as no wrap around of the clocks takes place and no pulse arrives
at any correct node, the clocks are at most γ0 +∆T · 2ρ apart, where ∆T is the
real-time elapsed since the invocation of the pulse at the first correct node. The
forth-coming pulses will be invoked at all correct nodes within at most cycle+σ
time, thus the bound on the clock difference of correct nodes, before the first
pulse is invoked again is γ0 + cycle · 2ρ.

When a correct node resets its clock once a pulse arrives, the maximal clock
adjustment is the maximal difference between its current clock value and the
value of ET.We discuss this difference, denoted by ADJ, later on in the proof and
in Section ??. The clocks will continue to drift apart until the last correct node
receives its “pulse" event. Therefore, the maximal clock difference, as long as no
clock wrap around takes place is bounded by ADJ+γ0+cycle·2ρ+σ(1+2ρ)2ρ ≤
γ.

We now consider the case that a clock wrap around takes place at some ∆T
time after the pulse is invoked at the last correct node. From the discussion
above we learn that at the moment prior to the first correct clock wrap around,
the correct clocks are at most γ0 + ∆T · 2ρ apart. Therefore, all correct clocks
will wrap around within γ0 +∆T · 2ρ. During this time any two correct clocks,
i, j, satisfy |clocki(t)− clockj(t)| ≥M − (γ0 +∆T · 2ρ)(1 + 2ρ) ≥M − γ. Note,

9 The 2ρ is the maximal drift rate between any two correct clocks, whereas ρ is their
drift with respect to real-time.

8 Daliot, Dolev and Parnas

that a similar discussion can show that even if clocks wrap around in-between
the pulse invocations at the correct nodes the systems stays in a synchronized
clock_state.

The case that remains to consider is when at a synchronized clock_state not
all correct nodes hold the same value of ET. At the end of the convergence, as
we proved above, all correct clocks are γ1 apart. Following the first consensus
all the discussion above remains, and from that point on they will remain in
a synchronized clock_state, and the only time their ET s differ is when some
received the “pulse" event and some are about to receive it. This completes the
proof of the first Closure condition.

Note that Ψi, defined in Section ??, represents the actual deviation of an
individual correct clock (pi,) over a real-time interval. The accuracy of the clocks
is the bound on the deviation of correct clocks over a real-time interval. The
clocks are repeatedly adjusted at every pulse. It is required that the pulses
progress within a linear envelope of any real time interval (see Section ??).
Thus we need to show that the adjustment to the clocks at every pulse is a
linear function of the length of the cycle. The accuracy equals the bound on
|tpulse − ETpulse|, where tpulse is the clock value at the pulse at the moment
prior to the adjustment of the clock to ETpulse. The upper and lower bounds on
the value tpulse is determined by the bounds cyclemin and cyclemax on the cycle
length. Thus,

ETprev−pulse + cyclemin · (1− ρ) ≤ tpulse ≤ ETprev−pulse + cyclemax · (1 + ρ).

The adjustment to a correct clock, ADJ, is thus bounded by:
|ETprev−pulse + cyclemin · (1− ρ)− ETpulse| ≤ ADJ ≤

|ETprev−pulse + cyclemax · (1 + ρ)− ETpulse|,

which implies,

|ETprev−pulse + cyclemin · (1− ρ)− (ETprev−pulse + cycle)| ≤ ADJ ≤
|ETprev−pulse + cyclemax · (1 + ρ)− ETprev−pulse + cycle)|,

which implies,

|cyclemin · (1− ρ)− cycle| ≤ ADJ ≤ |cyclemax · (1 + ρ)− cycle|.

As can be seen, the bound on the adjustment to the clock is linear in the
effective cycle length. The bounds on the effective cycle length are guaranteed,
by the pulse synchronization procedure, to be linear in the default cycle length.
Thus the accuracy of the clocks are within a linear envelope of any real-time
interval. The actual values of cyclemin and cyclemax are specifically determined
by the specific pulse synchronization procedure used. This concludes the Closure
condition.

Thus the algorithm is self-stabilizing and performs correctly with f Byzantine
nodes, when n ≥ 3f + 1. ut

Byzantine Self-Stabilizing Clock Synchronization 9

3.2 An Additional Self-stabilizing Clock Synchronization Algorithm

We end the section by suggesting a simple additional Byzantine self-stabilizing
clock synchronization algorithm using pulse synchronization as a building block.

Our second algorithm resets the clock at every pulse10. This approach has
the advantage of not needing any agreement algorithm. This version is useful,
for example, when cycle is on the order of M.

NOADJUST-CS
at “pulse” event

begin
Clock = 0;

end

The algorithm has the disadvantage that the real-time span for the clock to
reach M is bounded by the cycle length. This can be counteracted by using a
very large cycle but this enhances the effect of the clock skew, which negatively
affects the precision and the accuracy.

4 Self-Stabilizing Byzantine Pulse Synchronization

The nodes execute this procedure in the background. The procedure ensures
that different nodes invoke pulses in a close time proximity (σ) of each other.
Pulses should be invoked regularly. The pulse synchronization should invoke the
pulses within linear envelope of real-time intervals.

Basic notations:
In addition to the definitions of Section ?? we use the following notations to
define the quality of the solution, though nodes do not need to maintain them
as variables.

– ψi(t1, t2) is the number of pulses a correct node pi invoked during a real-time
interval [t1, t2] within which pi was continuously correct.

– Let a′, b′, g′, h′ ∈ R+ be constants that define the linear envelope bound on
the ratio between all real-time intervals and every ψi in those intervals.

– φi(t) ∈ R+ ∪ {∞}, 0 ≤ i ≤ n, denotes the elapsed real-time since the last
time node pi invoked a pulse. For a node, pj , that has not invoked a pulse
since the initialization of the system, φj(t) ≡ ∞.

Basic definitions:

– The pulse_state of the system at real-time t is given by: pulse_state ≡
(φ0(t), . . . , φn−1(t)).

– Let G be the set of all possible pulse_states of a system S.
– A set of nodes, N , are called pulse-synchronized at real-time t if

∀pi, pj ∈ N, |φi(t)− φj(t)| ≤ σ.

10 This approach was suggested also by Shlomi Dolev.

10 Daliot, Dolev and Parnas

– s ∈ G is a synchronized pulse_state of the system at real-time t if the set
of correct nodes are pulse-synchronized at some real-time tsyn in the interval
[t, t+ σ].

Definition 5. The Self-Stabilizing Pulse Synchronization Problem

As long as the system is within the assumption boundaries:
Convergence: Starting from an arbitrary state, s, the system reaches a syn-
chronized pulse_state after a finite time.
Closure: If s is a synchronized pulse_state of the system at real-time t0 then
∀real time t ≥ t0,

1. pulse_state(t) is a synchronized pulse_state,
2. “Linear Envelope”: for every correct node, pi,

a′ · [t− t0] + b′ ≤ ψi(t, t0) ≤ g′ · [t− t0] + h′.

3. ∃ cyclemin, cyclemax such that 1 ≤ ψi(t, t0), for every t− t0 ≥ cyclemax, and
1 ≥ ψi(t, t0), for every t− t0 ≤ cyclemin.

The third condition intends to bound the rate of pulses between a minimal
and a maximal rate.

4.1 The mode of operation of the Pulse Synchronization procedure

The Byzantine self-stabilizing pulse synchronization procedure presented is called
SS-Pulse-Synch. A cycle is the time interval between two successive pulses a node
invokes. The default value of cycle is the ideal length of the cycle. The actual real-
time length of a cycle may slightly deviate from the value cycle in consequence
of the clock drifts, uncertain message delays and behavior of faulty nodes. In
Theorem ?? the extent of this deviation is explicitly shown, defining the bounds
of the linear envelope. Toward the end of its cycle, every correct node targets at
synchronizing its forthcoming pulse invocation with the pulse of the other nodes.
It does so by sending a Propose-Pulse message to all nodes. These messages
(or a reference to the sending node) are accumulated at each correct node until
it invokes a pulse and deletes these messages (or references). We say that two
Propose-Pulse messages are distinct if they were sent by different nodes.

When a node accumulates at least f + 1 distinct Propose-Pulse messages
it also triggers a Propose-Pulse message. Once a node accumulates n − f dis-
tinct Propose-Pulse messages it invokes the pulse. The input to the procedure
is cycle, n and f .

SS-Pulse-Synch
if (cycle_countdown_is_0) then /* endogenous message */

send “Propose-Pulse” message to all;
cycle_countdown_is_0=‘False’;

if received “Propose-Pulse” messages from f + 1 distinct nodes then
/* triggered message */

send “Propose-Pulse” message to all;
if received “Propose-Pulse” messages from n− f distinct nodes then

Byzantine Self-Stabilizing Clock Synchronization 11

/* invoke pulse */
begin

invoke “pulse” event;
cycle_countdown = cycle;
flush “Propose-Pulse” message counter;
ignore “Propose-Pulse” messages for 2d(1 + 2ρ) time units;

end

We assume that a background process continuously reduces cycle_countdown.
Once it reaches 0 (intended to make the node count approximately cycle time
units on its physical timer), the background process resets the value back to cycle
and invokes the SS-Pulse-Synch by setting cycle_countdown_is_0 to ‘True’. A
reset is also done if cycle_countdown holds a value that is out of range (not
between 0 and cycle). The value is set back again to cycle in the algorithm
once the “pulse" is invoked in order to prevent the system from blocking be-
cause of initializing or recovering with a wrong value in the cycle_countdown
or in the program counters of the nodes. Note that on a premature execution of
SS-Pulse-Synch the node does not flush its message counter.

Note that a node typically sends the message more than once within a cycle.
This is done to prevent cases in which the node may be invoked in a state that
leads to a deadlock.

When the system is not in a synchronized state a correct node may need to
wait almost a cycle before others will join its proposal, but once all correct nodes
invoke the pulses a correct node will need to wait a much shorter time, as we
prove below.

Theorem 2. SS-Pulse-Synch solves the Self-Stabilizing Pulse Synchronization
Problem in the presence of at most f Byzantine nodes, where n ≥ 3f + 1.

Proof. Assume that the system is within the assumption boundaries.
Convergence: Every correct node sends at least one Propose-Pulse messages
in every one of its cycles because every correct node’s cycle_countdown timer
eventually reaches 0. Thus, in every real-time interval equal to the maximal
length a cycle can extend, at least n − f distinct Propose-Pulse messages are
sent. Let a correct node accumulate n− f distinct Propose-Pulse messages and
thus invoke a pulse; then at least n−f−f = n−2f of them must be from correct
nodes. We assume that n > 3f , implying that at least 3f + 1 − 2f = f + 1 of
these messages must be from correct nodes. All correct nodes will receive these
(at least) f + 1 distinct Propose-Pulse messages within d time units of the time
that the first correct node received the n− f messages. Consequently, following
the algorithm, they will also send Propose-Pulse messages. Within additional d
time units all correct nodes will receive at least n − f distinct Propose-Pulse
messages and thus invoke a pulse, at most 2d time units after the first node
invoked its pulse. This concludes the Convergence requirement for σ = 2d.

Irrespective of the initial values of the various variables of the nodes, once
the system is in the assumption boundaries, within a single cycle each node will
reach a point at which it is not blocking and all its variables hold legal values,
following which it invokes a pulse within a cycle and within σ of the other correct
nodes.

12 Daliot, Dolev and Parnas

Closure: Let the system be in a synchronized pulse_state at the time immedi-
ately following the last correct node to invoke its pulse. Thus, all correct nodes
have invoked their pulse, flushed the counters and reset their cycle_countdown
timer within 2d time units of each other. They are also ignoring all Propose-
Pulse messages σ(1 + 2ρ) time units subsequent to their pulse and thus the last
node’s messages related to its pulse, are necessarily ignored by all correct nodes.
Thus, no correct node will accumulate f + 1 distinct Propose-Pulse messages
before at least one correct node sends an endogenous message the next time,
irrespective of the behavior of the faulty nodes. No correct node will send that
message before counting cycle time units following its pulse invocation. The
node that sent its message will not invoke its pulse before it has accumulated
n− f distinct Propose-Pulse messages. Following the same arguments as for the
Convergence, all correct nodes henceforth invoke their pulse within 2d real-time
units of each other. Thus the system stays in a synchronized pulse_state and so
the first Closure condition is satisfied.

To identify the shortest elapsed time a correct node may invoke a new pulse
following its previous pulse invocation let us observe the following scenario: Let
a node, p, invoke its pulse 2d real-time units after all other correct nodes. Next
assume that the rest of the correct (fast) nodes reach their endogenous message
point and send their messages. Assume that node p receives n−f such messages
almost instantaneously and thus invokes its pulse at that point. The correct
(fast) nodes then invoke their new pulses exactly cycle

1+ρ real-time units after their
previous pulses. Thus, node p may invoke its new pulse cycle

1+ρ −2d real-time units
subsequent to its former pulse. This determines the value of cyclemin. Being
linear in the default cycle length this, thus, defines a lower linear envelope.

Equivalently, let a correct node invoke its pulse 2d real-time units before all
other correct nodes. Let all the other correct (slow) nodes reach their endoge-
nous message sending - this will happen at most cycle

1−ρ real-time units after their
previous pulses. Let it take another d real-time units for these messages to reach
our node, by which it will invoke its new pulse immediately. This yields an upper
bound on a correct nodes cycle length of cycle

1−ρ +3d real-time units subsequent to
its former pulse. This determines the value of cyclemax. Being linear in the de-
fault cycle length this, thus, defines an upper linear envelope. And so the second
Closure condition is satisfied.

Thus the algorithm is self-stabilizing and performs correctly with f Byzantine
nodes, when n ≥ 3f + 1. ut

5 The Self-Stabilizing Byzantine Consensus Algorithm

The Strong Byzantine Consensus module can use many of the classical Byzantine
Consensus algorithms. The self-stabilization does not introduce a major obstacle,
because the algorithms terminate in a small number of rounds, and cycle can be
set so it is before the next invocation of the algorithm. The only delicate point
is to make sure that the algorithm doesn’t cause the nodes to block or deadlock.
Below we specify how to update the use the early stopping Byzantine Algorithm
of Toueg, Perry and Srikanth [?] to address our needs. The nodes invoke the
algorithm with their value of the next ET.

Byzantine Self-Stabilizing Clock Synchronization 13

The original algorithm is synchronous. In our environment the nodes will
clock the phases and instead of considering messages that should arrive within a
given phase, they should consider messages that arrive by the end of the indicated
phase on their own clock. When nodes invoke the procedure they consider also
all messages in their buffers that were accepted prior to the invocation.

We use the following notations in the description of the consensus algorithm:
– A phase is a duration of (σ + d)(1 + 2ρ) clock units on a node’s clock.
– A round is a duration of two phases.
– A broadcast primitive is the primitive defined in [?] (see Appendix). Nodes

issue an accept within the broadcast primitive.

The main differences of the protocol below from the original protocol of [?]
are:
– Instead of the General use an imaginary node whose value is the clock values

of the individual nodes.
– Agree on whether n− f of the values are identical.
– The fact that the general is not counted as a faulty node requires running

the protocol an extra round.

Strong-Byz-Consensus(ET) invoked at node p:
initialize the broadcast primitive;
broadcasters := ∅; v = 0;

phase = 1 :
send(ET, 0) to all participating nodes;

phase = 2 :
if received (ET ′, 0) messages for from n− f distinct nodes by

the end of phase 1
then send (echo, I0, ET ′, 0) to all;

if received (echo, I0, v′, 0) messages from n− f distinct nodes by
the end of phase 2

then invoke broadcast(p, v′, 2); stop and return(v′).
round r for r = 2 to r = f + 2 do:

if v 6= 0 then invoke broadcast(p, v, r); stop and return(v).
by the end of round r:

if in rounds r′ ≤ r accepted (I0, v, 0) and (qi, v′, i) for all i, 2 ≤ i ≤ r,
where all qi distinct

then v := v′;
if |broadcasters| < r − 1 then stop and return(0);

stop and return(v).
end

Nodes stop participating in the Strong-Byz-Consensus protocol when they
are instructed to do so. They stop participating in its broadcast primitive by
the end of the round in which they stop the Strong-Byz-Consensus. The only
exception is when they stop in the 2nd phase of the algorithm. In this special
case they stop participation in the broadcast primitive by the end of the 2nd
round.

The main feature of the protocol is that when all correct nodes begin with
the same value of ET, all stop within 1 round (2 phases). This early stopping

14 Daliot, Dolev and Parnas

feature brings to a fast convergence during normal operation of the system, even
when faulty nodes are present. One can employ standard optimization to save
in the number of messages, and to save in a couple of phases.

Theorem 3. The Strong-Byz-Consensus satisfies the following properties:
Termination: The protocol terminates in a finite time.

If the system is in the assumption boundaries, n > 3f, and all correct nodes
invoke the protocol within σ of each other, and messages of correct nodes are
received and processed by participating correct nodes then:

Agreement: The protocol returns the same value at all correct nodes.
Validity: If all correct nodes invoke the protocol with the same value, then

the protocol returns that value, and
Early-stopping: in such a case all correct nodes stop within 1 round.

Proof. To prove the termination property notice that no matter at what state
each node is, very node terminates the protocol within f +2 rounds on its clock.

Notice that if correct nodes invoke the protocol within a σ of each other and
since each phase is long enough to ensure that messages sent at a beginning of
a phase by a correct node is received by any other before the end of that phase
at the target node. Note that the condition that all nodes process all messages
of correct nodes capture the case in which some correct nodes may begin the
protocol early and send their messages before others started the protocol. The
way we use the protocol we ensure that the buffers of all correct nodes are reset
before the first one sends any message related to the current invocation of the
protocol.

To prove the validity and the early-stopping properties observe that since
n > 3f, if all correct nodes invoke the protocol with the same value, then they
all have v 6= 0 within the first round, and immediately invoke broadcast and
stop and return the same initial value.

The proof of the agreement property is very similar to the proof of the pro-
tocol in [?] and will be omitted (see the Appendix for details of the Broadcast
primitive). The proof needs to address the possible multi value, by arguing that
at most one value can be sent at phases 2 to f + 2. Notice that the variations
we made do not affect the basic proof. Note that the broadcast(p, v, 2) invoked
in the second phase of the protocol carries the variable 2 to make the proof
conceptually agree with the arguments of the original proof of [?]. ut

6 Analysis and Comparison to other Clock
Synchronization Algorithms

Our algorithms require reaching consensus in every cycle. This implies that the
cycle should be long enough to allow for the consensus to terminate at all correct
nodes. This implies having cycle ≥ 2σ+3(2f+4)d, assuming that the consensus
algorithm takes (f + 2) rounds of 3d each. For simplicity we also assume M to
be large enough so that it takes at least a cycle for the clocks to wrap around.

The convergence and closure of Pulse-Clock-Synch and the additional algo-
rithm follows from the self-stabilization of the pulse synchronization procedure

Byzantine Self-Stabilizing Clock Synchronization 15

Algorithm Self- Precision Accuracy Convergence Messages
Stabilizing γ Time
/Byzantine

Pulse-Clock-Synch SS+BYZ 5d + O(ρ) 3d + O(ρ) cycle + 3(2f + 5)d O(nf2)
NOADJUST-CS SS+BYZ 2d + O(ρ) 3d + O(ρ) cycle O(n2)
DHSS [?] BYZ d + O(ρ) (f + 1)d + O(ρ) 2(f + 1)d O(n2)
LL-APPROX [?] BYZ 5ε + O(ρ) ε + O(ρ) d + O(ε) O(n2)

DW-SYNCH [?] SS+BYZ 0 (global pulse) 0 (global pulse) M22(n−f) n2M22(n−f)

DW-BYZ-SS [?] SS+BYZ 4(n− f)ε + O(ρ) (n− f)ε + O(ρ) O(n)O(n) O(n)O(n)

PT-SYNC [?] SS 0 (global pulse) 0 (global pulse) 4n2 O(n2)

Table 1. Comparison of Clock Synchronization Algorithms (ε is the uncertainty
of the message delay). The convergence time is in pulses for the algorithms utiliz-
ing a global pulse system and in network rounds for the other semi-synchronous
protocols. PT-SYNC assumes the use of shared memory and thus the “message
complexity” is of the “equivalent messages”.

and from the self-stabilization and termination of the Byzantine Consensus al-
gorithm.

Note that Ψi, defined in Section ??, represents the actual deviation of an
individual correct clock (pi,) from a real-time interval. The accuracy of the clocks
is the bound on the deviation of correct clocks from a real-time interval. The
clocks are repeatedly adjusted in order to minimize the accuracy. Following a
synchronization of the clock values, that is targeted to occur once in a cycle,
correct clocks can be adjusted by at most ADJ, where

−2d(1− ρ)− 2ρ
cycle

1 + ρ
≤ ADJ ≤ 3d(1 + ρ) + 2ρ

cycle

1− ρ
.

Should the initial clock values reflect real-time and their initial states consistent,
then this determines the accuracy of the clocks with respect to real-time (and
not only in terms of a real-time interval), as long as the system stays within the
assumption boundaries and clocks do not wrap around.

The precision, γ, that is guaranteed should be at least the maximal value
derived from Theorem ??, thus γ ≥ 3d(1 + ρ) + 2ρ cycle

1−ρ + σ(1 + ρ) + cycle · 2ρ+
σ(1 + 2ρ)2ρ ≥ ADJ + γ0 + cycle · 2ρ + σ(1 + 2ρ)2ρ. A more careful discussion
can point out on the overlap of some of the bounds and can reduce the bound
on γ.

The only Byzantine self-stabilizing clock synchronization algorithms, to the
best of our knowledge, are published in [?,?]. Two randomized self-stabilizing
Byzantine clock synchronization algorithms are presented, designed for fully con-
nected communication graphs, use message passing which allow faulty nodes to
send differing values to different nodes, allow transient and permanent faults dur-
ing convergence and require at least 3f + 1 processors. The clocks wrap around
where M is the upper bound on the clock values held by individual processors.
The first algorithm assumes a common global pulse system and synchronizes in
expected M · 22(n−f) global pulses. The second algorithm in [?] does not use a
global pulse system and is thus partially synchronous similar to our model. The

16 Daliot, Dolev and Parnas

convergence time of the latter algorithm is in expected O((n− f)n6(n−f)) time.
Both algorithms thus have drastically higher convergence times than ours.

In Table 1 we compare the parameters of our protocols to previous clas-
sic Byzantine clock synchronization algorithms, to non-Byzantine self-stabilizing
clock synchronization algorithms and to the prior Byzantine self-stabilizing clock
synchronization algorithms. It shows that our algorithm achieves precision, ac-
curacy, message complexity and convergence time similar to non-stabilizing al-
gorithms, while being self-stabilizing. The O(nf2) message complexity as well
as the convergence time come from the specific Byzantine Consensus algorithm
used.

Note that the use of global clock ticks does not make the synchronization
problem trivial as the nodes will still miss a common point in time where the
new clock value is agreed and the clocks adjusted accordingly (see [?]).

Note that if instead of using the pulse synchronization procedure of Sec-
tion ??, one uses the pulse synchronization of [?] then the precision can somewhat
improve, but the cycle, and therefore the convergence time would drastically in-
crease.

References

1. E. Anceaume, I. Puaut, “Performance Evaluation of Clock Synchronization Algo-
rithms”, Technical report 3526,INRIA, 1998.

2. A. Arora, S. Dolev, and M.G. Gouda, “Maintaining digital clocks in step”, Parallel
Processing Letters, 1:11-18, 1991.

3. J. Brzeziǹski, and M. Szychowiak, “Self-Stabilization in Distributed Systems - a
Short Survey, Foundations of Computing and Decision Sciences, Vol. 25, no. 1,
2000.

4. A. Daliot, D. Dolev and H. Parnas, “Self-Stabilizing Pulse Synchronization In-
spired by Biological Pacemaker Networks”, Proc. Of the Sixth Symposium on
Self-Stabilizing Systems, pp. 32-48, 2003.

5. D. Dolev, J. Halpern, and H. R. Strong, “On the Possibility and Impossibility of
Achieving Clock Synchronization”, J. of Computer and Systems Science, Vol. 32:2,
pp. 230-250, 1986.

6. D. Dolev, H. R. Strong, “Polynomial Algorithms for Multiple Processor Agree-
ment”, In Proceedings, the 14th ACM SIGACT Symposium on Theory of Com-
puting, 401-407, May 1982. (STOC-82)

7. D. Dolev, J. Y. Halpern, B. Simons, and R. Strong, “Dynamic Fault-Tolerant
Clock Synchronization”, J. Assoc. Computing Machinery, Vol. 42, No.1, pp. 143-
185, Jan. 1995.

8. S. Dolev, “Possible and Impossible Self-Stabilizing Digital Clock Synchronization
in General Graphs”, Journal of Real-Time Systems, no. 12(1), pp. 95-107, 1997.

9. S. Dolev, “Self-Stabilization”, The MIT Press, 2000.
10. S. Dolev, and J. L. Welch, “Self-Stabilizing Clock Synchronization in the presence

of Byzantine faults”, Proc. Of the Second Workshop on Self-Stabilizing Systems,
pp. 9.1-9.12, 1995.

11. S. Dolev and J. L. Welch, “Wait-free clock synchronization”, Algorithmica,
18(4):486-511, 1997.

12. M. J. Fischer, N. A. Lynch and M. Merritt, “Easy impossibility proofs for dis-
tributed consensus problems”, Distributed Computing, Vol. 1, pp. 26-39, 1986.

Byzantine Self-Stabilizing Clock Synchronization 17

13. T. Herman, “Phase clocks for transient fault repair”, IEEE Transactions on Par-
allel and Distributed Systems, 11(10):1048-1057, 2000.

14. B. Liskov, “Practical Use of Synchronized Clocks in Distributed Systems”, Pro-
ceedings of 10th ACM Symposium on the Principles of Distributed Computing,
1991, pp. 1-9.

15. B. Patt-Shamir, “A Theory of Clock Synchronization”, Doctoral thesis, MIT, Oct.
1994.

16. M. Papatriantafilou, P. Tsigas, “On Self-Stabilizing Wait-Free Clock Synchroniza-
tion”, Parallel Processing Letters, 7(3), pages 321-328, 1997.

17. F. Schneider, “Understanding Protocols for Byzantine Clock Synchronization”,
Technical Report 87-859, Dept. of Computer Science, Cornell University, Aug.
1987.

18. Sam Toueg, Kenneth J. Perry, T. K. Srikanth, “Fast Distributed Agreement”, Pro-
ceedings, Principles of Distributed Computing, 87-101 (1985).

19. J. L. Welch, and N. Lynch, “A New Fault-Tolerant Algorithm for Clock Synchro-
nization”, Information and Computation 77, 1-36, 1988.

Appendix - The Broadcast Primitive

For being self contained we present in this appendix the broadcast (and accept)
primitive of Toueg, Perry, and Srikanth [?] that is used in the Strong-BYZ-
Consensus presented above.

In the procedure whenever the nodes are required to consider messages re-
ceived in a given phase it should be interpreted as a message received by the end
of the given phase. The difference comes from the need to use the procedure in
an environment that is not tightly synchronous, as the environment we assume
in this paper. Note that when a node invokes the procedure it evaluates all the
messages in its buffer that are relevant to the procedure.

Procedure Broadcast(p, v, r) /* executed per such triple */
round = k :

phase = 2k − 1 :
node p sends (init, p,m, k) to all nodes;

phase = 2k :
if received (init, p,m, k) from p in phase 2k − 1

and received only one (init, p,_,_) message in all previous phases
then send (echo, p,m, k) to all;

if received (echo, p,m, k) msgs from ≥ n− f distinct nodes in phase 2k
then accept(p,m, k);

round k + 1 :
phase = 2k + 1 :

if received (echo, p,m, k) from ≥ n− 2f distinct nodes q in phase 2k
and received only one (echo, p,_,_) message from each such q

then send (init′, p,m, k) to all;
if received (init′, p,m, k) from ≥ n− 2f in phase 2k + 1

then broadcasters := broadcasters
⋃
{p};

phase = 2k + 2 :
if received (init′, p,m, k) from ≥ n− f distinct nodes in phase 2k + 1

then send (echo′, p,m, k) to all;

18 Daliot, Dolev and Parnas

if received (echo′, p,m, k) from ≥ n− f in phase 2k + 2
then accept(p,m, k);

round r ≥ k + 2 :
phases 2r − 1, 2r :

if received (echo′, p,m, k) from ≥ n− 2f distinct nodes in previous
phases and not sent (echo′, p,m, k)

then send (echo′, p,m, k) to all;
if received (echo′, p,m, k) from ≥ n− f distinct nodes in previous phases

then accept(p,m, k);
end

The Broadcast primitive satisfies the following 4 properties. In [?] it was
proven that the properties hold under the assumption that n > 3f.

1. (Correctness) If correct node p broadcasts (p,m, k) in round k, then every
correct node accept (p,m, k) in the same round.

2. (Unforgeability) If correct node p does not broadcast (p,m, k), ten no correct
node accepts (p,m, k).

3. (Relay) If a correct node accepts (p,m, k) in round r ≥ k, then every other
correct node accepts (p,m, k) in round r + 1 or earlier.

4. (Detection of broadcasters) If a correct node accepts (p,m, k) in round k or
later, then every correct node has p ∈ broadcasters at the end of round
k+ 1. Furthermore, if correct node p does not broadcast any message, then
a correct node can never have p ∈ broadcasters.

One can show that their proofs hold in our environment once the system is
back in its assumption boundaries.

