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Abstract. Distributed inference schemes for detection, estimation and
learning comprise an attractive approach to Wireless Sensor Networks
(WSNs), because of properties such as asynchronous operation and ro-
bustness in the face of failures.
Belief Propagation (BP) is a method for distributed inference which pro-
vides accurate results with rapid convergence properties. However, ap-
plying a BP algorithm to WSN is not trivial, due to the unique charac-
teristics of WSN networks. Many papers which have proposed using BP
for WSNs do not consider all of the constraints which these networks
impose.
This paper first undertakes a thorough study of the practical challenges
of WSNs which are raised in the context of distributed inference. It then
presents a framework which implements both localized and data-centric
approaches to improve the effectiveness and the robustness of this al-
gorithm in the WSN environment. The proposed solution is empirically
evaluated, as applied to the clustering problem, and it can be easily ex-
tended to suit many other applications that use BP as an underlying
algorithm.
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1 Introduction

It is generally believed that Wireless Sensor Networks (WSNs) will be ubiqui-
tously accepted as an infrastructure for applications in areas as diverse as envi-
ronmental monitoring, health-care applications, and home automation. Data fu-
sion and processing will be the core information gathering activities performed by
the sensor nodes. Consequently, inference methods, which are important means
of performing data fusion, have become an increasing research interest in the
field of WSNs.

The goal of distributed inference in WSNs can be achieved using several
methods that were originally developed for graphical models [1], such as Belief
Propagation (BP) [2]. BP is an iterative algorithm for computing maximal or
marginal posterior probability, by means of local message-passing. BP is pre-
sented in the literature as an effective and useful inference method for a wide



range of communication applications and network topologies, including WSNs
[3], [4].

The adoption of an inference algorithm such as BP for WSNs presents a
great opportunity, because learning techniques which fully utilize the available
information can achieve nearly optimal results. However, it is also a formidable
challenge, due to the distinctive characteristics of these networks: Energy effi-
ciency is a major design goal in WSNs because the nodes have limited power
sources and restricted computational capacities. The wireless medium imposes
many other constraints, such as collisions and errors. Other properties of this
medium, such as interferences and poor link quality, result in changes to the
topology of the network, which, together with the fact that the network is self-
organizing, create a unique and challenging network dynamic. WSNs are also
likely to have a large number of nodes which may result in potentially drastic
scaling problems.

The significance of this paper is twofold:

Firstly, our research provides important insights regarding real-world chal-
lenges in WSNs, which may significantly affect the inference quality. These in-
sights are relevant to many WSN inference schemes, and are addressed in this pa-
per in a broader manner than has been previously presented (such as in [3], [4], [5]
and [6], which either posit impractical assumptions about network topology, or
otherwise neglect issues such as the overhead of communication or scalability of
the solution).

Secondly, driven by the need for a practical solution, we propose a general
BP framework that takes both localized [7] and data-centric [8] approaches.
Using simulations, we demonstrate and analyze the properties of the scheme
within the context of a solution to the clustering problem. The entire framework
is fully distributed and localized, and presents an excellent approximation to
the optimal inference solution. Moreover, it is shown to be asynchronous and
robust, and to introduce only a minor and consistent cost in communication and
overhead, regardless of the size of the network.

In contrast with previous work in this area [9], this paper focuses on the
general construction and properties of the BP framework in the WSN, rather
than on the application itself. The goal of this paper is to understand the general
characteristics of the BP framework, which has not been presented to date.
Introduction of new concepts about the clustering task is beyond the scope of
the paper.

The rest of the paper is organized as follows. Section 2 briefly describes the
related work in this area. A short background is provided in Section 3. The
practical issues involved in WSNs are described in Section 4. An efficient BP
scheme for distributed inference is presented in Section 5. Section 6 includes an
analysis of this method using simulations. Section 7 concludes the paper with a
summary.



2 Related Work

A graphical-model-oriented perspective of distributed data fusion in WSNs is
presented in [10]. The paper provides a bridge between the field of graphical
models to the data fusion in WSNs, discusses the tradeoffs between approxima-
tion and energy conservation and presents message censoring as an approach for
solving the problem. The paper concludes that the results are far from complete
and that the mapping between the two domains is still an area for research.

A general and robust architecture for distributed inference in sensor networks
is proposed in [5]. The architecture presented in that paper considers practical
issues and provides an analysis using a real deployment of WSNs. The method
is based on a junction tree for message-passing, and as such has two main draw-
backs: First, construction and maintenance of the tree require a large amount of
communication and processing overhead, as well as usage of reliable mechanisms.
Moreover, exact inference in large networks becomes unrealistic since the method
scales exponentially with the number of nodes, because of the complexity of the
junction tree.

Loopy belief propagation (LBP) [11] is presented in [3] as an attractive
method for use with WSNs, due to its distributed nature and its robustness in
environments with asynchronous communication, noise and failures. However,
the paper in question does not deal with practical issues, such as energy con-
sumption or topology changes. Furthermore, the LBP was proven to be effective
mainly in decoding applications, when the graph has long cycles. This is not the
situation in WSNs, which contain many short cycles.

Nonparametric belief propagation is proposed in [4] for solving the localiza-
tion problem. That paper is the first to present the broadcast variation of BP and
it refers to many of the communication constraints that might appear in sensor
networks. While that paper uses the LBP, our alternative approach of operating
on trees can suit other applications. Additionally, some realistic issues, such as
the effect of topology changes, are beyond the scope of that paper.

Reweighted belief propagation, implemented by [6], simulates a running of the
basic algorithm of BP multiple times on different spanning trees, using different
weights each time, to overcome the convergence problem of LBP and to find a
fixed point. As presented in [10], the amount of communication required for the
Tree Reweighted Max Product method is significantly larger than the basic max
product algorithm.

3 Background

Graphical models [1] play an important role in machine learning algorithms that
deal with uncertainty and complexity. They involve a mixture of probability
theory and graph theory and are based on the basic idea of modularity, thus
allowing a complex system to be viewed as a combination of many simpler pieces
connected by probability theory. The graph theoretical aspects of the models
provide a methodology to understand and formulate the system.



In a probabilistic graphical model, an undirected graph G = (V,E) is a set
of nodes V and arcs E, which represent dependencies among random variables.
We denote by xi the variable representing the set of possible states of a node
i. ψi(xi) represents a local (previously known) distribution function of node i
and ψij(xi, xj) refers to a joint function of two connected nodes i and j. These
functions are also called potential functions.

In the BP method [12], [13], the inference is carried out in a local and dis-
tributed manner by each node, using a message-passing technique. mij(xj) is a
message from node i to node j regarding the next state of node j. Node i calcu-
lates the message using previous messages it receives from its adjacent neighbors
N(i). The message update rule performed by a node i in round t is:

mij(xj)t =
∑
xi

ψi(xi)ψij(xi, xj)
∏

k∈N(i)\j

mki(xi)t−1 .

The update rule being calculated by node i to determine the preferred state xj of
node j is a sum of all the possible states xi of node i, assuming that j is in state
xj . Three elements are incorporated to each state: previously known information
about the local node ψi(xi), the joint function ψij(xi, xj) and the information
about the immediately adjacent neighbors mki(xi)t−1.

Upon termination, after round t̄, the belief at a node i (the marginal of the
variable) is the product of the local evidence together with all the incoming
messages and a normalization constant α:

bi(xi) = αψi(xi)
∏

k∈N(i)

mki(xi)t̄ .

The BP algorithm for trees is an exact inference algorithm, which means that
the belief converges to the correct marginal values in a finite number of iterations
equal to the diameter of the tree.

A traditional BP algorithm massively uses floating point computations, which
are expensive. We propose to use the Min-Sum algorithm [14], which is a variant
of the BP algorithm, applied in the log-probability domain. The Min-Sum al-
gorithm requires only addition and substraction operations and works well with
integer values. The goal of the algorithm is to minimize the overall cost over
all the nodes in the network, based on the local cost functions and the con-
straints among the nodes. The reader is referred to [9] for further details about
the Min-Sum algorithm and its broadcast implementation.

4 Practical Issues

WSNs operate under a set of unique constraints and requirements that demand
significant improvements and modifications to traditional algorithms. In partic-
ular, the BP algorithm cannot be embedded into WSNs in its original form.
Several issues should be addressed to enable its efficiency in WSNs.



4.1 Mapping WSN to Graphical Model

Mapping of a WSN into the graphical model appears to be the most challenging
task in the realization of this goal. The mapping of the network can be either to
a tree or to a cyclic network.

Several papers, such as [3], have shown good results of the LBP in practical
applications, mainly decoding. [15] discusses the convergence of the BP algorithm
in general networks with single or multiple loops. The LBP worked well in these
cases mostly because the cycles in the graph were large, so the effects of the
cycles faded after only a few iterations. WSNs are associated with short cycles
made by the broadcast range, so LBP is not an appropriate method for many
applications in such networks. The use of the Min-Sum algorithm for energy
efficiency also implies some limitations upon operating in a cyclic network. The
convergence problem of the Min-Sum algorithm is similar to the convergence
of the distance-vector routing protocol [16] and it is guaranteed only in acyclic
networks. The split horizon rule cannot be applied in a BP algorithm, because
of the algorithm structure.

Alternative methods remove the loops by replacing the cyclic network with
trees. The junction tree is the most common such method and it is based on two
properties: (1) every clique of the original graph is contained in some clique of
the junction tree; and (2) for each node of the original graph, the cliques and all
the edges containing it form a connected subtree of the junction tree.

Paskin and Guestrin in [5], argue about the need for a special architecture for
distributed inference. Their major claim is that an optimized junction tree may
reduce the overall communication cost. Additionally, the junction tree is more
stable, flexible and does not depend on the network layer. The key disadvantage
of the junction tree method is the large communication overhead it requires.
Construction and maintenance of such a tree, when the network is continuously
changing, incurs considerable overhead by the nodes.

4.2 Robustness against Failures

BP has a rapid convergence property, but when too many errors are involved, it
is likely that the convergence will be slower and the nodes will converge to an
incorrect value. WSNs are exposed to a fairly large amount of communication and
node failures. Apart from the ordinary failures in WSNs, such as packet errors
and loss due to interferences and poor link quality, BP is especially vulnerable
to broadcast message-passing, synchronization problems and topology changes
during the message transmission.

Broadcast Communication. The wireless medium allows transmission of a
single one-to-many message instead of multiple one-to-one messages. However
at the same time, it imposes larger constraints on the shared medium, such as
collisions and contention.

Message transmission in a broadcast manner reduces the communication vol-
ume, but at the same time it is much more sensitive to synchronization problems



and is more error-prone than the original algorithm. Instead of receiving a uni-
cast message mji(xi)t from node j, node i is required to extract the relevant
information from the broadcast message, by a subtraction of its own informa-
tion from the previous round’s, and by calculating it on its own [9]:

mji(xi)t = min
xj

{ψij(xi, xj) +mj∗(xj)t −mij(xj)t−1} .

The separation of a single update rule into two rules performed by differ-
ent nodes, increases the potential errors and the synchronization issues that are
involved with this method. Consider a situation where node j sends a message
mj∗(xj)t. Upon reception of this message by node i, it subtracts its last message
mij(xj)t−1, assuming that it was included in node j’s message. In the event of
message loss, when mi∗(xi)t−1 was not received by node j and was not included
in its broadcast message, node i’s belief will be wrong and this error may be
propagated through the network to other nodes. The nodes may ultimately con-
verge to a common belief, but there is no guarantee that they will converge to
the correct value. In the original protocol such a scenario will not occur, since
the entire calculation is an atomic operation by a single node. In case of message
loss, the nodes may synchronize in a subsequent iteration.

Synchronization. Perfect synchronization among the nodes in WSNs is diffi-
cult to achieve in practice, because of clock drifts. Therefore, message-passing
would be better off if performed asynchronously, upon message reception from
other nodes or upon external events.

The nodes’ duty cycle is another factor to consider in the context of asyn-
chronous operation; the message-passing algorithm should take into account
cases where nodes wake up only in the middle of a process.

The general BP algorithm enforces some message ordering in each of the
message-passing iterations. In the asynchronous method, there are no sequencing
constraints and the messages may be transmitted arbitrarily during an iteration.
Every node stores the received messages and computes them at the end of the
iteration. The lack of synchronization thus introduces the additional cost of
storage, and adds even further cost because some messages may be recomputed
and retransmitted several times.

Topology Changes. WSNs are usually defined as semi-static networks be-
cause the nodes are not mobile in the sense of mobile networks. However, the
nodes may nevertheless be repositioned by external factors, such as wind. Most
commonly, the topology might change because the wireless links are not stable
and sensor nodes are prone to failure. Therefore, the message-passing algorithm
must not assume static topology during its invocation, and scenarios such as
link break must be taken into consideration during the message-passing. A link
break between some key node and its descendant may harm the convergence of
the entire network, as the connectivity may be broken into separate components.



Even when the message-passing tree is re-constructed, the synchronization be-
tween the nodes may not be restored. Therefore, it is very important to build
a stable tree to minimize the effect of topology changes on the message-passing
process, while managing such common scenarios.

4.3 Scalability

Since scalability is a main concern in WSNs, localized algorithms [7] are used as
the building blocks of these networks. These localized algorithms are distributed
and only a subset of the nodes participate. The nodes interact with each other
only in a restricted vicinity, thus using only a limited amount of communica-
tion, computation, and storage resources - all crucial for energy efficiency in
WSNs. While this approach seems to promise scalability, the design of such al-
gorithms under the constraints of WSNs is not a trivial undertaking. Following
this paradigm and the self-organization property of WSNs [17], the key challenge
is to find localized behavior rules that may lead to the desired global property
or at least approximate it, when applied by all the nodes.

Although BP is based on local message-passing, it is not inherently limited
to a small region, and most of the proposed inference approaches based on BP
are not localized. Localizing BP means that the algorithm is required to involve
only part of the network and have a constant number of iterations, independent
of the network diameter. Consequently, this decreases the number of transmit-
ted messages and the time to deliver them, as well as resulting in low latency,
regardless of the size of the network.

5 Efficient BP Framework for WSN

In light of the challenges presented in the previous section, this section describes
the BP scheme for distributed inference in WSN.

5.1 Mapping WSN to Graphical Model

Our scheme maps a WSN into a graphical model by constructing multiple trees,
where each tree combines the properties of the routing tree (such as hop count
and link quality) together with clique properties. Thus, nodes that exist in the
same clique in the graph are likely to be in the same message-passing tree. The
cliques in the graph may be generated according to some metric, depending on
the application, and/or according to the physical layout. The spatial locality
property of WSNs means that nodes which are physically close are likely to
maintain relevant information, so it is common to have trees which were devel-
oped as a function both of their physical properties (e.g. a routing tree) and of
the information which they contain.

The requirement for associating a clique to the tree, in addition to the routing
requirements, can be understood from two different points of view. From the
perspective of the graphical model, the ideal mapping of the network to a tree is



to apply methods (such as the junction tree) which preserve the clique structure
of the original graph. Construction of a tree, based on partial knowledge of the
cliques in the graph results in a closer approximation of the actual junction tree,
implying an improved result.

The second viewpoint is based on the data-centric approach to WSNs. Data
centricity [7], [8] is a basic term in WSNs, which refers to the greater reliance
upon the information content than on the geography or the identity of the nodes
in the network. Concentration of the data content enables design of a more
robust application, and outperforms idealized traditional schemes.

We improve our message-passing tree by considering the information that
the nodes hold, similarly to the concept presented in the Directed Diffusion
method [18]. Every tree is created on-the-fly using a single message that contains
routing information, including parent and hop count, in addition to application-
specific information. The fact that the tree is dynamically and locally created
without any maintenance requirements, means that it scales and is efficient. The
node that starts the inference process (i.e. with no prior information from its
neighbors) operates as a root, by setting its hop count to zero. The nodes that
receive the message can either select the sender as a parent, or wait a random
short period (limited by a timer) in search of a better candidate. To be selected,
a parent must fulfill the routing requirements and reside in the same clique in
the graph. If a node does not find any parent after a given period, it operates as
a root.

Each time the node selects a parent, it increments its hop count, This mech-
anism is used to detect and break cycles in the graph. Once every node is either
designated as a root or has a parent, the trees are defined and it is now possible
to perform the entire Min-Sum algorithm.

5.2 Robustness

The overall robustness of the algorithm has been presented. It should be noted
that it is not possible to totally overcome the algorithm’s sensitivity to failures,
such as malformed messages and message loss. However, it is possible to reduce
the occurrence of failures by using several heuristics:

1. The asynchronous nature of the sensors can be overcome by means of a
”round” field in each message. This field designates the time interval in
which messages are grouped together. Messages that arrive too early can be
stored in a buffer and messages that arrive too late can be ignored.

2. The ”round” field in each message can also be used for detection and repro-
duction of message loss. Reproduction of the last message is performed by
processing the last message that was received by this node, as if it had been
received in the current round. Reproduction of the message keeps the nodes
synchronized and enables convergence in later iterations.

3. The Min-Sum algorithm computes cost information by subtracting previous
messages, under the assumption that the cost cannot decrease from one
round to another. We use a broadcast version of this algorithm, which can



Tree Construction:

(1) Upon a triggering event or a timer:

(1.1) If no BP messages with positive propagationLimit have been received,
start the process as a root by setting hop to zero
and the localized predefined value of propagationLimit ;

(1.2) Otherwise, select the best possible parent and start the process with
the parent’s propagationLimit decreased by one;
The parent is defined as ”final” if it meets all the requirements;

(2) Upon reception of a first-round BP message from other nodes:
(2.1) If already in the message-passing process:

(2.1.1) If the current parent meets both the routing tree requirement and the
clique requirement → process the message if it originates from this
node’s parent or descendant;

(2.1.2) If the current parent is not final: if the message’s sender meets the
requirements and also has a positive propagationLimit, then replace
the parent with the message sender and process its message;

(2.2) If not in the message-passing process:
(2.2.1) If the message’s sender meets all the requirements, and also has

a positive propagationLimit, select that node as a parent and start the
process with the given propagationLimit decreased by one;

(2.2.2) Otherwise, set a timer to start the process in a later time.

Fig. 1. Sketch of the Tree Formation

cause errors in the subtraction operation, in that a value greater than the
current value may be subtracted, resulting in an (incorrect) negative value.
Some of these errors may be detected, because the application assumes that
these values fall within some range, so that any deviation from this range
will signify an error. The wrong information is ignored in this case.

4. Link breaks between neighbors that are not mapped in the graphical model
as a parent and its descendant, do not affect the message-passing process.
When the link break affects the graphical model, a node may either select a
new parent and try to synchronize with it, or it may become a root.

5.3 Scalability

The BP algorithm is not inherently localized and requires global processing of
all the groups of nodes in order to achieve a global optimum. Construction of
a fully localized algorithm is similar to the general scheme with a few salient
differences: (1) The localized algorithm operates locally, and therefore tends
to create multiple trees, instead of a single global tree. (2) Flooding control
is managed by a ”propagation limit” field in each message, which determines
the diameter of the message-passing tree. This field may be set to any desired
small value, so only nodes within this vicinity are able to participate in the
message-passing process. (3) Scalability is also achieved by defining, a priori,
the number of rounds until termination, resulting in a constant message and
time overhead, regardless of the size of the network. This limit is necessary not



only for reducing the processing and the communication overhead, but also to
ensure the termination of the process. This is due to the fact that convergence
is not guaranteed in an asynchronous environment with failures and errors.

6 Empirical Evaluation

6.1 Case Study: Clustering

In this section, we analyze the BP framework that was constructed above, by
applying it to an implementation of the clustering problem. The implementation
provides us with a way to confirm the quality of the inference in the constructed
framework.

The only aspect of this application which is implementation-specific is the
content of the BP packets, and not the construction of the trees for the message-
passing. Therefore we can derive conclusions from our analysis which are also
applicable to other applications.

We model the sensor network as a directed graph G = (V,E), where V is a
set of nodes, where each node is assigned a local unique identifier. E is a set of
wireless links connecting two adjacent nodes. Nodes are defined as adjacent if
and only if they are within transmission range of each other.

The key challenge that we address here regarding clustering schemes in multi-
hop WSNs is how to efficiently form a connected disjointed group of nodes in a
local and distributed manner. Each group contains a single leader and several
ordinary nodes. An efficient scheme is used to select cluster heads (CHs) that: (1)
minimize the total transmission power aggregated over all nodes in the selected
path; (2) balance the load among the nodes to prolong the network lifetime.

Optimal cluster selection is equivalent to the minimum dominating set prob-
lem, which is an NP-complete problem. Using the BP method, it is possible
to achieve a good approximation in polynomial time, since the computation is
dispersed and divided among all the nodes,

Following the graphical model definitions and the cost functions as presented
in [9], the clustering problem can be formulated as follows: xi is defined to be
a CH candidate of node i and ψi(xi) defines a local cost function of connecting
node i to xi. ψij(xi, xj) represents the constraints between two neighbors i and
j to prevent improper assignment of CH association. The constraints are: (1)
two neighbors cannot both be CHs; (2) a node can select another node to be its
CH only if that node announces that it is a CH. If one of the constraints is true,
the function approaches infinity; otherwise the function approaches zero.

Broadcasting a message as part of the Min-Sum algorithm incurs a cost. Ac-
cordingly, each message stores cost information of two types: (1) The individual
cost of a node to become a cluster head, independent of the other nodes. (2)
The cost of connecting to other nodes, which is a function of the link between
the nodes as well as other information. The information regarding these costs is
updated based on the information received from the parent and the descendants
in the tree structure, according to the Min-Sum algorithm. The final goal of the
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Fig. 3. CHs per 50 nodes
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Fig. 4. Covered nodes

nodes is to select CHs that minimize the overall cost, over the whole network,
based on the cost values and the constraints between the nodes [9]. In this ap-
plication, two connected nodes in the graph are considered to be in the same
clique if they have some predefined number of common neighbors.

6.2 Simulation Framework

TOSSIM, TinyOS simulator [19], was used for performance analysis of the clus-
tering algorithm. The simulator provides an environment which is close to reality
and includes realistic properties of a network, such as interferences, asymmet-
ric links, changes in link quality, node death, failure, etc. Link Estimation and
Parent Selection [20] was used as the routing protocol in the multihop network.

Every plot was taken as an average of 20 different runs and over five different
time slots, to verify the behavior in different topologies of the network. The du-
ration between two consecutive time slots was large enough for topology changes
to take place and for different routing trees to be constructed, but obviously the
changes are not too radical, reflecting a common trait of WSNs.

In all the simulations, the localized algorithm operates in a vicinity of two
hops, with the constant number of rounds equal to eight. This number of rounds
was set to guarantee convergence in an asynchronous environment when taking
into account the fact that the number of rounds necessary until convergence of
the clustering application is larger than the size of the tree diameter. This is
because the decision about the CH candidates is done after observing the nodes
in the subtree, which in itself takes several rounds. Two nodes are considered to
be in the same clique when at least half of their neighbors are common.

6.3 Simulation Results

We determine the quality of the inference scheme by examining the number of
clusters that are constructed in the network. The optimal number of clusters
in WSNs depends upon network dynamics - such as connectivity and density -
which change over time. Using the setup of TOSSIM (which supports at most 16
neighbors and a density of around 14 in practice), we conclude that the optimal
number of clusters is about four clusters for each group of 50 nodes.

Figure 2 shows the number of CHs achieved by the localized scheme in net-
works with 50 to 250 nodes. As shown, the algorithm’s approximation is very
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close to the optimal solution, which is evidence of the ability of the constructed
scheme to achieve a good approximation in an inference problem.

While it is hard to conclude the scalability of the solution from Figure 2,
Figure 3 shows that the algorithm reaches a constant competitive ratio of about
five cluster heads for each group of 50 nodes - as opposed to four, in medium
to large groups. We chose to use a simulator that fully simulates the sensor
behavior, instead of using a rough estimate given by the Matlab simulator, whose
scalability constraints do not allow us to feasibly simulate networks of more than
250 sensors. However, the competitive ratio remains constant as we approach the
250-node limit. This implies that the quality of the solution will remain constant
even for larger networks. The conclusion that the solution is scalable is further
supported by the localized properties of the scheme, which operates in a constant
vicinity with a constant number of rounds.

The convergence of the nodes into a common value, as shown in Figure 5,
is inversely proportional to the number of clusters that were selected in the
network. Figure 5 presents the high convergence of the algorithm, which varies
between 95 to 85 percent using eight rounds. Figure 7 and Figure 6 demonstrate
the average number of lost messages in the network and for each message-passing
tree. It appears that large networks suffer from more errors than small networks,
due to the fact that more packets are routed in these networks. These errors, in
turn, slow down the convergence. When simulating networks with 200 nodes over
ten rounds instead of eight, the convergence increases from around 85 percent
to about 90 percent.

To verify the effect of dynamic topology, we simulated, in networks with
250 nodes, more rapid changes in the link quality than the usual, resulting in
an average of 20 significant changes during the message-passing. As can be con-
cluded from Figure 5 and Figure 6, the scheme is robust, even in adverse network
conditions, such as variable link quality.

Even in the absence of a perfect convergence, once the decision about the
CHs is made, the majority of the nodes find a suitable CH in the area, as shown
Figure 4. This means that the quality of the inference is very high because the
clusters are spread over all the networks, and even if some rounds are missed,
thus delaying the convergence at some nodes, the general inference nevertheless
succeeds.



This success is due to the general inference of a value which is close to the
convergence point, even in the absence of complete convergence of the nodes. The
full convergence can be deduced within a few more rounds. Therefore, the final
belief is almost perfect, in that it is close to that of nodes which have already
converged.

7 Summary

This paper introduces and analyzes an efficient and practical BP framework for
distributed inference. Using localized and data-centric approaches, our scheme
takes into account the special characteristics and constraints of the WSN envi-
ronment and consequently it provides better scaling and robustness than other
approaches. With a small constant overhead, the scheme achieves outstanding
results when compared to the optimal solution. The construction of the scheme is
application-independent, and therefore suitable for a large variety of applications
that require inference.
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