
Fast Self-Stabilizing Byzantine Tolerant Digital Clock
Synchronization∗

Michael Ben-Or†
Hebrew University

benor@cs.huji.ac.il

Danny Dolev
Hebrew University

dolev@cs.huji.ac.il

Ezra N. Hoch
Hebrew University

ezraho@cs.huji.ac.il

ABSTRACT
Consider a distributed network in which up to a third of the
nodes may be Byzantine, and in which the non-faulty nodes
may be subject to transient faults that alter their memory in
an arbitrary fashion. Within the context of this model, we
are interested in the digital clock synchronization problem;
which consists of agreeing on bounded integer counters, and
increasing these counters regularly.

It has been postulated in the past that synchronization
cannot be solved in a Byzantine tolerant and self-stabilizing
manner. The first solution to this problem had an expected
exponential convergence time. Later, a deterministic solu-
tion was published with linear convergence time, which is
optimal for deterministic solutions.

In the current paper we achieve an expected constant con-
vergence time. We thus obtain the optimal probabilistic so-
lution, both in terms of convergence time and in terms of
resilience to Byzantine adversaries.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems

General Terms
Algorithms, Reliability, Theory

Keywords
Distributed computing, fault tolerance, self-stabilization, Byzan-
tine failures, clock synchronization, digital clock synchro-
nization.

∗This work was funded in part by Israel Science Foundation.
†Incumbent of the Jean and Helena Alfassa Chair in Com-
puter Science.

© ACM, (2008). This is the author’s version of the work. It is posted
here by permission of ACM for your personal use. Not for redistribution.
The definitive version is to be published in the Twenty-Seventh Annual
ACM SIGACT-SIGOPS Symposium on Principles of Distributed Comput-
ing (PODC’08), August 2008.
.

1. INTRODUCTION
Clock synchronization is a fundamental building block of

distributed systems. The vast majority of distributed tasks
require some sort of synchronization; clock synchronization
is a very straightforward and intuitive tool for supplying
this. Thus, it is desirable to have a highly robust clock syn-
chronization mechanism available. A typical self-stabilizing
algorithm seeks to re-establish synchronization once lost;
a Byzantine tolerant algorithm assumes synchronization is
never lost and focuses on containing the influence of the per-
manent presence of faulty nodes. The robustness we provide
achieves both synchronization and Byzantine tolerance.

We consider a system in which the nodes execute in lock-
step by regularly receiving a common “pulse” (or “tick”
or “beat” - we will use the term “beat” in order to stay
clear of any confusion with “pulse synchronization” or “clock
ticks”). The digital clock synchronization problem seeks to
ensure that all correct nodes eventually hold the same value
for the beat counter (digital clock) and as long as enough
nodes remain correct, they will continue to hold the same
value and to increase it by “one” at each beat.

Clock synchronization in a similar model has earlier been
denoted as “digital clock synchronization” (see [1, 8, 16])
or “synchronization of phase-clocks” (see [14]); we will sim-
ply use the term “clock synchronization”. However, these
solutions do not consider Byzantine adversaries. In recent
years there has been major advancement in self-stabilizing
digital clock synchronization algorithms that are Byzantine
tolerant. Starting from [9] which gives an expected expo-
nential convergence time, and continuing with [7] which has
deterministic linear convergence time. The current work
continues this line, by providing a solution with expected
constant convergence time.

In the classical “Byzantine field”, it was shown that deter-
ministic Byzantine agreement protocols require linear run-
ning time (see [13]). Randomization can be used to break
this linear-time barrier, for example see [2], [4], [3] and [12].
The main idea behind such algorithms is to agree on a com-
mon coin with some probability. Each time all non-faulty
nodes have the same random bit, they have a certain prob-
ability of reaching an agreement (on the input values).

The structure of such agreement protocols implies that
their expected convergence time depends highly on the prob-
ability p that the common-coin algorithm will produce the
same coin at all non-faulty nodes; specifically, their expected
convergence time is O(1

p
).

Our solution can use any common-coin protocol1 operat-
ing in a synchronous network, provided that the protocol
has a constant probability of producing the same random
bit at all non-faulty nodes upon termination (such as the
protocol described in [12]). By re-executing this protocol
anew each round, a “stream” of random bits is produced
- one bit each round. Combining this with a single round
“agreement phase” produces the basis for our self-stabilizing
Byzantine tolerant clock synchronization.

The main contribution of the paper is a self-stabilizing,
Byzantine-tolerant digital clock synchronization algorithm
that converges in expected constant time; the algorithm is
optimal in its convergence time and in its resiliency (it is
resilient to f < n

3
Byzantine nodes.)

Aside from the clock synchronization algorithm, we show
how to turn a non-self-stabilizing common-coin algorithm
into a self-stabilizing one that produces a random bit every
round.

1.1 Previous Self-stabilizing Byzantine Toler-
ant Clock Synchronization Algorithms

Previously, two different models were considered within
the scope of the self-stabilizing Byzantine tolerant clock syn-
chronization problem. The Global Beat System model (also
known as the “synchronous” model), and the Bounded-Delay
model (also known as the “semi-synchronous” model). In
the synchronous model there is some device which is con-
nected to all nodes and simultaneously delivers a signal to
all nodes regularly. The semi-synchronous model assumes a
bound on the message delivery time between two nodes.

The clock synchronization problem is slightly different in
the different models: in the synchronous model, all nodes
have an integer counter, and all non-faulty nodes must agree
on the counter’s value and increment it every time they re-
ceive a signal from the global device; this problem is some-
times referred to as “digital clock synchronization”. In the
semi-synchronous model, each node is equipped with a phys-
ical clock that can only measure the passing of time (but
cannot tell the current time). All non-faulty nodes’ physical
clocks advance (more or less) at the same rate. In this set-
ting, the clock synchronization problem consists of all non-
faulty nodes having clock variables s.t. the difference be-
tween any two non-faulty nodes’ clocks is bounded. Clearly,
it is easier to solve the clock synchronization problem in the
synchronous model.

The self-stabilizing Byzantine-tolerant clock synchroniza-
tion problem was first tackled in [10] (see [9] for the full
version). It was solved in both models using probabilis-
tic algorithms, with expected exponential convergence time.
The Byzantine resiliency supported by [10] is optimal.

Later on, a series of papers addressed the clock synchro-
nization problem in both models using deterministic algo-
rithms. In the bounded-delay model the first determinis-
tic polynomial solution was presented in [5]. The polyno-
mial convergence was obtained using a pulse synchroniza-
tion protocol as a building block.2 [6] provides an optimal
(deterministic) solution in terms of convergence time and
Byzantine resiliency for the bounded delay model, using a

1The common coin protocol cannot rely on special initial-
ization of all non-faulty nodes, such as assumed in [17].
2The pulse synchronization protocol in the original version
of [5] had a flaw, but any other pulse synchronization proto-
cols can be used, as appears in the corrected version there.

much simpler pulse producing protocol.
In the synchronous model, [15] solved the digital clock

synchronization problem with deterministic linear conver-
gence time. The main drawback of [15] is its Byzantine-
resiliency, which was limited to f < n

4
, as opposed to the

optimal f < n
3
. The result of [7] supports f < n

3
Byzantine

nodes, while maintaining the deterministic linear conver-
gence time. In [7] the clock synchronization problem is
solved via an underlying “pulse algorithm” (see [7] for more
information).

In the current work we solve the digital clock synchro-
nization problem in the synchronous model, in a probabilis-
tic manner, with expected constant convergence time. This
solution is optimal in terms of its convergence time and in
terms of its Byzantine resiliency.

Table 1 presents a summary of previous results as com-
pared to the current paper.

Table 1: Summary of previous results

Paper Model Convergence Resiliency

[10] sync, probabilistic O(22(n−f)) f < n
3

[10] semi-sync, probabilistic O(n6(n−f)) f < n
3

[15] sync, deterministic O(f) f < n
4

[7] sync, deterministic O(f) f < n
3

[6, 5] semi-sync, deterministic O(f) f < n
3

current sync, probabilistic O(1) f < n
3

The paper is structured as follows: in Section 2 the model
is presented along with a self-stabilizing coin-flipping proto-
col. Section 3 defines the k-Clock problem and solves it for
k = 2, Section 4 solves the 4-Clock problem, Section 5 in-
cludes a solution to the k-Clock problem for any k; and
lastly, Section 6 concludes with a discussion of the results.

2. MODEL AND DEFINITIONS
Our model consists of a distributed network of n nodes,

which are fully connected to each other. Nodes communicate
via message passing, and are all connected to a global beat
system that provides “beats” at regular intervals; each beat
reaches all nodes simultaneously. Each message m that is
sent from p to q at beat r is guaranteed to reach q before
beat r+1. In the following discussion, the term “round” will
be used in the context of non-self stabilizing synchronous
algorithms, and “beat” will be used when talking about self-
stabilizing synchronous algorithms. Notice that “beat” can
be used to denote the signal received from the global beat
system, as well as the interval between such two signals;
when not stated otherwise, “beat” will refer to the second
meaning.

A percentage of the nodes may be Byzantine, and be-
have arbitrarily; the presented algorithms are resilient to
f < 1

3
·n such faulty nodes. We assume an information theo-

retic adversary with private channels. That is, the Byzantine
adversary has access to all communications between faulty
and non-faulty nodes; however, it does not have access to
communications among non-faulty nodes. Moreover, the
non-faulty nodes cannot use any computational assumptions
(e.g. signatures) to guard against the adversary.

In addition to the faulty nodes, non-faulty nodes may un-
dergo transient faults that change their memory in an ar-
bitrary manner. Any resilient protocol is thus required to

converge from any memory state. More specifically, follow-
ing a long-enough period without any new transient faults,
the system is required to converge to a state in which all
correct nodes have synchronized digital clocks.

Definition 2.1. A node is non-faulty when it follows
the given protocol. A node is faulty if it violates its protocol
in any way. The terms Faulty and Byzantine will be used
interchangeably.

At times of transient failures one cannot assume anything
about the state of any node, and the communication network
may also behave erratically. Eventually the system becomes
coherent again. In such a situation the system may find
itself in an arbitrary state.

Definition 2.2. The communication network is non-faulty
when the following conditions hold:

1. A message by a correct node p sent upon a receipt of
a beat from the global beat system, arrives (and is pro-
cessed) at its destination before the following beat is
issued by the global beat system;

2. The sender’s identity and the message context of any
message received are not tampered with.

3. A message received by p was sent by some node no
more than one beat ago. That is, “phantom” messages
are not delivered.

In real-world networks, it may take some time for the com-
munication network to overcome transient faults. Specifi-
cally, the communication networks’ buffers may contain mes-
sages that were not recently sent by any currently operating
node, and the network may eventually deliver them. We
consider the communication network to be non-faulty only
after all of these “phantom” messages have been delivered
or cleared away.

According to the above definition, once the network is
non-faulty, it adheres to the global-beat-system model. Which
means that messages cannot be lost and old messages cannot
be stored for an arbitrarily long time.

Since a non-faulty node may find itself in an arbitrary
state, there should be some period of continuous non-faulty
behavior before it can be considered “correct”.

Definition 2.3. A non-faulty node is considered correct
only if it remains non-faulty for ∆node beats during which
the entire communication network is non-faulty.3

Intuitively, for the system to converge to its desired state,
it is required that a “critical mass” of non-faulty nodes have
been clear of transient faults for a “long enough” period of
time.

Definition 2.4. The system is coherent when the com-
munication network is non-faulty and there are n−f correct
nodes.

Definition 2.5. A beat interval T = [r1, r2] is a coher-
ent beat interval if during T the system is coherent and there
is a set of the same n− f nodes that are correct throughout
T .4

3The assumed value of ∆node in the current paper will be
defined later.
4The indexing of the beats is not available to the nodes, it
is used only for presentation purposes.

Note that in the above definition, the set of non-faulty
nodes may not change from beat to beat. Alternatively, we
could require that at each beat r ∈ T there must be n − f
correct nodes, but they do not need to be the same correct
nodes each beat. However, such a definition would compli-
cate the proofs. The algorithms presented below are valid
under both definitions; for the sake of clarity, the stronger
assumption is used.

Remark 2.1. The values of n and f are fixed constants
and are considered part of the “code” and therefore non-
faulty nodes cannot initialize with arbitrary values for these
constants.

2.1 Common Coin-Flipping
Our clock synchronization algorithm uses a common coin-

flipping (coin-flipping for short) algorithm as a building block.
A coin-flipping algorithm is a distributed algorithm that,
with some constant probability, produces an output bit that
is common to all non-faulty nodes. Different coin-flipping
algorithms exist (see [12] and [11]), with different proper-
ties. Our formalization and requirements of a coin-flipping
algorithm are as follows:

Definition 2.6. An algorithm A is said to be a proba-
bilistic coin-flipping algorithm if A has the following prop-
erties:
(model): A operates in a synchronous network, communi-
cates only via message passing, and is resilient to f < n

3
Byzantine nodes;
(termination): There exists a constant ∆A, such that A
terminates within ∆A rounds of sending-and-receiving mes-
sages;
(binary output): The output of A at each node i is di,
di ∈ {0, 1};
(event E0): The event that all non-faulty nodes have the
same output “0”, occurs with constant probability p0 > 0;
(event E1): The event that all non-faulty nodes have the
same output “1”, occurs with constant probability p1 > 0;
(unpredictability): If either E0 or E1 occurs, then the
probability of any f nodes to predict the output of A by the
end of round ∆A − 1 is no more than 1−min{p0, p1}.

Intuitively, when executing a probabilistic coin-flipping al-
gorithm A there is a constant probability that all non-faulty
nodes have the same output value. Moreover, the Byzantine
nodes do not “know” which of the possible outputs will be
the common output until the very last round.

Remark 2.2. The probability space of the above defini-
tion is valid for any choice of Byzantine adversary. That is,
an algorithm A is a probabilistic coin-flipping algorithm, if
for any Byzantine adversary, the properties of Definition 2.6
hold regarding all possible runs. (for more details see [12]).

In the following section, a probabilistic coin-flipping al-
gorithm A is assumed to be “self-contained”, in the sense
that multiple invocations of A do not affect the probabil-
ity of the events E0 or E1 occurring within each invocation,
or the probability of Byzantine nodes predicting the output
before round ∆A of each invocation. This “self-contained”-
ness is required to allow multiple concurrent executions of
A to run properly.

Ensuring such “self-contained”-ness could be a problem
in asynchronous systems. However, it is easy to implement

Algorithm ss-Byz-Coin-Flip /* executed at each node, each beat */
/* A is a probabilistic coin-flipping algorithm */

/* the Ai’s are ∆A instances of A */
On beat (signal from global beat system):

1. For i := 1 to ∆A
execute the ith round of Ai;

2. Output the value of A∆A ;

3. For i := 1 to ∆A − 1
Ai+1 := Ai;

4. Initialize A1 to be a new instance of A;

Figure 1: A self-stabilizing coin-flipping algorithm.

in the global-beat-system model when each instance of A
terminates within a finite number of rounds: simply add a
“session number” to each instance of A, and differentiate
messages of co-executing instances using this session num-
ber. Since only a finite number of instances are concurrently
executed at any round, the session numbers can be “recy-
cled”, thus avoiding problems of infinite counters in the set-
ting of self-stabilization.

Observation 2.1. The common coin protocol of [12] ad-
heres to Definition 2.6. In [12] the common coin protocol is
based on graded verifiable secret sharing (GVSS), which has
3 “phases”: share, decide, recover. Up until the last phase,
the secret is unrecoverable by any set of f or less nodes.
Moreover, the recover phase is one round long. Thus, the
“unpredictability” property of Definition 2.6 holds.

[12]’s common coin protocol executes a GVSS protocol for
each node in the system. However, the last step of the com-
mon coin protocol consists of executing the recover phase of
all the GVSS instances, which conserves the property that
the output of the common coin is unpredictable by any set of
≤ f nodes, until the very last round.

Lastly, the protocols of [12] operate in a synchronous model
and are tolerant to f < n

3
Byzantine nodes. Moreover, the

adversarial model assumed in [12] allows “rushing”; thus,
when using [12], our solution is also tolerant to rushing.

Remark 2.3. The protocol of [12] requires the values of
n, f as input, as well as additional constants; for example,
the secret sharing protocol of [12] requires a prime p > n.
These constants are assumed to be part of the “code” and
non-faulty nodes do not initialize with arbitrary values of
these constants.5

2.2 Self-stabilizing Coin-flipping
When considering a system that is self-stabilizing, round

numbers become a problematic notion, since different nodes
may have different values as their current “round number”.
Thus, statements such as “A terminates within ∆A rounds”
require some explanation. To this end, we define pipelined
probabilistic coin-flipping, and later use it to define a self-
stabilizing coin-flipping algorithm.

Definition 2.7. An algorithm B is said to be a pipelined
probabilistic coin-flipping algorithm if B has the following

5These constants can be computed in a single way given the
value of n (for example, let p be the smallest prime that is
larger than n). Thus, this assumption does not weaken the
result.

properties:
(model): B operates in a synchronous network, communi-
cates only via message passing, and is resilient to f < n

3
Byzantine nodes;
(binary output): Each round, the output of B at each node
i is di, di ∈ {0, 1};
(event E0): Each round, the event that all non-faulty nodes
have the same output value “0”, occurs with constant prob-
ability p0 > 0;
(event E1): Each round, the event that all non-faulty nodes
have the same output value “1”, occurs with constant prob-
ability p1 > 0;
(unpredictability): The probability that either E0 or E1

occurs at some round is independent of the previous rounds.
If either E0 or E1 occurs, then the probability that any f
nodes will predict the output of B at round r by the end of
round r − 1 is no more than 1−min{p0, p1}.

Remark 2.4. The “unpredictability” property means that
as far as the adversary can know (considering all informa-
tion it has access to) the output of the random bit at each
round is independent of previous rounds. However, this is
not the usual meaning of “independent”, as if the adversary
has all the information of all correct nodes, the random bits
can be predicted. (see [12] for more information).

In the rest of this paper we use the term “independent”
to mean “as far as the adversary can tell, the events are
independent”.

Informally, the above definition states that at every round,
with constant probability, all non-faulty nodes agree on a
common random bit.

Definition 2.8. An algorithm C is said to be a self-stabilizing
probabilistic coin-flipping algorithm if C has the following
properties:
(model): C operates in a self-stabilizing synchronous net-
work (i.e. with a global beat system), communicates only via
message passing, and is resilient to f < n

3
Byzantine nodes;

(convergence): Starting from any arbitrary state, C con-
verges within ∆C beats to be a pipelined probabilistic coin-
flipping algorithm.

Given an algorithm A that is a probabilistic coin-flipping
algorithm, one can construct an algorithm C that is a self-
stabilizing probabilistic coin-flipping algorithm. See Figure 1.

Algorithm ss-Byz-2-Clock /* executed at node u each beat */
/* C is self-stabilizing probabilistic coin-flipping algorithm */

On beat (signal from global beat system):

1. broadcasta u.clock; /* u.clock ∈ {0, 1,⊥} */

2. execute a single beat of C, and set rand to be the output of C;
3. consider each message with “⊥” as carrying the value rand; /* rand ∈ {0, 1} */

4. set maj to be the value that appeared the most, /* maj ∈ {0, 1} */
and #maj the number of times it appeared;

5. if #maj ≥ n− f then u.clock := 1−maj;

6. else u.clock :=⊥;

aIn the context of this paper, “broadcast” means “send the message to all nodes”. (We do not
assume broadcast channels.)

Figure 2: An algorithm that solves the 2-Clock problem.

Lemma 1. Given a probabilistic coin-flipping algorithm
A, the algorithm ss-Byz-Coin-Flip is a self-stabilizing coin-
flipping algorithm, with convergence time ∆ss-Byz-Coin-Flip =
∆A.

Proof. Consider a system that has been coherent for ∆A
beats, and a set of n−f non-faulty nodes G, where each node
has been non-faulty for ∆A beats. The nodes in G, when
executing Line 2, output the value of a probabilistic coin-
flipping algorithm that has been initialized and executed
properly for ∆A rounds, and therefore its properties hold.
This situation continues to hold for as long as the nodes
in G are not subject to transient faults. ss-Byz-Coin-Flip
therefore converges, within ∆A beats, to become a pipelined
probabilistic coin-flipping algorithm.

Theorem 1. There exists a self-stabilizing probabilistic
coin-flipping algorithm, with constant stabilization time.

Proof. Denote the coin-flipping algorithm in [12] by OC;
OC has the properties of a probabilistic coin-flipping al-
gorithm, as defined in Definition 2.6 (see Observation 2.1).
Thus, the algorithm ss-Byz-Coin-Flip (when executed with
A := OC) is a self-stabilizing probabilistic coin-flipping al-
gorithm, according to Lemma 1. In addition, ∆OC is con-
stant, leading to a constant stabilization time of ss-Byz-
Coin-Flip, as required.

3. THE DIGITAL CLOCK SYNCHRONIZA-
TION PROBLEM

In the digital clock synchronization problem each node
u has an integer variable u.clock representing the node’s
clock-value. The goal is to synchronize all correct nodes’
clock variables.

Definition 3.1. A system is clock-synched at beat r
with value Clock(r), if at the end of beat r, all correct nodes
have the same clock-value, and it is equal to Clock(r).

Definition 3.2. The k−Clock problem consists of the
following:
(convergence) starting from any state, eventually (at some
beat r) the system becomes clock-synched with value Clock(r);
(closure) from this point on the system stays clock-synched
s.t. at beat r + i it is clock-synched with value Clock(r) + i
mod k.

3.1 Overview of the Solution
The first step is to construct a 2-Clock algorithm ss-Byz-

2-Clock using the self-stabilizing coin-flipping algorithm
ss-Byz-Coin-Flip. Then, by using 2 instances of ss-Byz-
2-Clock, a 4-clock algorithm ss-Byz-4-Clock is built. Us-
ing ss-Byz-4-Clock one can have four send-and-receive
“phases” before a wrap-around of the clock value occurs. Us-
ing ss-Byz-4-Clock, ss-Byz-Clock-Sync is constructed,
which runs ss-Byz-4-Clock, and sends messages each time
ss-Byz-4-Clock’s clock value changes. Thus, between two
wraparounds of ss-Byz-4-Clock’s clock it is possible to
try to achieve an agreement on the clock value of ss-Byz-
Clock-Sync, with a constant probability of success. This
allows ss-Byz-Clock-Sync to solve the k-Clock problem
for any k, in an expected constant number of beats.

Observe that each algorithm uses the previous algorithms
as building blocks. On a beat received from the global-
beat-system, each algorithm performs a step in each of the
appropriate building blocks. We call such a step “execution
of a single beat” of the relative algorithm.

3.2 Solving the 2-Clock Problem
Let C be a self-stabilizing probabilistic coin-flipping al-

gorithm. At each beat, C produces some random bit. In
ss-Byz-2-Clock (see Figure 2), C is executed in the back-
ground, and each beat rand holds the random output bit of
C. The algorithm ss-Byz-2-Clock requires that ∆node ≥ ∆C.

Remark 3.1. Consider some beat r. Notice that in the
algorithm of Figure 2 the value of rand at beat r is used to
“replace” ⊥ values sent in beat r−1. One may try to use the
value of rand at beat r− 1, and have each node send “rand”
instead of “⊥” (during beat r − 1). The problem with such
a solution is that the Byzantine nodes can “decide” which
value they send at beat r − 1 according to the result of rand
at beat r− 1. This way we lose the power of randomization,
since the Byzantine nodes’ action can depend on the value
of the random bit.

To avoid this, rand of beat r is used only after all nodes
(including the Byzantine ones) sent their messages in beat
r−1. That is, rand is used only after the Byzantine nodes are
committed to the values they sent. Thus, rand is independent
of the clock values sent by Byzantine nodes.

Observation 3.1. Consider two vectors ~A, ~B of length n
that differ in at most f entries, where n > 3f . If ~A contains

n− f copies of vA, and ~B contains n− f copies of vB, then
vA = vB.

Definition 3.3. Let T be a coherent beat interval. For
any r ∈ T :
clocksstart

r is the set of all clock values of correct nodes at
the beginning of beat r.
clocksend

r is the set of all clock values of correct nodes at the
end of beat r.

Let G be the set of correct nodes during beat r ∈ T ; recall
that G does not change throughout T (see Definition 2.5).
clocksstart

r := {u.clock | u ∈ G} before the execution of Line 1,
and clocksend

r := {u.clock | u ∈ G} after the execution of
Line 6. Notice that clocksend

r = clocksstart
r+1 . Note also that

the system is clock-synched at beat r with value v ∈ {0, 1}
if (and only if) clocksend

r = {v}.

Lemma 2. Let T be a coherent interval. If at some beat
r ∈ T , clocksstart

r = {v}, (where v ∈ {0, 1}), then clocksend
r =

{1− v}.
Proof. If clocksstart

r = {v}, then there are n− f correct
nodes at the beginning of beat r with clock = v; when they
execute Line 1, they all send the same value v. Since v ∈
{0, 1}, each correct node receives at least n−f messages with
the same value v (see Observation 3.1), therefore maj = v
and #maj ≥ n − f . Thus, in Line 5, all correct nodes set
clock := 1−maj = 1− v.

Definition 3.4. A beat r is called “safe” if all correct
nodes have the same value of rand during r.

Lemma 3. Let T be a coherent interval. If r ∈ T is a safe
beat, then clocksend

r ⊂ {v,⊥} for v ∈ {0, 1}.
Proof. Correct nodes set clock either in Line 5 or in

Line 6. Those that set clock in Line 6 set it to “⊥”. Consider
all correct nodes that set clock at Line 5; we show that they
all set clock to the same value v. r is a safe beat, therefore,
all correct nodes that sent “⊥” in Line 1 will be considered
to have sent the same value by all correct nodes. Thus, two
correct nodes can differ by at most f values when setting
maj and #maj in Line 4. By Observation 3.1, all nodes
that have #maj ≥ n − f have the same value for maj.
Thus, all nodes that update clock in Line 5 update it to the
same value.

Lemma 4. Let T be a coherent interval. If r ∈ T is a
safe beat in which clocksstart

r ⊂ {v,⊥} for v ∈ {0, 1}, then
with probability at least min{p0, p1}, clocksend

r = {v′} for
v′ ∈ {0, 1}.

Proof. If clocksstart
r = {v} for v ∈ {0, 1}, then, by

Lemma 2 we are done. Otherwise assume that clocksstart
r 6=

{v} for v ∈ {0, 1}.
r is a safe beat, therefore, all correct nodes have the same

value of rand. Consider two cases: clocksstart
r = {⊥} and

clocksstart
r 6= {⊥}. In the first case, all nodes consider (in

Line 3) to have received at least n− f messages with value
rand; thus they set #maj ≥ n − f and maj = rand, and
therefore, (after Line 5) clocksend

r = {1− rand}.
In the second case, clocksstart

r 6= {⊥}; thus, under the
lemma’s assumption we have that clocksstart

r = {v,⊥} for
v ∈ {0, 1}. Recall that clocksend

r−1 = clocksstart
r , thus, the

values of clocksstart
r have been determined in beat r−1. The

“unpredictability” property implies that rand is indepen-
dent of “what happened” during beat r−1 (see Remark 3.1).
We thus conclude that with probability at least min{p0, p1},
rand = v. In this case, all correct nodes have #maj ≥ n−f
and maj = v, thus all correct nodes have (after Line 5)
clocksend

r = {1− v}.
Thus, with probability of at least min{p0, p1} we have

that clocksend
r = {v′} for v′ ∈ {0, 1}.

Lemma 5. Let T be a coherent interval. Any beat r ∈ T
is safe with probability p0 + p1.

Proof. Consider some beat r ∈ T ; since T is coherent,
there is a set of n − f correct nodes during beat r. Since
∆node ≥ ∆C, they have all executed C for ∆C beats (C’s
required convergence time). Thus, properties “event E0”
and “event E1” hold; which means that with probability p0

all correct nodes have rand = 0 and with probability p1 all
correct nodes have rand = 1. Thus, with probability p0 +p1

the beat is safe.

Theorem 2. ss-Byz-2-Clock solves the 2-Clock prob-
lem with expected constant convergence time.

Remark 3.2. When talking about the expected conver-
gence time of ss-Byz-2-Clock, it is convenient to think
of an infinitely long coherent interval T = [r,∞]. However,
the above theorem holds also for short finite intervals, but
would require saying: “T is of length of at least l, where at
any beat after r + l there is a constant probability that the
algorithm converges”. Instead, we simply say that T is “long
enough”.

Proof. Let T = [r1, r2] be a “long enough” coherent in-
terval. By Lemma 5, for each beat r ∈ T there is a constant
probability c1 := p0 + p1 that r is a safe beat. By the “un-
predictability” property, the probability of the event E that
two consecutive beats r, r + 1 are safe is at least c2

1. From
Lemma 3 and Lemma 4, given that E occurred, there is a
probability of c2 = min{p0, p1}, and thus all correct nodes
have the same clock value at the end of beat r + 1, and by
Lemma 2, they continue to agree on it at the end of any
beat r′ ≥ r + 1, r′ ∈ T .

Thus, during each beat r, r ∈ [r1 + 1, r2], there is a con-
stant probability of c2 · c2

1 that r is safe, and that r − 1 is
safe, and that all correct nodes have the same clock value by
the end of r. Therefore, after an expected constant number
of beats (starting from r1 + 1), all correct nodes agree on
the clock value, and by Lemma 2, they all continue to agree
on the clock value and change it from “1” to “0” and vice
versa each beat. Hence, ss-Byz-2-Clock solves the 2-Clock
problem and has expected constant convergence time.

Theorem 2 states that ss-Byz-2-Clock converges with
expected constant time. However, as can be seen by the
proof of Theorem 2, the result is actually much stronger: if
at some beat the algorithm has not yet converged, then it
has a constant probability of converging in the next beat.
Thus, denote by ∆ss-Byz-2-Clock the expected convergence
time of ss-Byz-2-Clock; the probability that ss-Byz-2-
Clock does not converge within l ·∆ss-Byz-2-Clock beats de-
creases exponentially with l. Therefore, not only does ss-
Byz-2-Clock converge in expected constant time, it also
does so with high probability.

Algorithm ss-Byz-4-Clock /* executed at node u each beat */
/* A1,A2 are instances of ss-Byz-2-Clock */

On beat (signal from global beat system):

1. execute a single beat of A1;

2. if u.clock(A1) = 0 then
execute a single beat of A2;

3. set u.clock := 2 · u.clock(A2) + u.clock(A1)
a;

aTo differentiate between the output clock value of ss-Byz-4-Clock and that
of ss-Byz-2-Clock, consider u.clock to be the output of ss-Byz-4-Clock,
u.clock(A1) is the output of A1 and u.clock(A2) is the output of A2.

Figure 3: An algorithm that solves the 4-Clock problem.

4. SOLVING THE 4-CLOCK PROBLEM
The previous section solved the 2-Clock problem. The

following describes how to solve the 4-Clock problem, using
2 instances of ss-Byz-2-Clock, A1,and A2. The presented
solution requires that ∆node ≥ max{∆A1 , 2 ·∆A2}; since
A1,A2 are both instances of ss-Byz-2-Clock, ∆node is set
to be 2 ·∆ss-Byz-2-Clock.

Theorem 3. ss-Byz-4-Clock (Fig. Figure 3) solves the
4-Clock problem with expected constant convergence time.

Proof. Let T = [r1, r2] be a “long enough”6 coherent
interval. A single beat of A1 is executed for every beat
r ∈ T ; thus A1 is executed properly by all correct nodes
during T , and all lemmata regarding A1 hold. Therefore,
A1 converges with expected constant time.

Let rA1 ∈ T be the beat at which A1 has converged.
Thus, for any beat r ≥ rA1 , r ∈ T all correct nodes alternate
between executing a single beat of A2 and not executing A2.
Thus, a single beat of A2 is executed every other beat in
[rA1 , r2] by all correct nodes. Therefore, due to Theorem 2,
A2 converges in expected constant time.

Let rA2 , rA2 ≥ rA1 denote the beat at which A2 has con-
verged. During the interval [rA2 , r2], A1 andA2 have the fol-
lowing pattern: (clock(A1) = 0, clock(A2) = 0), (clock(A1) =
1, clock(A2) = 0), (clock(A1) = 0, clock(A2) = 1), (clock(A1) =
1, clock(A2) = 1); this pattern continues until beat r2. Thus,
during the interval [rA2 , r2] the clock variable (that is up-
dated in Line 3) has the following pattern: 0, 1, 2, 3; and
this pattern continues until beat r2.

To conclude, the linearity of expectations implies that
rA2 − r1 is constant in expectation. That is, ss-Byz-4-
Clock converges in expected constant time.

Remark 4.1. ss-Byz-4-Clock uses two different pipelines
of coin-flipping. Actually, it could be improved to use a sin-
gle coin-flipping pipeline, and reduce both the message com-
plexity and expected convergence time. However, these im-
provements are only by a constant factor, and therefore are
omitted for the sake of clarity.

5. SOLVING THE K-CLOCK PROBLEM
(FOR ANY K)

The construction of ss-Byz-4-Clock can be similarly
used to solve the 8-Clock problem from A1 that solves the
4-Clock problem and A2 that solves that 2-Clock problem.

6See Remark 3.2.

In general, any 2k+1-Clock problem can be solved with A1

that solves 2k-Clock andA2 that solves the 2-Clock problem.

Even better, any 22k+1
-Clock problem can be solved with

A1,A2 that solve the 22k

-Clock problem. Thus, the k-Clock
problem can be solved for infinitely many values. However,
such constructions have log n overhead (or log log n, depend-
ing on which of the above schemas is used) in their message
complexity and at least the same overhead in their expected
convergence time.

The following ss-Byz-Clock-Sync (see Figure 4) algo-
rithm has a constant overhead both in message complexity
and in its expected convergence time. It uses a 4-Clock al-
gorithm to construct a k-Clock algorithm for any value of
k. The schema used is similar to the algorithm of Turpin
and Coan (see [18]) when combined with the algorithm of
Rabin (see [17]). More specifically, ss-Byz-Clock-Sync is
constructed of 4 “phases”, each executed in a consecutive
beat. The first phase sends the clock value to everyone. In
the second phase, each node votes on the majority clock
value it received, or ⊥ if no such value exists. The third
phase determines whether enough nodes voted on a value
6=⊥, thus ensuring that those nodes that have voted, voted
on the same value in phase 2. Lastly, in the fourth phase the
new clock value is set either to be the majority clock value
of phase 2, or (if there were not enough votes) is randomly
selected using the output of the coin-flipping algorithm.

In the context of ss-Byz-Clock-Sync, ∆node is the same
as in ss-Byz-4-Clock.
A is an instance of ss-Byz-4-Clock. The following dis-

cussion assumes that all correct nodes have the same value
of clock(A); it takes expected constant time until this hap-
pens. By this assumption, all correct nodes perform the
same portion of the code on each beat. That is, they all
perform Block 3.a on some beat, then on the next beat they
perform Block 3.b, and so on. In the following lemmata,
we assume that correct nodes operate in the following cycle:
they all perform Block 3.a, the following beat they perform
Block 3.b, then Block 3.c, then Block 3.d, and then they go
back to performing Block 3.a.

Definition 5.1. Let T be a coherent interval; For any
beat r ∈ T :
full clocksstart

r is the set of all full clock values of correct
nodes at the beginning of beat r.
full clocksend

r is the set of all full clock values of correct nodes
at the end of beat r.

Notice that full clocksstart
r , full clocksend

r ⊂ {0, 1, . . . , k − 1}
for all r.

Algorithm ss-Byz-Clock-Sync /* executed at node u each beat */
/* A solves the 4-Clock problem */

On beat (signal from global beat system):

1. execute a single beat of A;

2. set u.full clock := u.full clock + 1 mod k;

3. case u.clock(A) of: /* consider u.clock(A) at the beginning of the beat */

(a) u.clock(A) = 0: broadcasta u.full clock to all;

(b) u.clock(A) = 1: if received n− f same value v in previous beat
set propose := v;

else
set propose :=⊥;

fi
broadcast propose to all;

(c) u.clock(A) = 2: let save be the majority value 6=⊥ of the received values;
(if all values are ⊥, set save :=⊥)
if save 6=⊥ appeared n− f times

set bit := 1;
else

set bit := 0;
fi
broadcast bit to all;
if save =⊥

set save := 0;

(d) u.clock(A) = 3: if received n− f “1” in previous beat
set u.full clock := save + 3;

else if received n− f “0” in previous beat
set u.full clock := 0;

else if rand = 1
set u.full clock := save + 3;

else if rand = 0
set u.full clock := 0;

fi
aIn the context of this paper, “broadcast” means “send the message to all nodes”.

Figure 4: An algorithm that solves the k-Clock problem for any k.

Lemma 6. Let T be a coherent interval and let r ∈ T be
a beat at which clock(A) = 3; if full clocksend

r = {v} then
for every beat r′ > r, r′ ∈ T it holds that

full clocksstart
r′ =

{
v + (r′ − r − 1) mod k

}
.

Proof. Assume the lemma holds for any beat r′, r ≤
r′ ≤ r + 5. Recall that full clocksend

r+4 = full clocksstart
r+5 .

The assumption on r′ implies that full clocksend
r+4 = {v + 4

mod k}. In addition, notice that at beat r +4, it holds that
clock(A) = 3. Now, repeatedly applying the above assump-
tion leads to full clocksend

r+i = {v+i mod k} (for i ≥ 0, r+i ∈
T). In other words, full clocksend

r′ = {v + (r′ − r) mod k}
and full clocksstart

r′ = {v + (r′ − r − 1) mod k}. It is left to
prove that the lemma holds for any beat r′, r ≤ r′ ≤ r + 5.

For r′ = r + 1 the claim holds immediately; additionally,
up until beat r + 5, the correct nodes update full clock only
in Line 2. Therefore, they all update full clock in the same
way. Thus, full clocksstart

r+1 = {v}; full clocksstart
r+2 = {v + 1};

full clocksstart
r+3 = {v + 2}; full clocksstart

r+4 = {v + 3}, (where
“+” is modulo k).

It remains to show that full clocksstart
r+5 = {v + 4}. We

will do this by proving an equivalent claim, namely, that:
full clocksend

r+4 = {v + 4}. To show this, consider the mes-
sages sent during beats r + 1, . . . , r + 4.

At beat r+1 all correct nodes send v+1 to everyone, and

so all correct nodes receive at least n − f copies of v + 1.
At beat r + 2 all correct nodes set propose := v + 1. At
beat r + 3 all correct nodes have save = v + 1 and they
set bit := 1 and therefore all of them receive n − f copies
of “1”. This implies that at beat r + 4 all correct nodes
set full clock := save + 3 = v + 1 + 3 = v + 4. That is,
full clocksend

r+4 = {v + 4}.

Lemma 7. Let T be a coherent interval; At most one
value v 6=⊥ can be sent in Block 3.b by correct nodes at
some beat r ∈ T .

Proof. Immediate from Observation 3.1.

Lemma 8. Let T be a coherent interval; If r ∈ T is a safe
beat at which clock(A) = 3, then with probability at least
min {p0, p1} all correct nodes have the same full clock value.

Proof. First, consider the case in which no correct node
sees n− f copies of the same value. In this case, all correct
nodes set full clock := 0, with probability p0.

If some correct node p receives n−f copies of some value v,
then all correct nodes that receive n−f copies of some value,
receive the same value v (by Observation 3.1). Notice that
v is calculated according to messages determined at beat
r − 1, and rand was chosen at beat r. Therefore, due to

“unpredictability”, rand and v are independent of each other.
Thus, with probability at least min {p0, p1}, all correct nodes
update full clock in the same manner: either full clock := 0
or full clock := save+3. If v = 0 then we are done. If v = 1
then we are left to show that all correct nodes have the same
value of save.

Since p has received n − f copies of “1” it means that
some correct node q has sent “1” in beat r− 1. Thus, q has
received at least n − f copies of saveq 6=⊥ at beat r − 2.
Thus, all other correct nodes have received at least n − 2f
copies of saveq. By Lemma 7, correct nodes either sent ⊥
or saveq in beat r − 2. Thus, correct nodes can receive at
most f < n − 2f values that are not ⊥ and are not saveq.
Hence, all correct nodes have save = saveq.

Theorem 4. ss-Byz-Clock-Sync solves the k-Clock prob-
lem for any value of k, and converges in expected constant
time.

Proof. The proof is very similar to the proof of Theorem 2
and Theorem 3. By Lemma 8, after an expected constant
number of beats all correct nodes have the same full clock
value. By Lemma 6, the correct nodes continue to agree
on their full clock value and increase it by “1” at each beat
(modulo k).

Therefore, ss-Byz-Clock-Sync solves the k-Clock prob-
lem for any value of k; and converges in expected constant
time.

6. DISCUSSION

6.1 Self-stabilizing Coin-flipping
The main result in this paper is the expected constant

time digital clock synchronization algorithm. However, to
reach this result an important tool has been developed: the
self-stabilizing probabilistic coin-flipping algorithm, which
provides a stream of common random bits to all correct
nodes. This tool can be useful in developing randomized self-
stabilizing solutions to various problems, since it provides a
self stabilizing access to a stream of shared coins.

For example, the algorithm in [9] could be adapted to use
ss-Byz-Coin-Flip as a self-stabilizing coin-flipping building
block. Such a change would lead to an exponential reduction
in the convergence time of [9]. However, [9]’s convergence
time is dependent upon the wraparound clock value, and
therefore would still not be constant.

Notice that the random bit produced at beat r is “inde-
pendent” of events occurring up to beat r−1. However, the
adversary can “see” the result of the coin at beat r and take
it into consideration when sending messages at beat r. Thus,
one must be careful when using the stream of random bits;
specifically, one must ensure that the states to choose from
(using the random bit) have been decided in the previous
beat, and not in the current beat. The technique presented
in this paper can be adapted in dealing with such situations.

6.2 Self-stabilizing Pipelining
To the best of our knowledge, pipelining as means of trans-

forming non-self-stabilizing Byzantine tolerant algorithms
into self-stabilizing Byzantine tolerant algorithms, was first
suggested in [15]. The current work is another example of
employing the “pipeline concept” in a self-stabilizing and
Byzantine tolerant protocol. It is interesting to classify the
class of problems that can be solved using this technique.

6.3 Future Research
We consider two main points for future research; the first,

regards the bounded-delay model, which assumes there is
a bound on messages’ delivery time (replacing the global-
beat-system assumption). Previously, clock synchroniza-
tion in the bounded-delay model was solved using an un-
derlaying pulsing algorithm with linear convergence time.
Can the ideas in the current paper be transported to the
bounded-delay model, and reduce the convergence time to
expected constant? This can be done either by directly solv-
ing the clock synchronization problem, or by reducing the
convergence time of the underlying pulsing algorithm. If
so, what extra overhead will be required? Notice that au-
tomatic translators from the global-beat-system model to
the bounded-delay model exist, but they require linear run-
ning time. Therefore, they cannot efficiently transport the
current ideas into the bounded-delay model.

The second point regards asynchronous systems. Without
probability, it is impossible to solve the clock synchroniza-
tion problem in an asynchronous network with Byzantine
nodes. However, once probability is introduced, such a so-
lution might be feasible. It is interesting to see what form
the clock synchronization problem takes in an asynchronous
setting, and what kind of probabilistic solutions apply.

7. REFERENCES
[1] A. Arora, S. Dolev, and M.G. Gouda. Maintaining

digital clocks in step. Parallel Processing Letters,
1:11–18, 1991.

[2] M. Ben-Or. Another advantage of free choice
(extended abstract): Completely asynchronous
agreement protocols. In PODC ’83: Proceedings of the
second annual ACM symposium on Principles of
distributed computing, pages 27–30, New York, NY,
USA, 1983. ACM.

[3] G. Bracha. An O(log n) expected rounds randomized
byzantine generals protocol. J. ACM, 34(4):910–920,
1987.

[4] R. Canetti and T. Rabin. Fast asynchronous byzantine
agreement with optimal resilience. In STOC ’93:
Proceedings of the twenty-fifth annual ACM
symposium on Theory of computing, pages 42–51, New
York, NY, USA, 1993. ACM.

[5] A. Daliot, D. Dolev, and H. Parnas. Linear time
byzantine self-stabilizing clock synchronization. In
Proc. of 7th Int. Conference on Principles of
Distributed Systems (OPODIS’03), La Martinique,
France, Dec 2003. A corrected version appears in
http://arxiv.org/abs/cs.DC/0608096.

[6] D. Dolev and E. N. Hoch. Byzantine self-stabilizing
pulse in a bounded-delay model. In Proc. of 9th
International Symposium on Stabilization, Safety, and
Security of Distributed Systems (SSS’07), Paris,
France, Nov 2007.

[7] D. Dolev and E. N. Hoch. On self-stabilizing
synchronous actions despite byzantine attacks. In
Proc. the 21st Int. Symposium on Distributed
Computing (DISC’07), Lemesos, Cyprus, Sep. 2007.

[8] S. Dolev. Possible and impossible self-stabilizing
digital clock synchronization in general graphs.
Journal of Real-Time Systems, 12(1):95–107, 1997.

[9] S. Dolev and J. L. Welch. Self-stabilizing clock

synchronization in the presence of byzantine faults.
Journal of the ACM, 51(5):780–799, 2004.

[10] S. Dolev and J. L. Welch. Self-stabilizing clock
synchronization in the presence of byzantine faults
(abstract). In PODC, page 256, 1995.

[11] C. Dwork, D. Shmoys, and L. Stockmeyer. Flipping
persuasively in constant time. SIAM Journal on
Computing, 19(3):472–499, 1990.

[12] P. Feldman and S. Micali. An optimal probabilistic
algorithm for synchronous byzantine agreement. In
ICALP ’89: Proceedings of the 16th International
Colloquium on Automata, Languages and
Programming, pages 341–378, London, UK, 1989.
Springer-Verlag.

[13] M.J. Fischer and N.A. Lynch. A Lower Bound for the
Time to Assure Interactive Consistency. Information
Processing Letters, 14:183–186, 1982.

[14] T. Herman. Phase clocks for transient fault repair.
IEEE Transactions on Parallel and Distributed
Systems, 11(10):1048–1057, 2000.

[15] E. N. Hoch, D. Dolev, and A. Daliot. Self-stabilizing
byzantine digital clock synchronization. In Proc. of 8th
International Symposium on Stabilization, Safety, and
Security of Distributed Systems (SSS’06), Dallas,
Texas, Nov 2006.

[16] M. Papatriantafilou and P. Tsigas. On self-stabilizing
wait-free clock synchronization. Parallel Processing
Letters, 7(3):321–328, 1997.

[17] M. Rabin. Randomized Byzantine generals.
Proceedings of the 24th Annual IEEE Symposium on
Foundations of Computer Science, pages 403–409,
1983.

[18] R. Turpin and B. Coan. Extending binary Byzantine
agreement to multivalued Byzantine agreement.
INFO. PROC. LETT., 18(2):73–76, 1984.

