
Maxtream: Stabilizing P2P Streaming by Active Prediction of Behavior Patterns

Shay Horovitz and Danny Dolev
Hebrew University of Jerusalem
{horovitz,dolev}@cs.huji.ac.il

Abstract

In theory, peer-to-peer (P2P) based streaming designs
and simulations provide a promising alternative to server-
based streaming systems both in cost and scalability. In
practice however, implementations of P2P based IPTV and
VOD failed to provide a satisfying QoS as the characteristic
fluctuational throughput of a peer’s uplink leads to frequent
annoying hiccups, substantial delays and latency for those
who download from it. A significant factor for the unstable
throughput of peers’ uplink is the behavior of other pro-
cesses running on the source peer that consume bandwidth
resources.

In this paper we propose Maxtream - a machine learn-
ing based solution that actively predicts load in the uplink
of streaming peers and coordinates source peers exchanges
between peers that suffer from buffer underrun and peers
that enjoy satisfactory buffer size for coping with future
problems.

Simulation and experiments have shown that the solu-
tion successfully predicts upcoming load in popular proto-
cols and can improve the QoS in existing P2P streaming
networks.

1. Introduction

Following the increased popularity of P2P file sharing
applications and a substantial growth in the creation of user
generated content (UGC), came a corresponding increase
in initiatives for building the ultimate streaming media net-
work with minimal cost and high quality, both for broad-
casting live TV and video on demand applications. Yet, so
far there is no known winning recipe for building such net-
works. While there are some implementations that proved
to be scalable and cost effective, they failed with the end
user’s experience due to a mixture of low quality video con-
tent and QoS problems.

Popular implementations of P2P based networks in the
industry such as Joost [8] and PPLive [11] were reported to
often suffer from a variety of QoS problems [31, 5, 10, 6]

like broken streams, streaming audio/video hiccups, sub-
stantial latency and major delays in live broadcasts. While
in server based streaming services it is possible to solve QoS
problems with buffering/caching, the instability of peers
upload in P2P streaming networks require a much larger
cache, which makes it impractical - as even when networks’
policy allowed extremely unbearable latencies of up to 2
minutes [31, 23], users still faced the above problems. In-
stead of watching movies using streaming services, users
still prefer to wait for the media content to be downloaded
using either file sharing services or follow the latest fashion
by using alternative non-P2P services such as RapidShare
and MegaUpload [12, 3] for downloading movies.

Recent studies have shown that the major factor that has
direct impact on QoS in P2P networks is the behavior of
users at the source peers [24, 21, 28] - taking occasional
actions that heavily use bandwidth such as sending Email,
online games, running other P2P applications in parallel or
even terminating the process of the P2P network while it is
streaming. While it is reasonable to claim that users that
watch online TV will not run other processes in parallel, in
reality many users tend to keep their file sharing P2P ap-
plications and Email clients running in the background. In
addition, for many other users watching online broadcasts
such as sports events (in a small frame, not in full screen)
is a background task while they use other software. This
behavior leads to fluctuational rate of packets for the client
peer which might be reflected by latencies, delays and hic-
cups in P2P streaming networks.

Thus there is a need for a solution that will address the
problem of user behavior in P2P streaming networks and
provide a mechanism that is able to absorb the instability of
source peers and allow stable throughput at the client side.

In this paper we propose Maxtream - a machine learn-
ing based solution that employs Support Vector Machines
(SVM) [30] to actively predicts load in the uplink of stream-
ing peers and coordinates source peers exchanges between
peers that suffer from buffer underrun and peers that en-
joy satisfactory buffer size for coping with future prob-
lems. Maxtream discerns patterns of communications with
no prior knowledge about any protocol structure therefore it



is able to predict load on new protocols as well.
Experiments demonstrate high accuracy in predicting

upload link load on popular P2P protocols such as eMule
and BitTorrent running on typical home machines with DSL
links. The solution is also applicable for encrypted proto-
cols, as demonstrated on an obfuscated version of eMule.

The remainder of this paper examines these issues both
analytically and empirically. In Section 2 we discuss re-
lated work in this field. Section 3 elaborates on the problem
and present different scenarios where the user behavior has
influence on his machine’s upload bandwidth. Section 4
presents Maxtream and discusses implementation alterna-
tives. Section 5 presents our experiments on popular proto-
cols and the results of our simulations.

2. Related Work

Previous research designs proposed several ideas to im-
prove P2P streaming networks’ performance. [29] pre-
sented a topology of clusters and a multicast tree is built
on top of hierarchy of clusters. [21] presented a simu-
lated P2P VOD network based on maintaining an appli-
cation multicast tree. [19] proposed tree based overlay
intended for hundred of clients in a multicast group. [33]
offered a P2P VOD network that pre-caches content on
peers. [22] presented a P2P VoD that streams the video
between the clients in a tree. [17] is a high-bandwidth con-
tent streaming/distribution system that is built upon Pastry
and Scribe. [27] employs distributed streaming to obtain the
content from multiple peers simultaneously. [28] progres-
sively evaluates various combinations of senders to deter-
mine a subset of the senders that can collectively provide
maximum throughput.

Most of the above designs do not relate to the user be-
havior influence on the streaming process. Those that do
mention behavior, limit it only to node leaves. Most re-
search papers tend to ”divide the world” into strong peers
that can take part in the streaming network and weak peers
that can’t. The decision if a peer is strong or weak is usu-
ally made preliminary based on measurements such as ping
roundtrip time. Once it was decided, the decision remains
unchanged and a peer that was strong can not turn into a
weak peer anymore. However, in reality peers often change
the throughput they supply to their clients due to other pro-
cesses that consume upload bandwidth and not only while
leaving the network. A strong peer might become weak at
some stage and a weak peer might become strong. None of
the above works present an active approach for handling the
user behavior factor.

Some research papers proposed to embed machine learn-
ing algorithms in P2P networks. [20] uses Maximum Like-
lihood Estimation to evaluate trust and reputation for peers
bilateral interactions. [15] employs SVM for selecting

neighbors in an unstructured network as Gnutella, to op-
timize the path of queries in the network. [9] presents an
SVM based classification tool for ISPs to differentiate be-
tween P2P-TV protocols by counting packets in a given
time frame. [32] and [26] classify classes of protocols
according to predefined templates of sequences of IP ad-
dresses and port values for recognizing anomalies at the
backbone. [16] predicts latency between nodes based on IP
address values. [18] proposed an SVM based solution for
predicting the available bandwidth in an internet path by
transmitting probing packets. These papers do not offer
a method to predict load in the uplink of source peers ac-
tively, and do not address the influence of user behavior on
the source’s available bandwidth.

Additional related work that concerns the problem of
source peers’ upload stability in P2P networks is referred
in Section 3.

3. Problem: P2P Streaming QoS and the
Buffering Tradeoff

While P2P dominate the internet with over 60% of all up-
stream data in ISPs [12], its success can only be attributed
to file sharing applications and not streaming [3]. As mas-
sive media content web sites like YouTube avoided P2P so
far and are willing to pay the traffic bill for being the 3rd

in global traffic rankings for web sites [1], one might ask
what prevents commercial media content services from us-
ing P2P.

In theory, P2P based streaming designs and simulations
provide a promising alternative to server-based streaming
systems both in cost and scalability. In order to examine
what made P2P streaming less popular than its alternatives
around the world, we looked for evidence about problems
with these networks.

One of the most promising P2P streaming networks was
Joost [8]. Joost suffered from severe QoS problems that
were reported by its users such as connection loss, hic-
cups [7] and degraded throughput [5] that affected video
quality. Joost also failed in broadcasting live events [6]. Re-
cently, Joost finally abandoned P2P completely for a server
based solution [4]. Another highly popular P2P streaming
network is PPLive [11], which is also reported to suffer [10]
from occasional glitches, re-buffering and broken streams.

While in server based streaming services it is possible
to solve streaming QoS problems with buffering, the insta-
bility of peers’ upload in P2P streaming networks require
a much larger buffer, which puts QoS in question again
for the latency - as even though PPLive offers only modest
low-quality narrow-band P2P video streaming [25], its sub-
scribers experience a latency between tens of seconds [31]
to two minutes [23].

The above problems puts P2P technologies in question



for commercial system designers, due to QoS problems. As
most P2P systems already run a best effort approach by pri-
oritizing peers with minimized infrastructure problems like
delay and packet loss, they still miss a key factor in degrad-
ing P2P performance - the user behavior. In addition, this
approach is blind to a large number of weak sources that
remain unused, while the small group of strong sources are
exploited and overused [25].

In our previous work [24] we analyzed the factors for
the instability of source peers in P2P networks and found
that the aspect that has the greatest impact is the behavior
of users at source peers. The most obvious occurrence is
the case where the user at the source peer invokes appli-
cations that heavily use bandwidth such as Email clients,
online games or other P2P applications. By doing so, the
bandwidth available for the client connected to that machine
may be drastically reduced and become significantly unsta-
ble. Recent studies confirm that the major factor that has
direct impact on QoS in P2P networks in the behavior of
users at the source peers [21, 28]. This behavior leads to
fluctuational rate of packets for the client peer which might
be reflected by a reduced download rate in file sharing net-
works or latencies, delays, hiccups and freezes in streaming
P2P networks.

As we were interested in a deeper understanding of what
kind of protocols or applications are responsible for up-
stream load in peers, we installed Darwin [2] and Vide-
oLan [13] streaming servers on 10 different home machines
with DSL links and broadcasted from each of these ma-
chines to our client machine separately. In parallel, each of
these machines were running the applications that were in-
stalled on them and used regularly. Using a software based
sniffer [14], we captured the packets in the uplink and the
downlink of each of these machines in a time frame of 24
hours, and then analyzed the log. We first calculated the
streaming throughput received from each machine while
there are no other processes running in parallel. Then we
allowed the users of these machines to use them regularly
and we checked what protocols and processes were running
when the average throughput of the streaming was reduced.

In Figure 1 we present the applications that degraded the
streaming throughput the most and their fraction in the total
time when the streaming’s quality was reduced. Over the
time when we allowed these processes to run, we experi-
enced lengthy latency, delay and hiccups. Notice that the
top applications that affected streaming were P2P file shar-
ing applications and mail clients that sent large attachments.
Yet, other users might use other applications, therefore we
can not rely on adjusting our solution for specific protocols,
and an appropriate solution must face different user behav-
iors, different processes and protocols with no prior knowl-
edge about the structure of protocols used by a specific user.

In [24] we presented a solution for stabilizing the uplink

Figure 1. Top applications that affect stream-
ing QoS and their relative fraction in time

of P2P sources in file sharing networks, based on a special
new role called Feeder. The key concept of Feeders is that
we can use normal peers that are currently online and free
to serve as a proxy cache for the benefit of a client peer that
wishes to download a file. But unlike file sharing applica-
tions that are left running in the background even when the
user is not actively using its computer, in streaming appli-
cations the situation is different. Streaming applications are
running mostly when the user is actively using them. When
the user is no longer interested in watching media content,
the application is turned off, thus the chances of finding free
peers that are connected to a streaming network are low.

Thus there is a need for a solution that will address the
problem of user behavior in streaming P2P networks and
provide a mechanism that is able to perform the following:

1. Absorb the instability of source peers and allow stable
throughput at the client side

2. Perform well on new protocols with no prior knowl-
edge about protocol structure

4. Maxtream

Maxtream is a machine learning based solution that ac-
tively predicts load in the uplink of streaming peers and co-
ordinates source peers exchanges between peers that suf-
fer from buffer underrun and peers that enjoy satisfactory
buffer size for coping with future problems. Following is a
detailed explanation of the key elements of the system.

4.1 Behavior Aware Streaming Concept
and Mutual Source Exchange

Figure 2 illustrates the concept of user behavior aware
streaming. N1,N2,N3,N4,N5 and N6 represent nodes/peers
in a streaming network. While there are numerous topolo-
gies for streaming networks such as trees or mesh based,
we do not limit our design to a specific topology. As such,
N1, N2 and N3 are unnecessarily at the same level on the
graph. Notice that the throughput that N3 provides to N5 is
high and stable. This high throughput allowed N5 to fill its



buffer over time, therefore N5 is immune to network prob-
lems to some extent. The larger buffer N5 accumulated,
the bigger problem it can absorb without affecting its user
experience.

Now let’s assume that due to earlier problems, N4’s
buffer was reduced and is almost empty, such that its user
can still watch a movie with no interruption, but a further
problem in the future will empty the buffer and cause a hic-
cup. As can be seen on the link between N2 and N4, N2

begins with providing a stable throughput for N4, but later
on at time tp − ε the user at N2 opened a file sharing P2P
software or any other process that consume upload band-
width. A few seconds later, if nothing else happens, at time
td the throughput between N2 and N4 will be dropped and
become unstable due to the new software/process. In a reg-
ular streaming network - the buffer on N4 might get emptied
as N4 does not have enough time to connect to an alternative
source.

Maxtream’s agent that runs on N2, predicts at time tp
that it will soon have to share it’s upload bandwidth with
another process, therefore it immediately notifies N4 to re-
place a source. N4 then disseminates a request for source
to his neighbor peers. N5 receives N4’s request and since
its buffer is full, it has a better chance to absorb the drop in
throughput of N2 without completely emptying its buffer;
therefore N4 and N5 exchange sources, thus N4 did not ex-
perience a hiccup.

In case that the drop in the upload throughput of N2 will
not recover, in time, N5’s buffer will continue emptying as
well, and when reached to a level that requires action, N5

will disseminate a request for an alternative source from an-
other peer that gain a large buffer, or even switch sources
with N4 again if in the meantime N4 managed to gain a
large buffer.

In our experiments, we disseminated the request for al-
ternative sources using a Gnutella like approach - by send-
ing the request to the peer’s neighbors, the neighbors for-
ward the request to their neighbors and the mechanism con-
tinues in this manner up to a certain predefined radius.
Among the peers that receive the request, the peers that
are potentially suitable are the peers that already filled their
buffer enough to cope with a temporal drop. This approach
also preserves the scalability of the networks as the changes
in the network’s topology are local. Yet, this Gnutella like
approach can be switched with any other message passing
mechanism that already exists on each P2P network.

4.2 Faulty Source Hopping

The key motivation for mutual source exchange in Max-
tream is the potential of a ”strong” peer (one that has enough
cache or buffer size) to absorb problems in sources that ex-
perience a temporal drop in their throughput. As we men-
tioned above, if the drop in throughput lasts long enough to

Figure 2. Maxtream concept chart
endanger the buffer of the previously strong peer, a second
source exchange will be needed. Moreover, while the drop
still exists - the ”faulty” source travels between ”strong”
peers. Yet, if the drop does not recover eventually, we are
not interested in it as a source as it only empties its client
peers’ buffers. Thus, we need a mechanism that will limit
the journey of a faulty source. An optional solution for this
problem is by ”pushing” the faulty source to the borders of
the network’s topology - for example, in a tree based net-
work, we wish this source to eventually become a leaf and
cease to serve as a source. Similarly, in a mesh we are inter-
ested to push faulty sources to the bounds of the network.
We use a counter that counts the exchanges of each source
due to drops in a given time frame and in case it crossed a
predefined threshold we move the fault source one level be-
low in the tree (or one step towards the bounds in a mesh)
and reset the counter. If the drop continues, eventually the
faulty source will become a leaf.

4.3 Monitoring Module

The monitoring module is responsible for collecting data
for the learning module. It acts as a packet sniffer for both
inbound and outbound links and logs packet arrival time,
header and payload. While the monitoring is done as a
background process, we only log information in a database
for a limited time - while we actually try to learn. This time
should be sufficient to gain enough information so that the
user behavior can be predicted in the future, given a set of
measurements. For the average user, our experience showed
that logging along one full day is sufficient. We recommend
re-running the learning process from time to time, in order
to adapt to the user’s new habits and trends.

4.4 Learning Module

The learning module extracts the data that was collected
by the monitoring module into sets of features and values
for the learning algorithm. In the heart of this module we



Figure 3. Load Vicinity Pattern Prediction
run a Support Vector Machines (SVM) [30] classification
algorithm, yet the assembly of feature:value pairs is not
straightforward as we elaborate here.

We wish our learning algorithm to link the collected data
to the occurrences of traffic load in the uplink. As illus-
trated in Figure 3: S1,S2 and S3 are sessions. A session is
identified by source IP and port, and destination IP and port,
thus it begins with the first packet that was sent between our
peer i on port x and a peer j on port y and ends with the last
message that was sent between the same peers on the same
ports. If the time between 2 sequential messages is larger
than a specific predefined threshold, we see it as 2 sessions.
Notice that sessions might overlap as in sessions S1 and S2

but still we can identify the session of a packet using the key
of IPs and ports. V1, V2 and V3 are the vicinities of S1,S2

and S3 respectively. A vicinity is a collection of packets
that were collected around a predefined time period at the
beginning of each session. Notice that the vicinity begins
a few milliseconds before the beginning of a session. In
session S4 and its vicinity V4 we show the change in up-
link utilization due to that session. Notice that typically, the
load in the uplink begins a few seconds after the beginning
of a session and not immediately, as in most P2P algorithms
the very first messages are used for preliminary negotiation,
thus we can use the packet P3 and its neighbors to predict
the upcoming load and still have enough time to notify the
client about it. In some protocols, packets that are in the
vicinity but precede the session like P2 can tell us about the
upcoming load due to some negotiation between the peers
or between a peer to its supernode. Maxtream’s key strategy
is that we can predict a traffic load by examining the prop-
erties of packets that precede the load - meaning the packets
in the vicinity of sessions that loaded the uplink. Following
we present different properties that proved to be significant
for prediction and their extraction algorithm.

4.4.1 Load Vicinity Pattern Prediction
In this method we look at the first bytes (15 bytes were
found to be effective) of the payload of each packet that is
in the vicinity and extract feature:value pairs for SVM so it
can learn specific patterns. For example, in eMule’s client-
client protocol, the 1st byte is always 0xE3 and in the hand-

shake message the 6th is always 0x01; we mark them as
Byte:Value pairs that form a pattern: 1:0xE3, 6:0x01. We’d
like SVM to realize these patterns out of the messages in
the vicinity. Since close values such as 1:0xE3 and 1:0xE4
might belong to completely different protocols or different
messages of the same protocol, we can’t present SVM these
values directly as it will not relate them as discrete values.
Therefore, we collect the most popular byte:value instances
of packets in the vicinities of all sessions while giving pri-
ority to byte:value pairs that appear in different sessions.
Notice the algorithm pseudocode in Figure 4. First, we run
over all packets in the log of captured network activity -
PacketLog over a predefined time frame (24 hours in our
experiments). We gather packets with the same source IP
and port and destination IP and port into a session and store
the accumulated byte count of packets’ payload in a session
list - SessionList. Short sessions are deleted from the list
as they do not indicate a significant traffic that might threat
the available throughput in the uplink. Then, we look for
packets that reside in the vicinity of the beginning of long
sessions. In the algorithm it appears that we look only for
one session for simplicity, yet in our experiments we ad-
dressed all sessions that begin in the vicinity of a packet, as
there might be more than one. As can be seen in Figure 3 we
are interested also in packets that precede the beginning of a
long session as they might indicate of an upcoming session.
We create ByteValueList - a list that stores the counts of spe-
cific byte values in specific index of location in the packet’s
payload. This will assist us in collecting the most popular
Byte:Value instances that take part in a pattern that identifies
one or more packets that precede traffic load. Notice that
in case we have multiple instances of the same Byte:Value
pair, we only relate to one instance, as we are interested
in patterns that reside in as many sessions as possible and
minimize the influence of a pattern that might have repeated
itself in a specific session.

Finally, as we supply the training set for SVM, each item
in the training set contains the following features: Source
IP, Source port, Destination IP, Destination port and then we
create a feature per each of the top popular items in ByteVal-
ueList; i.e. if the most popular byte:value pair is 5:0xE3 and
the value of the 5th byte of the packet we examine is 0xE3
then we insert 1:1 for the training item; if the second most
popular byte:value pair is 3:0xB6 and the value of the 2nd

byte of the packet we examine is 0xC2 then we insert 2:0
since the values are different and so forth for the next popu-
lar byte:value items, up to a certain amount of features (we
found that the top 100 popular yield satisfactory results).
We label as +1 training items that represent packets in the
vicinity that contain at least one instance of the top popular
byte:value pairs. We supply the training set also packets that
are not in the vicinity and label them as -1. When we run
the prediction module to look for upcoming loads in the up-



Figure 4. Extracting popular Byte:Value in-
stances for building patterns

link, we simply propose recent captured packets’ properties
to SVM with the appropriate features and SVM classifies
the packet as leading to uplink load or not. For differentiat-
ing between positive and negative labels, we feed SVM with
additional randomly selected packets (not in the vicinity of
the beginning of sessions) and label them as negative.

4.4.2 Packet Size Sequence Prediction
While looking at the data we captured in the begin-
ning of sessions, we noticed an interesting phenomenon
in P2P protocols - the byte count of the first packets
form a sequence that repeats itself with minor differ-
ences for nearly all sessions of the same protocol. For
example, a typical packet size sequence for eMule is
{0, 0, 0, 125, 108, 11, 11, 41, 83, 77, 55, 55, 22}. Since we
noticed some slight differences between separate instances
of the sequence, we can’t use it as a serial set of features
for SVM as in some cases the value of 108 in eMule might
appear as the byte count of the 5th packet while in other
cases it will be the byte count of the 6th packet due to an
extra packet. Therefore, we relate these values as a his-
togram, and simply define a predefined number of features
(we found 30 to yield good results) for the most popular
byte count values in a similar manner to the previous algo-
rithm. For example, if the most popular byte count is 125,
we supply the training set a feature with a value of 1 or 0
if the vicinity of the examined packet contains at least one
packet with this byte count. This technique is also applica-
ble for obfuscated/encrypted protocols, as it does not rely
on the packet’s payload.

4.5 Prediction Module

The prediction module’s function that runs on each peer
is fairly simple: While packets are being captured, the prop-
erties mentioned above are extracted and served to the SVM

algorithm. SVM classifies it as either leading to uplink load
or not. If SVM classified the packet as leading for load, we
check if the uplink bandwidth is already larger than a pre-
defined threshold, as we assume that if the uplink is hardly
used there will be enough bandwidth for the new session
without dropping our client’s needs. In case we already
crossed the predefined threshold, we immediately notify the
client to select a different feeder.

4.6 Motivation and Incentives

While the user has to install the Maxtream agent as part
of an existing P2P service or as a solution pack, one might
ask why should the user install it in the first place and what
are the incentives for using it. The clear benefit of using
Maxtream is that you receive QoS when you need it in re-
sponse to your assistance for maintaining the QoS of others.
It is also possible to look at Maxtream as a package being
installed by friends, as in a social network, where the more
friends you make, the better chance you can avoid experi-
encing hiccups while watching video content.

5. Results

5.1 SVM settings

We conducted our tests using SVM-Light library. We
found that the Radial Basis Function (RBF) Kernel per-
formed best for our experiments. RBF kernel - K(x, y) =
e−γ‖x−y‖2 can map samples to higher dimensional space,
thus unlike the linear kernel it can handle the case where
the relationship between class labels and attributes in non-
linear. After experiencing with different γ and C values
for various scenarios, we found that γ of 0.5 and C of 2
provided satisfying results. The price of running SVM in a
home computer is not significant as the training phase can
be run in time frames when the CPU is not busy. As for the
prediction phase, we were able to maintain CPU utilization
of under 10% while the prediction was running.

5.2 Streaming Experiment

We installed two machines - A and B with a propri-
etary streaming protocol and transmitted from A to a client
machine C. All machines were connected to the Internet
using a broadband connection of 1.5Mbps download and
0.5Mbps upload. While A trasmitted to C we initiated in-
terruptions by running various applications (eMule, BitTor-
rent, Outlook mail client) at specific time periods using a
predefined script at A. Notice that for all of our tests on
eMule we used an obfuscated version. These applications
were selected as they consume upload bandwidth. The file
size we transmitted was movie file of 13MB that lengths
253 seconds. While the movie was playing in C we counted
the hiccups that we experienced while watching the whole



Figure 5. Hiccups count per streaming buffer
sizes under initiated interruptions

Figure 6. Streaming client’s throughput
movie. We repeated this experiment with 2 different set-
tings. In Figure 5 the Regular case represents a strategy
where we collect cache in the streaming buffer up to the de-
fined buffer size and then let it play regularly. In the Max-
tream case we installed our agent on A and notified C to
switch to B when our algorithm predicted an upcoming load
in A. We limited the interruption time (by closing the ap-
plications after a few seconds) and in the case of Maxtream
we instructed C to switch back to A in order to test the
next interruption. As can be noticed, for the current settings
and the given interruptions, on buffers larger than 100KB
Maxtream experienced no hiccups, while the Regular case
demanded much larger buffers of 800KB to reach a case of
no hiccups. In Figure 6 we show the throughput received
by the streaming client at C for the first minutes. Notice
that on time t we activated the first interruption - by simply
launching an eMule client at A. Notice that in the case of
Maxtream, C predicted the upcoming load successfully and
switched its source to B instead of A while maintaining a
stable streaming throughput.

5.3 Prediction Accuracy

In Figure 7 we examined various protocols that use the
upstream and Maxtream’s ability to predict an upcoming
load per each protocol. We captured 5 hours of activity
on each of these protocols separately. Then we mapped
all large sessions (more than 1MB) and counted the cases
where Maxtream predicted a large session successfully. No-
tice that in the fourth case, we ran all protocols on the same

Figure 7. Prediction rate of popular protocols

Figure 8. Time between prediction and load
machine for 5 hours, to examine the case where the vicinity
contains messages of multiple protocols.

In Figure 8 we measured the time between the predic-
tion and the beginning of the load in upstream per each of
the leading protocols. Notice that we have between 3 and
6 seconds to alert a client for replacing a source - which
enables it to completely evade the upcoming load before it
begins.

In Figure 9 we experimented different vicinity sizes and
measured the appropriate prediction success rate. The lead-
ing part of the vicinity (3rd of its size) is placed before the
beginning of a session - to allow prediction using packets
that might lead to a session (like an interaction between
a peer and a supernode prior to the file transfer between
peers). Notice that small vicinities of between 1 and 2 sec-
onds do not consist enough information to predict an up-
coming load with high success rate. In addition, vicinities
larger than 4 seconds begin to create more noise than useful
information for prediction and accordingly the prediction
success rate degrades.

Over all of our experiments we experienced minor false
positive predictions of up to 2% of the total predictions.

6. Summary
In this paper we presented Maxtream - a solution that

addresses the problem of instability in streaming through-
put due to user behavior. We employ machine learning al-
gorithms that actively predicts load in the uplink of stream-
ing peers and coordinates source peers exchanges between
peers that suffer from buffer underrun and peers that en-
joy satisfactory buffer size for coping with future problems.
Our experiments show that it’s possible to predict uplink



Figure 9. Prediction rate per vicinity size
load with high probability on popular protocols with no
prior knowledge about the format of these protocols.

References

[1] Alexa traffic rankings. http://www.alexa.com.
[2] Darwin open source streaming. http://dss.macosforge.org/.
[3] Ipoque internet traffic report.

http://www.ipoque.com/userfiles/file/internet study 2007
abstract en.pdf.

[4] Joost abandons p2p report in techcrunch.
http://www.techcrunch.com/2008/12/17/joost-just-gives-up-
on-p2p/.

[5] Joost bw problems report by dailyiptv.
http://www.dailyiptv.com/features/joost-bandwidth-
problem-082007/.

[6] Joost bw problems report by newteevee.
http://newteevee.com/2008/03/20/where-to-watch-march-
madness/.

[7] Joost playback problems report by venturebeat.
http://venturebeat.com/2008/11/28/joost-is-loosed-on-
the-iphone-if-only-it-worked/.

[8] Joost web site. http://www.joost.com/.
[9] Napa-wine project technical report. http://www.napa-

wine.eu/twiki/pub/public/documents/napa-abacus-wp3.pdf,.
[10] Pplite glitches report. http://all-streaming-media.com/peer-

to-peer-tv/p2p-streaming-internet-tv-pplive.htm.
[11] Pplive web site. http://www.pplive.com/en/index.html.
[12] Sandvide internet traffic report.

http://www.sandvine.com/general/documents/2008 global
broadband phenomena - executive summary.pdf.

[13] Videolan open source streaming. http://www.videolan.org/.
[14] Windump - tcpdump for windows,

http://www.winpcap.org/windump/.
[15] R. Beverly and M. Afergan. Machine learning for effi-

cient neighbor selection in unstructured p2p networks. In
SYSML’07: Proceedings of the 2nd USENIX workshop on
Tackling computer systems problems with machine learning
techniques, pages 1–6, Berkeley, CA, USA, 2007. USENIX
Association.

[16] R. Beverly, K. Sollins, and A. Berger. SVM learning of IP
address structure for latency prediction. In SIGCOMM Work-
shop on Mining Network Data, Sept. 2006.

[17] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Row-
stron, and A. Singh. Splitstream: high-bandwidth multicast
in cooperative environments. In SOSP ’03: Proceedings of
the nineteenth ACM symposium on Operating systems prin-
ciples, pages 298–313, New York, NY, USA, 2003. ACM
Press.

[18] L.-J. Chen, C.-F. Chou, and B.-C. Wang. A machine
learning-based approach for estimating available bandwidth.
In TENCON 2007 - 2007 IEEE Region 10 Conference, 2007.

[19] H. Deshpande, M. Bawa, and H. Garcia-Molina. Streaming
live media over peers. Technical Report 2002-21, Stanford
InfoLab, 2002.

[20] Z. Despotovic and K. Aberer. A probabilistic approach to
predict peers performance in p2p networks. In In: 8th Intl
Workshop on Cooperative Information Agents, pages 62–76.
Springer, 2004.

[21] T. Do, K. A. Hua, and M. Tantaoui. P2VoD: Providing fault
tolerant video-on-demand streaming in peer-to-peer environ-
ment. In Proc. of the IEEE Int. Conf. on Communications
(ICC 2004), jun 2004.

[22] Y. Guo, K. Suh, J. Kurose, and D. Towsley. P2Cast: peer-to-
peer patching scheme for VoD service. In Proc. of the 12th
Int. Conf. on World Wide Web, pages 301–309, 2003.

[23] X. Hei, C. Liang, J. Liang, Y. Liu, and K. W. Ross. Insights
into pplive: A measurement study of a large-scale p2p iptv
system. In In Proc. of IPTV Workshop, International World
Wide Web Conference, 2006.

[24] S. Horovitz and D. Dolev. Collabory: A collaborative
throughput stabilizer & accelerator for p2p protocols. In
IEEE WETICE 4th International Workshop on Collaborative
Peer-to-Peer Information Systems (COPS), 2008.

[25] A. Horvath, M. Telek, D. Rossi, P. Veglia, D. Ciullo, M. A.
Garcia, E. Leonardi, and M. Mellia. Dissecting pplive, sop-
cast, tvants. 2008.

[26] T. Karagiannis, K. Papagiannaki, and M. Faloutsos. Blinc:
multilevel traffic classification in the dark. In SIGCOMM
’05: Proceedings of the 2005 conference on Applications,
technologies, architectures, and protocols for computer com-
munications, New York, NY, USA, 2005. ACM Press.

[27] V. N. Padmanabhan, H. J. Wang, and P. A. C. K. Sripanid-
kulchai. Distributing streaming media content using cooper-
ative networking. pages 177–186, 2002.

[28] R. Rejaie and A. Ortega. Pals: Peer-to-peer adaptive layered
streaming.

[29] D. A. Tran. Zigzag: An efficient peer-to-peer scheme for
media streaming. In In Proc. of IEEE Infocom, 2003.

[30] V. N. Vapnik. The nature of statistical learning theory.
Springer-Verlag New York, Inc., 1995.

[31] L. Vu, I. Gupta, J. Liang, and K. Nahrstedt. Mapping the
pplive network: Studying the impacts of media streaming on
p2p overlays. Technical report, August 2006.

[32] K. Xu, Z.-L. Zhang, and S. Bhattacharyya. Profiling in-
ternet backbone traffic: behavior models and applications.
SIGCOMM Comput. Commun. Rev., 35(4):169–180, Octo-
ber 2005.

[33] L. Ying and A. Basu. pcvod: Internet peer-to-peer video-
on-demand with storage caching on peers. In DMS, pages
218–223, 2005.


