
Submission to: 1st Workshop on Applied Software Reliability; June 2006 (Birman et. al: Hidden Hand)

1

Abstract— Since the 18th century, economists have recognized

that absent government intervention, market forces determine
the pricing and ultimate fate of technologies. Our contention is
that the “hidden hand” explains a series of market failures
impacting products in the field of software reliability. If
reliability solutions are to reach mainstream developers, greater
attention must be paid to market economics and drivers.

I. INTRODUCTION
E suggest in this paper that reliability issues endemic in
modern distributed systems are as much a sign of

market failures as of product deficiencies or vendor
negligence. With this in mind, we examine the role of
markets in determining the fate of technologies, focusing on
cases that highlight the interplay between the hidden hand of
the market (c.f. Adam Smith) and consumer availability of
products targeting software reliability.

 The classic example of a market failure involved the
early development of client-server computing products.
Sparked by research at Xerox PARC that explored the basic
issues in remote procedure call, industry embraced the client-
server paradigm only to discover that the technology was
incomplete, lacking standards for all sorts of basic
functionality and tools for application development,
debugging and operational management. Costs were very
high and the market stumbled badly; it didn’t recover until
almost a decade later, with the emergence of the DCE and
CORBA standards and associated platforms.

Our market-oriented perspective leads to a number of
recommendations. Key is that work intended to influence
industry may need many steps beyond traditional academic
validation (even when evaluation is exceptionally rigorous).
To have impact, researchers need to demonstrate solutions in
the context of realistic platforms and explore the costs and
benefits of their proposals in terms of the economics of
adoption by vendors and by end-users. Skipping such steps
often inhibits promising technologies from reaching
commercial practice. On the other hand, we also believe that

Birman and Van Renesse are with the Department of Computer Science,

Cornell Univerisity, Ithaca NY 14850; Dolev is at Cornell on leave from the
Hebrew University, Jerusalem, Israel.; Chandersekaran is at IDA in
Washington, DC. Emails {ken,rvr,dolev}@cs.cornell.edu; cchander@ida.org.
This work was supported in part by grants from NSF, DARPA, AFRL,
AFOSR and Intel.

not all work should be judged by commercial value!

II. THE HAND OF THE MARKET

The distributed systems reliability community has offered a
tremendous range of solutions to real-world reliability
problems over the past three decades. Examples include:

• Transactions and related atomicity mechanisms, for
databases and other services [7][4].

• Reliable multicast, in support of publish-subscribe,
virtually synchronous or state-machine replication, or
other forms of information dissemination [1].

• The theory of distributed computing [3][6].
Our own research and industry experiences have touched

on all of these topics. We’ve derived fundamental results,
implemented software prototypes, and led commercial
undertakings. These experiences lead to a non-trivial insight:
market acceptance of reliability technology has something to
do with the technology, but far more to do with:

• Impact on the total cost of building, deploying and
operating ”whole story” solutions.

• Credibility of the long-term vision and process.
• Compatibility with standard practice.
Whether or not a project is attentive to these considerations,

market forces often decide the fate of new ideas and systems.
By understanding factors that influence this hidden hand, we
can be more effective researchers.

Of course, not all research projects need to achieve
commercial impact. Thus we’re driven to two kinds of
recommendations: some aimed at work that will be measured
by its direct impact on the marketplace; others aimed at work
seeking theoretical insights, where direct commercial impact
isn’t a primary goal. In the remainder of this document, we
flesh out these observations, illustrating them with examples
drawn from the major technology areas cited earlier.

III. A BRIEF HISTORY OF RELIABLE COMPUTING
In this section, we discuss the three major technology areas

listed earlier. Our focus is on scenarios where the hidden
hand played a detectable role.

A. Transactions and related technologies.
The early days of data storage systems were characterized

by the exploration of a great range of design paradigms and
methodologies. Two major innovations eventually swept
most other work to the side: relational databases and the
relational query algebra, and the transactional computing

How the Hidden Hand Shapes the Market for
Software Reliability

Ken Birman, Coimbatore Chandersekaran, Danny Dolev, Robbert van Renesse

W

Submission to: 1st Workshop on Applied Software Reliability; June 2006 (Birman et. al: Hidden Hand)

2

model. We’ll focus on the latter [7][4].
Transactions were a response to conflicting tensions.

Database platforms need high levels of concurrency for
reasons of performance, implying that operations on servers
must be interleaved. Yet programmers find it very difficult to
write correct concurrent code. Transactions and other notions
of atomicity offered a solution to the developer: under the
(non-trivial!) assumption that data is stored in persistent
objects identifiable to the system (database records, Java
beans, etc), transactions offer a way to write programs “as if”
each application runs on an idle system. Transactions also
offer a speculation mechanism, through the option of aborting
a partially executed transaction. Finally, they use abort as a
simple and powerful fault-tolerance solution.

Transactions have been a phenomenal market success and
are a dominant programming model for applications where the
separation of data and code is practical. However, not all
programs admit the necessary code-data separation.
Overheads are sometimes high, and scalability of transactional
servers has been a challenge. Thus attempts to import the
transactional model into a broader range of distributed
computing settings, mostly in the 1980’s, had limited success.
Users rejected the constrained world this demanded.

To highlight one case in which a market failure seems to
have impacted the transactional community: transactions that
operate on multiple objects in distinct subsystems give rise to
what is called the nested transaction model, and typically must
terminate with a costly two or three-phase commit. Most
distributed systems require this mechanism, and it is also used
when replicating transactional servers. Multi-phase commit is
well understood and, at least for a while, was widely available
in commercial products. But products using these features
were often balky, unwieldy and costly. Today, popular
standards such as Web Services transactions permit the use of
complex nested transactions, but few products do so. Most
only offer singleton atomic actions side by side with other
options (such as “business transactions”, a form of scripting
tool). The market, in effect, rejected the casual use of
transactions that access multiple servers.

In the next two sections, we’ll look more closely at
reliability options for applications that have traditionally been
unable to use transactions. Examples include time-critical
services, lightweight applications with in-memory data
structures and distributed programs that cooperate directly
through message passing (as opposed to doing so indirectly,
through a shared database).

B. Reliable multicast.
Three of the authors were contributors in the field of

reliable multicast technologies. For consistency, we’ll
summarize this work in light of the transactional model.
Imagine a system in which groups of processes collaborate to
replicate data, which they update by means of messages
multicast to the members of the group (typically, either to all
operational members, or to a quorum). Such a multicast must
read the group membership (the current view), then deliver a

copy of the update to the members in accordance with desired
ordering. We can visualize this as a lightweight transaction in
which the view of the group is first read and data at the
relevant members is then written. Joins and leaves are a form
of transaction on the group view, and reads either access local
data or fetch data from a suitable quorum.

In our past work, we invented and elaborated a group
computing model called virtual synchrony [1] that formalizes
the style of computing just summarized. The term refers to
the fact that, like the transactional model, there is a simple and
elegant way to conceive of a virtually synchronous execution:
it seems as if all group members see the group state evolve
through an identical sequence of events: membership changes,
updates to replicated data, failures, etc. The execution “looks”
synchronous, much as a transactional execution “looks” serial.
On the other hand, a form of very high-speed ordered
multicast can be used for updates, and this can sometimes
interleave the delivery of messages much as a transactional
execution can sometimes interleave the execution of
operations.

Virtual synchrony has been a moderate success in the harsh
world of commercial markets for reliability. One of the
authors (Birman) founded a company, and virtual synchrony
software it marketed can still be found in settings such as the
New York Stock Exchange and the Swiss Exchange, the
French Air Traffic Control System, and the US Navy’s
AEGIS warship. Other virtual synchrony solutions that we
helped design and develop are used to provide session-state
fault-tolerance in IBM’s flagship Websphere product, and in
Microsoft’s Windows Clustering product. We are aware of
two end-user development platforms that currently employ
this model, and the CORBA fault-tolerance standard uses a
subset of it.

The strength of virtual synchrony isn’t so much that it
offers a strong model, but that it makes it relatively easy to
replicate data in applications that don’t match the transactional
model. One can, for example, replicate the data associated
with an air traffic control sector, with extremely strong
guarantees that updates will be applied in a consistent manner,
faults will be reported and reacted to in a coordinated way,
and the system will achieve extremely high levels of
availability. These guarantees can be reduced to mathematics
and one can go even further with the help of theorem proving
tools, by constructing rigorous proofs that protocols as coded
correctly implement the model.

Yet virtual synchrony was never a market success in the
sense of transactions. End users who wish to use virtual
synchrony solutions have few options today: while the
technology is used in some settings and hidden inside some
major products, very few end-user products offer this model
and those products have not been widely adopted.

Virtual synchrony has a sibling that suffered a similar
market failure. Shortly after virtual synchrony was
introduced, Leslie Lamport proposed Paxos, a practical
implementation of his state machine model, which also
guarantees that processes in a system will see identical events

Submission to: 1st Workshop on Applied Software Reliability; June 2006 (Birman et. al: Hidden Hand)

3

in an identical order. Over time, he implemented and
optimized the Paxos system, and it was used in some research
projects, for example to support a file system.

Paxos is closely related to virtual synchrony: there is a
rough equivalence between the protocols used to implement
group views (particularly for networks that experience
partitioning) and the Paxos data replication model. Paxos
updates guarantee stronger reliability properties than virtual
synchrony multicast normally provides, but at a cost: Paxos is
slower and scales poorly relative to most virtual synchrony
implementations. Like virtual synchrony, Paxos never
achieved broad commercial impact.

Thus, we see reliable multicast as a field in which a
tremendous amount is known, and has been reduced to high
quality products more than once, yet that seems plagued by
market failure. We’ll offer some thoughts about why this
proved to be the case in Section IV.

C. Theory of distributed computing
Finally, consider the broad area of theoretical work on

distributed computing. The area has spawned literally
thousands of articles and papers, including many fundamental
results widely cited as classics. Despite its successes, the
theory of distributed computing has had surprisingly little
direct impact. Unlike most branches of applied math, where
one often sees mathematical treatments motivated by practical
problems, the theory of distributed computing has often
seemed almost disconnected from the problems that inspired
the research. Moreover, while applied mathematics is often
useful in practical settings, distributed systems theory is
widely ignored by practitioners. Why is this? Two cases may
be helpful in answering this question.

1) Asynchronous model.
The asynchronous computing model was introduced as a

way of describing as simple a communicating system as
possible, with the goal of offering practical solutions that
could be reasoned about in a simple context but ported into
real systems. In this model, processes communicate with
message passing, but there is no notion of time, or of timeout.
A message from an operational source to an operational
destination will eventually be delivered, but there is no sense
in which we can say that this occurs “promptly”. Failed
processes halt silently.

The asynchronous model yielded practical techniques for
solving such problems as tracking potential causality,
detecting deadlock or other stable system properties,
coordinating the creation of checkpoints to avoid cascaded
rollback, and so forth. One sometimes sees real-world
systems that use these techniques, hence the approach is of
some practical value.

But the greatest success of the asynchronous model is also
associated with a profound market failure. We refer to the
body of work on the asynchronous consensus problem, a
foundational result with implications for a wide range of
questions that involve agreement upon a property in an
asynchronous system. In a seminal result, it was shown that

asynchronous consensus is impossible in the presence of faults
unless a system can accurately distinguish real crashes from
transient network disconnections [3].

Before saying more, we should clarify the nature of the
term “impossible” as used above. Whereas most practitioners
would say that a problem is impossible if it can never be
solved (for example, “it is impossible to drive my car from
Ithaca to Montreal on a single tank of gas”), this is not the
definition used by the consensus community. They take
impossible to mean “can’t always be solved” and what was
actually demonstrated is that certain patterns of message
delay, if perfectly correlated to the actions of processes
running an agreement protocol, can indefinitely delay those
processes from reaching agreement. For example, a fault-
tolerant leader election protocol might be tricked into never
quite electing a leader by an endless succession of temporary
network disconnections that mimic crashes. As a practical
matter, these patterns of message delay are extremely
improbable – less likely, for example, than software bugs,
hardware faults, power outages, etc. Yet they are central to
establishing the impossibility of guaranteeing that consensus
will be reached in bounded time.

FLP is of tremendous importance to the theoretical
community. Indeed, the result is arguably the most profound
discovery to date in this area. Yet the impossibility result has
been a source of confusion among practitioners, particularly
those with just a dash of exposure to the formal side of
distributed computing, a topic explored in [5]. Many
understand it as claiming that it is impossible to build a
computer system robust against failures – an obvious
absurdity, because they build such systems all the time! For
example, it is easy to solve consensus as an algorithm
expressed over reliable multicast. In effect, a multicast
platform can be asked to solve an impossible problem! Of
course, the correct interpretation is a different matter; just as
the systems they build can’t survive the kinds of real-world
problems listed above, FLP simply tells us that they can’t
overcome certain unlikely delay patterns. But few grasp this
subtlety.

This isn’t the only cause for confusion. One can question
the very premise of proving the impossibility of something in
a model that is, after all, oversimplified. In real systems, we
have all sorts of “power” denied by the asynchronous model.
We can talk about probabilities for many kinds of events, can
often predict communication latencies (to a degree), and can
exploit communication primitives such as hardware-supported
multicast, cryptography, and so forth. Things that are
impossible without such options are sometimes possible once
they are available, and yet the theory community has often
skipped the step of exploring such possibilities.

2) Synchronous model.
The confusion extends to a second widely used theoretical

model: the synchronous model, in which we strengthen the
communications model in unrealistic ways. This is a model in
which the entire system executes in rounds, with all messages
sent by correct processes in a round received by all other

Submission to: 1st Workshop on Applied Software Reliability; June 2006 (Birman et. al: Hidden Hand)

4

correct processes at the outset of the next round, clocks are
perfectly synchronized, and crashes are easily detectable. On
the other hand the failure model includes Byzantine failures,
namely cases in which some number of processes fail not by
crashing, but rather by malfunctioning in arbitrary, malicious
and coordinated ways that presume perfect knowledge of the
overall system state.

 A substantial body of theory exists for these kinds of
systems, including some impossibility results and some
algorithms. But even for problems where the Byzantine
model makes sense, the unrealistic aspects of the synchronous
model prevent users from applying these results directly. For
many years, Byzantine Agreement was therefore of purely
theoretical interest: a fascinating mathematical result.

Byzantine Agreement has experienced a revival illustrative
of the central thesis of this paper. Recently, Castro and
Liskov [2] and others reformulated the Byzantine model in
realistic network settings, then solved the problem to build
ultra-defensible servers that can tolerate not just attacks on
subsets of members, but even the compromise (e.g. by a virus
or intruder) of some subset of their component processes.
Given the prevalence of viruses and spyware, this new
approach to Byzantine Agreement is finding some commercial
interest, albeit in a small market. In effect, by revisiting the
problem in a more realistic context, this research has
established its practical value.

IV. DISCUSSION
We started with a review of transactions, a reliability

technology that had enormous impact, yielding multiple
Turing Award winners, a thriving multi-billion dollar
industry, and a wide range of remarkably robust solutions –
within the constraints mentioned earlier. Attempts to shoe-
horn problems that don’t fit well within those constraints, on
the other hand, met with market failures: products that have
been rejected as too costly in terms of performance impact,
awkward to implement or maintain, or perhaps too costly in
the literal sense of requiring the purchase of a product (in this
case, a transactional database product) that seems unnecessary
or unnatural in the context where it will be used.

The discussion of reliable multicast pointed to a second,
more complex situation. Here, a technology emerged, became
quite real, and yielded some products that were ultimately
used very successfully. Yet the area suffered a market failure
nonetheless; while there are some companies still selling
products in this space, nobody would claim a major success in
the sense of transactional systems.

Our experience suggests that several factors contributed to
the market failure for multicast platforms:
1. Multicast products have often been presented as low-level

mechanisms similar to operating system features for
accessing network devices. As researchers, this is
natural: multicast is a networking technology. But
modern developers are shielded from the network by high
level tools such as remote procedure call – they don’t

work directly with the O/S interfaces. Thus multicast
presentation has been too primitive.

2. These products were often quirky, making them hard to
use. For example, our own systems from the 1990’s had
scalability limitations in some dimensions that users
found surprising – numbers of members of groups, or
numbers of groups to which a single process could
belong, and performance would collapse if these limits
were exceeded. Had we addressed these limitations,
those systems might have been more successful.

3. The field advanced, first pushing towards object-oriented
platform standards such as CORBA, and then more
recently towards service oriented architectures such as
Web Services. Multicast solutions didn’t really follow
these events – with the notable exception of the CORBA
fault-tolerance standard. But the CORBA standard was a
peculiar and constraining technology. It was limited to an
extremely narrow problem: lock step replication of
identical, deterministic server processes. This
determinism assumption is limiting; for example, it
precludes the use of any sort of library that could be
multithreaded (an issue even if the application using the
library is single-threaded), and precludes applications that
receive input from multiple sources, read clocks or other
system counters, etc. In practice such limits proved to be
unacceptable to most users.

4. The products developed for this market were forced to
target a relatively small potential customer base. The
issue here is that replication arises primarily on servers,
and at least until recently, data centers have generally not
included large numbers of servers. Thus purely from a
perspective of the number of licenses that can potentially
be sold, the market is comparatively small.

5. These products have not made a strong case that
developers who use them will gain direct economic
benefit – a lower total cost of application development
and ownership – relative to developers who do not use
them. We believe that such a case can be made (as
explained below), but this was not a priority for the
research community and this has left developers facing a
“reliability tax” – an apparent cost that must be born to
achieve reliability.

6. Product pricing was too high. Here we run into a
complex issue, perhaps too complex for this brief
analysis. In a nutshell, to support the necessary structure
around any product (advanced development, Q/A,
support) a company needs a certain size of staff, typically
roughly proportional to the complexity of the code base.
Multicast is not a simple technology and the code bases in
question aren’t small or easy to test, particularly in light
of the practical limitations mentioned in points 1 and 2,
which made these products unstable for some uses. In
effect, they are expensive products to develop and
maintain.

Now consider prices from the customer’s perspective.
A data replication framework is a useful thing, but not

Submission to: 1st Workshop on Applied Software Reliability; June 2006 (Birman et. al: Hidden Hand)

5

remotely as powerful a technology as, say, an operating
system or a database system. Thus one should think in
terms of pricing limited to some small percentage of the
licensing cost of a database or operating system for the
same nodes. But pricing for operating systems and
databases reflects their much larger markets: a revenue
stream is, after all, the product of the per-unit price times
the numbers of units that will be sold. Thus multicast
products are limited to a small fraction of the number of
machines, and a small fraction of the product pricing, of
a database or similar product – and this is not a level of
income that could support a thriving, vibrant company.
But if vendors demand higher per-unit licensing,
customers simply refuse to buy the product, seeing the
cost of reliability as being unrealistically steep!

7. These products have often demanded substantial
additional hand-holding and development services. In
some sense this isn’t a bad thing: many companies make
the majority of their income on such services, and indeed
services revenue is what kept the handful of multicast
product vendors afloat. And it may not be an inevitable
thing; one can easily speculate that with more investment,
better products could be developed. Yet the current
situation is such that the size of the accessible market will
be proportional to the number of employees that the
company can find and train, and that most product sales
will require a great deal of negotiation, far from the
“cellophane-wrapped” model typical of the most
successful software products.

In summary, then, the ingredients for a market failure are
well established in this domain. The bottom line is that for
solutions to ever gain much permanence, they would need to
originate with the major platform vendors, and be viewed as a
competitive strength for their products. This has not yet
occurred, although we do believe that the growing popularity
of massive clusters and data centers may shift the competitive
picture in ways that would favor products from the vendors.
The issue here is that building scalable applications able to
exploit this price point involves replicating data so that
queries can be load-balanced over multiple servers. This is
creating demand for replication solutions – and hence opening
the door for technologies that also promote fault-tolerance,
security, or other QoS properties.

Yet, having worked with vendors of products in this area,
we’ve also noted commercial disincentives for commoditized
reliability. The issue is that many platform vendors
differentiate their systems-building products by pointing to the
robustness of their components. They offer the value
proposition, in effect, that by executing an application on their
proprietary product line, the user will achieve robustness not
otherwise feasible. If end-users can build robust distributed
systems without needing expensive reliability platforms,
platform vendors might lose more revenue through decreased
sales of their high-margin robust components than they can
gain by licensing the software supporting application-level
solutions.

And what of the theoretical work? Here, we believe that
researchers need to recognize that theory has two kinds of
markets. One is associated with the community of
theoreticians: work undertaken in the hope of shedding light
on deep questions of fundamental importance and of
influencing future theoretical thinking. Impact on the
commercial sector should not be used as a metric in evaluating
such results.

But we also believe that the experience with practical
Byzantine solutions points to an avenue by which the theory
community can have substantial impact. The trick is to tackle
a hard practical problem that enables a completely new kind
of product. We believe this lesson can be applied in other
settings. For example, real systems are stochastic in many
senses. The research community would find a rich source of
hard problems by looking more explicitly at probabilistic
problem statements framed in settings where networks and
systems admit stochastic descriptions. Results translate fairly
directly to real-world settings and would be likely to find
commercial uptake.

V. RECOMMENDATIONS
Not every problem is solvable, and it is not at all clear to us

that the market failure in our domain will soon be eliminated.
However, we see reason for hope in the trends towards data
centers mentioned earlier, which are increasing the real value
of tools, but want to offer some observations:
• Researchers need to learn to listen to consumers. On the

other hand, one must listen with discernment, because not
every needy developer represents a big opportunity. This
is particularly difficult during dramatic paradigm shifts,
such as the current move to net-centric computing. When
such events occur, it becomes critical to focus on early
visionaries and leaders, without being distracted by the
larger number of users who are simply having trouble
with the technology.

• We haven’t made an adequate effort to speak the same
language as our potential users, or even as one-another.
For example, if our users think of systems in stochastic
terms, we should learn to formalize that model and to
offer stochastic solutions.

• Practical researchers have often put forward solutions that
omit big parts of the story, by demonstrating a technique
in an isolated and not very realistic experimental context.
Vendors and developers then find that even where the
technology is an exciting match to a real need, bridging
the resulting gaps isn’t easy to do. In effect we too often
toss solutions over the fence without noticing quite how
high the fence happens to be and leaving hard practical
questions completely unaddressed. Only some vendors
and developers are capable of solving the resulting
problems.

• We need greater attention to our value propositions,
which are too often weak, or poorly articulated.
Technology success is far more often determined by

Submission to: 1st Workshop on Applied Software Reliability; June 2006 (Birman et. al: Hidden Hand)

6

economic considerations than by the innate value of
reliability or other properties.

• Our work is too often ignorant of real-world constraints
and of properties of real-world platforms. For example, if
a solution is expensive to deploy or costly to manage,
potential users may reject it despite strong technical
benefits.

• Our community has been far too fond of problems that are
either artificial, or that reflect deeply unrealistic
assumptions. The large body of work on compartment-
alized security models is an example of this phenomenon.

• Real users seek a technology “process” not an “artifact”,
hence those of who develop technical artifacts need to be
realistic about the low likelihood that conservative,
serious users will adopt them.

• Concerns about intellectual property rights have begun to
cloud the dialog between academic and commercial
researchers. The worry is typically that an academic
paper, seemingly unfettered by IP restrictions, might
actually be the basis of an undisclosed patent application.
If that patent later issues, any company that openly
adopted the idea faces costly licensing. Hence companies
either avoid dialog with academic researchers or limit
themselves to listening without comment, lest they
increase their exposure.

These observations lead to a few recommendations, which

we focus on work aimed at the real world:
• Developers need to build demonstrations using real

platforms if at all possible, and ideally to evaluate them
in realistic scenarios.

• Results should make an effort to stress value in terms
buyers will understand from an economic perspective.
Even research papers should strive to show a credible
value proposition.

• If the development team isn’t in a position to provide
long term product continuity, development and
support, it should try to disseminate solutions via
vendors, or to work with vendors on transitioning.

• Academic research groups should work with their
University licensing officers to try to clarify and
standardize the handling of software patents that the
University might seek, in the hope that industry teams
considering dialog with academic research groups will
see IP ownership issues as less of a threat. The huge
success of the Berkeley Unix project and its BSD
licensing approach is a model that other academic
research teams might wish to study and try to emulate.

VI. CONCLUSIONS
We’ve reviewed market forces that can have a dramatic

impact on the ultimate fate of technologies for reliable
computing, with emphasis on technical areas in which the
authors have had direct involvement. Our review led to
several kinds of insights. One somewhat obvious insight is

that not all forms of academic research are of a nature to
impact the commercial market: some work, for example,
demonstrates the feasibility of solving a problem, and yet
can’t possibly be offered as a free-standing product because
one couldn’t conceivably generate a revenue stream adequate
to support a sensible development and support process.
Customers buy into a company’s vision and process – it is rare
to purchase a product and never interact with the company
again. Teams that don’t plan to create such a process
shouldn’t expect to have commercial impact. Yet academic
groups are poorly equipped to offer support.

A second broad class of insights relate to the way that we
pose problems in the reliability arena, demonstrate solutions,
and evaluate them. We’ve argued that even purely academic
researchers should pose problems in ways that relate directly
to realistic requirements, demonstrate solutions in the context
of widely used platforms, and evaluate solutions in terms that
establish a credible value proposition.

A third category of suggestions boil down to the
recommendation that researchers should ponder market
considerations when trying to identify important areas for
future study. This paper pointed to two examples of this sort
–recent work on practical Byzantine agreement, and the
exploration of stochastic system models and stochastic
reliability objectives, arguing that these are both more realistic
and also might offer the potential for significant progress. But
many problems of a like nature can be identified. Others
include time-critical services (“fast response” as opposed to
“real-time”), scalability, and trustworthy computing
(construed broadly to include more than just security).

Finally, we’ve suggested that the reliability community
would do well to heal the divisions between its theoretical and
practical sub-areas. While academic debate is fun, often
passionate, and can lead to profound insights, we need to
communicate with external practitioners in a more coherent
manner. The failure to do so has certainly contributed to the
market failures that have heretofore marked our field.

VII. REFERENCES
[1] K.P. Birman. Reliable Distributed Systems: Technologies, Web

Services, and Applications. Springer; 1 edition (March 25, 2005)
[2] M. Castro and B. Liskov. Practical Byzantine fault tolerance and

proactive recovery. ACM Transactions on Computer Systems,
20(4):398--461, November 2002.

[3] MJ Fischer, NA Lynch, and MS Paterson. Impossibility of distributed
consensus with one faulty process. JACM, 32(2):374--382, 1985.

[4] J. Gray and A. Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, San Mateo, California, 1993.

[5] R Guerraoui, A Schiper. Consensus: The Big Misunderstanding.
Proceedings of the 6th IEEE Workshop on Future Trends in Distributed
Computing Systems (FTDCS-6)

[6] L. Lamport, R. Shostak and M. Pease, "The Byzantine Generals
Problem", ACM Transactions on Programming Languages and Systems,
4 (3), pp.382-401

[7] D. Lomet. Process Structuring, Synchronization and Recovery Using
Atomic Actions. ACM Conference on Language Design for Reliable
Software, Raleigh NC. SIGPLAN Notices 12, 3 (March 1977) 128-137.

