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Abstract— Since the 18th century, economists have recognized 

that absent government intervention, market forces determine 
the pricing and ultimate fate of technologies.  Our contention is 
that the “hidden hand” explains a series of market failures 
impacting products in the field of software reliability.  If 
reliability solutions are to reach mainstream developers, greater 
attention must be paid to market economics and drivers. 
 

I. INTRODUCTION 
E suggest in this paper that reliability issues endemic in 
modern distributed systems are as much a sign of 

market failures as of product deficiencies or vendor 
negligence.   With this in mind, we examine the role of 
markets in determining the fate of technologies, focusing on 
cases that highlight the interplay between the hidden hand of 
the market (c.f. Adam Smith) and consumer availability of 
products targeting software reliability. 

 The classic example of a market failure involved the 
early development of client-server computing products.  
Sparked by research at Xerox PARC that explored the basic 
issues in remote procedure call, industry embraced the client-
server paradigm only to discover that the technology was 
incomplete, lacking standards for all sorts of basic 
functionality and tools for application development, 
debugging and operational management.  Costs were very 
high and the market stumbled badly; it didn’t recover until 
almost a decade later, with the emergence of the DCE and 
CORBA standards and associated platforms. 

Our market-oriented perspective leads to a number of 
recommendations.  Key is that work intended to influence 
industry may need many steps beyond traditional academic 
validation (even when evaluation is exceptionally rigorous).  
To have impact, researchers need to demonstrate solutions in 
the context of realistic platforms and explore the costs and 
benefits of their proposals in terms of the economics of 
adoption by vendors and by end-users. Skipping such steps 
often inhibits promising technologies from reaching 
commercial practice.  On the other hand, we also believe that 
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not all work should be judged by commercial value! 

II. THE HAND OF THE MARKET 

The distributed systems reliability community has offered a 
tremendous range of solutions to real-world reliability 
problems over the past three decades.  Examples include: 

• Transactions and related atomicity mechanisms, for 
databases and other services [7][4]. 

• Reliable multicast, in support of publish-subscribe, 
virtually synchronous or state-machine replication, or 
other forms of information dissemination [1]. 

• The theory of distributed computing [3][6]. 
Our own research and industry experiences have touched 

on all of these topics.  We’ve derived fundamental results, 
implemented software prototypes, and led commercial 
undertakings.  These experiences lead to a non-trivial insight: 
market acceptance of reliability technology has something to 
do with the technology, but far more to do with:  

• Impact on the total cost of building, deploying and 
operating ”whole story” solutions. 

• Credibility of the long-term vision and process. 
• Compatibility with standard practice. 
Whether or not a project is attentive to these considerations, 

market forces often decide the fate of new ideas and systems.   
By understanding factors that influence this hidden hand, we 
can be more effective researchers.   

Of course, not all research projects need to achieve 
commercial impact.  Thus we’re driven to two kinds of 
recommendations: some aimed at work that will be measured 
by its direct impact on the marketplace; others aimed at work 
seeking theoretical insights, where direct commercial impact 
isn’t a primary goal. In the remainder of this document, we 
flesh out these observations, illustrating them with examples 
drawn from the major technology areas cited earlier.   

III. A BRIEF HISTORY OF RELIABLE COMPUTING 
In this section, we discuss the three major technology areas 

listed earlier.  Our focus is on scenarios where the hidden 
hand played a detectable role.   

A. Transactions and related technologies. 
The early days of data storage systems were characterized 

by the exploration of a great range of design paradigms and 
methodologies.  Two major innovations eventually swept 
most other work to the side: relational databases and the 
relational query algebra, and the transactional computing 
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model.  We’ll focus on the latter  [7][4]. 
Transactions were a response to conflicting tensions.  

Database platforms need high levels of concurrency for 
reasons of performance, implying that operations on servers 
must be interleaved.  Yet programmers find it very difficult to 
write correct concurrent code.  Transactions and other notions 
of atomicity offered a solution to the developer: under the 
(non-trivial!) assumption that data is stored in persistent 
objects identifiable to the system (database records, Java 
beans, etc), transactions offer a way to write programs “as if” 
each application runs on an idle system.  Transactions also 
offer a speculation mechanism, through the option of aborting 
a partially executed transaction.  Finally, they use abort as a 
simple and powerful fault-tolerance solution. 

Transactions have been a phenomenal market success and 
are a dominant programming model for applications where the 
separation of data and code is practical. However, not all 
programs admit the necessary code-data separation.  
Overheads are sometimes high, and scalability of transactional 
servers has been a challenge. Thus attempts to import the 
transactional model into a broader range of distributed 
computing settings, mostly in the 1980’s, had limited success.  
Users rejected the constrained world this demanded.    

To highlight one case in which a market failure seems to 
have impacted the transactional community: transactions that 
operate on multiple objects in distinct subsystems give rise to 
what is called the nested transaction model, and typically must 
terminate with a costly two or three-phase commit. Most 
distributed systems require this mechanism, and it is also used 
when replicating transactional servers.  Multi-phase commit is 
well understood and, at least for a while, was widely available 
in commercial products.  But products using these features 
were often balky, unwieldy and costly.  Today, popular 
standards such as Web Services transactions permit the use of 
complex nested transactions, but few products do so.  Most 
only offer singleton atomic actions side by side with other 
options (such as “business transactions”, a form of scripting 
tool).  The market, in effect, rejected the casual use of 
transactions that access multiple servers.  

In the next two sections, we’ll look more closely at 
reliability options for applications that have traditionally been 
unable to use transactions.  Examples include time-critical 
services, lightweight applications with in-memory data 
structures and distributed programs that cooperate directly 
through message passing (as opposed to doing so indirectly, 
through a shared database).  

B. Reliable multicast. 
Three of the authors were contributors in the field of 

reliable multicast technologies.  For consistency, we’ll 
summarize this work in light of the transactional model.  
Imagine a system in which groups of processes collaborate to 
replicate data, which they update by means of messages 
multicast to the members of the group (typically, either to all 
operational members, or to a quorum).  Such a multicast must 
read the group membership (the current view), then deliver a 

copy of the update to the members in accordance with desired 
ordering.  We can visualize this as a lightweight transaction in 
which the view of the group is first read and data at the 
relevant members is then written.  Joins and leaves are a form 
of transaction on the group view, and reads either access local 
data or fetch data from a suitable quorum. 

In our past work, we invented and elaborated a group 
computing model called virtual synchrony [1] that formalizes 
the style of computing just summarized.  The term refers to 
the fact that, like the transactional model, there is a simple and 
elegant way to conceive of a virtually synchronous execution: 
it seems as if all group members see the group state evolve 
through an identical sequence of events: membership changes, 
updates to replicated data, failures, etc.  The execution “looks” 
synchronous, much as a transactional execution “looks” serial.  
On the other hand, a form of very high-speed ordered 
multicast can be used for updates, and this can sometimes 
interleave the delivery of messages much as a transactional 
execution can sometimes interleave the execution of 
operations. 

Virtual synchrony has been a moderate success in the harsh 
world of commercial markets for reliability.  One of the 
authors (Birman) founded a company, and virtual synchrony 
software it marketed can still be found in settings such as the 
New York Stock Exchange and the Swiss Exchange, the 
French Air Traffic Control System, and the US Navy’s 
AEGIS warship.  Other virtual synchrony solutions that we 
helped design and develop are used to provide session-state 
fault-tolerance in IBM’s flagship Websphere product, and in 
Microsoft’s Windows Clustering product.    We are aware of 
two end-user development platforms that currently employ 
this model, and the CORBA fault-tolerance standard uses a 
subset of it.  

The strength of virtual synchrony isn’t so much that it 
offers a strong model, but that it makes it relatively easy to 
replicate data in applications that don’t match the transactional 
model.  One can, for example, replicate the data associated 
with an air traffic control sector, with extremely strong 
guarantees that updates will be applied in a consistent manner, 
faults will be reported and reacted to in a coordinated way, 
and the system will achieve extremely high levels of 
availability.  These guarantees can be reduced to mathematics 
and one can go even further with the help of theorem proving 
tools, by constructing rigorous proofs that protocols as coded 
correctly implement the model. 

Yet virtual synchrony was never a market success in the 
sense of transactions.  End users who wish to use virtual 
synchrony solutions have few options today: while the 
technology is used in some settings and hidden inside some 
major products, very few end-user products offer this model 
and those products have not been widely adopted.   

Virtual synchrony has a sibling that suffered a similar 
market failure.   Shortly after virtual synchrony was 
introduced, Leslie Lamport proposed Paxos, a practical 
implementation of his state machine model, which also 
guarantees that processes in a system will see identical events 
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in an identical order.  Over time, he implemented and 
optimized the Paxos system, and it was used in some research 
projects, for example to support a file system.   

Paxos is closely related to virtual synchrony: there is a 
rough equivalence between the protocols used to implement 
group views (particularly for networks that experience 
partitioning) and the Paxos data replication model.  Paxos 
updates guarantee stronger reliability properties than virtual 
synchrony multicast normally provides, but at a cost: Paxos is 
slower and scales poorly relative to most virtual synchrony 
implementations.  Like virtual synchrony, Paxos never 
achieved broad commercial impact. 

Thus, we see reliable multicast as a field in which a 
tremendous amount is known, and has been reduced to high 
quality products more than once, yet that seems plagued by 
market failure. We’ll offer some thoughts about why this 
proved to be the case in Section IV. 

C. Theory of distributed computing 
Finally, consider the broad area of theoretical work on 

distributed computing.  The area has spawned literally 
thousands of articles and papers, including many fundamental 
results widely cited as classics.  Despite its successes, the 
theory of distributed computing has had surprisingly little 
direct impact.  Unlike most branches of applied math, where 
one often sees mathematical treatments motivated by practical 
problems, the theory of distributed computing has often 
seemed almost disconnected from the problems that inspired 
the research.  Moreover, while applied mathematics is often 
useful in practical settings, distributed systems theory is 
widely ignored by practitioners. Why is this?  Two cases may 
be helpful in answering this question. 

1) Asynchronous model. 
The asynchronous computing model was introduced as a 

way of describing as simple a communicating system as 
possible, with the goal of offering practical solutions that 
could be reasoned about in a simple context but ported into 
real systems.  In this model, processes communicate with 
message passing, but there is no notion of time, or of timeout.  
A message from an operational source to an operational 
destination will eventually be delivered, but there is no sense 
in which we can say that this occurs “promptly”.  Failed 
processes halt silently. 

The asynchronous model yielded practical techniques for 
solving such problems as tracking potential causality, 
detecting deadlock or other stable system properties, 
coordinating the creation of checkpoints to avoid cascaded 
rollback, and so forth.  One sometimes sees real-world 
systems that use these techniques, hence the approach is of 
some practical value. 

But the greatest success of the asynchronous model is also 
associated with a profound market failure.  We refer to the 
body of work on the asynchronous consensus problem, a 
foundational result with implications for a wide range of 
questions that involve agreement upon a property in an 
asynchronous system.  In a seminal result, it was shown that 

asynchronous consensus is impossible in the presence of faults 
unless a system can accurately distinguish real crashes from 
transient network disconnections [3].   

Before saying more, we should clarify the nature of the 
term “impossible” as used above.  Whereas most practitioners 
would say that a problem is impossible if it can never be 
solved (for example, “it is impossible to drive my car from 
Ithaca to Montreal on a single tank of gas”), this is not the 
definition used by the consensus community.    They take  
impossible to mean “can’t always be solved” and what was 
actually demonstrated is that certain patterns of message 
delay, if perfectly correlated to the actions of processes 
running an agreement protocol, can indefinitely delay those 
processes from reaching agreement.  For example, a fault-
tolerant leader election protocol might be tricked into never 
quite electing a leader by an endless succession of temporary 
network disconnections that mimic crashes.  As a practical 
matter, these patterns of message delay are extremely 
improbable – less likely, for example, than software bugs, 
hardware faults, power outages, etc.   Yet they are central to 
establishing the impossibility of guaranteeing that consensus 
will be reached in bounded time. 

FLP is of tremendous importance to the theoretical 
community.  Indeed, the result is arguably the most profound 
discovery to date in this area.  Yet the impossibility result has 
been a source of confusion among practitioners, particularly 
those with just a dash of exposure to the formal side of 
distributed computing, a topic explored in [5].  Many 
understand it as claiming that it is impossible to build a 
computer system robust against failures – an obvious 
absurdity, because they build such systems all the time!  For 
example, it is easy to solve consensus as an algorithm 
expressed over reliable multicast.  In effect, a multicast 
platform can be asked to solve an impossible problem!  Of 
course, the correct interpretation is a different matter; just as 
the systems they build can’t survive the kinds of real-world 
problems listed above, FLP simply tells us that they can’t 
overcome certain unlikely delay patterns.  But few grasp this 
subtlety. 

This isn’t the only cause for confusion.  One can question 
the very premise of proving the impossibility of something in 
a model that is, after all, oversimplified.  In real systems, we 
have all sorts of “power” denied by the asynchronous model.  
We can talk about probabilities for many kinds of events, can 
often predict communication latencies (to a degree), and can 
exploit communication primitives such as hardware-supported 
multicast, cryptography, and so forth.  Things that are 
impossible without such options are sometimes possible once 
they are available, and yet the theory community has often 
skipped the step of exploring such possibilities.  

2) Synchronous model. 
The confusion extends to a second widely used theoretical 

model: the  synchronous model, in which we strengthen the 
communications model in unrealistic ways.  This is a model in 
which the entire system executes in rounds, with all messages 
sent by correct processes in a round received by all other 
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correct processes at the outset of the next round, clocks are 
perfectly synchronized, and crashes are easily detectable.  On 
the other hand the failure model includes Byzantine failures, 
namely cases in which some number of processes fail not by 
crashing, but rather by malfunctioning in arbitrary, malicious 
and coordinated ways that presume perfect knowledge of the 
overall system state. 

  A substantial body of theory exists for these kinds of 
systems, including some impossibility results and some 
algorithms.   But even for problems where the Byzantine 
model makes sense, the unrealistic aspects of the synchronous 
model prevent users from applying these results directly.  For 
many years, Byzantine Agreement was therefore of purely 
theoretical interest: a fascinating mathematical result. 

Byzantine Agreement has experienced a revival illustrative 
of the central thesis of this paper.  Recently, Castro and 
Liskov [2] and others reformulated the Byzantine model in 
realistic network settings, then solved the problem to build 
ultra-defensible servers that can tolerate not just attacks on 
subsets of members, but even the compromise (e.g. by a virus 
or intruder) of some subset of their component processes. 
Given the prevalence of viruses and spyware, this new 
approach to Byzantine Agreement is finding some commercial 
interest, albeit in a small market.  In effect, by revisiting the 
problem in a more realistic context, this research has 
established its practical value. 

IV. DISCUSSION 
We started with a review of transactions, a reliability 

technology that had enormous impact, yielding multiple 
Turing Award winners, a thriving multi-billion dollar 
industry, and a wide range of remarkably robust solutions – 
within the constraints mentioned earlier.  Attempts to shoe-
horn problems that don’t fit well within those constraints, on 
the other hand, met with market failures: products that have 
been rejected as too costly in terms of performance impact, 
awkward to implement or maintain, or perhaps too costly in 
the literal sense of requiring the purchase of a product (in this 
case, a transactional database product) that seems unnecessary 
or unnatural in the context where it will be used. 

The discussion of reliable multicast pointed to a second, 
more complex situation.  Here, a technology emerged, became 
quite real, and yielded some products that were ultimately 
used very successfully. Yet the area suffered a market failure 
nonetheless; while there are some companies still selling 
products in this space, nobody would claim a major success in 
the sense of transactional systems. 

Our experience suggests that several factors contributed to 
the market failure for multicast platforms: 
1. Multicast products have often been presented as low-level 

mechanisms similar to operating system features for 
accessing network devices.  As researchers, this is 
natural: multicast is a networking technology.  But 
modern developers are shielded from the network by high 
level tools such as remote procedure call – they don’t 

work directly with the O/S interfaces.  Thus multicast 
presentation has been too primitive. 

2. These products were often quirky, making them hard to 
use.  For example, our own systems from the 1990’s had 
scalability limitations in some dimensions that users 
found surprising – numbers of members of groups, or 
numbers of groups to which a single process could 
belong, and performance would collapse if these limits 
were exceeded.   Had we addressed these limitations, 
those systems might have been more successful. 

3. The field advanced, first pushing towards object-oriented 
platform standards such as CORBA, and then more 
recently towards service oriented architectures such as 
Web Services.  Multicast solutions didn’t really follow 
these events – with the notable exception of the CORBA 
fault-tolerance standard.  But the CORBA standard was a 
peculiar and constraining technology.  It was limited to an 
extremely narrow problem: lock step replication of 
identical, deterministic server processes.  This 
determinism assumption is limiting; for example, it 
precludes the use of any sort of library that could be 
multithreaded (an issue even if the application using the 
library is single-threaded), and precludes applications that 
receive input from multiple sources, read clocks or other 
system counters, etc.  In practice such limits proved to be 
unacceptable to most users. 

4. The products developed for this market were forced to 
target a relatively small potential customer base.  The 
issue here is that replication arises primarily on servers, 
and at least until recently, data centers have generally not 
included large numbers of servers.  Thus purely from a 
perspective of the number of licenses that can potentially 
be sold, the market is comparatively small. 

5. These products have not made a strong case that 
developers who use them will gain direct economic 
benefit – a lower total cost of application development 
and ownership –  relative to developers who do not use 
them.  We believe that such a case can be made (as 
explained below), but this was not a priority for the 
research community and this has left developers facing a 
“reliability tax” – an apparent cost that must be born to 
achieve reliability.   

6. Product pricing was too high.  Here we run into a 
complex issue, perhaps too complex for this brief 
analysis.  In a nutshell, to support the necessary structure 
around any product (advanced development, Q/A, 
support) a company needs a certain size of staff, typically 
roughly proportional to the complexity of the code base.  
Multicast is not a simple technology and the code bases in 
question aren’t small or easy to test, particularly in light 
of the practical limitations mentioned in points 1 and 2, 
which made these products unstable for some uses.  In 
effect, they are expensive products to develop and 
maintain. 

Now consider prices from the customer’s perspective.  
A data replication framework is a useful thing, but not 
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remotely as powerful a technology as, say, an operating 
system or a database system.  Thus one should think in 
terms of pricing limited to some small percentage of the 
licensing cost of a database or operating system for the 
same nodes.  But pricing for operating systems and 
databases reflects their much larger markets: a revenue 
stream is, after all, the product of the per-unit price times 
the numbers of units that will be sold.  Thus multicast 
products are limited to a small fraction of the number of 
machines, and a small fraction of the product pricing, of 
a database or similar product – and this is not a level of 
income that could support a thriving, vibrant company.  
But if vendors demand higher per-unit licensing, 
customers simply refuse to buy the product, seeing the 
cost of reliability as being unrealistically steep! 

7. These products have often demanded substantial 
additional hand-holding and development services.  In 
some sense this isn’t a bad thing:  many companies make 
the majority of their income on such services, and indeed 
services revenue is what kept the handful of multicast 
product vendors afloat. And it may not be an inevitable 
thing; one can easily speculate that with more investment, 
better products could be developed. Yet the current 
situation is such that the size of the accessible market will 
be proportional to the number of employees that the 
company can find and train, and that most product sales 
will require a great deal of negotiation, far from the 
“cellophane-wrapped” model typical of the most 
successful software products. 

In summary, then, the ingredients for a market failure are 
well established in this domain.  The bottom line is that for 
solutions to ever gain much permanence, they would need to 
originate with the major platform vendors, and be viewed as a 
competitive strength for their products.  This has not yet 
occurred, although we do believe that the growing popularity 
of massive clusters and data centers may shift the competitive 
picture in ways that would favor products from the vendors. 
The issue here is that building scalable applications able to 
exploit this price point involves replicating data so that 
queries can be load-balanced over multiple servers.  This is 
creating demand for replication solutions – and hence opening 
the door for technologies that also promote fault-tolerance, 
security, or other QoS properties. 

Yet, having worked with vendors of products in this area, 
we’ve also noted commercial disincentives for commoditized 
reliability.  The issue is that many platform vendors 
differentiate their systems-building products by pointing to the 
robustness of their components.  They offer the value 
proposition, in effect, that by executing an application on their 
proprietary product line, the user will achieve robustness not 
otherwise feasible.  If end-users can build robust distributed 
systems without needing expensive reliability platforms, 
platform vendors might lose more revenue through decreased 
sales of their high-margin robust components than they can 
gain by licensing the software supporting application-level 
solutions.   

And what of the theoretical work?  Here, we believe that 
researchers need to recognize that theory has two kinds of 
markets.  One is associated with the community of 
theoreticians: work undertaken in the hope of shedding light 
on deep questions of fundamental importance and of 
influencing future theoretical thinking.  Impact on the 
commercial sector should not be used as a metric in evaluating 
such results.   

But we also believe that the experience with practical 
Byzantine solutions points to an avenue by which the theory 
community can have substantial impact.  The trick is to tackle 
a hard practical problem that enables a completely new kind 
of product.  We believe this lesson can be applied in other 
settings.  For example, real systems are stochastic in many 
senses.  The research community would find a rich source of 
hard problems by looking more explicitly at probabilistic 
problem statements framed in settings where networks and 
systems admit stochastic descriptions.  Results translate fairly 
directly to real-world settings and would be likely to find 
commercial uptake. 

V. RECOMMENDATIONS 
Not every problem is solvable, and it is not at all clear to us 

that the market failure in our domain will soon be eliminated.  
However, we see reason for hope in the trends towards data 
centers mentioned earlier, which are increasing the real value 
of tools, but want to offer some observations: 
• Researchers need to learn to listen to consumers.  On the 

other hand, one must listen with discernment, because not 
every needy developer represents a big opportunity.  This 
is particularly difficult during dramatic paradigm shifts, 
such as the current move to net-centric computing.  When 
such events occur, it becomes critical to focus on early 
visionaries and leaders, without being distracted by the 
larger number of users who are simply having trouble 
with the technology.   

• We haven’t made an adequate effort to speak the same 
language as our potential users, or even as one-another.  
For example, if our users think of systems in stochastic 
terms, we should learn to formalize that model and to 
offer stochastic solutions. 

• Practical researchers have often put forward solutions that 
omit big parts of the story, by demonstrating a technique 
in an isolated and not very realistic experimental context.  
Vendors and developers then find that even where the 
technology is an exciting match to a real need, bridging 
the resulting gaps isn’t easy to do.  In effect we too often 
toss solutions over the fence without noticing quite how 
high the fence happens to be and leaving hard practical 
questions completely unaddressed.  Only some vendors 
and developers are capable of solving the resulting 
problems. 

• We need greater attention to our value propositions, 
which are too often weak, or poorly articulated.  
Technology success is far more often determined by 



Submission to: 1st Workshop on Applied Software Reliability; June 2006 (Birman et. al: Hidden Hand) 
 

6

economic considerations than by the innate value of 
reliability or other properties. 

• Our work is too often ignorant of real-world constraints 
and of properties of real-world platforms.  For example, if 
a solution is expensive to deploy or costly to manage, 
potential users may reject it despite strong technical 
benefits. 

• Our community has been far too fond of problems that are 
either artificial, or that reflect deeply unrealistic 
assumptions.  The large body of work on compartment-
alized security models is an example of this phenomenon. 

• Real users seek a technology “process” not an “artifact”, 
hence those of who develop technical artifacts need to be 
realistic about the low likelihood that conservative, 
serious users will adopt them. 

• Concerns about intellectual property rights have begun to 
cloud the dialog between academic and commercial 
researchers.  The worry is typically that an academic 
paper, seemingly unfettered by IP restrictions, might 
actually be the basis of an undisclosed patent application.  
If that patent later issues, any company that openly 
adopted the idea faces costly licensing.  Hence companies 
either avoid dialog with academic researchers or limit 
themselves to listening without comment, lest they 
increase their exposure.   

 
These observations lead to a few recommendations, which 

we focus on work aimed at the real world: 
• Developers need to build demonstrations using real 

platforms if at all possible, and ideally to evaluate them 
in realistic scenarios. 

• Results should make an effort to stress value in terms 
buyers will understand from an economic perspective. 
Even research papers should strive to show a credible 
value proposition. 

• If the development team isn’t in a position to provide 
long term product continuity, development and 
support, it should try to disseminate solutions via 
vendors, or to work with vendors on transitioning. 

• Academic research groups should work with their 
University licensing officers to try to clarify and 
standardize the handling of software patents that the 
University might seek, in the hope that industry teams 
considering dialog with academic research groups will 
see IP ownership issues as less of a threat.  The huge 
success of the Berkeley Unix project and its BSD 
licensing approach is a model that other academic 
research teams might wish to study and try to emulate. 

VI. CONCLUSIONS 
We’ve reviewed market forces that can have a dramatic 

impact on the ultimate fate of technologies for reliable 
computing, with emphasis on technical areas in which the 
authors have had direct involvement.  Our review led to 
several kinds of insights.  One somewhat obvious insight is 

that not all forms of academic research are of a nature to 
impact the commercial market: some work, for example, 
demonstrates the feasibility of solving a problem, and yet 
can’t possibly be offered as a free-standing product because 
one couldn’t conceivably generate a revenue stream adequate 
to support a sensible development and support process.  
Customers buy into a company’s vision and process – it is rare 
to purchase a product and never interact with the company 
again.   Teams that don’t plan to create such a process 
shouldn’t expect to have commercial impact.  Yet academic 
groups are poorly equipped to offer support. 

A second broad class of insights relate to the way that we 
pose problems in the reliability arena, demonstrate solutions, 
and evaluate them.  We’ve argued that even purely academic 
researchers should pose problems in ways that relate directly 
to realistic requirements, demonstrate solutions in the context 
of widely used platforms, and evaluate solutions in terms that 
establish a credible value proposition. 

A third category of suggestions boil down to the 
recommendation that researchers should ponder market 
considerations when trying to identify important areas for 
future study.  This paper pointed to two examples of this sort 
–recent work on practical Byzantine agreement, and the 
exploration of stochastic system models and stochastic 
reliability objectives, arguing that these are both more realistic 
and also might offer the potential for significant progress.  But 
many problems of a like nature can be identified.  Others 
include time-critical services (“fast response” as opposed to 
“real-time”), scalability, and trustworthy computing 
(construed broadly to include more than just security).  

Finally, we’ve suggested that the reliability community 
would do well to heal the divisions between its theoretical and 
practical sub-areas.  While academic debate is fun, often 
passionate, and can lead to profound insights, we need to 
communicate with external practitioners in a more coherent 
manner.  The failure to do so has certainly contributed to the 
market failures that have heretofore marked our field. 

VII. REFERENCES 
[1] K.P. Birman.  Reliable Distributed Systems: Technologies, Web 

Services, and Applications. Springer; 1 edition (March 25, 2005) 
[2] M. Castro and B. Liskov. Practical Byzantine fault tolerance and 

proactive recovery. ACM Transactions on Computer Systems, 
20(4):398--461, November 2002.  

[3] MJ Fischer, NA Lynch, and MS Paterson. Impossibility of distributed 
consensus with one faulty process. JACM, 32(2):374--382, 1985. 

[4] J. Gray and A. Reuter. Transaction Processing: Concepts and 
Techniques. Morgan Kaufmann, San Mateo, California, 1993.  

[5] R Guerraoui, A Schiper.  Consensus: The Big Misunderstanding.  
Proceedings of the 6th IEEE Workshop on Future Trends in Distributed 
Computing Systems (FTDCS-6) 

[6] L. Lamport, R. Shostak and M. Pease, "The Byzantine Generals 
Problem", ACM Transactions on Programming Languages and Systems, 
4 (3), pp.382-401 

[7] D. Lomet.  Process Structuring, Synchronization and Recovery Using 
Atomic Actions.  ACM Conference on Language Design for Reliable 
Software, Raleigh NC.  SIGPLAN Notices 12, 3 (March 1977) 128-137. 


