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Abstract

Emerging large scale Internet applications such as IPTV,
VOD and File Sharing base their infrastructure on P2P
technology. Yet, the characteristic fluctuational throughput
of source peers affect the QOS of such applications which
might be reflected by a reduced download rate in file shar-
ing or even worse - annoying freezes in a streaming service.
A significant factor for the unstable supply of source peers
is the behavior of other processes running on the source
peer that consume bandwidth resources.

In this paper we present Collabrium - a collaborative
solution that employs a machine learning approach to ac-
tively predict load in the uplink of source peers and alert
their clients to replace their source.

Experiments on home machines demonstrated successful
predictions of upcoming loads and Collabrium learned the
behavior of popular heavy bandwidth consuming protocols
such as eMule & BitTorrent correctly with no prior knowl-
edge.

1. Introduction
P2P networks have received significant attention from

academia and industry in the past few years for various rea-
sons. While anonymity and copyright infringement played a
substantial role in the expansion of these networks over the
early years of P2P, business oriented factors such as cost
of delivery and maintenance are reflected on recent initia-
tives to establish P2P based large scale Content Delivery
Networks (CDNs), file transfer and streaming services such
as IPTV and VOD. Accordingly, the key parameters in de-
signing P2P networks have changed. While in the past it
was legitimate to embed mechanisms like queues, anti free-
riding and fairness rules at the expense of QOS issues like
download speed and service continuity, business considera-
tions dictate a different approach where QOS can no longer
be compromised.

Unfortunately, popular implementations of P2P based
networks in the industry such as Joost and PPLive were re-
ported to often suffer from a variety of QOS problems [22,
3, 7, 4] like broken streams, streaming audio/video hic-

cups, substantial latency and major delays. While in server
based streaming it is possible to solve QOS problems with
buffering/caching, the instability of peers upload in P2P
streaming networks require a much larger cache, which
makes them impractical - as even when networks’ policy
allowed extremely unbearable latencies of up to 2 min-
utes [22, 16], users still faced the above problems. In ad-
dition, CDN services that are based on the popular BitTor-
rent protocol, suffer from an unstable download rate and
hardly exploit the available download capacity at the con-
sumer side [12, 9]. Alternative non-P2P services such as
RapidShare and MegaUpload are rising at the expense of
P2P due to its degraded speed [8, 1].

Recent studies have shown that the major factor influ-
encing QOS in P2P networks is the behavior of users at the
source peers [17, 15, 20] - taking occasional actions that
heavily use bandwidth such as sending Email, online games
and running other P2P applications in parallel. This behav-
ior leads to fluctuational rate of packets for the client peer
which might be reflected by a reduced download rate in file
sharing networks or latencies, delays and freezes in stream-
ing P2P networks.

In our previous work [17] we proposed the idea of Feed-
ers - normal peers that are currently online and free to serve
as a proxy cache for the benefit of a client peer that wishes
to download a file. The Feeder stores the file’s pieces from
several unstable sources and offer the pieces to the client
in a stable fashion. In order to guarantee the stability,
we matched a given client with potential feeders that have
good connectivity with the client like minimal packet loss,
small delay, low jitter and are likely to stay online while the
client is downloading. In order to guarantee the long ser-
vice of a suitable feeder, we relied on historical statistics of
overlapping online time periods between the client and the
feeder. Yet, this strategy misses many potential feeders and
sources that have good quality connection with the client but
weren’t selected since the overlapping online time periods
were not long enough to provide confidence that the feeder
won’t disconnect while the client is downloading from it.
If we were able to predict that a potential feeder’s uplink
is about to be dropped, we could alert the client to select



an alternative feeder prior to that drop. This will signifi-
cantly increase the amount of potential feeders as we will no
longer be restricted to bounds dictated by historical statis-
tics of overlapping time periods.

In this paper we present Collabrium - a collaborative
solution based on a machine learning approach, that em-
ploys Support Vector Machines (SVM) [21] to actively pre-
dict load in the upload link of source/feeder peers and ac-
cordingly alert the client to select alternative source/feeder
peers. Collabrium discerns patterns of communications
with no prior knowledge about any protocol which allows it
to predict new protocols as well. We reinforce our solution
with an optional agent that monitors process executions and
file system events, that improves the prediction even more.
Experiments demonstrate high accuracy in predicting up-
link load on popular P2P protocols such as eMule and Bit-
Torrent, and ability to handle encrypted protocols such as
obfuscated eMule as well.

2. Related Work
Machine learning algorithms have been used with P2P

for various objectives like evaluating trust and reputa-
tion [14], optimizing the path of queries in Gnutella [10],
differentiating between P2P-TV protocols by counting
packets in a given time frame [6], recognizing anomalies
based on IP addresses and port values [23, 19], predicting
latency between nodes based on IP addresses [11] and pre-
dicting the available bandwidth of an internet path by trans-
mitting probing packets [13]. These papers do not offer a
method to predict load in the uplink of source peers actively,
and do not address the influence of user behavior on the
source’s available bandwidth. Other designs made to im-
prove performance in P2P networks are referred in our pre-
vious work [17]. We refer to additional related work about
P2P stability problems in Section 3.

3. Problem: To P2P Or Not To P2P?
Recent measurements of broadband usage patterns in

ISPs reveal a surprising rising trend that should concern
the P2P research community: new server based services are
growing in traffic at the expense of P2P traffic. While P2P
is still responsible for more than 60% of all upstream data
in ISPs, it is claimed [8] that subscribers are increasingly
turning to alternatives such as File Hosting web sites like
RapidShare and MegaUpload, since they enable much faster
download speed compared to P2P networks. RapidShare is
already ranked as the 12th web site in global traffic rank-
ings according to Alexa.Com web traffic rating. Another
study [1] approves the above and claims that web sites like
RapidShare are already responsible for nearly 9% of the In-
ternet traffic in the Middle East and over 4% in Germany.
BitTorrent for example - the most popular P2P protocol,
suffers from unstable download rates and hardly exploits
the available download capacity [12, 9].

One of the most promising P2P streaming networks was
Joost, who suffered from severe QOS problems such as
connection loss, hiccups [5] and degraded throughput [3].
Joost also failed in broadcasting live events [4] and re-
cently Joost finally abandoned P2P completely for a server
based solution [2]. PPLive - Another highly popular P2P
streaming network is also reported to suffer from occasional
glitches, re-buffering and broken streams [7]. While in
server based streaming services it is possible to solve QOS
problems with buffering, the instability of peers’ upload in
P2P streaming networks require a much larger buffer, which
puts QOS in question again for the latency - as even though
PPLive offers only modest low-quality narrow-band P2P
video streaming [18], its subscribers experience a latency
between tens of seconds [22] to two minutes [16].

The above problems puts P2P technologies in question
for commercial system designers, due to QOS problems.
As most P2P systems already run a best effort approach by
prioritizing peers with minimized infrastructure problems
like delay and packet loss, they still miss a key factor in
degrading P2P performance - the user behavior. In addition,
this approach is blind to a large number of weak sources that
remain unused, while the small group of strong sources are
exploited and overused [18].

In [17] we analyzed the factors for the instability of
source peers in P2P networks and found that the aspect that
has the greatest impact is the behavior of users at source
peers. The most obvious occurrence is the case where the
user at the source peer invokes applications that heavily
use bandwidth such as Email clients, online games or other
P2P applications. By doing so, the bandwidth available
for the client connected to that machine may be drastically
reduced and become significantly unstable. Recent stud-
ies confirm that the major factor that has direct impact on
QOS in P2P networks is the behavior of users at the source
peers [15, 20]. This behavior leads to fluctuational rate of
packets for the client peer which might be reflected by a re-
duced download rate in file sharing networks or latencies,
delays, hiccups and freezes in streaming P2P networks.

4. Collabrium
4.1 Behavior Aware Feeders

As we presented in [17], the key concept of Feeders is
that we can use normal peers that are currently online and
free to serve as a proxy cache for the benefit of a client peer
that wishes to download a file. The Feeder stores the file’s
pieces from several unstable sources and offer the pieces
to the client in a stable fashion. In order to guarantee the
stability, we match a given client with potential feeders that:

1. Have good connectivity with the client. i.e.: minimal
packet loss, small delay, low jitter

2. Are likely to stay online as long as possible while the
client is downloading



For ensuring connectivity quality, we can simply use his-
torical measurements or evaluate locality according to the
IP address. For ensuring that a feeder will stay online we
especially gather statistics of the periods where the feeder
was online and maintained a certain threshold of available
upload bandwidth; then we match the client with the feeder
that is likely to stay for the longest period of time.

Yet, the strategy of limiting potential feeders to those that
are likely to stay online for long periods has several weak-
nesses:

1. We miss feeders that have good connectivity with the
client, are currently online but statistically the proba-
bility that they will stay online is low or we couldn’t
realize repeating online periods for these feeders due
to lack of history or a varying behavior.

2. Since we look for the maximal online periods, we miss
many potential feeders that could serve us for signifi-
cantly shorter periods.

3. While we can guarantee an effective download rate for
our client for long periods, we can’t guarantee that the
feeder won’t have drops in it’s upload for short periods
during the download process.

The first 2 weaknesses substantially limit the scalability of
the original proposal. The 3rd one limits it only to file
sharing applications, while the user behavior factor on P2P
streaming networks remained unsolved. While the structure
of integrating feeders proved to be highly effective in stabi-
lizing and maximizing throughput [17], in order to make it
much more scalable as well as optimize it to streaming net-
works, we offer a new approach which sharpens the focus
on the real ”problem maker” of instability - the user.

In Collabrium, we let any peer that has potentially good
connectivity with the client to serve as a feeder. Yet, instead
of looking at historical statistics of online periods, we em-
ploy an active approach that is based on machine learning
to predict when a feeder is about to downgrade the stable
throughput it provides to the client.

Figure 1 illustrates the concept of user behavior aware
feeders. C represents the client that downloads a file or
a streamed media content. Si represents the sources in a
regular P2P network and F1,F2,F3 represents the feeders.
Notice that the throughput between S1 and F1 is low and
unstable, we assume the same for all of the connections be-
tween sources and feeders. Yet, the throughput between F1

and C is high and stable, as we mentioned above that feed-
ers are selected as peers with good connectivity with the
client. Now let’s assume that that C begins using F1 and
F2. F1 has enough available upload bandwidth to supply C
a stable throughput. As for F2, notice that at the beginning
it provided stable throughput to C as well, but at time tp− ε
the user at F2 opened another P2P software or any other
process that consume upload bandwidth. A few seconds
later, at time td, the throughput between F2 and C dropped

Figure 1. Collabrium concept chart
and became unstable due to the new software/process. Col-
labrium’s agent that runs on F2 predicts at time tp that it will
soon have to share it’s upload bandwidth with another pro-
cess, therefore it immediately notifies C to replace a feeder.
C connects to F3 and by td, C no longer communicates
with F2, thus C didn’t experience any drop in its download
rate.

Collabrium can be implemented over any P2P existing
protocol as the sources in Figure 1 can be sources of any
P2P network and we don’t manage them, but only request
for file portions.

4.2 Monitoring Module

The monitoring module is responsible for collecting data
for the learning module. It acts as a packet sniffer for both
inbound and outbound links and logs packet arrival time,
header and payload. Though we found the network col-
lected data alone to provide sufficient prediction accuracy,
we log additional data for file system activity and active pro-
cess list as in some cases it can further improve the predic-
tion. The file system information is logged by a Win32 IFS
(Installable File System) hook - a DLL that monitors file
system events such as read, seek, write etc. While the mon-
itoring is done as a background process, we only log infor-
mation in a database for a limited time - while we actually
try to learn. This time should be sufficient to gain enough
information so that the user behavior can be predicted in
the future, given a set of measurements. For the average
user, our experience showed that logging along one full day
is enough. We recommend re-running the learning process
from time to time, in order to adapt to the user’s new habits
and trends.

4.3 Learning and Prediction Modules

The learning module extracts the data that was collected
by the monitoring module into sets of features and values
for the learning algorithm. The core of this module is based



Figure 2. Load Vicinity Pattern Prediction

on a Support Vector Machines (SVM) [21] classification
algorithm, yet the assembly of feature:value pairs is not
straightforward as we elaborate here.

We wish our learning algorithm to link the collected data
to the occurrences of traffic load in the uplink. As illus-
trated in Figure 2: S1,S2 and S3 are sessions. A session is
identified by source IP and port, and destination IP and port,
thus it begins with the first packet that was sent between our
peer i on port x and a peer j on port y and ends with the last
message that was sent between the same peers on the same
ports. If the time between 2 sequential messages is larger
than a specific predefined threshold, we see it as 2 sessions.
Notice that sessions might overlap as in sessions S1 and S2

but still we can identify the session of a packet using the key
of IPs and ports. V1, V2 and V3 are the vicinities of S1,S2

and S3 respectively. A vicinity is a collection of packets
that were collected around a predefined time period at the
beginning of each session. Notice that the vicinity begins
a few milliseconds before the beginning of a session. In
session S4 and its vicinity V4 we show the change in up-
link utilization due to that session. Notice that typically, the
load in the uplink begins a few seconds after the beginning
of a session and not immediately, as in most P2P algorithms
the very first messages are used for preliminary negotiation,
thus we can use the packet P3 and its neighbors to predict
the upcoming load and still have enough time to notify the
client about it. In some protocols, packets that are in the
vicinity but precede the session like P2 can tell us about the
upcoming load due to some negotiation between the peers
or between a peer to its supernode. Collabrium’s key strat-
egy is that we can predict a traffic load by examining the
properties of packets that precede the load - meaning the
packets in the vicinity of sessions that loaded the uplink.
Following we present different properties that proved to be
significant for prediction and their extraction techniques:

Load Vicinity Pattern Prediction: In this method we
look at the first bytes (15 bytes were found to be effective) of
the payload of each packet that is in the vicinity and extract
feature:value pairs for SVM so it can learn specific patterns.
For example, in eMule’s client-client protocol, the 1st byte
is always 0xE3 and in the handshake message the 6th is al-
ways 0x01; we mark them as byte:value pairs that form a

Figure 3. Extracting popular byte:value pairs

pattern: 1:0xE3, 6:0x01. We’d like SVM to realize these
patterns out of the messages in the vicinity. Since close val-
ues such as 1:0xE3 and 1:0xE4 might belong to completely
different protocols or different messages of the same proto-
col, we can’t present SVM these values directly as it will
not relate them as discrete values. Therefore, we collect the
most popular byte:value instances of packets in the vicini-
ties of all sessions while giving priority to byte:value pairs
that appear in different sessions, as shown in Figure 3.

Finally, we supply the training set for SVM; Each item in
the training set contains the following features: Source IP,
Source port, Destination IP and Destination port. Then we
create a feature per each of the top popular items in ByteVal-
ueList; i.e. if the most popular byte:value pair is 5:0xE3 and
the value of the 5th byte of the packet we examine is 0xE3
then we insert 1:1 as a feature:value pair for the training
item; if the second most popular byte:value pair is 3:0xB6
and the value of the 3rd byte of the packet we examine is
0xC2 then we insert 2:0 in the training set since the values
are different and so forth for the next popular byte:value
items, up to a certain amount of features (we found that
the top 100 popular yield satisfactory results). We label as
+1 training items that represent packets in the vicinity that
contain at least one instance of the top popular byte:value
pairs. We supply the training set also packets that are not in
the vicinity and label them as -1. When we run the predic-
tion module to look for upcoming loads in the uplink, we
simply propose recent captured packets’ properties to SVM
with the appropriate features and SVM classifies the packet
as leading to uplink load or not.

Packet Size Sequence Prediction: While looking at the
data we captured in the beginning of sessions, we noticed an
interesting phenomenon in P2P protocols - the byte count of
the first packets form a sequence that repeats itself with mi-
nor differences for nearly all sessions of the same protocol.
For example, a typical packet size sequence for eMule is
{0, 0, 0, 125, 108, 11, 11, 41, 83, 77, 55, 55, 22}. Since we



Figure 4. Received data during test periods
noticed some slight differences in the sequence, we can’t
use it as a serial set of features for SVM as in some cases
the value of 108 in eMule might appear as the byte count
of the 5th packet while in other cases it will be the byte
count of the 6th packet due to an extra packet. Therefore,
we relate these values as a histogram, and simply define a
predefined number of features (we found 30 to yield good
results) for the most popular byte count values in a similar
manner to the previous algorithm. For example, if the most
popular byte count is 125, we supply the training set a fea-
ture with a value of 1 if the vicinity of the examined packet
contains at least one packet with this byte count or 0 if not.

File System and Process List Prediction: In a few
cases it is not possible to predict uplink load just by look-
ing at captured packets. For these cases we monitor file
system and process execution events and let SVM link be-
tween those events and the load. The method is based again
on the same techniques we already used: in the vicinity of
the beginning of sessions that raised the load on the uplink,
we look for the most popular folders accessed (that are not
system folders) and label a positive item in the training set
with features that test if there was access to a specific pop-
ular folder or not. The same is done for the list of processes
that joined in the time frame of the vicinity.

Prediction Module: In the prediction module, while
packets are being captured, the properties mentioned above
are extracted and served to the SVM algorithm. In case
that SVM classified the packet as leading for load and the
uplink used bandwidth is larger than a predefined threshold,
we notify the client to select an alternative feeder. The smae
is done for file system events and precesses

Motivation and Incentives: The clear benefit of using
Collabrium is that you receive better QOS when you need
it in response to your assistance for maintaining the QOS
of others. The active prediction approach allows almost any
peer to serve as a feeder when needed thus the system is
highly scalable. Moreover, in order to enjoy Collabrium’s
benefits it is not a must to install it in all peers as it can be
used by a closed-group of peers that are part of a social net-
work where the more friends you make, the better stability
you can guarantee.

5. Results
We implemented our solution on six machines

A,B,C,D,E and F - all were connected to the Inter-
net using separate broadband connections of 1.5Mbps
download and 0.5Mbps upload. All were used regularly

by home users during a test period of 6 days. We installed
the prediction module on machines B,C,D,E and F that
were used as feeders for A. Prior to the week of tests, we
allowed our learning module to run for 24 hours on each
machine. Along the week of tests, we let A download
from eMule on 10 randomly selected time periods per each
day. Per each period, A downloaded directly from eMule
sources for 20 minutes and then downloaded indirectly
using the feeders for 20 minutes. The same set of 5 files
were used for all tests and after each test we deleted the
received files to prevent caching for the next test. On
the tests that used feeders we initially selected 3 feeders
randomly and changed a feeder only when the prediction
module of this feeder informed about an upcoming load
in its upstream. The users at B,C,D,E and F were using
different applications that typically consume upload band-
width from time to time such as eMule (also obfuscated),
BitTorrent, LimeWire, Email clients and online games. For
all tests we used SVM with Radial Basis Function (RBF)
Kernel that was found to perform best for our experiments.
RBF kernel - K(x, y) = e−γ‖x−y‖2 can map samples to
higher dimensional space, thus unlike the linear kernel
it can handle the case where the relationship between
class labels and attributes in nonlinear. After experiencing
with different γ and C values for various scenarios, we
found that γ of 0.5 and C of 2 provided satisfying results.
Figure 4 illustrates the total received data during the test
periods. While the Collabrium solution provided 11820
MB of files from eMule for A, the regular - direct eMule
sources solution only received 4440 MB.

In Figure 5 we examined various protocols that use the
upstream and Collabrium’s ability to predict an upcoming
load per each protocol. We captured 5 hours of activity
on each of these protocols separately. Then we mapped
all large sessions (more than 1MB) and counted the cases
where Collabrium predicted a large session successfully.
Notice that in the fourth case, we ran all protocols on the
same machine for 5 hours, to examine the case where the
vicinity contains messages of multiple protocols. The pre-
dictions were made for two settings - network only that
relied on packets log and a combined prediction that was
based on network, file system and process list as mentioned
earlier. Notice that the benefit of file system activity and
process list was minor and we were able to achieve encour-
aging results with network-only prediction. Along all tests
we measured the time between the prediction and the be-
ginning of load in upstream, and found that that client has
between 3 and 6 seconds to replace a feeder in order to pre-
vent reduction in throughput.

In Figure 6 we experimented different vicinity sizes and
measured the appropriate prediction success rate. The lead-
ing part of the vicinity (3rd of its size) is placed before the
beginning of a session - to allow prediction using packets



Figure 5. Prediction rate for different settings

Figure 6. Prediction rate per vicinity size
that might lead to a session (like an interaction between
a peer and a supernode prior to the file transfer between
peers). Notice that small vicinities of between 1 and 2 sec-
onds do not consist enough information to predict an up-
coming load with high success rate. Vicinities larger than 4
seconds tend to create more noise than useful information
for prediction and accordingly the prediction success rate
degrades. In our experiments we experienced minor false
positive predictions of up to 2% of the total predictions.

Summary: We presented Collabrium - a collaborative
solution that employs machine learning to predict load and
stabilize download throughput in P2P networks using feed-
ers. Experiments on home machines demonstrated success-
ful predictions of upcoming loads and Collabrium learned
the behavior of popular heavy bandwidth consuming pro-
tocols such as eMule & BitTorrent correctly with no prior
knowledge about protocol format.
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