
Spotlight

72 Published by the IEEE Computer Society 1089-7801/07/$25.00 © 2007 IEEE IEEE INTERNET COMPUTING

Editors : Munindar P. Singh • s ingh@ncsu .edu
Krithi Ramamritham • kr i th i@cse . i i tb .ac . in

Live Distributed Objects
Enabling the Active Web

D evelopers who work with modern compo-
nent-integration and productivity tools can
create desktop applications faster and easi-

er than ever before. These tools promote a devel-
opment style in which the language, runtime
environment, debugger, and profiler create a
seamless whole. Architects of distributed systems
face a more difficult challenge, especially when
those applications need to replicate data or serv-
ices to achieve scalability, guarantee fast response
times, or put content close to the end user. Here,
support has severely lagged the desktop options.
The available technologies, such as publish–
subscribe message buses, Web services remote
method invocation, and multicast toolkits, are
often implemented as free-standing proprietary
libraries that are only superficially integrated with
operating systems and modern component-orient-
ed development tools. Moreover, the most com-
mon technologies provide such weak guarantees
in the event of failure that the developer is typi-
cally forced to implement complex application-
level “damage repair” mechanisms. This creates a
world in which only experts can feel comfortable
— and even the experts disagree about the best
way to recover from common kinds of failures
such as timeouts and components that crash and
then reboot.

In exploring ways to bridge this gap, our team
at Cornell created live distributed objects. Live
objects have the look and feel of ordinary objects

in managed environments such as .NET or J2EE,
except that they needn’t reside at a single location.
A live object can be understood as a distributed
mechanism through which a group of software
components communicate with each other, share
data, exchange events, and coordinate actions in
a decentralized, peer-to-peer fashion (see Figure
1). A live object can represent, for example, a
streaming video, a news channel, a collaborative-
ly edited document, a replicated variable, or a
fault-tolerant service.

The existing kinds of live objects are customiz-
able; we’re hoping that a small set of objects could
suffice for a great variety of applications. On the
other hand, the set is extensible; our platform
makes it surprisingly easy to build new kinds of
objects. The approach is intended to scale, and
although our current system targets enterprise LAN
settings, we plan to eventually support Internet
deployments that might have, for example, tens of
thousands of IPTV channels, new forms of collab-
oration and gaming environments, and new forms
of self-managed applications that could literally
span the globe. All the technology described in this
article is working today in the lab and will be
available for free public download from www.
vcs.cornell.edu/projects/quicksilver/ early in 2008.

Potential Applications
From the programmer’s perspective, live objects
could replace earlier technologies such as multi-

Distributed computing has lagged behind the productivity revolution that has

transformed the desktop in recent years. Programmers still generally treat the

Web as a separate technology space and develop network applications using low-

level message-passing primitives or unreliable Web services method invocations.

Live distributed objects are designed to offer developers a scalable multicast

infrastructure that’s tightly integrated with a runtime environment.

Krzysztof Ostrowski and Ken Birman • Cornell University
Danny Dolev • Hebrew University

NOVEMBER • DECEMBER 2007 73

Live Distributed Objects

cast, group communication, publish–
subscribe, and state-machine replica-
tion. These often-proprietary techno-
logies fit poorly into the modern
component-oriented development
style. In contrast, live objects fit easily
into environments such as .NET and
J2EE and can leverage their powerful
type systems and management fea-
tures. Development and debugging
tools work in a natural way.

Live objects are also easy to use.
Just as they browse for clip art in local
folders, end users can store live objects
in live folders and then build live doc-
uments and other applications by “cut
and paste” or “drag and drop.” Appli-
cations can access live objects much as
they access other kinds of applications
and files today (live objects adhere to
the popular Web services standards),
but we think the biggest potential is
associated with this new kind of “no
coding needed” style of application
development. In effect, a developer
without programming skills could cre-
ate sophisticated collaboration, work-
flow, gaming, or other distributed
applications by following the same
steps used to create a presentation or
a Web page. Moreover, these live
applications inherit sophisticated reli-
ability and scalability properties from
our platform. If live objects were to
take off, they could be the gateway to
an active, trustworthy Web.

The Active Web
To understand the concept of an
active Web, consider the popular Sec-
ond Life virtual reality environment
(www.secondlife.com), which has
gained millions of users in just a few
years. In the words of its inventors,
“Second Life is a 3D virtual world
entirely built and owned by its resi-
dents … a vast digital continent, teem-
ing with people, entertainment,
experiences, and opportunity.” A typ-
ical Second Life scenario might start
with a user’s avatar walking into a
smoke-filled bar where a seedy collec-

tion of creatures is playing poker
around a stained oak table. The avatar
pulls up a chair, joins the game, and
perhaps the user makes (or loses) a
fortune — in real money.

Today, virtual worlds such as Sec-
ond Life need to be hosted by big data
centers. This has obvious disadvan-
tages, particularly if the data center is
halfway across the country (see Fig-
ure 2). Not only is performance limit-
ed by high latencies, but privacy
could be a concern because every-
thing an end user “sees” must flow
through the data center.

In contrast, we envision a future in
which data flows directly from the
applications that generate it (for exam-
ple, rendering an avatar) to those that
consume it (for example, by display-
ing the room). Such an approach can
support much higher data rates with
lower latency. A data center might still
play a supporting role, but such a solu-
tion would scale better and improve
security and privacy because most of
the data flows directly from the pro-
ducer to the consumer. An active Web
based on live objects could be a world
with millions of IPTV streams, new
forms of interactive art, live electronic
health records that integrate regional
medical providers, or banking systems
that could trade “live” financial instru-
ments. Moreover, live objects can
interoperate with traditional docu-
ments to create live memos, spread-
sheets, databases, and so forth.

Lacking platform support, such
applications would be tricky to build.
An electronic health-records system,
for example, would need to achieve
high levels of availability and consis-
tency, be largely self-configuring, and
maintain privacy and security. A typi-
cal deployment scenario would involve
decentralized systems linked over net-
works integrating subsystems running
at hospitals, other care providers, lab-
oratories, insurance companies, phar-
macies, and so on. Electronic
monitoring devices and other sensors

running in the hospital and at patients’
homes would contribute time-sensitive
data, and some therapeutic and drug-
delivery devices would be remotely
controlled. This highlights a second
challenge: we need not only to enable
a new style for developing such appli-
cations but also to ensure that the
underlying platform can enforce the
needed properties.

The Quicksilver System
Cornell’s Quicksilver system offers a
glimpse of the live object concept in
action. As Figure 3 illustrates, Quick-
silver is built in two layers. One
extends a system such as .NET to sup-
port live objects by embedding them in
the .NET common language runtime,
as well as focusing on the hooks con-
necting the objects to the .NET type
system and the Windows shell (the GUI
that interprets mouse actions). Quick-
silver’s second layer provides the scal-
able and extensible communication
infrastructure needed to make the
objects “live” and “distributed.”

Briefly, live objects provide the fol-
lowing abstract functionality:

• Each object has an Internet-wide
unique identity, which serves a role

Figure 1. The live objects space. When
multiple users across the Internet
share a live distributed object, such as
a room in an online game, their
workstations instantiate local
representatives that cooperate to
implement whatever abstraction
makes the object “live.” Our live
distributed objects platform
automatically propagates updates
and handles failures.

User

Live
object

protocol

…

Live object

74 www.computer.org/internet/ IEEE INTERNET COMPUTING

Spotlight

similar to an ordinary file shortcut.
Such shortcuts to live objects can
be stored in various network direc-
tories, much like the Internet DNS,
as well as dragged to users’ desk-
tops, exchanged over email, placed
in file-system folders or inside doc-
uments, and so on.

• When a component tries to access
a live object by clicking on the
object’s shortcut or programmati-
cally accessing its reference, an
authentication and join protocol

executes to enforce security, fetch
the object’s components from dis-
tributed live object directories,
obtain a snapshot of the object’s
state, initialize it, and so on. The
object’s code maintains its state in
response to event notifications.

• Live objects have distributed types.
Examples of types might include an
IPTV feed, a chat window, or a
dynamically tracked product inven-
tory count; new types are easy to
create by customizing existing
objects or developing new ones.
When applications interact with
live objects, type-checking helps
verify both that the object interface
is used correctly (for example, if a
live object were used in a spread-
sheet, we’d want the spreadsheet to
understand the associated data
type) and that the communication
type beneath the object matches
the developer’s intent. For example,
an IPTV viewer object would need
to run over a communications
channel supporting the IPTV pro-
tocol standard.

• A live object provides a natural
interface to its clients. For example,
an object representing a video
stream would provide methods to
send or receive video frames, an
object representing a replicated
variable would provide get/set
methods, and so on. Moreover,

objects can be composed so that a
replicated variable or a video
stream could connect to a display
object that showed new data in a
window on the end user’s display.

• Each object has object-specific
logic implementing some abstrac-
tion, such as a room, medical
record, or gossip-based overlay
network. This logic would usually
be very simple because it typically
runs over a powerful communica-
tions infrastructure that offers sup-
port to groups of live objects
running on different machines. For
example, a chat object doesn’t
need to establish one-to-one con-
nections between its various repre-
sentatives: the object can
disseminate each chat “event” by
asking the runtime environment
we provide to replicate it to the
endpoints associated with other
currently active instances of the
same object. Moreover, although
the interface from a live object’s
logic to our platform is simple, it
supports a powerful form of exten-
sibility: type-specific underlying
communication drivers provide the
protocols for replicating the
object’s data among components
and for multicasting events among
them. As we’ll explain, this creates
an opportunity to introduce relia-
bility and trust properties.

The underlying communications
layer consists of a set of pluggable
communication substrates, which play
roles analogous to those of device
drivers. Each live object needs a com-
munication driver to replicate its state
and propagate events and updates; dif-
ferent objects might use drivers spe-
cialized for different settings (wireless,
WAN, or LAN, for example) or proper-
ties (secure, low latency, and so on).
QuickSilver lets developers adapt
existing multicast and group commu-
nication toolkits for use as communi-
cation drivers. It also comes with the

Figure 2. Benefits of direct communication. Existing massively multiplayer online
games and virtual worlds rely on server farms to maintain system state. Letting
users communicate directly in a peer-to-peer fashion, rather than indirectly
through shared servers, slashes server loads, potentially improves latency and
throughput, and better protects privacy.

User User

…

10-msec latency
100-Kbps throughput

100-msec latency
1-Kbps throughput

Network bottleneck and
a single point of congestion

Millions of other users

Data center

Figure 3. Quicksilver architecture. The
system is composed of two layers: one
exposes virtual objects to applications
as a part of the .NET type system,
and the other is an extensible
communication engine with “drivers”
for different object types. Live objects
are accessible programmatically from
applications, Windows shell-like files,
and development environments such
as Visual Studio.

App1 AppN Visual studio Shell…

Operating system

.NET framework

Live object abstraction

QuickSilver

QSM QS/2 GO …

NOVEMBER • DECEMBER 2007 75

Live Distributed Objects

following suite of built-in scalable,
high-performance communication dri-
vers designed to complement each
other for common application types:

• Quicksilver Scalable Multicast
(QSM) is optimized to support large
numbers of live objects that might
represent streams of events, such as
video channels, file backup folders,
or stock-price update notifications
in a trading system. Designed for
enterprise LANs and data centers,
the current version of QSM can
support tens of thousands of event
streams, hundreds of users, and
transmissions at network speeds.
The system is robust under stress
and reliably delivers events. (More
about our experimental evaluation
methodology and findings is avail-
able in several technical reports
available from www.cs.cornell.edu/
projects/quicksilver/).

• QuickSilver 2 (QS/2) is a second
version of QSM in which the
emphasis shifts to flexibility rather
than raw performance. The QS/2
design has the flexibility to accom-
modate Internet WAN scenarios,
mobile or wireless applications,
and networks of low-power sen-
sors. QS/2 will be available for
download in 2008.

• The QuickSilver Properties Frame-
work (PF) is a prototype of a com-
munication driver that can work in
tandem with QSM or QS/2 and is
optimized to support live objects
with strong reliability properties,
such as replicated variables in a
banking system or collaboratively
edited documents, which need
highly consistent updates to pre-
serve data integrity. PF supports a
wide range of reliability models,
including custom, user-defined
reliability types. We expect to make
this available from our download
site in mid-2008.

• Gossip Objects (GO) uses a kind of
peer-to-peer communication that

the research community refers to as
a “gossip protocol” because it mim-
ics the way that information
spreads when people gossip about
a hot rumor.1 GO is intended to
support live objects that can help
systems manage themselves, set
their own configuration parame-
ters, and even diagnose and self-
repair when failures occur. The GO
communication driver is currently
under development in the As Scal-
able as Possible project (ASAP;
www.irisa.fr/asap), headed by Anne-
Marie Kermarrec at the French
national computer-science research
laboratories (INRIA/IRISA) at the
University of Rennes. GO should
also be available in 2008.

We expect this list to grow over time,
with protocols to support wireless
communication, IPTV, security proto-
cols, and protocols with real-time
properties.

How Can It Scale?
Although the need for brevity pre-
cludes a highly technical discussion of
scalability, some discussion of how
we’ve tackled the problem in QSM
should provide a rough intuition.
QSM’s role is to reliably multicast data
in support of higher-level events relat-
ed to multiple live objects, such as
updates to their state and commands
that cause actions to occur. In a typi-
cal data-center scenario, some com-
puters would use large numbers of live
objects, shared with other computers
throughout the data center. For exam-
ple, a group of computers might share
some live object representing a partic-
ular IPTV channel, while another
group of computers tracks a particular
stock’s price by sharing a stock-quote
object, and yet other groups are
engaged in a role-playing game in
which live objects represent the game
state. Because the granularity of
objects could be rather small (a single
stock, IPTV channel, or user’s avatar,

for example), the world of QSM could
include vast numbers of overlapping
groups of computers, each correspon-
ding to some live object and having as
its members the computers on which
the live object is being used.

When we set out to build QSM, we
realized that it would be helpful if we
could assume that groups of live
objects overlapped in a simple, hierar-
chical pattern. Before looking at the
way QSM makes use of this property,
let’s develop some intuition into what
a clean, hierarchical overlap among
groups of objects might look like. For
example, objects A, B, and C might be
directly superimposed, such that the
groups of computers using them over-
lap perfectly — this might happen if
those computers were all using some
live document containing A, B, and C.
A hierarchy could also include subsets,
such that object D might live on half of
the computers and E on the other half.
Let’s define the term region to denote a
set of computers that all use the same
live objects. In this example, one region
would correspond to computers using
objects A, B, C, and D, and another
region would include the computers
using objects A, B, C, and E.

Given a hierarchy of overlapping
groups, QSM starts by decomposing it
into a set of regions and then con-
structs a data-dissemination overlay
for each, using IP multicast if possible
(for example, it might assign each
region a unique IP multicast address).
If IP multicast isn’t available, QSM can
also run on some form of software-
based end-to-end network overlay.
Note that dissemination is unreliable:
like a UDP transmission in the Inter-
net, a message might reach none of its
destinations, some of them, or (if we’re
really lucky) all.

We’ll need to automate the handling
of the cases in which a message doesn’t
reach all the members of the group of
objects for which it’s intended. For this
purpose, QSM builds a peer-to-peer
repair structure within each region. This

76 www.computer.org/internet/ IEEE INTERNET COMPUTING

Spotlight

involves many subtle issues, but the
basic approach starts by constructing a
logical token ring that links the com-
puters in the region (if a region gets
larger than roughly 25 computers, we
break it into a tree of smaller rings
linked by a higher-level ring). As the
token travels around the ring a few
times per second, we encode each com-
puter’s received message set. A machine
that has a copy of a message some
other machine lacks forwards a copy. If
an entire region lacks a multicast, the
sender remulticasts it. Our experiments
indicate that this is very rare: most
packet loss involves individual
machines dropping single packets or a
few in a row, and that can be repaired
locally with the help of nearby peers.

Clustering computers into regions
lets QSM handle large numbers of live
objects efficiently by amortizing over-
head. Whereas tens of thousands of live
objects would involve tens of thou-
sands of multicast protocols in tradi-
tional systems, QSM can use a smaller
number of token rings, each of which
combines the work of ensuring reliabil-
ity for all the groups of objects that
map to that token ring. We often see 10
or even 100 groups per region, so this
amortization can work extremely well.
In effect, a token ring provides reliabil-
ity for many objects at a time, but
because it operates at the regional level
where all computers are members of
the same groups of objects, this infor-
mation has a very compact representa-
tion: a typical token is between 400
and 800 bytes long.

To handle computer crashes, QSM
incorporates a hierarchical status-mon-
itoring service structure that plays a
role analogous to the Internet DNS but
explicitly tracks each component’s sta-
tus (live or failed), as well as some
additional information used within our
protocols. We employ a consensus pro-
tocol to ensure that membership deci-
sions are consistently reported.

Obviously, we’re skipping a lot of
details, such as the flow-control mech-

anism and data aggregation when
multiple small messages are sent to
the same group, but the upshot is that
QSM seems to break every perform-
ance record we’re aware of.2 (Details
are available in a collection of techni-
cal papers at www.cs.cornell.edu/
projects/quicksilver.) We’ve scaled it
to many thousands of groups (live
objects) per computer, supported
groups with hundreds of members,
and saturated 100-Mbit Ethernet inter-
connects with inexpensive PCs on the
endpoints. The system is stable under
stress and tolerates load fluctuations,
broadcast storms, and other degener-
ate behaviors very well. Moreover,
even at the highest loads, overheads
are low: in the scenarios just
described, QSM CPU loads were less
than 10 percent on receivers, and
peaked at 40 percent on senders at the
very highest data rate, leaving ample
CPU capacity for other tasks, such as
rendering the live objects’ content.

Now, all of this reflects a simplify-
ing assumption — namely, that groups
overlap to form a simple hierarchy. In
general, however, that won’t be the
case; if users share documents that
contain live objects, we’ll certainly see
groups that overlap, but the overlap
could be highly irregular. Fortunately,
it turns out that we can solve this
problem by superimposing multiple
QSM hierarchies. We’re finding that it’s
possible to cover even very irregular
sets of overlapping groups with a sur-
prisingly small number of hierarchies,
provided the groups have Zipf-like
popularity and traffic levels3 — and
there’s a very good reason to believe
that popularity would indeed be Zipf-
like.4 For example, studies of financial
instruments show that the ith most
popular stock or bond tends to be pop-
ular in proportion to 1/i�, where � can
be as large as 2.5 to 3.5. Trading vol-
umes are also Zipf-like. We’re betting
that the same property will hold in the
active Web if applications use large
numbers of live objects.

What’s in a Type?
Live objects open the possibility of
extending normal type systems to
encompass distributed behavioral pat-
terns. A replicated variable that repre-
sents an account balance in a banking
system might need strong reliability
and fault-tolerance properties such as
virtual synchrony, whereas weaker
reliability properties and gossip scala-
bility might be a better match for a
similar variable in a monitoring appli-
cation. To make live objects truly use-
ful, we thus need a way to describe
such behaviors as a part of their types.

In QuickSilver, a live object’s type
is a tuple, the elements of which spec-
ify different aspects of the type (much
like in aspect-oriented programming),
including the object’s interface (in the
usual sense) and its “category” (repli-
cated service, replicated variable, event
stream, gossip object, and so on),
which determines the proper commu-
nication protocol driver to use. Other
aspects configure the underlying dis-
semination substrate and specify the
object’s reliability, fault-tolerance, and
security properties.

By expressing distributed types in
this way, we enable a next step in
which developers could use type infor-
mation as part of the application
design and implementation process.
Development environments such as
.NET’s Visual Studio would “under-
stand” the possible distributed behav-
iors of such typed objects and could
guide developers through the process
of implementing code that would run
correctly under the assumption that
the communication drivers underlying
the live object implemented the speci-
fied behaviors. The current live objects
system implements some simple forms
of distributed type checking, but the
idea could be carried much further. The
runtime system could throw excep-
tions in response to mistakes — if, for
example, a component designed to
work correctly only with live virtually
synchronous multicast streams tried to

NOVEMBER • DECEMBER 2007 77

Live Distributed Objects

access a live multicast stream with a
weaker QSM or best-effort reliability
property.

We intend to pursue this direction
of research because type checking can
dramatically reduce bug rates while
also providing a “hook” for other pur-
poses. Type-based programming and
debugging tools have transformed the
experience of building applications
for desktop environments. Service-
oriented architectures (which also
revolve around type systems, albeit
simple ones) are having a similar
impact in networked applications that
interact with services hosted in data
centers. A natural step in that direc-
tion, live objects bring the benefits of
strong typing to the realm of decen-
tralized peer-to-peer applications. The
active Web could be far more than
just a veneer over the same old Inter-
net technologies.

Next Steps
Live distributed objects, layered over
the QSM technology, are working
today. However, we’ve also made sub-
stantial progress with two technolo-
gies that aren’t quite ready for
external users.

Quicksilver
Properties Framework
The basic goal of the PF is to support
stronger reliability models than are
available in QSM. Earlier, we described
how QSM provides what might be
called best-effort reliability: as long as
the system believes that some comput-
er is healthy, it keeps trying to deliver
messages to it. This is a natural form of
reliability, but distributed systems
sometimes need much stronger guaran-
tees. Two important examples of these
are virtual synchrony and transactions.

Virtual synchrony is a powerful
distributed computing model in which
active programs join process groups,
within which multicasts disseminate
updates and other events.5 The
moment a process joins, it can initial-

ize itself using a state transfer from
some active member. If a member fails,
the group members are immediately
informed, so that they can initiate cor-
rective action. This model’s power is
that it can support consistency guar-
antees — all the users of a virtual syn-
chrony group see the same thing in the
same order. This can be important
when multiple users are concurrently

taking actions that the physical world
needs to somehow order. In some card
games, for example, the first user to
slap a card onto the stack wins. Using
traditional event-notification solu-
tions, different users might see the
same events in different orders — it’s
easy to imagine (virtual) fights erupt-
ing in a Second Life gambling saloon
in such cases. With virtual synchrony,
the Quicksilver platform would enforce
a single, system-wide event ordering,
so that all participants would see the
same events in the same sequence.

Transactions offer an even
stronger execution model. Suppose
that a power failure were to crash a
few machines simultaneously. The vir-
tual synchrony model provides con-
sistency only among live objects that
remain operational. If an object crash-
es and then restarts, saved data from
its previous life is discarded. Yet, sup-
pose that the object represented the
bank, and real money were changing
hands. Transactional live objects sup-
port what the database community
refers to as the ACID model (atomicity,
concurrency, independence and dura-
bility). With this guarantee, crashed
objects can reconstruct consistent,
agreed-on state after they recover.
However, these stronger guarantees

come at a steep price in terms of per-
formance and scalability.5

When we decided to support live
objects with stronger reliability guar-
antees than QSM offers, we didn’t
want to limit ourselves to just one of
these models. Accordingly, PF is con-
figurable so that each object can spec-
ify the appropriate kind of consistency
guarantee. PF implements different

models by executing a script to control
the delivery of messages and other
events and to trigger actions such as
forwarding messages to repair losses
or sending ordering information when
batches of messages must be placed
into a total order. The script is coded
in a new programming language we’ve
developed, which can represent mod-
els such as virtual synchrony or trans-
actions in just 30 or 40 lines of very
high-level code that PF automatically
translates into a scalable, hierarchical
protocol. The advantage of this ap-
proach is that a single system can sup-
port live objects that require any of a
range of reliability models. In contrast,
the more traditional approach involves
building a separate system for each —
a transactional system, a virtual syn-
chrony systems, and so forth.

We don’t expect PF to subsume
QSM’s weaker reliability property
because it isn’t clear how to support
strong models such as virtual syn-
chrony or transactions in settings that
might have hundreds or thousands of
overlapping groups. Instead, we’re
assuming that live objects layered over
QSM should suffice for most cases. In
the rare cases in which stronger prop-
erties are required, PF working in tan-
dem with QSM could provide them.

It’s too early to tell, but at Cornell,
we’re betting that the active Web will be
the next big thing for the Internet.

78 www.computer.org/internet/ IEEE INTERNET COMPUTING

Spotlight

Thus, QSM would do most of the work
in large systems, but PF might “step
in” here and there as needed to support
a small number of live objects with
much stronger properties.

Gossip Objects
As mentioned earlier, the GO project is
under way at INRIA/IRISA.1 To under-
stand the underlying concept, consid-
er the following real-world scenario:
someone sees Mary getting into John’s
car in the company parking lot and
starts a rumor that the two are going
out together. The information spreads
exponentially quickly, and in no time
at all, everyone in the company has
heard the story. GO implements proto-
cols that spread information using a
computer analog of this sort of rumor
mongering (researchers refer to it as an
epidemic model).

When finished, GO will let live
objects share information by replicating
it using this gossip-based communica-
tion layer. Gossip turns out to be ideally
suited for tasks such as tracking overall
system state, assisting in autoconfigu-
ration or repair, and constructing over-
lay networks (including those needed by
QSM, QS/2, and PF). Although gossip
protocols can be slow, they need little
configuration, are stable under stress,
never require much bandwidth, and
remain “healthy” despite disruptions
that can cripple other kinds of protocols.

Thus, we have a fast and scalable
but limited-reliability option in QSM,
a robust and self-configuring but rel-
atively slow technology in GO, and a
way to support strong properties
through PF. This list will grow to
include additional options, such as
IPTV or BitTorrent protocols, in the
future. We’re also looking at security
issues with the goal of securing the
live objects infrastructure and preserv-
ing the privacy of sensitive data.

L ive objects enable a completely new
kind of distributed programming,

inspired by the Web, but in which much
of the content is dynamic and capable
of evolving rapidly in real time. End
users who lack programming skills can
combine live objects to create sophisti-
cated, fault-tolerant applications, often
with little more than a few mouse clicks.
Live objects could represent video feeds,
streams of media or other content gen-
erated by participating computers,
telemetry from sensors, and so on.

By integrating such content into
systems such as Windows or J2EE in
a clean and natural way that lever-
ages the power of type systems and
component-integration technologies
while offering a portal to distributed
computing, we’re hoping to enable a
revolution. Live objects could open
the door to a new and disruptive gen-
eration of active Web applications
that combine high data rates with
strong properties, including fault-
tolerance, consistency, and security.

It’s too early to tell, but at Cornell,
we’re betting that the active Web will be
the next big thing for the Internet — and
that live objects will make it a reality.

References

1. K. Birman et al., “Exploiting Gossip for Self-

Management in Scalable Event Notification

Systems,” Proc. IEEE Distributed Event Pro-

cessing Systems and Architecture Workshop

(DEPSA 2007), IEEE CS Press, 2007; www.

cs.uga.edu/~laks/depsa/.

2. K. Ostrowski and K. Birman, Implementing

High-Performance Multicast in a Managed

Environment, tech. report TR2007-2087,

Cornell Univ., Mar. 2007; www.cs.cornell.

edu/projects/quicksilver/QSM/.

3. Y. Vigfusson et al., “Tiling a Distributed Sys-

tem for Efficient Multicast,” submitted for

publication to 5th Usenix Symp. Networked

Systems Design and Implementation (NSDI

08), 2008; preprints available on request.

4. M.E.J. Newman, “The Structure and Func-

tion of Complex Networks,” SIAM Rev., vol.

45, no. 2, Mar. 2003, pp. 167–256; http://

scitation.aip.org/getabs/servlet/GetabsServlet

?prog=normal&id=SIREAD00004500000200

0167000001&idtype=cvips&gifs=yes.

5. K. Birman, Reliable Distributed Systems:

Technologies, Web Services, and Applica-

tions, Springer-Verlag, 2005.

Acknowledgments
Our research was supported by grants from the

US Air Force Office of Sponsored Research, the

Air Force Research Laboratories in Rome, NY,

the US National Science Foundation (NSF)

Cybertrust program, the TRUST NSF Science and

Technology Center, and Intel.

Krzysztof Ostrowski is a PhD candidate at Cor-

nell University in the Department of Com-

puter Science. He is the primary developer

of the live distributed objects and Quicksil-

ver technologies and has published several

papers on these systems, as well as the

broader topic of architectural standards for

Web services event notification. Contact him

at krzys@cs.cornell.edu.

Ken Birman is a professor of computer science at

Cornell University. His research focuses on

reliability issues in distributed computing sys-

tems. Birman has a PhD in computer science

from the University of California, Berkeley,

and has published more than 150 conference

and journal papers and edited three textbooks

in the area. He was the principle developer of

the Isis toolkit, which was used to implement

the core communications technology of the

New York and Swiss Stock Exchanges, the

French Air Traffic Control System, and the US

Navy AEGIS warship. The associated virtual

synchrony model became a Corba standard.

He is a fellow of the ACM. Contact him at

ken@cs.cornell.edu.

Danny Dolev is a professor of computer science

at Hebrew University in Jerusalem. His

research explores the theory and practice of

distributed computing, and over the course

of his career, he has published nearly 200

papers on a wide range of topics in the field.

Dolev has a PhD in computer science from

the Weizmann Institute of Science. His group

developed the Transis group communication

system, which explored availability during

partitioning failures and resulted in a theo-

ry of optimal availability in fault-tolerant

systems. Contact him at dolev@cs.huji.ac.il.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

