
Scalable URL Matching with Small Memory
Footprint

Anat Bremler-Barr†, David Hay∗, Daniel Krauthgamer†, and Shimrit Tzur-David‡
†Dept. of Computer Science, the Interdisciplinary Center Herzliya, Israel. {bremler,krauthgamer.daniel}@idc.ac.il

∗School of Engineering and Computer Science, Hebrew University, Jerusalem, Israel. dhay@cs.huji.ac.il
‡Dept. of Computer Science, Ben-Gurion University of the Negev, Israel. tzurdavi@cs.bgu.ac.il

Abstract— URL matching lies at the core of many net-
working applications and Information Centric Networking
architectures. For example, URL matching is extensively
used by Layer 7 switches, ICN/NDN routers, load balancers,
and security devices. Modern URL matching is done by
maintaining a rich database that consists of tens of millions
of URL which are classified to dozens of categories (or egress
ports). In real-time, any input URL has to be searched in
this database to find the corresponding category.

In this paper, we introduce a generic framework for
accurate URL matching (namely, no false positives or miscat-
egorization) that aims to reduce the overall memory footprint,
while still having low matching latency. We introduce a
dictionary-based compression method that compresses the
database by 60%, while having only a slight overhead in time.
Our framework is very flexible and it allows hot-updates,
cloud-based deployments, and can deal with strings that are
not URLs.

I. INTRODUCTION

As networks become more application- and service-
oriented, URL matching is becoming an important com-
ponent in many network devices and middleboxes.

In particular, URL matching is the basic building block
of layer 7 switches, routers, and load balancers [18], [20],
[25], [36], where routing decisions (e.g., which egress
to forward a packet) are often determined by a URL
(or a name) within a header of some application-layer
protocol. Thus, URL (or, alternatively, service name or
any other hierarchical human-readable names) matching
is extensively used under Content-Centric Networking
(CCN) approaches, such as Service-Centric Naming (e.g.,
Serval [20]) and Information Centric Networking [13]
architectures like Named Data Networking (NDN) [2],
[14], [38]. In particular, forwarding tables in high-speed
NDN routers are expected to hold between 1−10 millions
URLs.

URL matching is also important in traditional net-
working, where it is primarily used to enforce usage
or security policy. Modern security devices, especially
in enterprises and workplace networks, are now filtering
web content according to URLs (see Checkpoint [16],
Palo Alto Networks [21], WebSense [33], Sourcefire [26],

and others [28], [29]). In the past, such URL filtering
consisted only on two categories: a blacklist of URLs that
cannot be accessed and a white-list of legitimate URLs.
However, contemporary URL filtering tools support tens
of categories, allowing fine-grained policies which can be
easily customized. Today, URL filtering tools have 1−100
million URLs in these lists. URL matching is also used for
other applications such as URL shortening services [27],
[37], and search engines [15].

As the average length of a URL is 22.6 bytes, the
memory footprint of the URL database often becomes
humongous. On the other hand, URL matching is often
performed as a bump on the wire, implying the URL
database must be stored in an expensive fast memory to
support line-rate queries. Thus, compressing the database
while obtaining fast queries is essential, either to make
URL-matching–based solutions feasible, or to signifi-
cantly reduce their costs.

This paper tackles exactly this problem and presents a
generic framework to efficiently store URLs in a database,
along with their categories (in the context of Layer
7 routing or NDN/ICN, the database corresponds to a
forwarding table/FIB, and a category corresponds to an
egress port or ports). When the database is queried, it
either returns the category attached to the queried URL or
⊥ in case the URL is not in the database. Importantly, we
do not allow inaccurate results—the query must always
return the correct answer.

Our approach is generic in the sense that it does not
have any assumption on the data structure used to perform
the URL matching itself (This data structure is referred to
as database in Fig. 1). Our framework compresses only the
information stored in that data structure, and therefore, can
leverage from any fast URL matching technique (called
database query in Fig. 1). Specifically, our compression
can be performed on the entire URL at once (applicable
mainly for hash-based solution) or in a component-by-
component manner (applicable, for example, to Trie-based
solutions).

This paper focuses on reducing the memory footprint of
the database, while still enabling fast queries. Since URLs
share many common substrings, a naı̈ve approach wouldISBN 978-3-901882-83-8 c© 2016 IFIP
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Fig. 1. A block diagram of our framework. The blue blocks describe the offline phase, where the database and auxilary data structures are built. The red
blocks are the datapath of our framework. Green blocks represent the data structures, which constitute the memory footprint we try to minimize.

have been to compress the database using an off-the-shelf
compression algorithm (e.g., DEFLATE used by gzip [9]).
Indeed, such compression reduces the memory footprint
by about 70%, however it does not allow fast queries of
the compressed database. This essentially stems from the
fact that the compressed form of each individual URL
depends on previous URLs in the database.

Thus, we take a different approach and use a dictionary-
based compression, which is illustrated in Figure 1. Our
framework is divided to two phases: an offline phase, in
which the database is built, and a datapath, in which input
URLs are queried against the database.

In the offline phase, we start by extracting the frequent
substrings1 that appears in the URLs; (for example, the
three most such substrings in our data were “.com”,
“s.com”, and “e.com”); this is done by off-the-shelf
heavy hitters algorithms, such as [1], [10]. Notice that
frequent substrings intersect each others, and therefore,
sometimes a substring may not be useful for compression,
even though it appears many times. Thus, for each fre-
quent substring, we first estimate its real frequency in the
compressed database, and then try to determine whether
it is indeed beneficial to use it (taking into account, for
example, also its length and the overhead in storing it
in the dictionary). Using these estimates, we select a
subset of the frequent substrings as anchors, which will
be stored in the dictionary. We also use the estimated
frequency of the anchors to create a Huffman code for
them (which will further reduce the memory footprint).
We note that given the Huffman code and the dictionary,
we can compress each URL separately, by replacing each
anchor (and each literal) by the corresponding Huffman

1We will use the terms string and substring interchangeably when it
is clear from the context.

code. All compressed URLs are stored along with their
categories in an off-the-shelf database (e.g., based on a
hash-table [35], [37] or a Trie). We note that sometimes
more than one anchor replacement option is available (e.g.,
suppose our dictionary is §1=“goo”, §2=“.com”, and
§3=“ogle”; the URL google.com can be compressed
to either §1gle§2 or go§3§2). Hence, our compression
algorithm uses a deterministic rule to choose the proper
replacement, implying that the compressed form of each
URL depends only on the dictionary used.

The datapath works in a similar way: We first identify
which anchors are in the input URLs, then we use the
same deterministic rule to choose which anchors to use,
and finally we use the same Huffman code to encode the
selected anchors and literals. Thus, when querying the
database, it is sufficient to use the compressed-form of
the queried URL as a key to the database.

Overall our framework yields a reduction of up to 60%
in memory. Naturally, using compression trades memory
space with the overhead of processing (compressing) the
data. However, our experiments shows that the processing
overhead (namely, the URL compression) works at rate of
more than 200 Mb/s on one core, which is acceptable in
these settings, as these operations can be highly paralleled
(either by compressing many URLs on simultaneously
on multiple cores, or by having the URL compression
and database query as successive stages in a pipeline). In
addition, we note that our framework allows hot-updates
support, where URLs can be easily inserted, deleted, or
modified in the database. In addition, we are able to deal
with both exact matching and longest prefix matching
(LPM) of URLs, where the only difference is that under
LPM, we must first break the URL to its components
(separated by dots or slashes) and then compress each
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such component separately.
We provide a full implementation of our framework

in [6].
The rest of this paper is organized as follows: Section II

discusses previous works on URL matching. In Section III,
we describe the datapath of our framework, in which we
resolve online the category of input URLs. Section IV
describes the offline phase of our framework, in which
the database and auxiliary data structures are constructed.
In Section V, we present experimental results on real-life
URL data sets. Finally, we conclude in Section VI.

II. RELATED WORK

Performing fast URL matching has recently received
extensive attention [2], [8], [30]–[32], mostly focusing on
the URL matching time This paper focuses on reducing
the memory footprint of the URL database by designing
a tailored-made compression method. Once the database
is compressed, it can be used in conjunction with any of
the previously suggested URL matching techniques.

As opposed to our framework, which employs loss-
less compression, most of the previous works on URL
compression have used lossy compression, such as a
hash-chain compression [18], CRC compression [39], or
hierarchical Bloom filters [11]. Clearly, lossy compression
techniques have two clear drawbacks. First and foremost,
they might lead to a false categorization of URLs, as
several URLs (each with different category) might be com-
pressed to the same form. In addition, these compressions
are not reversible, implying updates might become more
difficult.

The works in [11], [35], [37], [39] dealt only with
two categories of URLs (blacklist and white-list), and
cannot be easily extended to multiple categories (e.g.,
by assuming that each URL that is not in one category,
is implicitly in the other). Hence, these works are not
applicable to modern devices that have many categories
and have to store significantly more URLs.

URL lossless compression using AVL tree was consid-
ered in [15]. This compression achieves 50% compression
ratio, albeit with high query and insertion time (namely,
tens of microseconds). We note that this solution aims to
compress crawling information of web spiders, which is
less time-sensitive. However, in our case, query time is
important, as most URL matching lie in the critical path
of the traffic. In other words, the required solution has
to represent the data using as little space as possible, yet
efficiently answering queries on the represented data.

Moreover, nowadays there are many URL shortening
services such as [4], [27]. These services store a database
that translates the shortened version of the URL back to
its original form, and then redirects the user requests to
the original address. Thus, this shortening is basically
a renaming of the URLs rather than compression; the

database holds the URLs in an uncompressed form and
its total space is not reduced, and therefore, it is not
applicable in our setting.

Another common strategy to deal with the string re-
trieval problem is using tries. However, tries-based so-
lutions do not supply efficient solutions to a non-prefix
query, unless a very large amount of memory is used.
Note that providing a solution to the string retrieval
problem usually requires to create an index to the data
and the footprint that is required to represent this index
is sometimes larger than the footprint of the original data.
Compressing trie-based data structure for URL matching
was considered in [8], [30]. In these works, the edges
of the trie correspond to the components of the URLs
and the basic idea is to provide each such component
with a unique code; moreover, the same code can be used
for different parts of the trie when its decoding is not
ambiguous. It is important to notice that the technique
compresses the trie-based data-structure, but its memory
footprint is larger than the size of a bare list of all URLs,
as almost the entire URL information is stored explicitly in
the lookup table for finding the code of each component.
Our framework, on the other hand, reduces the memory
footprint below the size of that list, and can be used in
conjunction with the techniques of [8], [30] to further
reduce the memory footprint of the trie. Moreover, while
the compression techniques of [8], [30] is specific to their
trie-based data structure, our framework is generic and can
be applied with any matching data-structure.

Usually, solutions that create an index of the data are
heavy in space (e.g. [17]). Dealing with this inefficient
footprint was a subject recent research (e.g., [12]). Our
solution obtains better results, in compression ratio as well
as lookup performance. Actually, the lookup performance
of this work is two orders of magnitude slower than
our solution, as presented at Section V. We also note
that compressing string dictionaries was a subject for
extensive research (c.f. [7], [19] and references therein);
however, these solutions were not geared specifically to
URL databases.

Retravi et al. have studied how to compress IP forward-
ing table [23]. However their solution is not applicable to
URL matching, since it assumes either a limited number
of categories (corresponding to the possible next hops) or
very rare updates.

Finally, femtoZip [10] is a compression library that
aims in compressing short documents. As our framework,
it constructs a shared dictionary which are used by all
documents; unlike our scheme, this shared dictionary is
a concatenation of all anchors, and therefore, references
to this dictionary is done by referring to the offset of
the anchor from the beginning of the dictionary and the
length of the anchor. Concatenating anchors yields a more
compact dictionary (e.g., one can refer to all substrings of
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each anchor, by the appropriate offset and length), yet
references the dictionary from the compressed document
require three bytes for 64 KB dictionary with anchors of
up to 256 bytes. femtoZip is not applicable to our setting
as, on one hand, it does not provide fast compression
after the dictionary is built (needed for our datapath),
and, even more importantly, holding the dictionary as a
concatenation of anchors rules out efficient encoding of
the anchors. As we will show later, Huffman encoding of
the anchors achieves significant improvement in the com-
pression ratio, as, on average, each anchor requires less
than three bytes (this is due to the fact that there are many
frequent anchors whose short encoding reduce the overall
size significantly). Nevertheless, we use components of
femtoZip as one of the alternatives for a heavy hitters
algorithm (to extract frequent substrings), as described in
Section IV-A.

III. THE DATAPATH AND DATA STRUCTURES

In this section, we explain the different steps taken
to resolve the category of an input URL. Essentially, it
include a compression stage, and then a database query
with the URL in a compressed-form as a key. Notice
that this process is done online, and it assumes that
the database and auxiliary data structures are given (see
Figure 1). We will explain how to obtain the database
and construct the data structures in Section IV. Moreover,
in case that either a trie-based database is used or a
longest-prefix matching is required, we first break the
URL into components (by “.” and “/” delimiters) and
then compress each component separately. First, given the
input URL, we extract the anchors which are contained in
that URL. This is done by applying a pattern matching
algorithm on the URL, where the set of patterns is the set
of anchors. In this work, we chose to use the Aho-Corasick
algorithm [3], which is based on traversing a Deterministic
Finite Automaton (DFA) representing the set of anchors.
Thus, the dictionary is stored as a DFA, whose accepting
states represent anchors. We note that it is useful to store
additional information about each anchor in the DFA,
namely the length of the corresponding Huffman code and
a pointer to the Huffman code itself. Compressing the size
of the DFA for pattern matching algorithm was the subject
of an extensive research recently; in this work, we use the
most compressed form as presented in [5].

We notice that at each byte traversal of the DFA, the
DFA state represents the set of anchors which are suffixes
of the URL up until the scanned byte. We will need
to decide deterministically which of the anchors in this
set should be used indeed for compression (recall the
example in Section I where the URL google.com can
be compressed into two different forms by different choice
of anchors). As we aim to minimize the total length of
the compressed URL, we are using the following greedy

approach, which traverses the DFA one byte at a time, and
(conditionally) pick the anchor that minimize the length
of the scanned prefix.

Specifically, for each anchor or literal a, let `(a) be its
length in bytes and p(a) be its Huffman code length. Let
ui be the i-th byte of the URL, and let Si be the set of
anchors which are suffixes of the prefix of the URL up
until ui (as represented by the DFA state after scanning
ui).

The deterministic selection rule works iteratively by
maintaining two vectors P and V , such that P [i] is the
minimum length for encoding the first i bytes of the URL,
and V [i] is the last anchor or literal that achieves encoding
length P [i]. Hence, for each byte i, we first calculate

V [i] = arg min
a∈Si∪{ui}

(P [i− `(a)] + p(a)) ,

and P [i] = P [i− `(ai)] + p(V [i]) (P [0] is always 0).
When completing the traversal of the entire URL, we

go backwards on the elements of V [i] and concatenate
them, skipping non-useful elements (namely, after adding
V [i], we add element V [i−`(V [i])], skipping all elements
in between). It is easy to verify by induction that this
selection results in an optimal-length encoding (given the
set of anchors and Huffman code), thus achieving the best
compression ratio.

Fig. 2 depicts a step-by-step example of compress-
ing the URL comrgnetwork.com in a component-by-
component manner. Note that, for example, in the 5th step,
the DFA finds a matching with anchor mrg; however the
value of P [5 − `(mrg)] + p(mrg) = P [2] + 3 = 14 is
larger than choosing the last literal g. When scanning the
arrays backwards, the anchors and the literals network,
g, r, and com are selected. The second component com is
compressed by running the first three steps of the above-
mentioned execution.

The final step is to use the compressed-form to
query the database. Since we require accurate results
(namely, no false positive and miss categorizations), the
database maintains also the compressed-form of the URL
and not only its category. Most current implementa-
tion uses a hash-table to maintain the database [37].
Thus, by comparing the lookup key with the stored key,
one avoids miss-categorization due to hash collisions.
Trie-based solutions and longest-prefix matching usu-
ally require a component-by-component compression and
lookup. Clearly, our framework readily supports such data-
structures and matching, albeit with smaller compression
ratio as some compression opportunities (e.g., anchors that
span more than one component) may be missed.

IV. THE OFFLINE PHASE: BUILDING THE DATABASE

As illustrated in Figure 1, the offline phase of our
framework, consists of three steps:
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com 00
org 11
net 010
mrg 101
network 0101
g 1001
o 01110
c 100011
m 100010
r 100001
n 100000
e 0111111
t 0111110
w 0111101
k 0111100

Huffman code table
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P[2] = 11 V[2] = o P[8] = 15 V[8] = net
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P[5] = 12 V[5] = g P[11]= 33 V[11]= r
P[6] = 18 V[6] = n P[12]= 16 V[12]= network

Determinsitic Anchors Selection Rule and Huffman Encoding

Fig. 2. Compressing the URL comrgnetwork.com in a component-
by-component manner. As shown in Fig. 1, the compression uses
a dictionary stored as a DFA and a corresponding Huffman code
table. The resulting compressed URL comprises of the anchors
com,r,g,network,com and is of length 18 bits (16 bits for the
first component whose code is 0010000110010101 and 2 bits for the
second component whose code is 00).

Step 1: Heavy hitters algorithm, in which we find a set of
k frequent substrings in the set of URLs database.

Step 2: Anchors selection, in which we pick, from the
frequent substrings, a final set of anchors. For each
anchor and literal, we also calculate the estimated
number of occurrences in the compressed URL
database

Step 3: Deterministic URL database compression and
Huffman code creation, in which we use the se-
lected anchors to replace substrings in each URL
separately. We also create an Huffman code using
the given frequencies of literals and anchors, which
we then use to encode each URL.

Next we elaborate on each step.

A. Heavy Hitters Algorithm

We compare between two off-the-shelf alternatives to
extract the most frequent substrings in the list of URLs.

The algorithm described in [1] is geared to find frequent
substrings of variable length. Specifically, it returns all the
substrings which have unique frequency larger than n/k,
where n is the number of URLs and k is a parameter that
aims to calibrate the number of frequent substrings we
need to find. The algorithm is approximated and the fre-
quency of each substring is only estimated (with an error
bound of 3n/k). Note that, in any case, this frequency is

not used later by our algorithm, as subsequent steps will
estimate the actual number of times each substring is used
for compression.

This algorithm works in time complexity of O(n · L),
where L is the average URL length, in O(k · `) space
complexity. The algorithm requires only one pass on the
URL database and its space requirement is proportional
to the number of heavy hitters. Yet, the results are only
approximated with small error in the estimated frequency
of the substrings and thus the algorithm might not find the
real k frequent substrings.

Moreover, we note that this algorithm avoids space
pollution and if a substring s is selected as a heavy
hitter then the algorithm would not count appearances of
a substring s′, such that s′ ⊆ s, when s′ is within s.
Nevertheless, appearances of s′ not within s are counted,
and if s′ appears frequently alone, it might be selected as
a heavy hitter together with s. See, for example, Fig. 3
that presents component-by-component compression of
URLs. The heavy-hitters algorithm with k = 5 picks the
substrings “network” and “net” as anchors, but not the
substring “netwo” that never appears by itself. Naturally,
when processing the entire URLs at once (see Fig. 4)
the heavy-hitters algorithm finds longer anchors such as
“network.com”.

The second alternative is to use the heavy-hitters algo-
rithm of femtoZip library. Unlike [1], this heavy-hitters
algorithm is accurate, and it works by essentially enumer-
ating all the possible substrings. Thus, it is significantly
more time and space intensive, with time complexity of
O(n · L · log(n · L)) and space complexity of O(n · L).

While we are less concern with the performance of
the components in the offline phase, it is still desirable
to reduce them as much as possible. In the experimental
section, we show that, in practice, the compression ratio
stays almost the same, whether we use the accurate or the
approximate algorithm.

B. Anchors Selection

As explained before, the fact that frequent substrings
intersect implies that a substring might not be used to com-
press sufficiently many URLs, even though it is frequent.
Yet, these substrings increase the size of the dictionary,
and therefore, should be eliminated.

Thus, in this step, we pick anchors out of the frequent
substrings. Specifically, we first estimate, for each frequent
substring, the database compression frequency—the num-
ber of times it will be used in the database compression
(which is smaller than the frequency attached to it by
the heavy hitter algorithm). Then, based on this estimated
frequency, we will approximate both the gain in selecting
the substring and the loss in terms of dictionary size,
so that each substring whose gain is larger than its loss
will be selected as an anchor. Finally, given the definitive
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network.com A
orgnet.org B
work.org C
gon.org/ctem D
comrgnetwork.com E
mrg.net/com F
mrg.com.net G

List of URLs with attached categories

com 5
net 5
org 4
mrg 3
network 2

Frequent substrings

com 5
org 4
net 3
mrg 3
network 2
g; o 2 each
c; m; r; n 1 each
e; t; w; k

Anchors with frequencies

Heavy Hitters
Algorithm

Anchors
Selection

Huffman
Code

Creation

List of
anchors

0101/00 A
11010/11 B
0111101011101000010111100/11 C
100101110100000/11/10001101111100111111100010 D
0010000110010101/00 E
101/010/00 F
101/00/010 G

Database (key=compressed URL; value=category)

Deterministic
URL Database
Compression

Fig. 3. An example of the offline phase of the algorithm, where compression is done in a component-by-component manner. In the compressed database, we
use “/” as a delimiter between components; this delimiter is either used within a trie-based data structure or should be encoded separately. The corresponding
auxiliary data structures used by the datapath (namely, the dictionary as a DFA and the Huffman code table) appear in Fig. 2.

selection of anchors, we adjust the frequency of both
anchors and literals.

1) Estimating the database compression frequency of a
substring: In order to calculate the estimated compression
frequency, we try to estimate the compression process, as
explained in Section III. Since, at this point, we cannot
know what will be the Huffman code of each anchor or
literal, we assume in this phase that the length of encoding
each literal and each anchor is the same and, without loss
of generality, is set to 1. This implies that the length of a
compressed URL is estimated by the sum of the number
of anchors in the compressed URL and the number of the
remaining literals (e.g., in the example given in Section I,
the estimated length of §1gle§2 is 5 and the estimated
length of go§3§2 is 4).

As explained in I, a single URL compression involves
a deterministic selection rule of specific anchors out of a
larger set of anchors. In this step, we apply the same rule
to select anchors out of the set of frequent strings, which
implies we build a temporary DFA for all frequent sub-
strings, set p(a) = 1 for each literal and anchor a, and run
the greedy algorithm of Section III, one URL at the time,
for all URLs in the list. Each time a frequent substring is
selected as an anchor when compressing a single URL, we
increase the substring’s database compression frequency
by 1. In the end of the process, we will have an estimation
of the database compression frequencies of each substring.
Notice that this is just an estimation, since not all sub-
strings (with a frequency of at least 1) will be selected
as anchors, implying the deterministic selection rule in
Step 3 might yield different results. In addition, another
difference in selection might be as a results of variable
length encoding (with Huffman code) in Step 3; see Fig. 3

that also illustrates the new calculated frequency, where
the frequency of the substring “net” is reduced as in two
of its appearances the substring “network” was selected.
A sketch of the DFA representing the DFA appears in
Fig. 2, where some of the edges are omitted for clarity;
accepting states are marked with double circles.

2) Selecting anchors out of frequent substrings: We
note that while replacing a parts of a URL by anchors
reduces the URL size, it comes with a price: each anchor
increases the size of the dictionary’s DFA and, in addition,
the anchor’s encoding needed to be tracked, implying even
further memory footprint. Therefore, we need to avoid
picking up substrings that are not used sufficiently many
times.

Let A be the set of all frequent substrings, let Σ be
the set of all literals, and let f(a) be the number of times
substring a ∈ A ∪ Σ was used in the previous step. If an
anchor a ∈ A is selected, for each of these f(a) times, we
save `(a)− huffman(a) bytes, where `(a) is the length of
a in bytes and huffman(a) is the length of the Huffman
code of a. Since we cannot calculate the Huffman code of
a yet, we estimate it by anchor a’s information content:

h(a) =
1

8
log2

∑
a∈A∪Σ f(a)

f(a)
.

Note that Huffman code strives to encode each anchor
a with h(a) bits. Thus, the total gain of selecting a is
f(a) (`(a)− h(a)).

On the other hand, inserting a to the data structures,
requires adding states to the DFA and storing its Huffman
code. As explained before, we estimate the Huffman code
cost by h(a). As described in [5], the footprint of the DFA
in its compressed form, is approximately Cstate = 4 bytes
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per state. Notice that two anchors that share a common
prefix, share also common states in the DFA. Hence, we
use the following procedure to decide whether a substring
is selected as an anchor. We first have an empty DFA,
and sort the substrings in descending order of their gain.
For each frequent substring a ∈ A in turn, we calculate
the number of states states(a) it requires (on top of the
existing DFA) and h(a). If f(a) (`(a)− h(a)) ≥ Cstate ·
states(a) + h(a), we select a as an anchor, update the
DFA, and continue to the next substring. Otherwise, we
leave the DFA unchanged and skip substring a. In the end
of the process, we will have the set of all anchors and the
corresponding DFA, that is used in the datapath.

3) Re-estimating the frequency of anchors and literals:
Since only a subset of the frequent strings was selected
as anchors, the frequency of anchors and literals can be
changed significantly. Thus, we ran the greedy algorithm
of Section III, using the DFA that was created in Sec-
tion IV-B2 and with p(a) = h(a) for each literal and
each anchor a. This will result in an updated frequency
estimation of each anchor and literal.

C. Deterministic URL database compression and Huff-
man code creation

Now that we have the anchors and their estimated
frequency, as well as the estimated frequency of all
literals, we construct the Huffman codes in a standard
way, treating all anchors and literals as symbols (and, thus,
ignoring their original size). The result is stored in the
Huffman code data structure (namely, a table with entry
for each literal and anchor, where the entries of anchors
are pointed out by the corresponding DFA state). We then
run once again the algorithm of Section III with the correct
p(a) value for each anchor and literal a. This will results
in compressing each URL separately. Each compressed
URL will be then inserted into the database along with its
category; see Fig. 3.

D. Hot-updates Support

In order to insert a new URL, we first obtain its com-
pressed form by going over all the steps of the datapath.
Then, instead of querying the database, we perform an
insert operation with the compressed-form URL as a
key and the category as a value. Similar operation should
be done in order to update a category of a URL.

Periodically, the algorithm can rebuild the database
from scratch, as the frequency of substrings might change
over time, resulting in suboptimal encoding.

V. EXPERIMENTAL RESULTS

We have used an open-source database of URLs avail-
able in URLBlackList.com [28]. This daily-generated
list consists of 2, 200, 000 unique domain names and 95
different categories. We note that than 800, 000 URLs have
also paths and not just domain names.

Compression Method Compression
Ratio

femtoZip 0.57
Huffman encoding only 0.59
Our Framework (accurate heavy hitter ) 0.43
Our Framework (approximate heavy hitter ) 0.44

TABLE I
COMPARISON BETWEEN THE COMPRESSION RATIOS OF DIFFERENT

METHODS FOR MODERATE SIZE DATABASE OF 128,000 DOMAIN
NAMES AND 128,000 URL COMPONENTS. THE SIZE OF THE

DATABASE IN AN UNCOMPRESSED FORM IS 57.2 MB, WHILE OUR
FRAMEWORK COMPRESSES THE DATABASE UP TO 24.3 MB.
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Fig. 5. The effect of the number of anchors used on the compression
ratio. 50 anchors achieve 52% compression ratio for entire URLs,
and 49% compression ratio where the URL is compressed component-
by-component. With 16K anchors, the compression ratio improves to
40.77% and 43.8%, respectively.

The focus of this paper is the memory footprint of
our framework (namely, the size of the database in its
compressed-form and the size of the auxiliary data struc-
tures). This is captured by the compression ratio, which
is the ratio between its memory footprint and the size
of the database with uncompressed URLs. Notice that
smaller compression ratio is better. More specifically, we
have calculated our memory footprint by summing up the
size of the dictionary (represented as DFA), the size of
the Huffman code table, and the length of each URL
in the database in its compressed form. We compare
this footprint with the total length of all URLs in their
uncompressed form.

We note that the memory footprint of the auxiliary data
structures is only 0.1% − 3.3% of the overall memory
footprint (the exact percentage depends on the number
of anchors used). In practice, padding and fragmentation
issues may increase this memory footprint significantly.
Therefore, we have designed and implemented tailored-
made memory allocator that reduces the overhead to 30%,
implying that, in practice, at most 4.2% of the memory
footprint is used for the auxiliary data structures.
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network.com A
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Heavy Hitters
Algorithm

Anchors
Selection

Deterministic
URL Database
Compression

Anchors with frequenciesFrequent substrings
List of URLs with attached categories

Fig. 4. An example of the offline phase of the algorithm, where compression is done in on the entire URL at once. In this example, the heavy hitter algorithm
is configured with k = 9 and we consider only the domain part of the URLs. We note that anchors that are left with one appearance are not selected, and
some literals always appear as part of one of the anchors.

A. Comparison with other lossless compression methods

Table I shows the compression ratio for several com-
pression methods. We note that as we need to maintain
low matching latency, we must compress each URL
separately. Thus, methods that use backward-references
(namely, applying either zip [22], bzip2 [24], or lzw [34],
[40], on each URL separately) are not useful in this case
(and in fact, even increase the size of it due to overhead
of information they store for compression). As expected,
femtoZip [10], which aims in compressing short strings,
achieves reasonable compression ratio when the number
of URLs is sufficiently large. Yet, it lacks an efficient
datapath (namely, after the database compression, only
decompression of URL is easy, while compression of new
URLs using the same dictionary is difficult). Encoding the
literals of the URLs with Huffman codes also reduces the
memory footprint by approximately the same factor. Nev-
ertheless, our framework outperforms all other methods.
There are negligible difference between the performance
of our framework with accurate or approximate heavy
hitter algorithm.

B. The throughput of the datapath compression

We have implemented our datapath in C and used Intel
Xeon E5-2690V3 CPU, whose processor speed is 2.6 GHz
with 16 GB memory (per core), L2 cache of 256 KB (per
core), and L3 cache of 30 MB. The system runs Ubuntu
14.04.2 LTS.

Each performance number was measured by applying
the datapath compression 20 times on 10 randomly-
selected sets of 10,000 URLs (namely, 200 runs per
performance number, each representing compression of
10,000 URLs in a batch). All our experiments ran only
on a single core. We did not measure the data-base
lookup as this is orthogonal to our framework and can
be implemented as a successive pipeline stage.

Fig. 6 shows the throughput (per core) of the datapath
as a function of the number of anchors. The performance
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Fig. 6. The throughput of the URL compression stage in the datapath.

of the datapath depends both on the size of the auxiliary
data structure and on the number of anchors (per URL)
used for compression. As the number of anchors increases,
longer anchors are added to the dictionary, implying the
average number of anchors per URL decreases. However,
larger number of anchors implies larger data structures that
might not fit entirely in cache, thus causing performance
degradation. In any case, the throughput is between 320
Mb/s to 100 Mb/s.

VI. CONCLUSIONS

This paper introduces a framework to significantly
reduce the memory footprint of URL-based databases
and forwarding tables, while maintaining the accuracy
of the lookup processing (namely, no false positives or
miscategorizations) and incurring only a small overhead
in time. The framework also allows hot updates of the
database and a longest prefix matchings.

We note that a common deployment of URL-matching–
enabled devices is to store the rich database in a cloud
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and store locally (in a cache) recently-matched URLs.
Upon a cache-miss, the networking device will query the
database in the cloud for the correct category of a URL.
Our framework can be deployed in both locations. In this
setting, the databases will be stored in a compressed form
in the cloud, and upon a cache-miss, the networking device
will compress the input URL and use the compressed form
to query the database. This implies that all traffic between
the networking device, its cache (if applicable), the cloud,
and intra-cloud communication is done with the com-
pressed URL, whose size is only approximately 40% of
the uncompressed one. Naturally, the latency of the URL
matching processes is dominated by the latency between
the security tool and the cloud (the processing overhead
is negligible). This implies that it may be beneficial to
store in the cache also compressed URLs, increasing their
number by a factor of 2.5.
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