
Capturing Resource Tradeoffs in Fair
Multi-Resource Allocation

Abstract— Cloud computing platforms provide computational
resources (CPU, storage, etc.) for running users’ applications.
Often, the same application can be implemented in various ways,
each with different resource requirements. Taking advantage
of this flexibility when allocating resources to users can both
greatly benefit users and lead to much better global resource
utilization. We develop a framework for fair resource allocation
that captures such implementation tradeoffs by allowing users to
submit multiple “resource demands”. We present and analyze two
mechanisms for fairly allocating resources in such environments:
the Lexicographically-Max-Min-Fair (LMMF) mechanism and
the Nash-Bargaining (NB) mechanism. We prove that NB has
many desirable properties, including Pareto optimality and envy
freeness, in a broad variety of environments whereas the seem-
ingly less appealing LMMF fares better, and is even immune to
manipulations, in restricted settings of interest.

I. INTRODUCTION

How to fairly allocate resources to multiple interested
parties is an age-old challenge and a prominent research area
in game theory, economics, and computer science. Of special
interest, from a networking perspective, is the allocation of
computational resources (e.g., CPU, memory, storage, band-
width, etc.) in cloud computing platforms. Indeed, recently
there has been a surge on interest in schemes for fairly
allocating multiple resources motivated by the allocation of
“bundles” of heterogeneous resources in datacenters (see,
e.g., [1], [2] and references therein).

Our focus here is on a yet unexplored aspect of resource
allocation in large-scale computational environments, e.g.,
cloud computing platforms. Often, the same computational
task can be implemented in several different ways, each
with different resource requirements. Consider, e.g., the well-
studied tradeoffs in task execution between the amount of CPU
and the amount of memory allotted to executing a task [3].
We argue that this flexibility can be of great importance
from a fair multi-resource allocation perspective, both from
the individual user’s perspective and from a global resource
utilization perspective.

To see this, consider even the simple toy example in which
a single user needs to run two identical tasks on the cloud and
no other users are competing over the cloud’s resources. To
execute each of the two tasks, the user needs either a large
quantity of CPU and little memory, or a large quantity of
memory and little CPU. Specifically, to run a task the user
needs either a (1 − ε)-fraction of the cloud’s CPU and an ε-
fraction of the memory or an ε-fraction of the CPU a (1−ε)-
fraction of the memory. Now, if the user is limited by the
cloud tenant-provider interface to only specifying a single

resource requirement (as in, e.g., [1]), and chooses to report,
say the much-CPU-little-memory requirement, he cannot hope
to be able to complete more than a single task (unless the
cloud provider’s allocation mechanism hurls a huge amount
of unrequested memory at the user...). Contrast this with the
scenario that the user can specify multiple resource demands
corresponding to different task implementations. Now, the
user can specify both possible resource-requirements and
consequently complete both tasks, as both requirements can
be fulfilled concurrently.

This toy example illustrates how exploiting the flexibility
afforded by the ability to run different realizations of the same
task can lead to a higher utility for the user and better global
utilization of resources. These effects can be greatly amplified
when there are multiple users with many diverse tasks to run.
Exploiting resource-tradeoffs in task implementaion to better
user experience and resource utilization is yet another potential
gain from rendering datacenters more predictable by extending
the tenant-provider interface (see, for instance, [4]).

We formally model cloud computing (and, more generally,
multi-resource) environments with resource-tradeoffs. Intu-
itively, each user is allowed to specify multiple resource-
requirements (corresponding to the requirements of different
task implementations) and the utility a user derives from the
resources allocated to him is the maximum number of tasks
he can complete with these resources. We propose and study
two different mechanisms for fairly allocating resources: the
Nash Bargaining (NB) mechanism and the Lexicographically
Max-Min Fair (LMMF) mechanism.

We analyze both mechanisms from three main angles:
• Computational efficiency. Does the mechanism run in

time that is polynomial in the natural parameters, such as
the number of users, resources, etc.?

• Fairness. Does the mechanism fairly allocate resources
to users? We consider several well-studied notions of
fairness: Pareto optimality, envy-freeness, and max-min
fairness.

• Incentive compatibility. Are users incentivized to report
their true resource requirements to the mechanism, or can
a user gain from “lying”?

We analyze NB and LMMF in two opposite environments:
(1) when no restrictions whatsoever are imposed on users’
resource demands; and (2) when resource-tradeoffs are linear,
i.e., when the total amount of resources needed to execute
a task is constant, but different combinations of resources
are possible (as in the above toy example). We present both
positive and negative results for many different desiderata

(including computational efficiency, Pareto optimality, envy
freeness, sharing incentive, strategyproofness, and more). Our
results establish that while NB provides significant benefits in
general, LMMF is more appealing when resource-tradeoffs are
linear. We view our contributions as the first step in the explo-
ration of how resource-tradeoffs can be leveraged to improve
cloud computing platforms. Analyzing other mechanisms and
exploring other restrictions on resource-tradeoffs are left as
two important directions for future research.

II. MODEL AND DESIDERATA

A. Model

Users, resources, and resource-demands. A cloud computing
environment provides a pool of k computational resources,
R = {1, . . . , k}. Let Cr denote the available quantity of
resource r. A set N = {1, ..., n} of users shares the cloud’s
resource pool. Each user j ∈ N has a task to perform
that can be implemented in Mj different ways. The resource
requirements for j’s task are thus captured by a set of Mj

resource-demands Dj = {dj1, ..., djMj}, where each element
in Dj is a k-dimensional demand vector djm that specifies
the quantity of each of the k resource required for the m’th
implementation of the task. E.g., if the set of resources consists
of CPU and memory only, an implementation that requires 1
unit of CPU and 3 units of memory is represented by the
demand vector (1,3).

Utility functions. Each user j has a utility function (or utility,
in short) uj such that, for every vector of resource quantities
X = (X1, . . . , Xk), uj(X) specifies the utility user j derives
from being allocated these quantities. Our focus here is on the
natural “maximum packing” utility function, which captures
the number of tasks the user can execute with its allocated
resources. Before formally presenting this utility function,
consider the example in Figure 1). User 1 has demands D1 =
{(1, 2, 1), (0, 1, 3), (2, 0, 2)}. Suppose that 1 is allocated the
vector of resource quantities X = (13, 11, 10). Then, user 1’s
utility is 8.5 as this is the maximum amount of tasks user 1 can
complete with these resource quantities, computed as follows:
5 × (1, 2, 1) + 1 × (0, 1, 3) + 2.5 × (2, 0, 2) ≤ (13, 11, 10).
To put this formally, if user j is allocated resources X =
(X1, ..., Xk), uj(X) is the solution to the following linear
program:

uj(X) = max
Mj∑
m=1

αm (1)

subject to
Mj∑
m=1

αmdjm ≤ X

αm ≥ 0 ∀m ∈ [Mj]

Mechanisms. The cloud allocates resources to the users by
receiving as input users’ resource-demands and then running
some resource-allocation mechanism to compute the quantity
of each resource allocated to each user. All computed alloca-
tions must be feasible, in the sense that the overall quantities

Fig. 1. Consider a resouce pool of (13, 11, 10) and a user with three demand
vectors d11 = (1, 2, 1), d12 = (0, 1, 3), and d13 = (2, 0, 2). The optimal
“packing” of the user’s demands in this resource pool is 5× (1, 2, 1) + 1×
(0, 1, 3) + 2.5 × (2, 0, 2) ≤ (13, 11, 10), thus yielding a utility of 8.5, as
described above.

of resources allocated cannot exceed the total amount of
resources in the cloud’s resource pool. Thus, a mechanism
takes as input Dj = {dj1, ..., djMj

} from each user j and
allocates, to each user j, a vector of resource quantities
Xj = (Xj1, . . . , Xjk) such that for every resource r ∈ [k],∑
j∈N Xjr ≤ Cr.

B. Desiderata

We are interested in mechanisms that are (1)
computationally-efficient; (2) fair; and (3) incentive
compatible. While computational efficiency simply means
that the mechanism must run in time that is polynomial in
the input parameters—the number of resources k, the number
of users n, and the size of each user j’s set of resource
demands Dj—fairness and incentive compatibility require
further explanation.

Fairness. We present below three well-studied notions of
fairness from economic theory:

• Pareto-Optimality (PO): A mechanism is PO if the
allocation it outputs is such that in no other allocation
does some user have strictly higher utility unless some
other user has strictly lower utility, i.e., if the mechanism
returns allocation Y = (Y1, . . . , Yn) then in any feasible
allocation X = (X1, . . . , Xn), if ui(Xi) > ui(Yi) for
some user i ∈ N then uj(Xj) < uj(Yj) for some other
user j ∈ N .

• Envy-Freeness (EF): A mechanism is EF if it returns
allocation Y = (Y1, . . . , Yn) such that no user strictly
prefers another user’s assigned resources to its own, i.e.,
for every pair of users i, j ∈ N , ui(Yi) ≥ ui(Yj).

• Max-Min Fairness (MMF): A mechanism is MMF if
it maximizes the utility of the “least happy” user, i.e., it

outputs the allocation Y = (Y1, . . . , Yn) for which the
value mini∈N ui(Yi) is maximized.

We next present the notion of strategy-proofness, a well-
studied notion of incentive compatibility. Some of our posi-
tive results actually apply for the stronger notion of group-
strategyproofness (see, e.g., [5]).

Strategyproofness (SP): A mechanism is SP if no user can
benefit by misreporting his resource-demands regardless of
other users’ reports, i.e., for each user i ∈ N , and for every
possible report of resource-demands Dj by every user j 6= i,
if Yi is the set of resources allocated to i when i reports
his true resource demands Di, ui(Yi) ≥ ui(X) for every set
of resources X that i can be allocated by reporting different
resource-demands.

We will also consider two other desiderata:
• Non-Wasteful: A mechanism is non wasteful if all re-

sources that are allocated to the users are consumed, i.e.,
a non-wasteful mechanism always outputs an allocation
Y = (Y1, ..., Yn) such that for each user i ∈ N
there are non negative α1, α2, ..., αMj

such that Yj =∑Mj

m=1 αmdjm (that is, Yj is a linear combination of
demand vectors in Dj).

• Sharing-Incentive (SI): A mechanism is SI if each user
(weakly) prefers the mechanism’s allocation to getting a
fraction of 1

n of each of the resources (his arguably “fair
share”), i.e., for every user j ∈ N , uj(Yj) ≥ uj(1n , ...,

1
n),

where Yj specifies the resource quantities assigned to user
j in the mechanism’s outputted allocation.

III. TWO MECHANISMS

We now describe two mechanisms for fairly allocating re-
sources: the Lexicographically Max-Min Fair (LMMF) mech-
anism and the Nash Bargaining (NB) mechanism.

A. The LMMF mechanism

We first present the Max-Min fair (MMF) mechanism,
which allocates resources so as to maximize the utility of the
“poorest” user (i.e., the user who can complete the lowest
number of tasks). To illustrate this, consider the following
examples:

Example 1. A resource pool of C = (6, 6, 6) and two
users with demands D1 = {(2, 0, 1), (0, 3, 0)} and D2 =
{(2, 3, 0), (0, 0, 2)}.

Example 2. A resource pool of C = (1, 1, 1) and two user
with single demand vector each, D1 = {(1, 0, 0)} and D2 =
{(0, 1, 1)}.

In the scenario described in Example 1, MMF returns the
allocation Y1 = (4, 3, 2) and Y2 = (2, 3, 4). Observe that the
utility of both users is then 3 (user 1 can "pack" 1×(2, 0, 1)+
2× (0, 3, 0) in his allocated bundle of resources, whereas user
2 can pack 1× (2, 3, 0) + 2× (0, 0, 2)). See Figure 2.

However, MMF is suboptimal in the sense that in some
scenarios available resources that can benefit the users might
not be allocated. Consider Example 2. MMF might output the

Fig. 2. Max-min fair allocation in Example 1. User 1 get utility of 3 as it can
complete 3 tasks as follows: 1×(2, 0, 1)+2×(0, 3, 0). User 2 get utility of 3
as well as it can also complete 3 tasks as follows: 1×(2, 3, 0)+2×(0, 0, 2).

Fig. 3. Example 2. On the right-hand side is a MMF allocation. On the
left-hand side is a LMMF allocation.

allocation Y1 = (1, 0, 0) and Y2 = (0, 12 ,
1
2). Observe that

that this allocation is not Pareto optimal, in the sense that
doubling user 2’s resources will increase his utility without
harming user 1. This is where lexicographic max-min fairness
(LMMF) comes in.

To overcome the suboptimality of MMF, LMMF also max-
imizes the utility of the “poorest” user but, amongst all such
allocations, selects the one that maximizes the utility of the
second poorest user, and so on. In Example 1, LMMF returns
the exact same allocation as MMF. However, in Example 2,
LMMF outputs the allocation Y1 = (1, 0, 0) and Y2 = (0, 1, 1),
which is indeed Pareto optimal. See Figure 3.

We are now ready to formally define MMF and LMMF.

The Max-Min Fair (MMF) mechanism. Given a resource
pool C = (C1, . . . , Ck) and users’ resource demands, MMF
finds a feasible allocation Y = (Y1, ..., Yn),

Maximize t (2)
Subject to uj(Yj) ≥ t ∀j ∈ N

The Lexicographically Max-Min Fair (LMMF) mecha-
nism. To formally present the LMMF mechanism we require
the following terminology and notation. For a given allocation
Y = (Y1, . . . , Yn), let 〈Y 〉 denote the vector that contains the
n elements in {u1(Y1), . . . , un(Yn)} sorted in non-decreasing
order, i.e., v1 ≤ v2 ≤ . . . ≤ vn. An allocation Y is
lexicographically greater than another allocation Y ′, denoted

by 〈Y 〉 � 〈Y ′〉, if the first non zero component of (〈Y 〉−〈Y ′〉)
is positive. An allocation vector Y is lexicographically no less
than Y ′, denoted by 〈Y 〉 � 〈Y ′〉, if (〈Y 〉 − 〈Y ′〉) = 0, or the
first non-zero component of (〈Y 〉 − 〈Y ′〉) is positive. We are
now ready to define lexicographic max-min fairness.

Definition 1. An allocation Y is lexicographically max-min
fair if 〈Y 〉 � 〈Y ′〉 for every feasible allocation Y ′.

The LMMF mechanism outputs, for every input sets of
resource-demands, a lexicographically max-min allocation. We
now explain how this computation is executed. We prove
that the computation indeed terminates in polynomial time
and outputs a lexicographically max-min fair allocation in
Section IV.

LMMF proceeds in iterations:

Iteration 1: LMMF solves a linear program to compute the
maximum value a1 such that in some feasible allocation Y =
(Y1, . . . , Yn) the utility of each and every user is exactly a1.1

LMMF then checks, for every user, whether his utility in Y
cannot be increased without decreasing the utility of other
users. All such users are placed in the set p1.

Iteration 2: LMMF solves a linear program to compute the
maximum value a2 such that in some feasible allocation Y =
(Y1, . . . , Yn) the utility of each user in p1 is exactly a1 and
the utility of all other users is exactly a2. LMMF then checks,
for every user not in p1, whether his utility in Y cannot be
increased without decreasing the utility of users in p1. All such
users are placed in the set p2.

Iteration t=3,4,. . . : Similarly, LMMF solves a linear program
to compute the maximum value at such that in some feasible
allocation Y = (Y1, . . . , Yn) the utility of each user in pi for
all i < t is exactly ai and the utility of all other users is
exactly at. LMMF then checks, for every user not in pi for
i < t, whether his utility in Y cannot be increased without
decreasing the utility of users in pi for i < t. All such users
are placed in the set pt.

This continues until all users are placed in some pt set, at
which point LMMF outputs the allocation Y computed at the
last iteration.

To see how LMMF works in a concrete scenario, con-
sider resource pool C = (1, 1, 1, 1) and three users with
demands D1 = {(12 ,

1
2 , 0, 0)}, D2 = {(0, 12 ,

1
2 , 0)}, and

D3 = {(12 , 0,
1
2 , 0), (0, 0, 0, 1)}. At the first iteration, LMMF

solves a linear program to compute a1 = 1, as all users
can achieve utility of 1, e.g., in the feasible allocation Y =
((12 ,

1
2 , 0, 0), (0,

1
2 ,

1
2 , 0), (0, 0, 0, 1)) where users 1 and 2 are

each allocated precisely their demand vectors and user 3 is
allocated his second demand vector. As users 1 and 2 cannot
attain utility higher than 1 in Y (as the second resource
is fully utilized) LMMF creates the set p1 = {1, 2}. In
the next iteration, LMMF solves another linear program to
compute a2 = 2. Indeed, consider the allocation resulting from

1We point out that this can indeed be formulated as a linear program (for
the interest of brevity, the formulation is deferred to the full paper.)

allocating users 1 and 2 the exact same resources as in Y and
adding (12 , 0,

1
2 , 0) to 3’s allocated resources in Y . Observe

that again users 1 and 2 have a utility of 1, but now user 3’s
utility is 2 (=a2). User 3 is now placed in the set p2. As all
users are now placed in either p1 or p2, LMMF terminates and
outputs this allocation.

B. Nash Bargaining Mechanism

Consider a scenario in which each user initially has an
“endowment” of a 1

n ’th fraction of each resource. Suppose that
there are only two resources, each of quantity 1, and two users,
1 and 2, with demands D1 = {(1, 0)} and D2 = {(0, 1)}.
Clearly, the users’ initial endowments of (12 ,

1
2) are not Pareto

optimal, in the sense that both users are better off if the entire
first resource is allocated to user 1 and the entire second
resource is allocated to user 2. Much research in game theory
and economics studies how different strategic agents should
cooperate when non-cooperation leads to Pareto suboptimal
results. The Nash Bargaining (NB) mechanism implements
one solution to this problem, given by John Nash [6].

Intuitively, NB allocates resources so as to maximize the
product of all users’ utilities. Consider, for instance, a re-
source pool of (8, 8) and two users with demands D1 =
{(5, 1), (2, 2)} and D2 = {(1, 4), (2, 2)}. The allocation that
maximizes the product of utilities is allocating (4, 4) to each
user, as in this scenario each user has a utility of 2 (as two tasks
can be executed by each user) and the product gives 2 · 2 = 4
(and it can be verified that no other allocation leads to a higher
value). Formally, NB outputs the allocation Y = (Y1, ..., Yn)
such that

max
∏
j∈N

uj(Yj) (3)∑
j∈N

Yj ≤ C (4)

OK where C = (C1, . . . , Cn).

IV. RESULTS FOR UNRESTRICTED DEMANDS

We now explore the guarantees of the two mechanisms
presented in Section III for general resource demands, i.e.,
when no restrictions whatsoever are imposed on users’ re-
source demands. We consider the three main criteria presented
in Section II: computational efficiency, fairness, and incentive
compatibility. We then discuss the other desiderata presented
in Section II: non-wastefulness and sharing incentive. The
following table summarizes our results for general demands.

CE EF SI PO LMMF SP
LMMF X X X
NB X X X X

(CE = computationally efficient, EF = envy free, SI = shar-
ing incentive, PO = Pareto optimal, LMMF = lexicographically
max-min fair, SP = strategyproof)

A. Computational Efficiency
LMMF. Simple arguments (omitted) show that LMMF (which
repeatedly solves linear programs) is computationally efficient

Proposition 1. LMMF is computationally efficient

NB. Recall that NB computes the allocation that maximizes
the product of user’s utilities. We show (proof omitted) that
this can be formulated as convex optimization and is thus
computationally efficient.

Proposition 2. NB is computationally efficient

B. Fairness
LMMF. We first analyze the fairness properties of LMMF.

The first step is proving that LMMF indeed computes a
lexicographically max-min fair allocation. This follows from a
combination of several lemmas. We then observe that LMMF
is Pareto optimal and prove that it is not, however, envy free.

The nontrivial proof that the LMMF mechanism, as defined
in Section III, indeed computes a lexicographically max-min
fair allocation, follows from a combination of lemmas.

Claim 1. For any two feasible allocations Y, Y ′ and γ ∈
[0, 1], theallocation=(γYj + (1− γ)Y ′j) is feasible.

We prove that each user’s utility function is concave (omit-
ted).

Lemma 1. For every j ∈ N , two resource vectors X and X ′,
and γ ∈ [0, 1], uj(γYj+(1−γ)Y ′j) ≥ γuj(X)+(1−γ)uj(X ′).

Lemma 2. For every j ∈ N and two resource vectors X and
X ′, the function fj(γ) = uj(γX + (1− γ)X ′) is continuous
for all γ ∈ [0, 1].

We now introduce the notion of a “pivot user”.

Definition 2. Given two allocation Y and Y ′, a pivot user of
allocation Y with respect to Y ′ is the user with the lowest
utility in Y that has different utility in Y ′.

To illustrate that consider two allocations of resources to
4 users, Y and Y ′ such that 〈Y 〉 = 〈1, 3, 5, 7〉 and 〈Y ′〉 =
〈1, 3, 6, 9〉. Suppose that in 〈Y 〉 coordinates 1-4 correspond
to the utilities of users 1-4, respectively, whereas in 〈Y 〉
coordinate 1-4 correspond to users 1, 2, 4, and 3, respectively.
Observe that in this scenario, the pivot of Y with respect to
Y ′ is user 3, whereas the pivot of Y ′ with respect to Y is user
4. In fact, there can be more than a single pivot user, e.g., if,
in the previous example, the value in the fourth coordinate of
〈Y 〉 was changed from 6 to 5, then both user 3 and user 4
would fit the definition of a pivot user of Y with respect to
Y ′. Let θ(Y, Y ′) denote the set of all pivot users of allocation
Y with respect to Y ′.

Claim 2. Let i ∈ θ(Y, Y ′) and j ∈ θ(Y ′, Y) be two pivot
users. Then, 〈Y ′〉 � 〈Y 〉 if and only if uj(Y ′j) > ui(Yi).

Lemma 3. For any two allocations Y, Y ′ and pivot user i ∈
θ(Y, Y ′), ui(Y ′i) > ui(Yi) if and only if there exists another
allocation Ŷ such that ui(Ŷi) > ui(Yi).

)Y(')Y(

q

q
u u

γ

fq(γ)=γY’q+(1- γ)Yq

fq(ε)

Fig. 4. Lemma 3 yields a sufficient condition to show that an allocation is
not LMMF. If a pivot user q ∈ θ(Y, Y ′) has a higher utility in Y ′ than in Y ,
then there exists another allocation Ŷ (as described by the vertical dashed line,
where the red square indicates the pivot in θ(Ŷ , Y) that is lexicographically
greater. This shows that Y is not LMMF.

In fact, the allocation Ŷ is a convex combination of Y and
Y ′ and it is very close (infinitesimally) to Y , i.e., Ŷ = (1 −
ε)Y + εY ′ for a very small ε > 0. To prove this we use
the concavity of the utility function and the continuity of the
function f(γ) in Lemma 2. (for intuition see Figure 4).

Combining Lemmas 2 and 3 gives the following:

Corollary 1. For any two allocations Y, Y ′ and pivot user
i ∈ θ(Y, Y ′), if ui(Y ′i) > ui(Yi), then Y is not LMMF.

We are now finally ready to prove the following statement.

Proposition 3. The LMMF mechanism is lexicographically
max-min fair.

Proof. Let Y be the allocation that the mechanism returns for
a given input and let Y ∗ be a LMMF allocation. First, note
that if by the end iteration t (see Section III) the mechanism
created sets p1, ..., pt (as described in Section III), and all users
in these sets have the same utility in both Y and Y ∗, then at
iteration t + 1 all users in N \ P , where P =

⋃
i∈[t] pi can

achieve the same minimal utility under Y and Y ∗ as the linear
program that LMMF solves at the (t+1)’th iteration. Hence,
in particular, the pivot in both allocations has the same utility.
Suppose, for point of contradiction, that Y is not LMMF,
and let t be the iteration at which the pivot q = θ(Y, Y ∗)
is added to P . Then, by definition of the pivot q, it must
be that uq(Y ∗) > uq(Y). Thus, by Lemma 3, there is an
allocation Ŷ = (1 − ε)Y ∗ + εY such that uq(Y) < uq(Ŷ).
However, this contradicts the fact that the linear program of
the LMMF mechanism maximizes the utility of all users in
N\P at iteration t.

We next show that LMMF is Pareto optimal (simple proof
omitted) but is not envy free.

Claim 3. LMMF is Pareto optimal.

Proposition 4. LMMF violates envy freeness.

Proof. Consider the following example:

Example 3. A resource pool of a single resource C = (1)
and two users, each with single demand vector: D1 = {(1)}
and D2 = {(0.5)}.

The allocation under LMMF is Y1 = 2
3 and Y2 = 1

3 as both
users get a utility of 2

3 . In this scenario, user 2 prefers the
allocation of user 1 over his own, and hence LMMF is not
EF.

NB. We now prove that NB is both envy free and Pareto
optimal.

Proposition 5. NB is envy free and Pareto optimal.

Proof. The Competitive Equilibrium from Equal Income
(CEEI) [7] in economic theory is the allocation reached in a
competitive market with multiple resources when each agent
starts with an “endowment” of 1

n of each resource and then
trades resources with the others. To prove the proposition we
show that the allocation of NB coincides with that of the
CEEI. To establish this, it suffices to show that the utility
function of each user j in our setting is homogeneous, in the
sense that γuj(X) = uj(γX) for every scalar γ and vector of
resources X = (X1, ..., Xk) (see [6], [7]). To see this recall
the definition of a utility function in our model

uj(γX) = max
Mj∑
m=1

αm (5)

Subject to
Mj∑
m=1

αmdjm ≤ γX (6)

αm ≥ 0 ∀m ∈ [Mj]

Constraints 6 can be rewritten as
M∑
m=1

αmdjm
γ ≤ X . Hence

we can define α′m , αm

γ and constraint (6) can be written as
M∑
m=1

α′mdjm ≤ X . Since max
M∑
m=1

αm = γmax
M∑
m=1

α′m we

get γuj(X) = uj(γX). Hence, the allocation outputted by
NB is equivalent to the outcome of CEEI. CEEI is known to
be PO and EF [8] and so the proof immediately follows.

We point out that NB can easily be seen to not be
lexicographically max-min fair. In fact, even if there is a
single resource, NB will always split that resource equally
disregarding how much it is worth to each user as the utility
function is homogeneous.

C. Incentive Compatibility

Proposition 6. LMMF is not strategy-proof.

Proof. Consider Example 3. User 2 benefits by reporting
D′2 = {(1)}, since then the resource is divided equally.

Proposition 7. NB is not strategy-proof.

Proof. Consider the following example:

Example 4. A resource pool of C = (1, 1) and two users
with single demand vector each" D1 = {(23 ,

1
3)} and D2 =

{(14 ,
3
4)}. NB outputs Y1 = (1215 ,

6
15), Y2 = (3

15 ,
9
15) and

the corresponding utilities are u1(Y1) = 1.2 and u2(Y2) =
0.8. If user 2 reports D′2 = {(13 ,

2
3)} then NB outputs

Y1 = (23 ,
1
3), Y2 = (23 ,

1
3) and the corresponding utilities

are u1(Y1) = 1 and u2(Y2) = 0.83 (note that since user
2 misreports, not all of his obtained resources are in use).
Hence, by misreporting, user 2 can improve his utility from
0.8 to 0.83.

D. Non-Wastefulness and Sharing Incentive

We show that both the LMMF mechanism and the NB
mechanism are non-wasteful (proofs deferred to the full ver-
sion of the paper).

Proposition 8. LMMF is non-wasteful.

Proposition 9. NB is non-wasteful.

We now turn our attention to sharing incentive.

Proposition 10. LMMF violates sharing-incentive.

Proof. Consider resource pool C = (1, 1, 1) and two users
with demands D1 = {(0, 1, 0)}, D2 = {(1, 0, 0), (0, 12 ,

1
2)}.

Then, the allocation under LMMF are given by Y1 =
(0, 1, 0), Yb = (1, 0, 0). Hence, u1(Y1) = 1. However, if 2
defects then he gains from the endowment E2 = (12 ,

1
2 ,

1
2) and

hence, u2(E2) =
3
2 . As u2(E2) > u2(Y2), the mechanism is

not sharing-incentive.

Proposition 11. NB satisfies sharing-incentive.

Proof. As shown in Lemma 5, the output of NB is equiva-
lent to CEEI. As CEEI satisfies sharing incentive, the proof
follows.

V. RESULTS FOR LINEAR TRADEOFFS

We showed, in Section IV, that, in general, the LMMF
mechanism satisfies neither envy free (EF) nor strategyproof-
ness (SP). However, we show now that if all the demand
vectors are in the simplex, that is, the sum of resources in
each demand vector is 1 (formally,

∑
r d

r
jm = 1 for each user

j ∈ N and demand djm ∈ Dj), then LMMF is, in fact, both
EF and SP. The following table summarizes our results for
LMMF and NB for “simplex demands”.

Properites CE EF SI PO LMMF SP GSP
LMMF X X X X X X
NB X X X X

The following lemma plays an important role in our proofs.

Lemma 4. Let D be a specification of all users’ resource-
demands and Y = (Y1, . . . , Yn) be the output of the LMMF
mechanism for D. Let D′ be a different specification of all
users’ resource-demands. Then, ui(Yi) ≥ u′i(Yi).

Proof. Since Yi is an output of a non-wasteful mechanism,
the “packing coefficients” of ui, i.e., α1, ..., αMi

, satisfy
Mi∑
m=1

αmdim = Yi, (7)

Since D′ is an arbitrary demand set, Yi is not necessarily
a combination of demand vector in D′i. Thus, the “packing
coefficients” of u′, i.e., α′1, ..., α

′
M ′

i
, satisfies,

M ′
i∑

m=1

α′md
′r
im ≤ Y

r
i , ∀r ∈ [k] (8)

Summing up over all k constraints of (7) and (8) gives,

∑
r∈[k]

M ′
i∑

m=1

α′md
′r
im ≤

∑
r∈[k]

Mi∑
m=1

αmd
r
im (9)

By changing the order of summation and using the fact that
the demands are over the simplex (i.e., the sum of element in
each demand equals 1), we get

Mi∑
m=1

α′m ≤
M ′

i∑
m=1

αm

Thus, ui(Yi) ≥ u′i(Yi).

We are now ready to prove SP.

Theorem 1. LMMF mechanism over simplex demands is
strategy proof.

Proof. Let i be a manipulative user and suppose by contra-
diction that i benefits by misreporting D′i instead of reporting
its real demand Di. Let D′ = (D′i, D−i) be the report of all
users under the manipulation of i, and let Y ′ be the resulting
allocation of LMMF. Let Y be the resulting allocation of
LMMF given that all users report their true demands. We first
show that if i benefits by lying then i ∈ θ(Y, Y ′); namely i
is a pivot user. Let q ∈ θ(Y, Y ′) and q′ ∈ θ(Y ′, Y) be pivot
users. Suppose by contradiction that uq(Yq) ≤ ui(Yi). We now
analyze three possibilities and show that under at each, there
exists an allocation that contradicts the property of LMMF
(see figure 5):

1) uq(Yq) < uq′(Y
′
q′). Then, followed by claim 2, 〈Y ′〉 �

〈Y 〉.
2) uq(Yq) = uq′(Y

′
q′). First note that it must be that q 6= q′.

as otherwise it contradict the fact that q and q′ are pivots.
We can also derive by the definitions of the pivots q and
q′ that uq(Y ′q) ≥ uq′(Yq′). Since uq(Yq) = uq′(Y

′
q′) we

get uq(Y ′q) ≥ uq(Yq). Followed by corollary 1, we get
a contradiction to LMMF.

3) uq(Yq) > uq′(Y
′
q′). To show a contradiction to LMMF,

we define a dual scenario where the demand set of the
users is D′ instead of D, i.e., i’s real demand is D′i
and the manipulation is Di. Thus, in this case Y ′ is the
truthful allocation (under D′). Let u′ be the dual utility
function, namely u′ is utility function over demand D′.

Since all users except for i report their true demands,
their utility under the same allocation over demand sets
D and D′ is the same. Formally, for each user j 6= i

u′j(Y
′
j) = uj(Y

′
j) and u′j(Yj) = uj(Yj) (10)

Thus, we get a ’mirror image’ of the utilities of the users,
except for i. If i did not exists then q′ ∈ θ′(Y ′, Y),
and we get u′q′(Yq′) > u′q′(Y

′
q′), which by corollary 1,

leads to a contradiction that Y ′ is not LMMF over D′.
Therefore, we need to show that q′ is indeed the pivot.
This is true as u′i(Y

′) > u′q′Y
′, which is derived by,

u′i(Y
′) ≥ ui(Y ′) > ui(Y) > uq(Y) > uq′(Y) = u′q′(Y

′)

where the left inequality is by lemma 4, the second left
inequality is by assumption of manipulator, the third left
inequality is by the case condition, the second right
inequality is because i is not a pivot, and the right
equality is by (10) (this can be pictures in case 3 of
figure 5).

Thus we get that the manipulative user has to be the pivot
(i..e, i ∈ θ(Y, Y ′)). By assumption of the manipulative user
ui(Y

′
i) > ui(Yi). But then, by corollary 1, Y is not LMMF.

Thus, if i benefits by misreporting its demand, then this leads
a contradiction to LMMF. Hence, LMMF mechanism over
simplex demands is SP.

We note here that we can strengthen theorem 1, showing
that LMMF under simplex demand is Group-Strategy-Proof
(GSP). This can be proved using very similar argument to
the proof of theorem 1, showing that if there exists some
manipulator user that improve its utility by misreporting, there
must exists another manipulator user that is worse off as it
misreports its demand vectors.

Theorem 2. LMMF is envy-free over simplex demands.

Proof. Let Y be an LMMF allocation. Suppose, by contra-
diction, that LMMF mechanism is not envy-free. This implies
that there is a pair of user i, j such that ui(Yj) > ui(Yi). We
now analyzed to complementary cases:

1) Suppose that ui(Yi) ≥ uj(Yj). Followed by lemma 4
we get uj(Yj) ≥ ui(Yj). Therefore, we have ui(Yi) ≥
ui(Yj). Contradiction to the assumption.

2) Suppose that ui(Yi) < uj(Yj). In this case we argue that
ui(Yj) = 0. Suppose by contradiction that ui(Yj) >
0. Let δ > 0 be a (small) constant to be determined
later. Suppose that user j transfers the vector δ · Yj to
user i. Then the utility of j is uj(Yj − δYj) and the
utility of user i becomes ui(Yi + δYj). Since the utility
function is continuous (lemma 2), for sufficiently small
δ > 0 it holds that uj(Yj − δYj) > ui(Yi). Since the
utility function is concave (lemma 1), it follows that
uj(δYj) ≥ δuj(Yj). Using the assumption that ui(Yj) >
0 it follows that ui(Yi+δYj) > ui(Yi). Thus, the vector
(ui(Yi + δYj), uj(Yj − δYj)) is lexicographically larger
than (ui(Yi), uj(Yj)). Let Y ′ be the allocation after the
transfer. Since all users except for i, j have the same

(Y) (Y’)

q
q'
q

(Y) (Y’)

q q’

q

Case 1 Case 2

(Y) (Y’)

q’

i

(Y’) (Y)

qq
q’

i
i

Demand set D Demand set D'

q’

Case 3

u u u' u'

u u u u

Fig. 5. Illustration of the proof of theorem 1 demonstrate the cases described
in the proof, where in each case there is a pivot user (q in cases 1 and 2, and
q′ in case 3) that has higher utility in the opposite allocation (showed by the
pruple dashed line) which result in the required contradiction. Note that case
3 the dual scenario is a mirror image of the original scenario (shown by the
green dashed line). This shows that i must be the pivot user.

allocation (i.e., Yl = Y ′l for l 6= i, j), we get 〈Y ′〉 �
〈Y 〉. This is a contradiction to LMMF. Hence, ui(Yj) =
0. But then this implies that ui(Yj) ≤ ui(Yi) (as the
utilities are non negative) and therefore contradicts the
assumption.

LMMF is not SI under simplex demands, as the counter
example we showed in section IV considers users with simplex
demadns. Regarding NB mechanism, all positive results (i.e.
for EF, SI, and PO) clearly holds for simplex demands. NB
is not SP under simplex demands as proposition 10 consider
users with simplex demands.

VI. EXTENSIONS

We now briefly discuss extensions of the results presented
in previous sections. Recall that the utility function considered
in our model (Section II) reflects the number of resource-
demands that can be packed in a given set of resources. Our
results for LMMF actually extend to utility functions of the
form

uj(X) = max
α1,α2,...,αMj

f(
Mj∑
m=1

αmdjm)

s.t.
Mj∑
m=1

αmdjm ≤ X

αm ≥ 0 ∀m ∈ [Mj]

where f is a concave function and satisfies strict monotonicity
(i.e., for any positive γ, f((1 + γ)x) > f(x)). In fact, our
results for LMMF hold even if each user has a different
function f , so long as these functions are common knowledge.
Lastly, when f is strictly concave, the LMMF outcome is
guaranteed to be unique.

VII. RELATED WORKS

Fairly allocating resources to different parties is an age-
old challenge and a prominent research area in game theory
and economics. More recently, fair allocation of resources
has also received much attention from a computer science
perspective. Much of the study of fair allocation in computer
science focused on the allocation of a single resource (e.g.,
the famous “cake cutting” setting [9], [10]). Also, much work
on fair allocation of multiple resources deals with multiple
units of the same resource, e.g, fair scheduling [11], [12],
[13], and fairly allocating link bandwidth [14], [15], [16].
Fair scheduling of multiple resources was implemented for
Dryad [17] and Hadoop [18]. However, although dealing with
heterogeneous resource demands, these mechanisms abstract
the multiple resources into a single resource, and consquently
sometimes inefficiently utilize resources.

Ghodsi et al. [1] provided a general framework for resource
allocation with heterogeneous resource demands. [1] presents
the so called “Dominant Resource Fairness” (DRF) mecha-
nism, which equalizes the dominant resource (i.e., the most
demanded resource) each user receives, and prove that DRF
satisfies strategyproofness, envy-freeness, Pareto optimality,
and sharing incentive. Parkes et al. [5] later proved that
DRF actually satisfies group strategyproofness—a stronger
notion of incentive compatibility. Dolev et al. [19] proposed a
different notion of fairness for heterogeneous resources called
“no justified complaints” and proved the guaranteed existence
of a fair allocation in this sense. Gutman and Nisan [20]
generalized the notion of DRF and introduced polynomial-
time algorithms for computing fair allocations for both this
generalized notion and the orthogonal notion the “no justified
complaints”. Recently, Wang et al. [21] proposed DRFH,
a generalization of DRF to an environment with multiple
heterogeneous servers, and showed that it satisfies Pareto
optimality, envy freeness, strategyproofness, as well as other
interesting properties.

Lan et al. presented an axiomatic approach to measuring
fairness in a single-resource domain[22]. This was generalized
in [2] to heterogeneous resources by considering two measures
of fairness, GFJ and FDS, where GFJ measure fairness in term
of number of jobs allocated to each user and FDS measure
fairness in terms of the relative size of the dominant share.
[2] presents conditions on these measures to achieve Pareto
optimality, sharing incentive and envy freeness.

Two notions of fairness that play the key roles in our
work are (lexicographic) max-min fairness and proportional
fairness. Max-min fairness is a classical notion that dates back
to Rawls [23]. Algorithms that implement max-min fairness
include various round robin schemes, proportional resource

sharing [24], weighted fair queuing [25] and bandwidth allo-
cation [26]. We note that alternative notions of fair allocation
were introduces. Other notions of fairness have also been con-
sidered in networking contexts, e.g., Foster et al. [27] proposed
several fairness criteria for network allocation such as min
guarantee (guaranteeing minimal bandwidth for every virtual
machine), and payment proportionality (where bandwidth al-
location is based on payments) and presented different mech-
anisms. Nash Bargaining was introduced by John Nash [6] as
a general approach to collaboration in environments with self-
interested parties that satisfies several axioms, including Pareto
optimality. Nash bargaining coincides with the well-studied
notion of proportional fairness and was shown to coincide with
market equilibria for a large class of utility functions [8], [7].
Cole, et al. proposed a truthful mechanism that approximates
the Nash Bargaining solution [28], but at the cost of “throwing
away” a large fraction of the resources.

VIII. CONCLUSION

We initiated the study of fair resource-allocation with re-
source tradeoffs. We leave the reader with two interesting
research directions: (1) We proposed and theoretically an-
alyzed two mechanisms: LMMF and NB. Examining other
mechanisms and, in particular, mechanisms that reflect other
economic approaches to fair resource allocation is an interest-
ing research direction; (2) We considered two opposite envi-
ronments, namely, unrestricted tradeoffs and linear tradeoffs.
Exploring other resource tradeoffs scenarios on this spectrum
is another interesting agenda. In particular, empirical studies
of actual resource tradeoffs in cloud computing might motivate
new questions along the lines outlined in this paper.

REFERENCES

[1] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica, “Dominant resource fairness: Fair allocation of multiple
resource types.” in NSDI, vol. 11, 2011, pp. 24–24.

[2] C. Joe-Wong, S. Sen, T. Lan, and M. Chiang, “Multiresource alloca-
tion: fairness-efficiency tradeoffs in a unifying framework,” IEEE/ACM
Transactions on Networking (TON), vol. 21, no. 6, pp. 1785–1798, 2013.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 3rd ed. The MIT Press, 2009.

[4] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards
predictable datacenter networks,” in ACM SIGCOMM Computer Com-
munication Review, vol. 41, no. 4. ACM, 2011, pp. 242–253.

[5] D. C. Parkes, A. D. Procaccia, and N. Shah, “Beyond dominant resource
fairness: extensions, limitations, and indivisibilities,” in Proceedings of
the 13th ACM Conference on Electronic Commerce. ACM, 2012, pp.
808–825.

[6] J. Nash, “The bargaining problem,” Econometrica: Journal of the
Econometric Society, 1950.

[7] H. Moulin, Fair division and collective welfare. MIT press, 2004.
[8] H. Varian, “Equity, envy, and efficiency,” Journal of economic theory,

1974.
[9] S. J. Brams and A. D. Taylor, Fair Division: From cake-cutting to dispute

resolution. Cambridge University Press, 1996.
[10] J. B. Barbanel, A. D. Taylor et al., The geometry of efficient fair division.

Cambridge University Press Cambridge, 2005.
[11] S. K. Baruah, J. E. Gehrke, and C. G. Plaxton, “Fast scheduling of

periodic tasks on multiple resources,” in Parallel Processing Symposium,
International. IEEE Computer Society, 1995, pp. 280–280.

[12] D. Zhu, D. Mossé, and R. Melhem, “Multiple-resource periodic schedul-
ing problem: how much fairness is necessary?” in Real-Time Systems
Symposium, 2003. RTSS 2003. 24th IEEE. IEEE, 2003, pp. 142–151.

[13] Y. Liu and E. Knightly, “Opportunistic fair scheduling over multiple
wireless channels,” in INFOCOM 2003. Twenty-Second Annual Joint
Conference of the IEEE Computer and Communications. IEEE Societies,
vol. 2. IEEE, 2003, pp. 1106–1115.

[14] J. Kleinberg, Y. Rabani, and É. Tardos, “Fairness in routing and load
balancing,” in Foundations of Computer Science, 1999. 40th Annual
Symposium on. IEEE, 1999, pp. 568–578.

[15] J. Mo and J. Walrand, “Fair end-to-end window-based congestion
control,” IEEE/ACM Transactions on Networking (ToN), vol. 8, no. 5,
pp. 556–567, 2000.

[16] F. P. Kelly, A. K. Maulloo, and D. K. Tan, “Rate control for commu-
nication networks: shadow prices, proportional fairness and stability,”
Journal of the Operational Research society, pp. 237–252, 1998.

[17] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Gold-
berg, “Quincy: fair scheduling for distributed computing clusters,” in
Proceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles. ACM, 2009, pp. 261–276.

[18] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica, “Delay scheduling: a simple technique for achieving locality
and fairness in cluster scheduling,” in Proceedings of the 5th European
conference on Computer systems. ACM, 2010, pp. 265–278.

[19] D. Dolev, D. G. Feitelson, J. Y. Halpern, R. Kupferman, and N. Linial,
“No justified complaints: On fair sharing of multiple resources,” in
Proceedings of the 3rd Innovations in Theoretical Computer Science
Conference. ACM, 2012, pp. 68–75.

[20] A. Gutman and N. Nisan, “Fair allocation without trade,” in Proceedings
of the 11th International Conference on Autonomous Agents and Mul-
tiagent Systems-Volume 2. International Foundation for Autonomous
Agents and Multiagent Systems, 2012, pp. 719–728.

[21] W. Wang, B. Li, and B. Liang, “Dominant resource fairness in
cloud computing systems with heterogeneous servers,” arXiv preprint
arXiv:1308.0083, 2013.

[22] T. Lan, D. Kao, M. Chiang, and A. Sabharwal, An axiomatic theory of
fairness in network resource allocation. IEEE, 2010.

[23] J. Rawls, “Some reasons for the maximin criterion,” The American
Economic Review, 1974.

[24] C. A. Waldspurger and W. E. Weihl, “Lottery scheduling: Flexible
proportional-share resource management,” in Proceedings of the 1st
USENIX conference on Operating Systems Design and Implementation.
USENIX Association, 1994, p. 1.

[25] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a
fair queueing algorithm,” in ACM SIGCOMM Computer Communication
Review, vol. 19, no. 4. ACM, 1989, pp. 1–12.

[26] B. Radunović and J.-Y. L. Boudec, “A unified framework for max-min
and min-max fairness with applications,” IEEE/ACM Transactions on
Networking (TON), vol. 15, no. 5, pp. 1073–1083, 2007.

[27] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and grid
computing 360-degree compared,” in Grid Computing Environments
Workshop, 2008. GCE’08. Ieee, 2008, pp. 1–10.

[28] R. Cole, V. Gkatzelis, and G. Goel, “Mechanism design for fair division:
allocating divisible items without payments,” in Proceedings of the
fourteenth ACM conference on Electronic commerce. ACM, 2013, pp.
251–268.

