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Abstract

This work applies cluster analysis as a unified approach for a wide range of vision applications,

thus it combines two research domains: the domain of computer vision and the domain of machine

learning. Cluster analysis, a fundamental problem of machine learning, attempts to recover the

inherent structure within a given dataset. Many problems of computer vision have precisely this

goal, to find which visual entities belong to an inherent structure in the image, or in the sequence

of images, or in a database of images. For example, a meaningful structure in the context of image

segmentation is a set of pixels which correspond to the same object in the scene. Cluster analysis

can be used to partition the pixels of an image into meaningful parts, which correspond to different

objects.

This framework clearly consists of two parts. The first is to define and measure for every pair

of visual entities the likelihood that they belong to the same structure, or the pairwise similarity

between them, and the second is to aggregate similar entities into clusters. In this work we focus

on the problems of image segmentation, perceptual grouping of edge elements, and organization of

an image database in shape categories. The visual entities to consider in each case are pixels, edge

elements and images, respectively.

While natural measures exist for pixel similarity, and extensive work is done in the area of

edgels similarity, shape similarity is not well understood. Our contribution in this work includes

the development of a novel algorithm to measure shape similarity between images of objects. The

primal property of this algorithm is that it is suitable for weakly similar shapes, hence it provides

a graded measure of shape similarity. In addition, the algorithm is local, avoids using global

shape characteristics which are sensitive to occlusion, and it is invariant under scaling and rigid

transformations of the image.

Our second contribution in this work is a novel clustering algorithm, which is used as a unified

platform to solve a variety of computer vision problems. In accordance with our general scheme, the
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clustering algorithm uses pairwise representation, where the visual objects (pixels, edgels, images)

are mapped to a nodes of an undirected weighted graph, with edge weights representing pairwise

similarity relations. The clustering problem is formulated as a graph partitioning problem, namely

a meaningful hierarchical partitioning of the nodes into clusters is thought.

The central insight to our clustering algorithm is that it converts the pairwise similarity weights

into higher order weights, or “collective” similarities. To define the collective similarity of two nodes

we induce a probability distribution over the set of all possible graph partitions. In other words,

every r-way cut of the graph is assigned a certain probability, with higher probability assigned to

low capacity cuts. Under this distribution, and for every integer r, the collective similarity of two

nodes i and j is defined as the marginal probability pr
ij that i and j are at the same side of a

random r-way cut.

This transformation of the similarity weights incorporates information from the whole distri-

bution over cuts. On the contrary, most other clustering algorithms select a pivotal cut, either by

the minimization of a certain cost function or by the application of a certain heuristic. Since the

pairing probabilities pr
ij are not determined by a single pivotal cut (e.g., the minimum capacity

cut) the dependence on the arbitrary chosen cost function is relaxed. Thus our algorithm is not

committed to a single partition, and it acquires a great amount of robustness.

In addition to its robustness and the fact that our algorithm uses pairwise representation and

avoids parametric modeling of the clusters, it is also very efficient. We provide a full analysis of

its asymptotic running time, showing that for a sparse similarity graph consisting of n nodes, the

asymptotic complexity is of order O(n log2 n) for a fixed accuracy level.

Getting back to the computer vision applications, we demonstrate how our clustering algorithm

can be used for segmentation of brightness and color images, for perceptual organization of point

sets and edge elements, and for image database organization. The last application integrates

our algorithm for shape similarity and our clustering algorithm. Specifically, we demonstrate our

scheme using a database of 121 images of objects, extracting their silhouettes and measuring their

mutual shape similarities. The images are then mapped to the nodes of a graph, with the pairwise

shape similarities assigning weights to the graph edges. Our clustering algorithm is applied, and a

hierarchical organization of the images in shape categories is obtained.
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Chapter 1

Introduction

We present the goal of our work in Section 1.1, and relate it to fundamental problems of

computer vision in Section 1.2. Background on clustering algorithms is provided in Sections 1.3

and 1.4. In light of the existing work we outline our contribution in Section 1.5, where we also

describe the organization of the rest of the thesis.

1.1 The motivation and the goal of this work

A wide range of tasks in computer vision may be viewed as unsupervised partitioning of data. Image

segmentation, grouping of edge elements and image database organization, are problems at different

levels of visual information processing (low, middle and high level vision, respectively). These tasks

have different application objectives, and they handle very different entities of data (pixels, edgels,

images). Nevertheless, they all come to serve a common goal, which is the partitioning of the visual

entities into “coherent” parts.

Data partitioning, or clustering, is a vague concept to define, as there is no universal measure

for the coherence of a cluster. Intuitively, coherence should reflect intra-cluster homogeneity and

inter-cluster separability. Objects in a homogeneous cluster resemble each other more than they

resemble objects in other clusters. By grouping objects into subsets, or by organizing the data

in a hierarchy of sets, cluster analysis attempts to recover the inherent structure within a given

dataset. Data clustering is a fundamental problem in unsupervised machine learning, with a strong

connection to cognitive science [112, 137, 124, 125].

The goal of this work is to use cluster analysis as a unifying principle for a wide range of vision
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problems. In our approach, we distinguish between two stages of processing. The first stage is

task dependent, and defines the affinity, or similarity, between the visual entities. The affinity is

a function of the relevant attributes. Low level attributes might be the spatial location, intensity

level, color composition or filter response of a pixel in the image. Mid level attributes, in the

case of edge elements, may be spatial location, orientation or curvature, and the affinity associated

with them may reflect properties such as proximity, symmetry, co-circuitry and good continuity.

High level attributes may be as complex as the entire shape of an object in the scene, or the color

distribution of all the pixels in an image.

The second stage in this approach follows the unifying principle, and applies cluster analysis to

the organization of the visual objects (pixels, edgels, images) into coherent groups. These groups

reflect internal structure among the entities, where (roughly speaking) the affinity within groups is

larger than the affinity between groups. Therefore, a cluster of pixels in the image, sharing similar

locations and colors, is expected to account for an object or a part of an object in the scene. A

cluster of edge elements is expected to exhibit a meaningful aggregation into a complete edge, and

a cluster of images in a database is expected to be related with a common topic.

Partitions of these kinds are associated with different levels of image understanding. It is

important to distinguish this goal from the closely related vector quantization approach, where a

concise representation of the data is sought, regardless of the actual meaning and significance of

the clusters. Vector quantization is concerned with information encoding by means of a finite size

codebook, usually for the purpose of compressed archiving or transmission. Although the objective

of understanding and compression is different, they are tightly related since compact description of

the data reflects abstraction, a form of understanding.

Note that according to the appearance based approach to object recognition, an object is repre-

sented by a collection of images, which in some sense span the “image space” of that object. Our

method can be used to divide the appearances of an object into clusters of similar views, in order

to assist the construction of an appearance based representation.

The prohibitively large amount of raw data is a characteristic of many vision applications. In

addition to the problem of compact representation of the raw data, which we have considered above,

there is the problem of efficient processing of the sheer amount of data. Algorithms that use low

level image features, such as pixels and edge elements, can benefit from dividing the raw image

data into parts that can be processed separately. Image segmentation and perceptual grouping of

2



low level elements are therefore also motivated by the need to design more efficient algorithms. In

the analysis of image databases, a related problem appears. Since we are typically dealing with

a large number of images, it is often necessary to divide them into subsets that can be processed

separately during image retrieval.

1.2 Segmentation, perceptual grouping, and image retrieval

Segmentation, perceptual grouping, and image retrieval are fundamental problems of computer

vision. It is evident that the extensive study in these areas cannot be surveyed in a short section.

However, to put our work into context, we focus on some of the more recent or classical methods.

Many image segmentation algorithms are reviewed in [102, 51]. The classical techniques include

gray level thresholding, region growing and recursive splitting, relaxation by the Markov Random

Field approach (originated in the work of [40]), relaxation by neural networks, and variational

formulations (e.g., [9, 98]). More recently, several authors considered image segmentation as a

direct application of pairwise clustering. This includes the usage of objective functions which are

minimized by graph theoretic methods [152, 127], deterministic annealing [54], multi grid techniques

[121], and non local Markov chains [13]. Orthogonal to these approaches, which try to minimize a

certain cost function, are the methods which are built upon local and greedy aggregation [29, 15]

or upon spectral decomposition of the similarity matrix [109, 147].

Image segmentation may be regarded as perceptual grouping of pixels into homogeneous parts.

However, the term perceptual grouping is usually associated with mid level vision, and more specif-

ically with grouping of edge elements. It is frequently formulated as a saliency detection problem,

where the goal is to assign a value to each edge, representing to what extent it is a part of a

shape or a part of background noise. Given the distribution of saliency values, it is often possible

to choose a threshold which will segment the edges into shape and noise classes. Saliency is a

measure of non-accidental mutual properties of visual clues, such as collinearity, curvilinearity, ter-

mination, crossing, parallelism, convergence, equal spacing and more. The history of the taxonomy

of non-accidental properties goes back to the Gestalt psychologists at the beginning of the 20th

century.

Perceptual grouping methodologies consist of two parts: (i) combination of properties which

are usually non accidental into an affinity measure, and (ii) detecting the internal structure, or
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shape, by computing saliency or by direct segmentation. The second step is the clustering part of

the grouping methodology. Among the methods of choice for this second step are relaxation neural

networks [123, 1], cost minimization using simulated annealing [53], spectral decomposition of the

affinity matrix [117, 49], and stochastic completion fields [149, 150].

The perceptual organization of high level visual entities, such as images, must face with the

highly complex problem of estimating the similarities between such entities. There are clearly

different dimensions of similarity between high level features, and even one dimensional measures

are hard to define. One alternative, whose perceptual significance is doubtful but is relatively easy

to compute, is to compare color histograms computed from the entire image (e.g., [132, 34, 50]).

For images of objects, the dimension of shape seems to be mostly relevant to their perceptual

organization [142]. In fact, part of this work is concerned with precisely this issue, hence we

postpone the discussion of related work on shape similarity to Chapter 3.

A measure of similarity between images is essential for image retrieval applications. Indeed,

many of the proposed measures are integrated into retrieval systems, such as QBIC [32], SQUID

[96], Blobword [7], Surfimage [100], Virage [48], Photobook [107], and more. Given a high level

similarity measure for images and a clustering algorithm, it is possible to organize an image database

into categories of interest. One application of such an organization is to present the content of the

database in a concise form, which can be digested by the user. However, although it is a natural

extension of the organization principles of lower vision levels, this kind of image organization is not

well studied in the literature.

1.3 Properties of clustering algorithms

Clustering algorithms are employed in diverse variety of problems, and consequently show large

divergence themselves. The principal properties that distinguish different clustering algorithms

are listed in the short survey below. In the next section we concentrate on the class of pairwise

algorithms, which are more relevant to the current work.

Representation.

Two different types of data lead to two different representations. Either the data items are mapped

to some real normed vector space (called feature space), or they are mapped to the nodes of a

weighted graph, with edge weights representing similarity or dissimilarity relations. The second

4



form, called “pairwise representation”, lacks geometrical notions such as scatter and centroids.

However, it has the advantage that no feature selection is required, which is often an elusive task.

Moreover, pairwise relations may violate metric properties such as the triangular inequality, a

situation which cannot be modeled when data is embedded in a vector space. The same is true

with respect to symmetry violation, which can be represented by a directed graph.

Objective function.

The clustering problem can be formulated as a discrete optimization problem, in which case it

involves two distinct steps: (i) determine some suitable cost function over the partition space; (ii)

compute a partition which minimizes the cost. The cost function may reflect a measure of point

scatter or graph connectivity, depending on the representation used. However, defining a mean-

ingful cost is task dependent, and the search for its global extremum is in general computationally

intractable. Alternative approach is to rely on well motivated heuristics, like agglomeration, local

density estimation or spectral decomposition (see below).

Parametric modeling.

The assumption which underlies the modeling approach is that the given data to cluster is generated

by some statistical source (e.g., mixture model). The statistical source is assumed to depend on

several (unknown) parameters. The clustering problem is then reduced to a parameter estimation

problem, which may be addressed by iterative optimization techniques. Classical examples are the

k-means and, more generally, the EM algorithms. Customarily, the statistical source is assumed to

be stationary and of a density mixture type, and the first one or two statistical moments are used.

This is equivalent to Gaussian mixture modeling of the data.

Exclusiveness.

An exclusive (hard) partition of the data assigns each data item to a unique cluster, while an

inclusive (soft) partition assigns each data point, with some probability, to every cluster. Soft

assignment is typically associated either with parametric modeling or with a global cost function.

In the first case, the probability of a point being assigned to a cluster is the posterior probability

of being generated by the corresponding statistical source. In the second case, the soft assignment

is a weighted average over all possible assignments, each weighted by its global cost function.
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Scale (hierarchical versus partitional clustering).

The problem of scale is the problem of the “correct” number of clusters. This problem is associated

with the well known information-modeling tradeoff, and a “correct” answer cannot be defined

universally. However, clustering algorithms may produce a hierarchy of solutions in order to reflect

multi scale interpretations of the data. Hierarchical partitions can be generated in a number of

ways: agglomeration, recursive partitioning, and generalized cost functions which are defined over

partition trees instead of over single partitions [94, 114]. The problem of clustering validation is

intimately connected with the problem of scale.

1.4 Pairwise (graph based) clustering: literature review

A weighted graph is a set of nodes, a set of edges connecting them, and a function that assigns

weight to each edge. For pairwise clustering the weights are positive real numbers, and they reflect

(dis)similarity values between pairs of datapoints, which are mapped to the nodes. This section

reviews clustering methods which are formulated as graph partitioning. We review various algo-

rithms only briefly, emphasizing possible connections between them. We consider agglomerative and

spectral heuristics, discrete optimization formulations, dynamical system approaches, and models

from statistical mechanics. We also motivate the important notion of higher order (“collective”)

similarity values.

Embedding

Metric dissimilarity relations dij between datapoints may be transformed to vectorial representa-

tion. Consequently, instead of solving the graph partitioning problem, one faces with the embedding

problem followed by the application of vectorial clustering (using an algorithm which may use such

geometrical notions as centroids and scatter). The embedding problem is to map each node (data-

point) i to a vector vi in some real normed space, such that ‖vi−vj‖ = dij . It can be shown that the

mapping that assigns vi ← [di1, . . . , din] embeds n points in Rn with the max norm `∞. However,

n is usually very large and dimensionality reduction is often required, where possible methods are

principal component analysis [33], random projection [68], principal curves [52] and others, thus

introducing distortion into the low dimensional representation.

A low dimensional graph embedding with controlled distortion is proposed in [88], and used for
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clustering in [87]. An alternative method, called multi dimensional scaling, is applied in [80, 27, 83,

125], where the embedding might preserves the ranking of the pairwise distances, not necessarily

their ratios. We note that dimensionality reduction is another name for the problem of feature

selection, namely it involves the assumption that a small number of features can be found, which

describe the datapoints with sufficient accuracy. Moreover, even if this is the case, it is not at

all guaranteed that a specific geometrical moment, like centroid, is a useful feature (consider two

concentric circles for example).

Collective similarity measure

In very simple clustering problems the similarity values between clusters are much smaller than

those within clusters. Hence there exists a threshold θ, such that if all edges with similarity

weight smaller that θ are removed, the graph is disconnected into components which represent the

desired clusters (the generalization to k-connected components or cliques is computationally less

attractive). Real problems are rarely that simple. The objective of clustering is usually more global,

while edge thresholding is purely local. However, if the pairwise relations are replaced by higher

order relations, then they start to reflect global properties and the simple connected components

algorithm becomes surprisingly effective.

High order relations (which we call “collective” or “transitive” relations) can be defined in

various ways. A simple and direct approach is taken in [130, 44], where the dissimilarity value

between nodes i and j is transformed to m+n if node i is the mth nearest neighbor of node j, and

node j is the nth nearest neighbor of node i. A much more complicated transformation is hidden

in the min-cut algorithm for clustering (see below), as it is known from the Gomory-Hu theorem

[59] that the minimal cut separates the nodes of the graph in such a way that the max-flow value

for every two nodes within a component is larger than every max-flow value between components.

Hence the min-cut algorithm is equivalent to the definition of max-flows as collective similarities,

followed by thresholding. Our work is inspired by the successful definition of collective similarities

made in [10], where an analogy between the clustering problem and the behavior of a magnetic

system is proposed. For more details see Section 2.8.

Let us define the similarity profile of a node as the vector of all its pairwise relations. Hence

pi = [di1, . . . , din] is the profile vector of node i, where dij are either similarity or dissimilarity

relations. For simplicity we assume that dij are dissimilarity relations, but they may violate metric
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properties such as the triangular inequality. Hence the distance between profile vectors ‖pi − pj‖
is not necessarily equal to the pairwise distance dij , as in the embedding procedure above. On the

contrary, the distance between two profile vectors pi and pj might be large in spite of dij being

small, if the two data items i and j do not share similar neighborhoods. This means that by taking

global considerations into account, through the collective profile distance, a simple thresholding

algorithm can potentially assign nodes i and j to different clusters, although their direct (pairwise)

connection indicates the opposite. The collective dissimilarity measure (between profile vectors) can

be defined in a number of ways. We have experimented with the `p norms of the vector difference

and with statistical correlation in a related work concerned with supervised learning [64, 145], and

we have experimented with `p norms and the Jensen-Shannon divergence in a recent clustering

work [25].

For completeness we refer to a similar collective manipulation which is used by clustering al-

gorithms that act on vector spaces. The basic idea behind the distributional clustering approach

[108, 55] is to represent each data item by a probability distribution over features with which it

co-occurs. The Kullback Leibler divergence between the co-occurrence distribution then serves to

measure the dissimilarity between objects and cluster centroids..

Agglomeration versus objective functions, and the minimal cut

The agglomeration heuristics for pairwise clustering start from the trivial partition of n points into

n clusters of size one, and continue by subsequently merging pairs of clusters. At every step the

two most similar clusters are merged together, until the similarity of the closest clusters is lower

than some threshold. Different similarity measures between clusters distinguish between different

agglomerative algorithms. In particular, the single linkage algorithm defines the similarity between

clusters as the maximal similarity between two of their members, and the complete linkage algorithm

uses the minimal such value. A very general class of agglomerative algorithms is formalized in [85].

Agglomerative heuristics lack the ability to separate between the problem definition and algo-

rithmic solution, while in the discrete optimization approach (Section 1.3) the design of proper a

cost function is ill posed. Greedy agglomeration can also be connected with global properties [29], or

even with the global cut capacity cost function [99]. Namely, the particular agglomeration scheme

defined in [99] minimizes the cut capacity, defined as the sum of the positive pairwise similarities

between members of different clusters (see also Section 2.1). The minimal cut clustering algorithm
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defines the optimal partition as the one with minimal capacity [152, 69]. For bi-partitions, which

split the data into two parts, this optimization problem is extensively studied and is solved in

polynomial time. However, clustering applications frequently involve very large graphs, and the

exact solution becomes impractical.

The minimal cut clustering algorithm minimizes the total similarity weight between clusters,

while maximizing the total similarity weight within clusters. With dissimilarity relations, the

analog cost function sums the dissimilarity weights within clusters. In [56] there is an attempt to

axiomatize the definition of pairwise cost functions, and it is shown that if the total dissimilarity

weight within each cluster is normalized by the cluster size (the number of nodes it contains), then

additional invariance and robustness properties are satisfied. In particular, the partition which

minimizes this cost is invariant under linear shift of the data (a desirable property especially when

the data is defined on interval scale), and it is not dominated by a small number of links. The last

observation points to a major disadvantage of the capacity (cut) cost function, namely, that it is

biased towards partitions which disconnect small number of edges, and may even separate a single

node from the graph. This led to the proposal of another cost function which is called “normalized

cut” [127], see below. It resembles the bisection cost function from graph theory, which is the

number (or total weight) of edges between two equal size parts of the graph [12, 75, 30].

Many other cost functions can be defined. The cost definition is influenced by the possibility

to design an efficient algorithm which optimizes it. Optimization via graph cuts of cost functions

with a regularization term is proposed in [13, 63]. Cost minimization using multi grid method is

found in [121].

Spectral methods

Spectral methods identify good partitions via the eigenvectors of the similarity matrix, or other

matrices derived from it. Although one important instance of these methods, which uses the

Laplacian matrix, can be motivated by a continuous approximation to a discrete optimization

problem [17], in general spectral methods are not associated with any global cost function and can

be thought of as useful heuristics.

Consider the adjacency matrix A of a directed graph, where A[i, j] = 1 if there is an edge

directed from node i to node j, and A[i, j] = 0 otherwise. The singular vectors of A are, by

definition, the eigenvectors of the symmetric matrices AAT and AT A. Note that the entry [i, j] of
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AAT is the number of nodes which both i and j are incident on, while the entry [i, j] of AT A is the

number of nodes from which there is an edge to both i and j. Thus the matrices AAT and AT A

can be considered as collective similarity matrices, in the sense defined above.

In accordance, [78] made the following observation about the values of the entries in the singular

vectors of A: If entry i of the principal eigenvector of AT A is large, then node i is considered

“authoritative”; if entry i of the principal eigenvector of AAT is large, then node i is a “hub”.

Authorities and hubs exhibit a mutual reinforcement relationship: a good authority is a node that

is accessed by many good hubs, while a good hub is a node that points to many good authorities.

In the application discussed in [78], hub and authority levels are used to measure the importance

of Web pages. It generalizes impact indices which are used in the field of bibliometrics, or citation

analysis. The relation with clustering is that the joint set of authorities and hubs might be a dense

subgraph, which is sparsely connected to the rest of the graph.

In case that A is symmetric, its eigenvectors and the singular vectors are the same, and the

method reduces to the computation of the principal eigenvector of the adjacency matrix. A similar

approach is taken in [109] with symmetric similarity matrices, constructed from real values in [0, 1].

The principal eigenvector v is treated as an indicator function: a threshold θ is chosen, each node

i is assigned to one part if v[i] > θ and to the other part otherwise. In the rest of our work we

will refer to this algorithm as the “factorization method”. Related work include [117] from the

computer vision domain, and [110, 39] from the bibliometrics domain.

The use of non principal eigenvectors can sometimes add more power to the algorithm. Assuming

from now on that A is symmetric, let V denote the n× k matrix whose columns are the k largest

eigenvectors1 of A. As shown in [147], the algorithm described in [19] effectively uses the matrix

Q = V V T for grouping. If the rows of V are normalized, namely V̂ = H−1V where H is a diagonal

n × n matrix with H[i, i] = ‖V [i, ·‖, then [119] defines Q̂ = V̂ V̂ T ; for “well separated” data and

with a proper choice of k, it is claimed that the value of Q̂[i, j] is close to either 0 or 1, depending

on whether the nodes i and j belong to the same cluster or not. We note that in this case, Q̂

should be regarded as an improved (collective) similarity matrix, in the sense discussed above, and

it remains to be seen whether the algorithm can be applied recursively to Q̂ (see our discussion on

dynamical systems below)2.

1We use the terms largest and smallest eigenvectors to refer to the eigenvectors which correspond to maximal and
minimal eigenvalues, respectively.

2A real n × n matrix A is said to be completely positive if there exists a real nonnegative n × k matrix B such
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It is instructive to make a comparison with vectorial methods. Instead of the square similarity

matrix A, vectorial representation uses an n × m feature matrix, with entries representing the

endorsement of each item by each feature. The spectral decomposition of the feature matrix is

widely used for dimensionality reduction, e.g. [21]. If the data is clustered, one hopes to project

it onto well separated dimensions, which correspond with the data clusters. A certain model, from

the domain of document retrieval, is studied analytically in [103].

The last spectral method which we consider is the normalized cut algorithm [127]. We first give

our own formulation of the algorithm. Given a symmetric similarity matrix A, define D to be a

diagonal matrix with D[i, i] =
∑

j A[i, j]. The operation D−1A normalizes the sum of each row in

the similarity matrix to one, hence a vector whose entries are all 1’s is an eigenvector of D−1A.

Moreover, it is the principal eigenvector, with the largest eigenvalue (which is 1). The normalized

cut algorithm uses the next principal eigenvector, denoted v2, in order to partition the nodes into

two parts; if v2[i] > θ then node i is in one part, otherwise it is in the other. This formulation

clarifies the relation with previous methods. See [147] for the relation with the principal eigenvectors

of D− 1
2 AD− 1

2 .

The name of the method, “normalized cut”, reflects the intuition which motivated it. The

original formulation [127] uses the eigenvectors of the Laplacian matrix, defined as D − A. The

relations between the spectral properties of the Laplacian matrix and the connectivity of the graph

were first investigated in [31, 24]. In particular, finding a partition that minimizes a certain cost

function is a discrete optimization problem, which depends on the connectivity of the graph. But

when the cost function is defined to be the normalized cut cost (see below), then the discrete

solution may be approximated by a real valued solution of the generalized eigenvalue problem

(D − A)v = λDv. Namely, the vector v2 which correspond to the second smallest λ is the real

approximation to the discrete problem. Note that this vector is the eigenvector of D−1A with second

largest eigenvalue, as presented above. In fact, there is no guarantee that the real solution will bear

any relationship with the discrete one, and as far as we know the quality of the approximation has

never been examined experimentally.

For completeness, we quote the definition of the normalized cut cost function. Let the set V of

that A = BBT . In this case, if A[i, j] can be interpreted as the probability that nodes i and j are in the same cluster,
then B[i, l] is the probability that node i is in cluster l. So far, however, the characterization of completely positive
matrices is not well understood, as well as the possibility to approximate a given proximity matrix by a completely
positive one [45, 116, 101].
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nodes be split into two disjoint sets R,S. The cost Ncut(R,S) of the partition is:

Ncut(R,S) =
f(R,S)

f(R, V )
+

f(R,S)

f(S, V )

where f(X,Y ) =
∑

i∈X,j∈Y A[i, j]. Since R and S are disjoint, each numerator is the cut capacity

(sum over edges which cross the cut). In the denominator the terms f(R, V ) and f(S, V ) are called

the associations of R and S, respectively. They act as penalties for unbalanced cuts.

Spectral methods and dynamical systems

Given a system which is described at time t by a state vector v(t), defined up to scale, a discrete time

dynamics is an operator O which transforms v(t) to v(t + 1). Linear dynamics is v(t + 1) = Mv(t)

with some matrix M . A fixed point is a vector v∗ which is invariant under the dynamics, and for

a linear system it is clearly an eigenvector of M . The power method for calculating the principal

eigenvector of M starts from a state v(0) which is not orthogonal to the eigenvector, and recursively

applies the dynamics until convergence. To find the k principal eigenvectors, the power method

starts with k initial vectors (subjected to a similar condition), and keeps them orthogonal (e.g. by

Gram Schmidt procedure) at every iteration. The orthogonalization introduces non linearity into

the computation of the non principal eigenvectors. For exact formulation see [42].

We have shown above how the principal eigenvectors of a certain matrix M are associated

with graph partitioning. The matrix M might be the symmetric similarity matrix A [109], the

normalized (non symmetric) matrix D−1A [127], or the matrices AAT and AT A for directed graphs

[78]. Thus spectral methods can be understood on the basis of general dynamical systems, namely,

they compute an indicator function which is the fixed point of a certain linear system.

A generalization to non linear dynamics is proposed in [41]. In analogy with the computation

of non principal eigenvectors in linear systems, the algorithm of [41] iteratively applies non linear

dynamics to several state vectors, and after each iteration uses a Gram Schmidt procedure to keep

them orthogonal. This generalizes the concept of non principal eigenvectors to non linear systems.

It is interesting to view in this light the algorithm proposed in [106] for the maximal clique

problem. One could argue for using this criterion for clustering, when similarity relations are

binary and one requires all the members of the cluster to be similar to each other. The algorithm

proposed in [106] iterates a state vector, using non linear “replicator dynamics”. The fixed point

vector is a bi-valued vector, which indicates which nodes are in the maximal clique. See [104] for

12



the relation to non linear relaxation labeling [115].

Getting back to the general formulation of a dynamic system, if a fixed point v∗ exists, then it

is the limit of Otv when t→∞. This gives motivation to consider the operator O t at this limit. As

early as in 1968 an algorithm called “iterative intercolumnar correlation analysis” was proposed [93],

and further developed in [82]. It can be directly motivated by our concept of collective similarities

above. Namely, if a column of the proximity matrix is interpreted as a similarity profile with respect

to all data points, we may construct a new proximity matrix whose [i, j] entry is the inter column

similarity between the two profiles, and repeat this process iteratively. The column similarity in

[93, 82] is measured by statistical correlation.

More formally, construct the matrix Â by subtracting from each column of A its mean, and

consider the operator O(A) = D̂− 1
2 ÂT ÂD̂− 1

2 , where D̂ = diag(ÂT Â). A sufficient condition

is proved in [82], which guarantees that the matrix Ot(A) converges to a bi-valued matrix A∗

with either +1 or -1 entries. The fixed point matrix A∗ is permutation equivalent to a block

diagonal matrix, with two diagonal blocks of sizes k and n − k containing the +1 entries, and

two off diagonal blocks containing the -1 entries. This indicates a partition of the data into two

clusters. The sufficient condition which is shown in [82] to guarantee the convergence, is that

max |A[i, j] −A∗[i, j]| < (−1 +
√

1 + 4e2)/2e, where e = 8(k/n)(1 − k/n).

Independently we have recently experimented with a similar scheme, using different intercolum-

nar similarity measures [25]. We found a similar behavior, indicating that the convergence to a

fixed point might be a general property of collective similarities, and not a property of the specific

correlation type measure.

Spectral methods and stochastic processes

Let us assume that the matrix M in the linear dynamics v(t+1) = Mv(t) is stochastic, namely, its

columns sum to one. For example, the transpose of D−1A used by the normalized cut algorithm

is stochastic. In this case we may interpret the dynamics as a stochastic traversal on the graph,

M [i, j] being the probability of going from node j to node i. The principal eigenvector of M ,

properly normalized, then describes the stationary probability of visiting each node3. A spectral

method which uses the principal eigenvector of a stochastic matrix can therefore be interpreted as

separating the nodes having large visiting probability from the nodes having low visiting probability.

3The rate of convergence to the stationary probability is associated with the second eigenvalue of M , see e.g. [97].
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We now wish to make a connection between the visiting probability and a global cost function,

which is defined over graph partitions. For this we consider a much larger graph, where each node

represents a feasible partition of the data. We refer to a node in this graph as a configuration, while

the term “node” is kept for the original graph. The number of configurations is exponentially large,

for example 2n configurations if we consider all partitions of n nodes into two parts. The goal is

to introduce dynamics which respects the cost function and converges to a steady state, where a

configuration visiting probability depends only on its cost.

Assuming this goal has been achieved, one is able to approximate quantities of interest. One

can translate the configurations visiting probabilities into nodes visiting probabilities, or one can

estimate the stationary probability of two nodes being in the same cluster. The approximation is

curried out by simulating the dynamics, and counting the the number of times that the event of

interest occurs. In [10] the pairing probability of every two nodes being in the same cluster is used

as a collective similarity measure, which replaces the original pairwise similarities.

This clustering method includes the following steps: (i) define a cost function, (ii) select a cost

dependent probability distribution over partitions, (iii) design a stochastic dynamics which con-

verges to the desired distribution, and (iv) simulate the dynamics and count events of interest. The

cost dependent probability distribution at step (ii) is chosen to be Gibbs distribution, constrained

to yield some fixed average cost through its temperature parameter. Using this distribution is

inspired by statistical mechanics, and supported by the principle of least commitment [66], see

below.

It is beyond our scope to describe dynamical schemes which respect the required stationary

probability distribution. A simple method, however, which became quite popular outside the

physics community, is the Metropolis algorithm. The Metropolis algorithm picks a configuration at

random and accepts or rejects it based on its relative cost (energy). A randomly picked configuration

is accepted if it lowers the cost, and it is accepted with some (temperature dependent) probability

otherwise. In case of rejection, another configuration is randomly picked. Gradual decrease of the

temperature is called simulated annealing [77], whose usage in vision was popularized by [40]. See

[141] for minimizing a balanced cut cost function with simulated annealing.

Efficiency is a major problem with stochastic simulations, as the size of the configuration graph

is exponential in n, and we require convergence to stationary probability in polynomial time. A

process having this property is called rapid mixing [67]. A fast simulation process which is suitable
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for multiway cut cost function, and which is conjectured to be polynomial, is the Swendsen-Wang

algorithm [144]. It is used by the SPC clustering method [10, 151] (see the beginning of this

introduction and Section 2.8).

A direct optimization approach would seek the most probable configuration, which has minimal

cost. However, the disadvantage of this approach is that it commits to a single solution. On the

other hand, replacing the pairwise relations by the pairing probability of nodes, as suggested in [10],

exploits the information from the entire distribution over the configuration space and is therefore

more robust, see also Section 2.5. Inducing the Gibbs distribution over the configuration space is

supported by maximal entropy inference, as this distribution is the flattest one under the constraint

of fixed average cost.

We note that deterministic annealing methods [113, 114, 57] postulate a parameter dependent

Gibbs distribution over the configuration space, and optimize the parameters using EM method. See

[141, 153, 54] for the relation with mean field approximation and neural networks. The deterministic

approach avoids the stochastic simulation, but necessitate parametric modeling of the clusters (see

“parametric modeling”, Section 1.3). As a consequence, these methods are usually suitable for

vectorial representation, with [57] as an exception.

1.5 Our contribution, and the thesis organization

In this work we present a novel clustering algorithm, and apply it to problems of image segmenta-

tion, perceptual grouping of edge elements and image database organization. For the later task we

develop a novel dissimilarity measure for object images, which compares the shapes of the objects

in the images. This measure allows for the organization of image database into shape categories.

Our novel clustering algorithm is a pairwise hierarchical algorithm, which is efficient, robust

and model-free. The robustness of our method is achieved by averaging over all the possible

interpretations of the data, giving more weight to data partitions that are associated with lower

cost. This idea is adopted from clustering algorithms that are inspired by statistical mechanics, and

in particular our method is related to [10]. Like in the algorithms which apply stochastic simulation

of a certain dynamics, we also generate a sample of configurations, and we count the number of

events when two nodes are in the same cluster. This leads to the definition of a powerful collective

similarity measure, which is the pairing probability of each two nodes.

15



However, unlike the methods which simulate dynamics, our algorithm does not use a Markovian

process to generate the sample of configurations. Instead, we apply another sampling tool, originally

developed as the core of a probabilistic minimal cut algorithm [72]. This tool is known as the

contraction algorithm, and in fact it is a randomized version of the single linkage method for

clustering. Hence, in addition to an improve in efficiency, we make an elegant connection between

cut based algorithms and agglomerative algorithms. Regarding efficiency, our algorithm can be

analytically analyzed, and for sparse graphs and fixed accuracy level it runs in O(n log2 n) time,

where n is the number of datapoints.

From the point of view of vision applications, our contribution is the presentation of a unified

approach for low, middle and high level vision problems. For the application of our method to

high level organization of image databases, we suggest a novel algorithm which extracts shapes

from images and estimates their dissimilarity. Our algorithm relates the image dissimilarity with

the residual distances between matched feature points which are automatically extracted on the

objects’ boundaries. The bottleneck of this approach is the task of matching the feature points

in a perceptually plausible manner. We achieve this goal by improving known syntactic matching

techniques. In addition, we present an algorithm which is invariant with respect to substantial

deformations and arbitrarily large scaling and rigid transformations of the image.

Thesis organization

The rest of this work is organized as follows. Chapters 2 and 3 describe our methods. The novel

clustering algorithm is described in Chapter 2, and the algorithm to measure dissimilarly between

images, whose core is a novel curve matching algorithm, is described in Chapter 3. Our results are

summarized in Chapter 4, where we apply our clustering algorithm to intensity and color image

segmentation, perceptual grouping of edge elements, and integrate our two algorithms into one

application of image database categorization. A concluding discussion follows in Chapter 5.
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Chapter 2

The Typical Cut Algorithm

This chapter presents our novel clustering method, which is used in chapter 4 for a few vision

applications. The general approach and the principles of our method are described first. After

defining the terminology in Section 2.1, we describe the algorithm in Section 2.2. To clarify how

the algorithm works and to demonstrate some of its properties, an illustrative example is worked

out in details in Section 2.3. Fundamental aspects in the complexity analysis of the algorithm

are discussed in Section 2.4, while full analysis is postponed to Section 2.7. In Section 2.5 we use

a few synthetic examples to demonstrate the robustness of our method. Section 2.6 contains a

novel approach which we have developed for validating partitional structures, whose general idea

is applicable for other algorithms of pairwise clustering. In Section 2.7 we discuss the efficient

implementation of our algorithm, and complete its complexity analysis. The relations between our

algorithm and others are investigated in Section 2.8. There we also quote the known properties of

the probability distribution that is imposed by the contraction algorithm (introduced in Section 2.2).

2.1 Notations and Definitions

Our clustering algorithm uses pairwise similarities, which are represented as a weighted graph

G(V,E): the nodes V represent data items, and the positive weight wij of an edge (i, j) represents

the similarity between nodes (data items) i and j. The graph G(V,E) may be incomplete, due to

missing data or due to edge dilution (whose purpose is to increase efficiency). The weights wij may

violate metric properties, and in general they may reflect either similarity or dissimilarity values.

In the current work, however, we assume that the weights reflect symmetric similarity relations
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(hence wij=wji, and wij=0 for i and j that are completely dissimilar). We do not assume that the

similarity weights obey the triangular inequality, and self similarities wii are not defined.

A cut (V1, V2) in a graph G(V,E) is a partition of V into two disjoint sets V1 and V2. The capacity

of the cut is the sum of weights of all edges that cross the cut, namely: c(V1, V2) =
∑

i∈V1,j∈V2
wij .

A minimal cut has the minimal capacity. We use the term “cut” also for the generalized case

of multi-way cuts. A partition of V into r disjoint sets (V1, . . . , Vr) is called r-way cut, and in

accordance its capacity is defined as
∑

i∈Vα,j∈Vβ ,α6=β wij. Every one of the r components may be

referred to as a “side” of the cut.

Let the nodes which belong to each side Vα (α = 1 . . . r) be grouped together into one meta-

node, and discard all the edges which form self loops within meta-nodes (namely, discard the inner

edges of each component, which connect two inner nodes belonging to the same component). The

graph which is obtained has exactly r meta-nodes, and it is a multi-graph since meta-nodes may be

connected to each other by more than one edge. Actually, if G is a complete graph, then the number

of edges connecting the meta-nodes representing the components Vα and Vβ is exactly |Vα||Vβ |.

The grouping procedure described above yields a contracted graph which has r meta-nodes,

denoted G′
r. Note that this notation does not characterize the contracted graph, since there are

many ways to group the nodes of G into r disjoint sets. However, any contracted graph G ′
r represents

an r-way cut in the original graph. The edges of G′
r are the edges which cross the corresponding

r-way cut in the original graph.

2.2 Outline of algorithm

This section provides a simplified concise description of the algorithm, ignoring implementation

issues which arise from considerations of space and time complexity, and emphasizing the general

principles. The algorithm is divided into two stages, described in pseudo-code in Figures 2.1,2.3

and explained below.

For a given value of r (r = 1 . . . N) our algorithm generates a sample of M possible r-way cuts,

and use this sample to estimate the probability pr
ij that (i, j) is not a crossing edge of a random

r-way cut. The pseudo-code in Figure 2.1 counts, for every pair of nodes i, j ∈ V and for every

integer r between 1 and N , the number of r-way cuts (out of M) in which the two nodes are on the

same side. These accumulators are divided by M to estimate for every two nodes the probability
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pr
ij that they are on the same side.

procedure STAGE-1:

input: weighted graph G(V,E) with N nodes.

output: 3D array p of probabilities.

sr
ij ← 0 for i, j, r = 1 . . . N (initialize counters)

for m = 1 . . . M:

G′
N ← G(V,E)

for r = (N − 1) . . . 1:
G′

r ← CONTRACT(G′
r+1) (generate an r-way cut)

for i = 1 . . . N:

for j = 1 . . . N:

if i and j belong to the same meta-node of G′
r, then

sr
ij ← sr

ij+1

end-if

end-loop

end-loop

end-loop

end-loop

pr
ij ← sr

ij/M for i, j, r = 1 . . . N (compute empirical probabilities)

return array p.

Figure 2.1: Pseudo-code which transforms similarity weights into pairing probabilities.

In this pseudo-code the procedure CONTRACT generates the r-way cut G′
r from the previously

generated cut G′
r+1. The procedure CONTRACT selects two meta-nodes of G′

r+1 and merges them

into one meta-node of G′
r, while discarding the edges which previously connected these two meta-

nodes. The selection of the nodes to be unified is probabilistic: an edge (i, j) of G ′
r+1 is selected for

contraction with probability proportional to its weight wij. Then, the two meta-nodes which are

adjacent to the selected edge are merged. A simple (non efficient) way to implement the stochastic

edge selection is described in Figure 2.2.

The contraction procedure is the cornerstone of our method, since it defines the sample of

M cuts, according to which the empirical probabilities pr
ij are computed. Thus the contraction

procedure is our sampling tool, assigning higher probability to cuts with lower capacity as is shown

in [72] . In fact, [72] proves that the minimal cut can be found using this sampling method in

polynomial time, even though the overall number of possible cuts is exponential. In summary, the

contraction process induces a probability distribution over cuts, and under this distribution we
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procedure CONTRACT

input: graph G′
k with k meta-nodes.

output: graph G′
k−1 with k − 1 meta-nodes.

let e be an index to the set of edges of G′
k (e = 1 . . . #e).

S ←∑#e
e=1 we.

select x uniformly at random from (0, S].
find minimal e0 such that

∑e0
e=1 we ≥ x.

merge the two meta-nodes Aα and Aβ of G′
k that are connected by the edge e0.

remove self loops resulting from previous connections between Aα and Aβ.

return the resulting graph.

Figure 2.2: Simple implementation of the procedure CONTRACT

estimate pr
ij – the marginal probability that nodes i and j are on the same side of a random r-way

cut.

The number of r-way cuts in a graph of N nodes is the Stirling number of the second kind,

denoted τ(r,N). Let α(r) = 1 . . . τ(r,N) be an index to set of all r-way cuts in G(V,E). Fix r

and let Pα denote the probability that the contraction algorithm generates the cut α. For a fixed

r value,
∑

α Pα = 1. Define an indicator variable eα
ij to be 1 if the edge (i, j) crosses the cut α and

0 otherwise. It is readily seen that

∑

(i,j)∈E

wij(1− pr
ij) =

∑

(i,j)∈E

wij

∑

α

eα
ijPα =

∑

α

cαPα = 〈c(r)〉

where cα is the capacity of cut α, and 〈c(r)〉 is the expected value of the r-way capacity. We can

therefore interpret 1-pr
ij as the probability that edge (i, j) is a crossing edge in an “average cut”.

We use this observation for the following definition.

For every integer r between 1 and N we define the typical cut (A1, A2, . . . , As(r)) as the partition

of G into connected components, such that for every i ∈ Aα, j ∈ Aβ (α 6= β, α, β = 1 . . . s(r)) we

have pr
ij < 0.5. To find the typical cut for every integer r between 1 and N we first remove all

the edges whose transformed weight pr
ij is smaller than 0.5, and we then compute the connected

components in the remaining graph. Note that the number of parts, s(r), in the typical cut can be

different from r.

The N typical cuts corresponding to r = 1 . . . N are the candidate solutions to our clustering

problem. Although this is an extremely small number compared with the exponential number of
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possible partitions, we still need to select only a few interesting solutions out of the N candidates.

The question that remains is to define and choose “good” values of r, for which a “meaningful”

clustering is obtained as part of a hierarchy of a few selected partitions.

We define the following function of the typical cut at level r:

T (r) =
2

N(N − 1)

∑

i>j

NiNj (2.1)

where Nk = |Ak| denotes the number of elements in the k-th cluster. T (r), therefore, measures how

many edges of the complete graph cross over between different clusters in the r-partition, relative

to the total number of edges in the complete graph.

Partitions which correspond to subsequent r values are typically very similar to each other, or

even identical, in the sense that only a few nodes (if any) change the component to which they

belong. Consequently, T (r) typically shows a very moderate increase. However, abrupt changes in

T (r) occur between different hierarchical levels of clustering, when two or more clusters are merged.

We look at changes in the value of T (r) between subsequent r values, and output only those

partitions which are associated with a large change in T (r). For the current presentation we set a

threshold δ, and output a solution at level r if and only if ∆T (r) > δ.

The existence of pronounced peaks in ∆T (r) does not guarantee that we find the desired so-

lutions. A necessary requirement is that the set of N candidate typical cuts, that correspond to

the N possible r values, indeed contains the desired solutions. Whether this is the case or not, it

depends on the output of the first stage of the algorithm, where the wisdom of our method lies.

The simple heuristic that is applied in the second stage (Figure 2.3) is based on the assumption

that a good set of candidates is given.

The code line denoted with (*) in Figure 2.3 is optional, and involves an additional parameter.

One may not be interested in a cluster whose size is very small, e.g., 1% of the number of data points.

Small clusters are formed either by boundary points, due to the competition between conflicting

labels, or by background points (unstructured noise) due to their isolation. A conservative strategy

regards the points clustered in very small parts as points whose labels cannot be safely determined.

An aggressive strategy, on the other hand, may sustain the larger parts but relabel the smaller

parts by attempting to recover their original label. We use such a relabeling strategy which revives

some of the deleted connections, adding back edges in decreasing order of pr
ij, thus letting the

small clusters join the larger ones. More details on the optional relabeling procedure are given in
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procedure STAGE-2:

input: 3D array of the probabilities pr
ij

output: hierarchy of a few selected partitions.

for r = 1 . . . N:

let G(V,E) be a complete weighed graph of N nodes

and assign weight pr
ij to each edge (i, j) ∈ E.

for each (i, j) ∈ E:

if pr
ij < 0.5 then

E ← E\(i, j) (remove the edge from E)

end-if

end-loop

find connected components (A1, A2, . . . , As) in G(V,E).
compute ∆T (r) = T (r)− T (r − 1) (use Equation (2.1))

if ∆T (r) > δ then

(*) relabel small parts (see text)

report partition (A1, A2, . . . , As).
end-if

end-loop

Figure 2.3: Pseudo-code which finds typical cuts, measures the resemblance between subsequent cuts, and reports the
“meaningful” partitions.

Section 2.7.3.

2.3 Illustrative example

To illustrate some features of our method and its relative advantages over other methods, we proceed

with an illustrative synthetic example. We use a point set example in two dimensions which can be

easily visualized, see Figure 2.4a. The data consists of N=2000 points inR2 arranged in three dense

spiral regions and sparse background. The vectorial nature of the data in this example, namely

points in R2, is used for visualization but is hidden from the clustering algorithm. The information

which is made available to the clustering algorithm includes only the matrix of pairwise Euclidean

distances dij between points.

During preprocessing, the Euclidean distances dij are transformed to similarity weights, which

decrease with increasing distances. Psychophysical studies find that the similarity, or the confusion

frequency, between stimuli decay exponentially with some power of the perceptual measure of

distance [125, 126, 28]. We use the same functional form as in [10, 109, 127], namely wij =
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Figure 2.4: Clustering of points in the Euclidean plane. (a) The 2000 data points; the coordinates of the points are not
available to the clustering algorithm, which uses only the matrix of pairwise distances. (b) The graph of ∆T (r), computed
for every integer r between 1 and N . Two peaks are clearly observed at r=319 and r=352. (c-f) From left to right:
the typical cuts at r=318, 319, 351 and 352. Different components are indicated by different colors and symbols, while
isolated points (clusters of size one) are marked by small black dots.
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exp(−d2
ij/a

2), where a is the average distance to the n-th nearest neighbor (we used n=10, but our

results are not very sensitive to this choice; see Section 2.5). We then construct a complete graph

G(V,E) with N nodes, where node i represents the i-th data point and the weight of edge (i, j) is

set to wij .

The constant a reflects some reasonable local scale. If dij � a then wij is very small and the

edge (i, j) is unlikely to be selected by the procedure CONTRACT. In this case the decision whether

points i and j are in the same cluster depends solely on transitive relations via other nodes, same

as when wij is unknown. Thus, in order to increase the computation efficiency, we delete from the

graph every edge (i, j) whose weight is negligible. In the current example we discarded edges with

weights smaller than 0.01 (note that the weights are in the range [0, 1]). This threshold and the

number n=10 (which determines a) are the only parameters involved in the preprocessing stage.

The number of remaining edges in this example was about 46000.

Having constructed the similarity graph G(V,E), we are ready to apply our clustering algorithm.

The first stage is to estimate the pairing probabilities pr
ij . This is done using a sample of M

partitions at each r level (see procedure STAGE-1 in Figure 2.1). We will claim in Section 2.4 that

for an accuracy level ε the asymptotic dependence of the sample size (M) on the number of points

(N) is M = O(log N/ε2). Here we have used M=1000, although a much smaller could suffice as

well (see Figure 2.7 which uses the same data with only 100 iterations). The output of this stage

is the three dimensional array pr
ij.

In the second stage of our algorithm we call the procedure STAGE-2 (Figure 2.3), which computes

the typical cut for each r between 1 and N . To select between the N candidate partitions, procedure

STAGE-2 looks for large changes in the function T (r) defined above. Figure 2.4b shows the graph

of ∆T (r) = T (r)− T (r − 1) as a function of r. It is an impulse graph, illustrating that partitions

which correspond to large changes in T (r) are few and easy to identify. Two obvious peaks appear

at r=319 and r=352, and they mark the meaningful levels of data organization in this example.

The two peaks in ∆T (r) correspond to 3 hierarchical levels of partitions. At r=318, just before

the large peak on the left, the three spirals form one cluster (Figure 2.4c). There is also a small

cluster containing 10 points at the center, and the rest of the points form isolated clusters of size one.

This is the coarsest level of interest. In the next interesting level, at r=319, the giant cluster splits

into two - one part contains a single spiral and the other part contains two spirals (Figure 2.4d).

Increasing r further reveals some boundary effects, where 41 additional points become isolated, but
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(a) (b)

Figure 2.5: Using the relabeling option of procedure STAGE-2, which is discussed in more details in Section 2.7.3. (a)
The result at r=319, after the first transition, (b) The result at r=352, after the second transition. The idea behind the
relabeling algorithm is to weaken the dependence on the specific 0.5-threshold used in the definition of the typical cut. It
is therefore suitable for boundary points, which are left unlabeled due to the competition between two or more different
clusters. It is not suitable for “unstructured background” as exists here, where it is better to leave the isolated points
unlabeled.

the overall picture remains unchanged as long as r <352 (Figure 2.4e). The peak at r=352 signals

the next significant change, giving the partition shown in Figure 2.4f.

The meaningful partitions are reported by the procedure STAGE-2 when its parameter δ is set

to 0.1 (Figure 2.4b shows that our method is not very sensitive to the exact value). Figure 2.5

shows the results of applying the relabeling option (line (*) in the pseudo-code describing STAGE-2

procedure). This option is not suitable here, since when “unstructured background” exists, it is

usually preferable to leave isolated clusters unlabeled. We show these results for pedagogical reasons

only.

For comparison, we apply to the same data exactly (after identical preprocessing) a few other

methods. The results with two spectral methods are shown in Figure 2.6(a,b); clearly these methods

fail here, while our algorithm produces good results.

Our algorithm generates a few good partitions among the N hierarchically generated partitions,

and automatically chooses the best ones. To illustrate that generating good partitions is not trivial,

we also tested the deterministic single linkage algorithm, which is a deterministic version of our

algorithm. This algorithm gives a single hierarchy of N partitions, while in our method we average

over M stochastically generated hierarchies. If we try to select good solutions among the N

partitions that are generated by the deterministic single linkage, we find that this hierarchy does

not contain the desired solutions. No matter what stopping criterion is used, whether it is a large

change of T (r) or the selected weight or anything else, the single linkage algorithm cannot return
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(a) (b) (c)

Figure 2.6: The results of other algorithms applied to the data of Figure 2.4. The same preprocessing and exponential
transformation from distances to weights was used (see text). (a) The best normalized cut [127] partition. (b) The
result obtained by the factorization method [109]. (c) Deterministic single linkage. Unlike our randomized algorithm, the
deterministic single linkage algorithm is sensitive to “bridges” that connect large clusters. Here, the procedure is halted
manually when 3 large clusters exists, and just before two of them merge together. The desired structure is already
irrevocably missing.

the desired solutions (see Figure 2.6c).

The spiral arrangement of points and the added noise in this example were chosen in order to

emphasize a few advantages of our method. First, our algorithm does not exploit prior knowledge to

model the data distribution, hence arbitrary cluster shapes can be handled. This is in contrast with

parameter estimation methods, that usually assume Gaussian distributions. Second, our algorithm

is robust to noise. This is in contrast with nearest neighbor methods such as single linkage, which

are sensitive to “bridges” connecting large clusters. Third, though our algorithm is not given the

desired number of clusters, it finds the desired natural partitions. Moreover, these partitions are

not found by recursive divisions into two parts, the method employs by most other hierarchical

methods, hence we have a natural possibility to leave problematic points unclassified.

2.4 Complexity

The detailed complexity analysis is postponed to Section 2.7, where we describe our efficient im-

plementation. The efficient version drastically decreases the number of estimated variables (pr
ij)

from N3 to |E|, which is O(N) for sparse graphs and N 2 for complete graphs. Moreover, it will be

shown there that one graph contraction (one iteration of the external loop in STAGE-1, Figure 2.1)

can be implemented in O(N log N) time for sparse graphs.

In this section we address the question of the desired sample size, denoted M . We show that
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M = O(log N/ε2) for an accuracy level ε, hence the overall complexity of STAGE-1 for a fixed

accuracy level is O(N log2 N) for sparse graphs. The efficient implementation of STAGE-2 takes

only O(N log N) time in this case (Section 2.7.3), making O(N log2 N) the overall sparse graph

complexity bound for our algorithm.

In practice, one may monitor the convergence of the estimated quantities during execution, and

terminate when a sufficient level of accuracy is obtained. However, to determine the asymptotic

complexity of the algorithm an estimate of M is required. Our goal is to determine a lower bound on

M which guarantees, with a sufficient level of certainty, a sufficient amount of accuracy. We denote

by pr
ij the correct pairing probabilities, which are obtained at the limit of infinite M . We define

an accuracy parameter ε and an uncertainty parameter δ, and require our empirical estimations to

deviate from pr
ij by no more than ε, with probability 1-δ.

Since the lower bound which we will find for M will not depend on r, we pretend that r is fixed

to some arbitrary r0, which is omitted from the notations. Hence the notation pij stands for pr
ij

and r = r0. For simplicity, we also prefer to enumerate the edges of the graph instead of its nodes.

Hence the notation pe stands for the pairing probability of the nodes that are adjacent to edge

number e. Equivalently, pe is the probability that edge number e is an inner edge of a meta node

when r = r0. Procedure STAGE-1 of Section 2.2 counts the number of times (out of M) in which

an edge e is an inner edge of a meta node. If this is the situation Se times, then our empirical

estimation for pe is p̂e = Se/M .

Let Xi be the sequence of M Bernoulli trials such that Xi = 1 for a round when edge e is

an inner edge, and Xi = 0 otherwise. Thus Pr[Xi = 1] = pe and Pr[Xi = 0] = 1 − pe. Let

p̂e = (
∑

Xi)/M be our empirical estimation. The Hoeffding-Chernoff bound [74] implies that for

0 ≤ ε ≤ 1:

Pr[ |p̂e − pe| > ε ] ≤ 2e−2Mε2

Thus we have a bound on the probability of making a too large error in estimating pe for one edge.

But there are |E| edges in the graph, and we need to ensure that we do not make a large error for

too many of them. We thus use the union bound with our certainty parameter δ:

Pr[ ∃e |p̂e − pe| > ε ] ≤
∑

e

Pr[ |p̂e − pe| > ε ] <

|E| · 2e−2Mε2 < δ
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Which results in

M > 0.35
log2 |E| − log2 δ + 1

ε2

The asymptotic dependence of the sample size on the number of nodes is therefore M =

O(log N), even for complete graphs where |E| = O(N 2). The efficient computation of the half

probability level (Section 2.7.1) introduces an additional error, since it involves an approximative

median computation. However, this affects the parameter ε but not the logarithmic dependence on

the number of nodes.

2.5 Robustness

Three aspects of robustness are discussed below. Section 2.5.1 considers the external parameters

of the algorithm, and discusses the sensitivity of the algorithm to their values. Sections 2.5.2

demonstrates robustness with respect to data perturbation. Section 2.5.3 shows that our method,

which finds an average solution, is robust with respect to the clustering hypothesis.

2.5.1 External parameters

It is mostly the preprocessing stage, which constructs the weighted graph G, that depends on

external parameters. These parameters are related to the definition of similarity (which is task

dependent), and to the transformation from perceptual similarity to edge weight. We consider

them in more details below.

The main part of the algorithm, STAGE-1, depends only on the accuracy parameter, which

affects only the number of iterations M . Hence no parameter tuning is required at this stage. The

second part, STAGE-2, involves the parameter δ that determines whether a change in the function

T (r) is significant. Our examples throughout this work always show the complete graph of ∆T (r),

demonstrating that significant changes are pronounced and easy to recognize. The minimal cluster

size of interest, if it is known, is another parameter which may be used by STAGE-2. Only the

interpretation of the results depends on this parameter, thus reflecting prior information. For

example, in Figure 2.4, had we used a minimal size parameter larger than 10, the small cluster at

the center would not have been shown, and its members would have been left unlabeled.

We now investigate the preprocessing stage, which defines the weights wij of the graph edges.

Given a dissimilarity measure dij between stimuli i and j, we define wij = exp(−d2
ij/a

2). Here a is
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Figure 2.7: Robustness with respect to the local scale parameter. The local scale (a) is defined as the average distance
to the n-th nearest neighbor, and it determines the decay rate of the weights wij . We repeat the experiment with n=5,
10, 25 and 100. Partitions that corresponds to the second peak are shown for each case. The sample size (the parameter
M of STAGE-1) was set to 100.

a decay parameter which reflects some suitable local scale, and it needs to be tuned. Sometimes the

dissimilarity between stimuli is measured along different dimensions, like in an image segmentation

task where dissimilarity between pixels is a function of their spatial proximity and relative bright-

ness. In this case a different local scale parameter is defined for every dimension µ of similarity,

namely:

wij =
∏

µ

exp(−d(µ)2ij/a(µ)2) (2.2)

Figure 2.7 extends the illustrative example of Section 2.3. We repeat the same experiment with

different local scale values, choosing a to be the average distance to the n-th nearest neighbor,

setting n=5, 10, 25, 100. The larger n is, the slower is the decay rate of the weights wij . Only

the 50,000 edges with largest weights have been kept, and the rest were discarded1. Note that the

ranking of the edges according to their weights does not depend on n, hence we keep the same

50,000 edges in each case. Thus the graph topology is kept unchanged while the weight decay rate

is varied. We conclude that the parameter n in this example can be varied by almost an order of

magnitude before the local structure is lost.

The elimination of small weight edges is used to increase efficiency. We investigate next the

sensitivity to the elimination process, using a fixed local scale (n=10) and a variable threshold

1The analysis of the complete graph with n=10 produces the same results, as we have reported in [36]. The
analysis of a complete graph with uniform weights follows in Section 2.5.3.
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Figure 2.8: Levels of thresholding. An edge whose weight wij is smaller than a parameter θ is discarded from the graph,
in order to increase computational efficiency. We usually use θ '0.01, which is one percent of the weight range. Here we
show the results obtained after more drastic edge elimination, using θ =0.1 and 0.5. Under these conditions the number
of remaining edges is 25331 and 8589 (out of 1999000, the original number of edges in the complete graph).

θ, where edges with wij < θ are discarded. In the experiment shown above (Figure 2.7, second

column), the most significant 50000 edges are kept, and this corresponds with threshold θ=0.00625.

Our earlier experiments show that this result in not sensitive to the exact value of θ, as long as it

remains small: see [36] for our results on the same data using the complete graph (θ=0), and the

results reported in Section 2.3 above (using θ =0.01).

For completeness we also experiment with relatively high values of θ =0.1 and 0.5, which are

not reasonable for real applications (only 25331 and 8589 edges are left, respectively). While the

results remain good even for θ=0.1 (Figure 2.8), for θ=0.5 too much information is lost, and the

algorithm fails to find global structure.

We note that weight thresholding is not the only possible way to reduce the number of edges and

obtain a sparse graph. In some applications, like image segmentation, the definition of neighborhood

is natural and can be used; only nodes within such a neighborhood can have a viable edge to the

reference node. Spatial neighborhoods are combined with random selection of viable neighbors in

[127]. Mutual neighborhoods [10, 151] are another alternative, where an edge (i, j) is kept only if

node j is one of the n-th nearest neighbors of node i and vice versa, for some chosen parameter n.

2.5.2 Data perturbation

Consider two statistical sources of points in the Euclidean plane. Each source generates points at

a distance r from the origin, where r is a random variable with mean r (1) and r(2) for the first

and the second sources, respectively. The combined set of generated points thus appears as two

concentric circles in the plane, and the task of a clustering algorithm is to partition a given set of

points into the two distinct circles.
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Figure 2.9: Robustness under data perturbation. The control parameter η defines the spread of the points, or the
“width” of each circle. Results for η=0.7 and 0.9 are shown in the upper part. The factorization algorithm fails for both,
the normalized cut algorithm fails for the the larger noise level, while our algorithm always finds the desired structure.
For the spectral methods we show the entries of the relevant eigenvector next to the partition found. The magnitude of
the entries are plotted versus their serial index. These methods seek a threshold which separates between small and large
entries. The color and the symbol used for the eigenvector entries corresponds with those used in the two dimensional
plot. See text for further discussion. The bottom part of the figure shows that the factorization algorithm succeeds to find
the structure where the noise level is very low (η=0.1), although even then the possibility to automatically find the correct
threshold is questionable; note that this method already fails for η=0.2 (not shown).
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Without prior knowledge on the nature of the sources it is not known that polar representation is

advantageous, and algorithms which are based on moments estimation, like the k-means algorithm,

are likely to fail. Spectral graph methods may find the desired partition, since they exploit pairwise

information. In this section we compare the robustness of our algorithm with two spectral methods,

and show that our algorithm is more robust under data perturbation.

In our experiment we define the following two sources. Let x ∼ N (0, 1) be a random normal

variable with zero mean and unit variance, and let η ∈ R be our control parameter. Each source

generates points which are evenly spaced in their θ coordinate, while the radius coordinate is a

random variable generated by 1.5 + 0.2ηx for the first source, and 0.7 + 0.1ηx for the second.

We generate a set of 500 points, 400 from the first source and 100 from the second. The pair-

wise Euclidean distances dij are computed, and transformed into similarity weights by our usual

transformation, namely, wij = exp(−d2
ij/a

2), where a is the average distance to the 10-th nearest

neighbor. The 15,000 edges having maximal weights are kept, while the rest are discarded (this

corresponds with a weight threshold of about 10−5). The obtained weighted graph is fed into our

clustering algorithm, as well as to two spectral algorithms (the normalized cut algorithm [127] and

the factorization algorithm [109]).

The results are shown in Figure 2.9, for two noise levels (η=0.7 and 0.9). In the first row we

show our results; the impulse graphs of ∆T (r) and the partitions which correspond with the highest

peaks. In the second row we show the results of the normalized cut algorithm, and in the third row

the results of the factorization algorithm. These spectral methods employ the computation of the

second and first eigenvector of the similarity matrix (or some normalized version of it) respectively,

and they split the data by thresholding the entries of this vector. The method is useful if a salient

threshold exist, as in Figure 2.9 - second row on the left2. We find that there is no salient threshold

for the vector computed by the factorization method, even when the noise level is very low (bottom

of Figure 2.9). The vector computed by the normalized cut algorithm contains values which can

be easily grouped when the noise level is η=0.7, but for slightly larger noise the values form a

continuum.

2There are at most N − 1 different choices for the threshold value, as the N entries of the eigenvector are real
numbers, and the same partition into two sets is obtained when the threshold is varied in the interval between
subsequent values. For the normalized cut algorithm, where a cost function is defined, we exhaustively check each
one of the different partitions, and select the one having lowest cost. With the factorization algorithm this cannot be
done, since no cost function is defined, and we select the threshold by inspection.
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2.5.3 False structure

A clustering algorithm can be viewed as a search algorithm in some hypothesis space, where a

hypothesis is a feasible partition. The algorithm may define a scalar functional over this space,

seeking its optimum, or it may search heuristically like the agglomerative methods. In both of these

cases the search ends with a single solution - some point in the hypothesis space. The problem with

a single point solution, even when it obtains the global optimum of the problem, is that it does not

take into account the notion of support. By the support of a specific partition we vaguely refer to

the total quality weight of other partitions which are “similar” to the chosen one.

Some notion of support is captured by soft clustering algorithms, usually inspired by models

from statistical mechanics. Instead of a single point solution, these algorithms look for a distribution

over the whole hypothesis space, and under this distribution average properties are computed (like

the probability that a certain point belongs to a certain cluster, or the probability that two points

are in the same cluster). The sharpness of the distribution is controlled by an external parameter,

called temperature.

Our algorithm follows the same lines. We induce a probability distribution over all r-way

cuts, and compute pairing probabilities pr
ij under the induced distribution. To show that we gain

robustness, we use an example of unstructured data. This is the extreme case where single point

(zero temperature) algorithms tend to impose structure on the data rather than detect it (or its

absence). They lack the information that the partition with best quality is not supported by similar

high quality partitions. On the contrary, other partitions which degrade only slightly in quality,

may divide the data in a very different way.

Our example consists of a complete graph over 100 vertices. Every edge in the graph is assigned

the weight 1 + x, where x is uniformly distributed in [-0.1, 0.1]. Hence all points are about equally

similar to each other, and no structure is to be found. Indeed, Figure 2.10 shows that our algorithm

finds the two possible interpretations: either all the points are at one cluster, or they are all isolated.

For comparison, we apply deterministic agglomeration to the same data, Figure 2.11. For every

number of clusters between 1 and N a deterministic agglomeration suggests a single solution. To

conclude that there is no real structure in the data, the resulting dendrogram must be validated

using a statistical hypothesis testing procedure [65], which is known to be a difficult task. Fig-

ure 2.11 shows that the power of our algorithm does not lie in the heuristic ∆T (r) criterion, but

33



0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

Figure 2.10: No structure example. A complete graph over 100 nodes is considered, with weights that are uniformly
distributed between 0.9 and 1.1. Left: the graph of ∆T (r) shows a transition from a single cluster at low r values to N
clusters at high r values. The “transition width” is ∆r = 3. Right: the size of the largest cluster found (the number of
nodes in the largest component of the typical cut) as a function of r. The graph shows a sharp decrease from the value
100 (all points in one cluster) to the value 1 (all points isolated).
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Figure 2.11: Deterministic agglomeration applied to the same data used in Figure 2.10. By inspection, the dendrograms
do not suggest a meaningful partition of the data, but a general validation criterion is hard to find. (a) Single linkage
result, (b) Our ∆T (r) heuristic applied on the single linkage hierarchy of partitions, (c) Complete linkage result, and (d)
Our ∆T (r) heuristic applied on the complete linkage hierarchy. The spacing between endpoints in the dendrograms are
proportional to their level of merging, hence some lines cannot be noticed and appear as a single thicker line due to the
limited graph resolution.

in the averaging over the hypothesis space. The heuristic criterion is not useful when applied with

deterministic agglomeration, even in this extreme case example.

2.6 Cross Validation

Every meaningful level of clustering is identified by a large change in the function T (r) defined in

Equation (2.1), or equivalently by a pronounced peak in the graph of ∆T (r). Here we are concerned

with the inverse direction, whether a particular peak of ∆T (r) signals an interesting interpretation

of the data. In theory we would expect it to be the case, since false signals are expected to be

canceled out by averaging, as is demonstrated by the clique example above. However, if the data is

too sparse, a misleading interpretation can capture a sampling artifact rather than a true structure.
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Figure 2.12: Cross validation example. (a) The complete data, 500 points. (b) The subsample S1: the red crosses
are points which are in S1 ∩ S2. Black dots mark points which are in the complete data but not in S1. (c) The same
as b, for the second subsample, S2. (d-f) The graphs of ∆T (r) obtained for each case. The cross validation test aims
to distinguish between peaks that reflect true structure to peaks which are sample dependent. (g-i) The partitions which
correspond with the second highest peak. See Figure 2.9 for the first partition of the complete data.
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An example is given in Figure 2.12(a,d,g), where we show the partition that corresponds to the

second highest peak in the concentric circles example used before in Section 2.5.2. Evidently, the

outer cluster is broken into two parts due to accidental gaps.

Although the partition shown in Figure 2.12(g) is meaningful with respect to the given sample of

points, it is not robust with respect to sampling. Thus for another sample of points drawn from the

same statistical sources, it is not likely that a “similar” partition would emerge. Similarity between

partitions can be measured with respect to common pairs of points, which are contained in both

samples. For example, two points which are clustered together according to the first partition are

expected to be clustered together according to the second.

To formulate our cross validation scheme, which is inspired by [88, 25], let S be a sample of N

points and divide S into two random overlapping parts, S1 and S2, such that |S1| ' |S2| ' 2N/3

and |S1 ∩ S2| ' N/3. We apply the clustering algorithm independently to the subsets S1 and S2,

and we compare the pairing of points which belong to the intersection S1 ∩ S2. Our goal is to

validate the peaks of ∆T (r) obtained independently for the two subsamples. To this end, we start

with the two partitions that correspond to the highest peaks in both subsamples, and we test their

agreement with respect to common pairs of points. We continue to the next highest peaks, until

the agreement test fails3.

Recall that the function T (r) counts the number of edges which cross the typical cut4. Our

cross validation scheme check whether the same edges are counted in both cases. Let x
(r1)
ij be a

binary variable, indicating whether the edge (i, j) contributes to ∆T (r1) when it is computed for

the subsample S1. Similarly, let y
(r2)
ij indicate the same property with respect to S2. In addition,

let z
(r1),(r2)
ij be 1 if the edge is counted in both case (in the relevant r value each time), and 0

otherwise. We define X, Y and Z to be the sums of xij, yij and zij respectively, over all edges (i, j)

(of the complete graph) for which i, j ∈ S1 ∩ S2. Our cross validation statistic is:

ρ = min

(

Z

X
,
Z

Y

)

.

The difference between our scheme and classical validation methods is that we do not test

the null hypothesis of “no structure”. Instead, we test the hypothesis that two given partitions

are identical. The hypothesis is rejected if unusually small values of the statistic ρ are obtained.

3Note that a more careful peak correspondence scheme is required if there exist peaks with similar heights, which
may be interchanged.

4More accurately, T (r) counts only the crossing edges which incident on components of sufficient size.
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Unfortunately, as in the classical case, the distribution of the statistic under the null hypothesis

is unknown. Quantitative analysis calls for Monte Carlo simulations to estimate its distribution

under some noise model, but this is beyond our scope. Instead, we reject a pair of partitions if

ρ < 0.9ρ1, where ρ1 is the value obtained for the first (highest) pair of peaks.

Figure 2.12 shows the concentric circles example of Section 2.5.3 (with noise parameter η=0.7).

We evaluated the cross validation indices for the 5 largest peaks, and repeated the evaluation 15

times with different random subsampling of the data. One of the 15 trials is shown in the figure. The

average values found for ρ1 . . . ρ5 are the following (RMS in parenthesis): 0.99(0.02), 0.43(0.12),

0.10(0.12), 0.08(0.14), 0.01(0.03). According to our rule of thumb, we accept the first partition

and reject the others. See Section 4.3 for the application of our cross validation scheme to image

segmentation.

2.7 Efficient implementation

The efficient implementation of the algorithm is based on two observations and one assumption.

The assumption is that the typical cut is not sensitive to the pairing probability pr
ij of an edge

whose original weight wij is small. This assumption is not straightforward; although a zero weight

edge is never selected during contraction, its associated probability pr
ij will be nonzero for some r’s,

due to transitive relations via other nodes which put nodes i and j in the same meta node. Our

assumption is that since pr
ij in this case is determined solely by transitive relations, we can count

on them in the formation of connected components by STAGE-2. Thus, if very small weight edges

are discarded, the number of pairing probabilities to compute reduces from N 3 to N |E|.
Two important observations allow us to construct an efficient algorithm. First, the value of pr

ij

is never used; we only need to know whether it is smaller or larger than 1
2 . This observation is

used in Section 2.7.1 to further reduce the number of computed variables down to |E|. Second,

the contraction of a sparse graph can be implemented in O(|E| log |E|) time. This is shown in

Section 2.7.2. Finally, Section 2.7.3 shows how the typical cuts at successive values of r can be

computed incrementally.

2.7.1 Computing the level crossing of probability 0.5

We notice that pr
ij is monotonic in r by construction, with pN

ij =0 and p1
ij=1, since if i and j belong

to the same meta-node of G′
r for some r then they remain in the same meta-node for all subsequent
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(smaller) values of r, see procedure STAGE-1 in Section 2.2. Thus in order to know for each r

whether pr
ij is smaller or larger than 0.5, it is sufficient to know for every i-j pair which r satisfies

pr
ij = 0.5. We denote it rij. We then know that pr

ij < 0.5 if and only if r > rij.

The immediate consequence is that the number of variables to compute is reduced from N |E|
to |E|. Another consequence, which will be discussed in Section 2.7.3, is that the computation of

the typical cuts by STAGE-2 becomes incremental.

To see how rij is estimated we refer again to procedure STAGE-1, and we observe the nodes i

and j at the m-th iteration (m = 1 . . . M). As already discussed, there is a single r value, here

denoted rm, in which the edge (i, j) is contracted. Thus in the m-th iteration nodes i and j are at

different meta-nodes for every r > rm, and at the same meta-node for every r ≤ rm. It is easy to

see that the median r′ of the sequence {r1, r2 . . . rM} is the sample estimate for the level rij. This

is simply because at level r′ there are M/2 iterations in which nodes i and j belong to the same

meta-node, and M/2 iterations in which they do not.

The rest of this section describes how the median r ′ is approximated (for each i-j pair) without

storing the whole sequence of rm’s. Assume that the sequence has been somehow arranged in K

bins, such that every bin contains the same number of elements. We could then use the mean of

the middle bin as an estimator for the median. Note that K=1 would give the whole sequence

average as the estimator. A larger K (but still K �M) would give a better estimation, due to the

non symmetric distribution of the rm’s over the positive real axis.

The question is how to (approximately) arrange the sequence in such a K-bins histogram. We

use the following heuristic, inspired by an online K-means algorithm for non stationary data [47].

For every bin k (k = 1 . . . K) we store its running average ak, and the number nk of elements

accumulated in it. The two lists {a1 . . . aK} and {n1 . . . nK} together will be called below the

histogram associated with a certain edge. Suppose that the first m-1 values r1 . . . rm−1 were used

to create a histogram, and a new value rm is obtained at the m-th iteration. The histogram

is updated using the procedure INSERT described in Figure 2.13. The idea is to merge the two

adjacent bins which together include a minimal number of elements, and create a new bin which

contains just the new element. This procedure eliminates almost completely any dependence on

the first collected measurements. When the whole sequence has been accumulated, we find the

minimal k0 that satisfies
∑k0

k=1 nk > M/2, and we take ak0 to be the median estimator. For future

reference, the operation that returns ak0 is called MEDIAN.
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procedure INSERT:

input: a value rm and a histogram of m− 1 elements.

output: a histogram over m elements.

Find k such that nk + nk+1 is minimal.

Merge bins k and k + 1:
ak ← (nkak + nk+1ak+1)/(nk + nk+1)
nk ← nk + nk+1

Delete bin number k + 1.
Create a new bin, call it bin number l, with nl = 1, al = rm.

Locate the new bin (choose l) such that a1 . . . aK is kept ordered.

Figure 2.13: Updating an existing histogram with a new value.

Experimentally, our strategy is found to be successful in approximating the medians of test

distributions, which are not symmetric. It is also found to be insensitive to the prefix of the

supplied sequence.

2.7.2 Contraction of sparse graphs

The term “graph contraction” refers to a single path from an N -way cut to a 2-way cut. A single

graph contraction generates for every r (r=N ...1) a single sample of an r-way cut by repeating the

following three steps until 2 meta nodes remain:

• select edge (i, j) with probability proportional to wij .

• replace (meta) nodes i and j by a single meta node {ij}.

• let the set of edges incident on {ij} be the union of the sets of edges incident on i and j, but

remove self loops formed by edges originally connecting i to j.

In this section we propose a novel algorithm for the contraction of sparse graphs. Our algorithm

uses the building blocks of the classical union-find algorithm, which partitions a set of items into

equivalence classes. Accordingly, a name is assigned to each meta node, which for convenience is

the node number of one of its members. Two operations are defined:

• The UNION operation gets two meta nodes names, and assigns the name of the larger meta

node to the members of the smaller one.

• The FIND operation gets a node index, and returns the name of the meta node of which this

node is a member.
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Our algorithm is described by the pseudo-code in Figure 2.14, explained line by line below. For

completeness we have included in the code the outermost loop, which repeats the contraction M

times, and the procedures INSERT and MEDIAN discussed in the preceding section. Hence we present

here a complete new version of the procedure STAGE-1 introduced in Section 2.2.

procedure EFFICIENT-STAGE-1:

input: sparse graph G(V,E) with N nodes.

output: 0.5-probability level rij for each edge (i, j) ∈ E.

(01) Let H be an array of |E| histograms, one per edge.

(02) Let T be a binary tree whose leaves represent the edges.

(03) for m = 1 . . . M:

(04) INITIALIZE(T)
(05) ne← |E|
(06) r ← N
(07) while ne > 0 do: (the contraction loop)

(08) leaf ← SELECT-EDGE(T)
(09) u, v ← META-NODES-NAMES(leaf)
(10) L← CONNECTING-EDGES(u, v)
(11) ne← ne− |L|
(12) r ← r-1
(13) for each leaf ∈ L:
(14) T ← DISCARD-EDGE(leaf,T)
(15) H(leaf)← INSERT(r,H(leaf))
(16) end-loop

(17) end-loop

(18) end-loop

(19) for leaf = 1 . . . |E|:
(20) use lookup table to convert leaf into an i-j pair

(21) rij ← MEDIAN(H(leaf))
(22) end-loop

(23) return R = {(i, j, rij)}(i,j)∈E

Figure 2.14: Efficient implementation of the transformation from similarity weights to pairing probabilities.

Line 1:

The estimation of the 0.5-probability level uses a histogram data structure, as discussed in Sec-

tion 2.7.1. For every edge e ∈ E the assigned histogram is H(e).

Line 2:

T is a binary tree with |E| leaves. Each leaf represents an edge, and can be directly accessed by a
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leaf index. Both top-down and bottom-up traversals are supported (This tree supports the efficient

selection of edges).

Line 3:

Repeats the contraction M times, and collects the data for median estimation.

Line 4:

Initialization of the binary tree T . The procedure INITIALIZE assigns each leaf of T with the weight

of the corresponding edge, and each inner node of T with the sum of weights of its two children.

Line 5,6:

The variable ne keeps the number of edges which cross the current cut, hence initially it is set to

|E| (every node is a meta node of size 1). The level r is set to N (the number of parts in the current

cut).

Line 7:

The contraction loop implements the edge selection, the meta nodes unification, and the main-

tenance of the tree data structure. Since the number of meta nodes is reduced by one at each

iteration, the loop is executed no more than N -1 times.

Line 8:

Stochastic edge selection. The procedure SELECT-EDGE returns one of the leaves of T with prob-

ability proportional to its weight. The selection is implemented by constructing a stochastic path

from the root of T toward the selected leaf. At each inner node a coin is flipped in order to decide

whether the path continues to the left or to the right child, where the probability of selecting a

child is proportional to its weight. The procedure returns the index (leaf) of the chosen edge.

Line 9:

Identification. The procedure META-NODES-NAMES gets the index of the chosen edge, and finds which

two meta nodes u and v are connected by this edge. It uses a fixed lookup table to convert the edge

index (leaf) into a pair of indices i and j of nodes in the original graph. Using the FIND operation,

the meta nodes names are given by u=FIND(i) and v=FIND(j).

Line 10:

The task of the procedure CONNECTING-EDGES is twofold. It applies the UNION operation to merge

the selected meta nodes u and v, and in addition it returns a list of all the edges connecting them.

Each member in the returned list L is a leaf index, of an edge connecting u and v. The algorithm

for the constructing of the list L is described separately below, under the title “Complements and
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complexity analysis”.

Line 11,12:

The number of crossing edges (ne) and the number of meta nodes (r) are decreased, as a consequence

of the contraction.

Line 13:

Loop over all contracted edges. Each one of them has just became an inner edge of a meta node,

hence we need to prevent its re-selection, and to store the level r in which the contraction occurred.

Line 14:

Maintenance of the tree data structure. To prevent re-selection of a contracted edge the procedure

DISCARD-EDGE set its leaf weight to zero (remember that the leaves can be directly accessed by

their index). The procedure DISCARD-EDGE then follows the path from the leaf to the root of T ,

and subtracts the weight of the leaf from each node that is passed through.

Line 15:

Update the histogram of edge number leaf with its contraction level r in the m-th iteration. The

procedure INSERT is described in Figure 2.13.

Line 19–22:

Use the information accumulated in the histograms during the M graph contractions to estimate

the level of 0.5 probability for every edge. The conversion from leaf index to (i, j) notation at line

20 is included for consistency with the notation of Section 2.7.1, where the procedure MEDIAN is

described.

Complements and complexity analysis.

In the rest of this section we describe in more details the procedure CONNECTING-EDGES, and we

analyze the asymptotic complexity of our algorithm. For both objectives we must provide some

implementation details. An alternative implementation (which we have realized and used) is de-

scribed in the appendix. It seems to be better than the implementation described here, but its full

complexity analysis is currently beyond our reach.

Let us define the following mappings. The array names is a mapping from node indices to

meta nodes names, hence names(i) = u if node i belongs to meta node u. The array members is a

mapping from meta nodes names to lists of members, hence members(u) is a list of nodes belonging

to u. The array sizes is a mapping from meta nodes names to their sizes, hence sizes(u) = n if
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meta node u contains n nodes.

With these mappings, FIND(i) returns the value of names(i), and is clearly an O(1) operation.

On the other hand, assuming w.l.o.g that sizes(u) ≥ sizes(v), the operation UNION(u, v) takes

O(sizes(v)) time. Instead of describing it separately, we incorporate the union operation into the

procedure CONNECTING-EDGES and analyze them together. Figure 2.15 shows the implementation.

procedure CONNECTING-EDGES:

input: two meta nodes names u, v

output: list L of connecting edges (and modified mappings)

use mappings: names,members and sizes (see text).

(01) Let L be an empty list of edge indices.

(02) if sizes(u) < sizes(v) then

(03) call CONNECTING-EDGES(v, u) (exchange arguments)

(04) return

(05) end-if

(06) for each i ∈ members(v):
(07) for each {j, leaf} in the adjacency list of i:
(08) t← FIND(j)
(09) if t equals u then

(10) add the edge index leaf to L
(11) end-if

(12) end-loop

(13) names(i)← u (part of UNION)

(14) end-loop

(15) sizes(u)← sizes(u) + sizes(v)
(16) sizes(v)← 0
(17) members(u)← CONCATENATE(members(u),members(v))
(18) members(v)← NULL

(19) return L

Figure 2.15: Merging two meta nodes and finding all the edges which connect them.

In lines 2–5 we exchange the arguments u and v if u is smaller in size. Thus we can assume

in the rest of the code that sizes(v) ≤ sizes(u), and hence the loop at lines 6–14 is executed for

each member of the smaller meta node (v). Lines 7–12 constructs the list L of connecting edges

(see below), and lines 13, 15 and 17 implement the union operation. We note that for efficient

implementation of the list concatenation at line 17, it is desirable to keep pointers to the tails of
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the membership lists. Lines 16 and 18 are added for esthetics, as sizes(v) and members(v) are

never accessed again.

The section of the code which might appear nontrivial is the construction of the list L at lines

7–12. We assume that the graph G is stored in the form of adjacency lists. A member of the

adjacency list of node i has the form {j, leaf}, where j is a node adjacent to i, and leaf is the

index of the edge connecting them. The loop at line 7 queries all the edges which incident on nodes

in v, checking if their other vertex is in u (line 9). If this is the case, then the edge index is added

to the list.

Let us analyze the complexity of CONNECTING-EDGES. We are interested in sparse graphs, where

the maximal length of an adjacency list is a constant independent of N . In this case the inner loop

at lines 7–12 iterates a constant number of times, and can be ignored in the analysis of asymptotic

complexity. However, ignoring this part we obtain a usual implementation of UNION, which is known

to be O(N log N) for the entire contraction loop. We repeat the argument below.

Line 13 moves the members of v to the new meta node u. The time spent by a single union

operation is therefore proportional to the number of nodes which are moved to a new meta node,

namely O(sizes(v)). Since we always move the nodes of the smaller meta node, it turns out that

whenever a node is moved to a new meta node, its new meta node’s size is at least twice as large as

the former one. As a consequence, no node can be moved more than log N times during the N -1

union operations which contract the graph. In other words, the total amount of time spent by all

union operation during the contraction loop (line 7, Figure 2.14) is O(N log N).

To complete the complexity analysis we refer again to the pseudo-code in Figure 2.14. The call

to INITIALIZE at line 4 costs O(|E|) time. Every call to SELECT-EDGE at line 8 costs O(log |E|)
time, and every call to META-NODES-NAMES at line 9 is of complexity O(1). These bounds accumulate

to O(N log |E|) and O(N) respectively during one execution of the contraction loop (line 7). The

overall complexity of CONNECTING-EDGES at line 10 has been shown above to be O(N log N) during

one graph contraction. The procedures DISCARD-EDGE and INSERT at lines 14 and 15 are executed

exactly once for every graph edge during one execution of the contraction loop. Since the complexity

of DISCARD-EDGE is O(log |E|) and that of INSERT is O(1), the total amount of time spent by them

during one graph contraction is O(|E| log |E|) and O(|E|) respectively. Finally, the computation

of all medians by the loop at line 19 is O(|E|). Summarizing these bounds and using |E| = O(N)

for sparse graphs, we conclude that a single graph contraction can be implemented in O(N log N)
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time. This complexity multiplied by M (line 3) is the total complexity of computing all the 0.5-

probability levels. Using the result of Section 2.4, the overall complexity of EFFICIENT-STAGE-1 is

O(N log2 N) time and O(N) space.

2.7.3 The second stage

In Section 2.7.1 we claimed that the monotonic dependence of pr
ij on r leads to an incremental

and efficient computation of the typical cuts. Here we show how this is done. The basic idea is

to sort the graph edges in decreasing order of rij (the level of 0.5 probability). To find the typical

cut at level r we mark all edges for which rij ≥ r, then we find connected components of marked

edges. Proceeding from level r to level r−1, marked edges can only be added due to the monotonic

dependence of pr
ij on r. Hence the partition at level r − 1 can be found incrementally from the

partition at level r.

procedure EFFICIENT-STAGE-2:

input: set R of triplets {i, j, rij} rij is the 0.5-probability level of edge (i, j)

output: hierarchy of a few selected partitions.

(01) sort R in decreasing order of rij

(02) set {i, j, rij} to be the first triplet of R
(03) initialize names,members,sizes to N clusters of size 1

(04) for r = N . . . 1:
(05) ∆T (r)← 0
(06) while rij = r do:

(07) u← FIND(i)
(08) v ← FIND(j)
(09) ∆T (r)← ∆T (r) + 2 · sizes(u) · sizes(v)/N(N − 1)
(10) UNION(u, v)
(11) set {i, j, rij} to be the next triplet of R
(12) end-loop

(13) if ∆T (r) > δ then

(14) store current partition (names,members,sizes)
(15) end-if

(16) end-loop

(17) optional: relabel small parts of stored partitions (see text)

(18) return stored partitions

Figure 2.16: Efficient implementation of the second stage.

Figure 2.16 summarizes our efficient STAGE-2 algorithm. The list R is sorted at line 1 using
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quicksort, which takes O(|E| log |E|) time on average. The data structures names,members and

sizes at line 3 are described in the previous section. They are initialized in accordance with level

r = N , where every pr
ij=0, and the typical cut is necessarily a partition to N clusters of size 1. The

name which is given to every cluster is its node number.

The loop at lines 4–16 is a classical UNION-FIND algorithm for a dynamic graph, combined with

incremental computation of ∆T (r), as defined in Equation (2.1). The complexity of the loop is

O(N log N), as discussed in Section 2.7.2. We note that the alternative implementation of UNION

and FIND discussed in the appendix can be used here as well.

Line 17 is an optional heuristic to handle small, perhaps not interesting clusters. As discussed

in Section 2.2, boundary and background points typically form small independent clusters at levels

which are considered meaningful. In a top-down view, inspecting the obtained partitions from the

smallest r value to the largest, we observe that beside the splitting that a cluster can undergo

into two large clusters (a meaningful transition), it may as well gradually loose its boundary, or

abruptly crash into small pieces. This happens when the certainty of labeling is too small, namely

the values pr
ij of the connecting edges have dropped below 1

2 . Hence there is a tradeoff: one may

keep the uncertain points connected, at the cost of reduced certainty.

Our relabeling algorithm assumes that a minimal size of interest for a cluster is known, denoted

S. After the typical cut at level r is found, we sustain the clusters whose sizes are at least S, and

relabel the others. For this we scan the sorted list R to its end, and apply for every triplet {i, j, r ij}
the operation UNION(FIND(i),FIND(j)) if and only if the three following conditions hold:

• Either i or j (or both) belong to a small cluster (size < S);

• Nodes i and j were members of the same cluster at the former partition (with smaller r);

• Consistency is obeyed, namely when all the triplets having the same rij value are added at

once, no node is doubly relabeled by being connected to more than one sustained cluster.

2.8 Probability bounds and relation to other work

The contraction scheme was originally invented as the core of a probabilistic minimal cut algorithm,

which finds the capacity of the minimal cut with high probability by repeating the contraction

procedure a sufficient number of times [72]. We quote here some results concerning the contraction

algorithm, and the reader is referred to [72] for details. The probability of the algorithm to return
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a particular minimum 2-way cut is at least (2
N ) = Ω(N−2), hence repeating it O(N 2 log N) times

gives a high probability of finding the minimum value in some trial. This large number of trials

is required to guarantee that the minimum is obtained. In our case we are not interested in the

minimal capacity value, but rather in the pairing probabilities, which are average quantities. We

have shown in Section 2.4 that in this case a sample of size O((log N)/ε2) is sufficient for an accuracy

level ε with high probability.

A related yet “opposite” situation occurs in network reliability problems, where every edge has

probability p to fail, and the probability P (p) of a network disconnection is sought. Thus it is

needed to average over all possible cuts, and the most obvious way to estimate P (p) is through

Monte-Carlo simulations. Interestingly enough, it was found [73] that O((log N)/ε2P (p)) trials

suffice to estimate P (p) to within 1± ε with high probability.

Every cut value has a certain probability to be returned by the contraction algorithm, but the

functional form of the induced probability distribution is unfortunately not known. There is a

lower bound, however, on the probability that an α-minimal cut is returned (a cut whose capacity

is at most α times the minimum). The probability to contract a crossing edge of a particular α-

minimal cut is asymptotically less than N−2α by the time that r = b2αc meta nodes remain. Note

that contracting a crossing edge of a cut prevents it from being returned by the algorithm, hence

an upper bound on the probability to contract a crossing edge is a lower bound on the survival

probability of the cut. The generalization to r-way cuts yields the probability Ω(N −2(r−1)) that a

particular minimum r-way cut is returned (if contraction is stopped when r meta nodes remain).

We now wish to put the contraction algorithm in the context of agglomerative clustering. Ag-

glomerative clustering is a family of algorithms which partition the data using a greedy local

merging criterion. Thus an agglomerative procedure starts with the trivial partition of N points

into N clusters of size one, and proceeds with N − 1 merging steps, where at each step two clusters

are selected and merged together. The selection is based on a local definition of clusters similarity,

and at each step the two clusters which are most similar are chosen and merged. In particular, the

single linkage algorithm defines clusters similarity as the maximal pairwise similarity between their

members [26, 65, 85].

The resemblance between the stochastic contraction algorithm and the single linkage algorithm

is evident, one being the randomized version of the second. Specifically, stochastic contraction

selects an edge with probability proportional to its weight, while single linkage selects the edge
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with maximal weight. The connection is interesting, since single linkage is a purely local method,

which does not attempt to optimize a global criterion. Although its output can be characterized

globally as constructing a minimal spanning tree, it is not a clustering algorithm of the type that

minimizes similarities between clusters and/or maximizes similarities within clusters. On the other

hand, the stochastic contraction is designed to generate with high probability low capacity cuts,

and cut capacity is a global measure for clustering quality. To complete the picture we note that

a deterministic contraction scheme for minimum cut computation is proposed in [99].

Using the cut capacity as a global quality measure for clustering is a well known approach

(e.g., [69, 152]). One of its problems is that the minimal cut tends to break small parts from the

graph. Consequently [127] proposed another cost function, called normalized cut, which introduced

a penalty for non balanced partitions. Our approach is different. We do not seek the global optimum

of a certain cost function. Instead, we are interested in “averaging” the partitions with weights

proportional to their quality (measured by capacity). In this sense our approach is similar to

clustering methods inspired by statistical mechanics [40, 57, 113] and in particular to the granular

magnet model of [10, 151], also called the super paramagnetic clustering (SPC) algorithm. In the

rest of this section we discuss the relationship between our method and SPC. Terms of statistical

mechanics are briefly explained, for readers who are not familiar with the subject.

A basic concept in models of statistical mechanics is that of a configuration space. A config-

uration S is a microscopic description of the state of the system. For example, it might specify

the location and velocity of every atom. Two scalar functions are defined over the configuration

space: an energy function E(S), and a probability distribution P(S). To fix the system temperature

to a value T means to set the energy expectation 〈E(S)〉 to some fixed value. Many probability

distributions can satisfy this constraint, but the one which appears in nature is Gibbs distribu-

tion: P(S) ∼ exp(−E(S)/T ). Among all possible distributions which fix 〈E(S)〉 to the same value,

Gibbs distribution has the maximal entropy. Entropy is a measure for the flatness of a distribu-

tion, with the uniform distribution having maximal entropy. Hence Gibbs distribution satisfies the

temperature constraint while being least committed to a specific configuration [66].

The granular magnet model maps the clustering problem to a problem in statistical mechanics

as follows. Every labeling (or coloring) of nodes is a configuration S. There are q labels available,

and each node can be labeled independently by each one of them, hence there are qN possible

configurations. It is convenient for our analogy to identify each configuration with a cut, where

48



connected nodes having the same label are at one side of the cut5. In this terminology the energy

E(S) of a configuration, as defined by the granular magnet model, is precisely the capacity of

the corresponding cut. According to the Gibbs distribution, low capacity cuts are therefore more

probable.

The SPC algorithm proceeds by estimating, at a fixed temperature T , the probability pT
ij that

nodes i and j have the same label. Since the model was originally described using “spin states”

instead of node labels, the probability pT
ij was referred as the “spin-spin correlation function”. The

analogy with our pr
ij values is evident, although not complete (see below). To find the clusters at

a temperature T , the graph is disconnected by eliminating the edges having pT
ij < 0.5. We have

adopted the same heuristic in our method.

In the magnetic model the control parameter is the temperature T , which sharpen or flatten

the probability distribution and controls the expected capacity. For each temperature value, the

probabilities pTij are computed over all r-way cuts. In our method, the control parameter is r, and

the probabilities pr
ij are computed over cuts which have exactly r sides. Both choices are somewhat

arbitrary, although using Gibbs distribution is appealing from the point of view of maximal entropy

inference. This, however, comes with an additional computational cost, to be examined below. Note

also that while r is a discrete parameter T is a continuous one, and finding the temperatures of

interest is a search over a continuous domain.

Both methods involve stochastic sampling of cuts in order to estimate the pairing probabilities,

either pr
ij or pTij. The sampling tool in our method is the contraction algorithm, and in SPC it is

the method known as Swendsen-Wang (SW) algorithm [144]. There are few important differences

between the two. First, the SW algorithm generates cuts at a fixed temperature. Hence the

sampling process, which is the computation bottleneck, needs to be repeated for every temperature

value. On the other hand, the contraction algorithm is used to estimates pr
ij for every 1 ≤ r ≤ N at

once. Second, the required sample size is much smaller in our method. In fact, it is not known what

sample size guarantees a certain accuracy level in the SW framework, although experimentally it

is known to be polynomial in N . In our framework O(log N) samples suffice to guarantee specific

degree of accuracy. The reason for the larger sample size required by SW might be that the SW

sampler is Markovian, and subsequent samples which are generated are not independent. The power

of SW is that these dependencies are weak, and this is probably the reason why after generating

5Note that this mapping is many to one, since a cut side can take one of q labels.
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a polynomial number of samples the process succeeds in converging to the stationary distribution

over the configuration space (a property called “rapid mixing”). In comparison, cuts which are

generated by the contraction algorithm at a fixed r level are completely independent, a fact which

was taken into account in bounding the sample size (Section 2.4), and which seems to speed up the

computation. In addition, the independence between samples in our algorithm allows for a trivial

parallel implementation.

One of the important aspects of our work is the link it provides between clustering approaches

which seemed to be very different. We have presented above the SPC algorithm in terms of graph

cuts, but originally it was proposed on the basis of an analogy to a system of microscopic magnets

(spins). In spite of being very attractive in terms of performances, the relevance of the physical

analog remained questionable. The relations between SPC, the min-cut algorithm and single linkage

are revealed by our work.
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Chapter 3

Dissimilarity between Shapes

One of our main goals in this work is to organize a set of images in shape categories. Such

an organization is useful for image retrieval, due to several reasons: queries are better addressed

on the basis of global organization than on the basis of pairwise (nearest neighbor) information;

the processing may be limited to a fraction of a large database relying on prior organization; and

semi automatic retrieval may use cluster representatives to help the user navigating in the image

collection.

We focus on images of objects, and on organization by shape. We ignore other dimensions

of similarity (e.g., color, motion, context). In this chapter we propose a dissimilarity measure

for shapes, that are the boundaries of objects in the scene. The method relies on a novel curve

matching algorithm, which establishes correspondence between key feature points extracted on the

boundaries. Our algorithm is flexible, designed to match curves under substantial deformations

and arbitrary large scaling and rigid transformations. A syntactic representation is constructed for

both curves, and an edit transformation which maps one curve to the other is found using dynamic

programming.

We start in Section 3.1 with background on the curve matching problem in vision. Our matching

algorithm is outlined in Section 3.2, where we also present extensive experiments, examining partial

occlusion, viewpoint variation, articulation, and class matching (where silhouettes of similar objects

are matched). We explain how the matching of feature points supports a definition of shape

dissimilarity, and we compare our results to other. The details of the algorithm follow in Section 3.3.

A comparison between our syntactic operations and similar operations from the literature can be

found in Appendix B.
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3.1 Curve matching: problem and related work

Contour matching is an important problem in computer vision with a variety of applications,

including model based recognition, depth from stereo and tracking. In these applications the two

matched curves are usually very similar. For example, a typical application of curve matching to

model based recognition would be to decide whether a model curve and an image curve are the

same, up to some scaling or 2D rigid transformation and some permitted level of noise.

In this work we are primarily interested in the case where the similarity between the two curves

is weak. The organization of silhouettes into shape categories (like tools, cars, etc.) necessitates

flexible matching, which can support graded similarity estimation.

While our approach focuses on the silhouette boundary, a dual approach is based on its medial

axis. Specifically, a medial axis together with singularities labeling form a shock graph repre-

sentation, and matching shock graphs is an isomorphism problem. The methods for solving it

includes semi-definite programming [129], replicator dynamics [105], graduated assignment [122]

and syntactic graph matching [134]. In some of these cases the matching is only structural, while

in others two levels of matching (structural and metrical) are supported. The methods based on

shock graphs succeed to define a graded similarity measure, and may be combined with suitable

database indexing [128]. In this work we show, however, that our results are of the same quality in

spite of using boundary representation, which is inherently less sensitive to occlusion, and which

does not involve the NP-complete graph isomorphism problem.

To put our method in the context of existing work on boundary matching, we first distinguish

between dense matching and feature matching. Dense matching is usually formulated as a param-

eterization problem, with some cost function to be minimized. The cost might be defined as the

“elastic energy” needed to transform one curve to the other [6, 14, 18], but other alternatives exist

[3, 38, 22, 92]. The main drawbacks of these methods are their high computational complexity

(which is reduced significantly if only key points are matched), and the fact that they are usually

not invariant under both 2D rotation and scaling. In addition, the computation of elastic energy

(which is defined in terms of curvature) is scale dependent, and requires accurate evaluation of

second order derivatives.

Feature matching methods may be divided into three groups: proximity matching, spread

primitive matching, and syntactic matching. The idea behind proximity matching methods is to
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search for the best matching while permitting the rotation, translation and scaling (to be called

alignment transformation) of each curve, such that the distances between matched key points are

minimized [5, 62, 70, 140]. Consequently these methods are rather slow; moreover, if scaling is

permitted an erroneous shrinking of one feature set may result, followed by the matching of the

entire set with a small number of features from the other set. One may avoid these problems

by excluding many-to-one matches and by using the points order, but then the method becomes

syntactic (see below). Moreover, we illustrate in section 3.3.7 why proximity matching is not

adequate for weakly similar curves. As an alternative to the alignment transformation, features

may be mapped to an intrinsic invariant coordinate frame [90, 118, 120]; the drawback of this

approach is that it is global, as the entire curve is needed to correctly compute the mapping.

Features can be used to divide the curves into shape elements, or primitives. If a single curve can

be decomposed into shape primitives, the matching algorithm should be constrained to preserve

their order. But in the absence of any ordering information (like in stereo matching of many

small fragments of curves), the matching algorithm may be called “spread primitive matching”.

In this category we find algorithms that seek isomorphism between attributed relational graphs

[8, 86, 16], and algorithms that look for the largest set of mutually compatible matches. Here,

compatibility means an agreement on the induced coordinate transformation, and a few techniques

exist to find the largest set of mutually compatible matches (e.g., clustering in Hough space [131],

geometrical hashing [84], and clique finding in an association graph [11, 20, 58, 81]). Note that

at the application level, finding isomorphism between attributed relational graphs is the same

problem as finding isomorphism between shock graphs (discussed above), although in the last case

an additional constraint may apply [105].

For our purpose of matching complex outlines, it is advantageous to use the natural order of

primitives. This results in a great simplification, and there is no need to solve the difficult graph

isomorphism problem. Moreover, the relations encoded by the attributed relational graphs need to

be invariant with respect to 2D image transformations, and as a result they are usually non local.

A syntactical representation of a curve is an ordered list of shape elements, having attributes

like length, orientation, bending angle etc. Hence, many syntactical matching methods are inspired

by efficient and well known string comparison algorithms, which use edit operations (substitution,

deletion and insertion) to transform one string to the other [143, 91, 46]. The vision problem is

different from the string matching problem in two major aspects, however: first, in vision invariance
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to certain geometrical transformations is desired; second, a resolution degradation (or smoothing)

may create a completely different list of elements in the syntactical representation.

There are no syntactic algorithms available which satisfactorily solve both of these problems.

If invariant attributes are used, the first problem is immediately addressed, but then the resolution

problem either remains unsolved [2, 43, 89] or may be addressed by constructing for each curve

a cascade of representations at different scales [4, 95, 139]. Moreover, invariant attributes are

either non-local (e.g., length that is measured in units of the total curve length), or they are non-

interruptible (see discussion in section 3.3.7). Using variant attributes is less efficient, but provides

the possibility to define a merge operator which can handle noise [111, 135, 136], and might be

useful (if correctly defined) in handling resolution change. However, the methods using variant

attributes could not ensure rotation and scale invariance.

3.2 Flexible syntactic curve matching: algorithm

In this section we present a local syntactic matching method which can cope with both occlusion

and irrelevant changes due to image transformation, while using variant attributes. These attributes

support a simple smoothing mechanism, hence we can handle true scale (resolution) changes. The

algorithm is outlined in Section 3.2.1, while the missing details are given in Section 3.3. We are

primarily concerned with the amount of flexibility that our method achieves, since we aim to apply

it to weakly similar curves. Section 3.2.2 shows extensive experiments with real images, where

excellent matching is obtained between weakly similar shapes. We demonstrate silhouette match-

ing under partial occlusion, under substantial change of viewpoint, and even when the occluding

contours describe different (but related) objects, like two different cars or mammals. Our method

is efficient and fast, taking only a few seconds to match two curves.

3.2.1 The proposed matching method

The occluding contours of objects are first extracted from the image and a syntactic representation

is constructed, whose primitives are line segments, and whose attributes are length and absolute

orientation. Our algorithm then uses a variant of the edit matching procedure combined with

heuristic search. Thus we define a novel similarity measure between primitives to assign cost to

each edit operation, a novel merge operation, and introduce penalty for interrupting a contour (in

addition to the regular deletion/insertion penalty).
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More specifically, let A and A′ be two syntactic representations of two contours; A = {a1, a2,-

. . . , aN} is a cyclically ordered list of N line segments, and A′ = {a′1, a′2, . . . , a′N ′} is another cyclic

list of N ′ segments.

Let ai be a segment of A and a′
j be a segment of A′. Matching these segments uniquely

determines the relative global rotation and scale (2D alignment transformation) between the curves.

We assume that the optimal alignment is well approximated by at least one of the NN ′ possible

selections of ai and a′j . In fact, we will discuss in Section 3.3.2 a method to prune many of them,

leaving us with a set Ψ ⊆ A×A′ of candidate global alignments, such that usually |Ψ| � NN ′.

A member {ai, a
′
j} of Ψ (abbreviated {i, j} for convenience) denotes a starting point for our

syntactic matching algorithm. The algorithm uses edit operations to extend the correspondence

between the remaining unmatched segments, preserving their cyclic order. Total cost is minimized

using dynamic programming, where the cost of a match between every two segments depends on

their attributes, as well as on the attributes of the initial chosen pair (ai and a′j). This implicitly

takes into account the global alignment operation. The various edit operations and their cost

functions are described in Section 3.3.3; the cost of the edit operations can be either negative or

positive.1

We are searching for the member {i, j} ∈ Ψ for which the extended correspondence list has

minimal edit cost. Brute force implementation of this search is computationally infeasible. The

syntactic matching process is therefore interlaced with heuristic search for the best initial pair in

Ψ. Namely, a single dynamic programming extension step is performed for the best candidate in Ψ

(possibly a different candidate in each extension matching step), while maintaining the lowest cost

achieved by any of the sequences. When no candidate in Ψ has the potential to achieve a lower

cost, the search is stopped (see below).

The pseudo-code in Figure 3.1 integrates the components of our matching algorithm into a

procedure which gets two syntactic representations and returns a segment correspondence and a

dissimilarity value. The arrays which support the dynamic programming are not referenced in this

pseudo-code, to increase its readability. We note that the procedure CURVE-MATCHING minimizes

1Negative cost can be interpreted as positive “gain” or “reward”. Every matching prefix has a total (accumulated)
cost, which should be as negative as possible. A prefix is never extended by a suffix with positive cost, since this
would increase the cost; hence partial matching is achieved by leaving the last segments unmatched. Note that if all
costs are negative then the minimal cost must be obtained by matching all the segments of the shorter sequence, and
if all costs are positive then the minimal cost is trivially obtained by leaving all segments unmatched. The average
cost value determines the asymptotic matching length for random sequences [23].
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procedure CURVE-MATCHING:

input: two curve representations A and A′.

output: correspondence between line segments and dissimilarity value.

Ψ, cost∗, {i∗, j∗} ← INITIALIZE(A,A′)

{i, j}, potential ← PICK-CANDIDATE(Ψ)

While cost∗ > potential
cost∗, {i∗, j∗} ← SYNTACTIC-STEP(A,A′,{i, j})
Ψ ← PREDICT-COST({i, j})
{i, j}, potential ← PICK-CANDIDATE(Ψ)

end-loop

correspondence ← TRACE({i∗, j∗})
dissim ← DISSIMILARITY(A,A′,correspondence)
return correspondence and dissim.

Figure 3.1: Pseudo code for CURVE-MATCHING procedure

the edit cost which is typically negative, thus, in effect, CURVE-MATCHING is maximizing the “gain”

of matching.

The procedure INITIALIZE performs the initial pruning of pairs of starting points, and returns

the set of candidates Ψ sorted by increasing potential values (see below). Full description is given

in Section 3.3.2. Its implementation performs a few syntactic matching steps for all NN ′ possible

pairs, and computes the intermediate edit cost corresponding to this partial matching. The minimal

intermediate edit cost achieved by any of the candidates is returned as cost∗, and the candidate

pair which achieves cost∗ is returned as {i∗, j∗}.

The procedure PICK-CANDIDATE selects a particular member of Ψ, to be fed into the syntactic

algorithm. To understand its operation, we need to define the concept of potential: For each

candidate {i, j} that has been extended to a correspondence list of some length, we compute a

lower bound on its final edit cost. This bound is based on the intermediate edit cost which has

already been achieved, and the cost of the best (lowest cost) possible matching of the remaining

unmatched segments. We call this bound the potential of the candidate {i, j}. The procedure

PICK-CANDIDATE returns the member of Ψ which has best (minimal) potential.

Technically, we store Ψ as an ordered list, sorted by increasing potential value. Each member

of Ψ is a candidate {i, j} and its current potential. The procedure PICK-CANDIDATE then returns

the first member of Ψ. The list Ψ is initially sorted by INITIALIZE, and its order is maintained by
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the procedure PREDICT-COST discussed below.

The search for the best candidate {i∗, j∗} continues as long as there exists a candidate whose

potential is lower than the best cost achieved so far (cost∗). It is implemented by the loop which

iterates as long as cost∗ > potential. Note that cost∗ cannot increase and potential cannot decrease

during the search.

The procedure SYNTACTIC-STEP is the core of our algorithm. It is given as input two cyclically

ordered sequences A = {a1, . . . , aN} and A′ = {a′1, . . . , a′N ′}, which are partially matched from

position i of A and onward, and from position j of A′ and onward. It uses dynamic programming

to extend the edit transformation between A and A′ by one step. Since our editing cost operation

typically takes negative values, the edit cost of {i, j} could become better (lower) than cost∗. In this

case {i∗, j∗} is set equal to {i, j}, and cost∗ is set equal to the newly achieved edit cost (otherwise

{i∗, j∗} and cost∗ remain unchanged). Sections 3.3.3 and 3.3.4 give the full description of the

procedure SYNTACTIC-STEP.

Extending the editing sequence of {i, j} is likely to increase its potential, making it a less

attractive candidate. This is because the potential of {i, j} is partially determined by a lower

bound on the final edit distance between the yet unmatched segments, and the edit operation

just added can only tighten this bound by decreasing the number of unmatched segments. The

procedure PREDICT-COST re-estimates the final cost, and corrects the potential of {i, j}. Since Ψ is

kept as an ordered list, PREDICT-COST pushes the candidate {i, j} down to maintain the order of

the list. Section 3.3.5 gives full details of the potential estimation.

Assuming that the reader is familiar with conventional dynamic programming implementations,

it is sufficient to describe the procedure TRACE as the procedure which reads the lowest cost path

from the dynamic programming array2. When this procedure is applied to the array associated with

the best candidate {i∗, j∗}, the lowest cost editing sequence is obtained. In our implementation,

in order to keep space complexity low, we keep just the last few rows and columns for each array,

hence the procedure TRACE needs to repeat the syntactic matching for the best pair {i∗, j∗}. See

Section 3.3.4 for a description of the dynamic programming implementation.

Finally, using the correspondence we found, we refine the global 2D alignment by minimizing

the sum of residual distances between matched segments endpoints. The procedure DISSIMILARITY

2Note, however, that using both positive and negative costs allows for partial matching, hence the path can
terminate at any entry of the dynamical programming array and not necessarily at the last row or column.
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performs the minimization, and uses the residual distances to define a robust measure of dissimi-

larity between the curves (details in Section 3.3.6).

Our approach thus combines syntactic matching with a proximity measure (in this sense our

method resembles that of [2]). That is, we establish feature correspondence using syntactic match-

ing, and then evaluate the dissimilarity according to the residual distances between matched points.

We do not use the edit distance as a measure of dissimilarity, mainly due to the fact that this quan-

tity depends on the somewhat arbitrary parameters of the edit operation and segment similarity,

whereas typically the best matching result is not sensitive to these exact parameters. That is, the

same matching is obtained for a range of edit parameter values, although the edit distance may be

different. Another advantage to combining syntactic and proximity criteria is that in many cases

the combination provides a mechanism for outliers removal, as is demonstrated in Section 3.3.6.

3.2.2 Matching results
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Figure 3.2: Qualitative matching between pictures of toy models of a horse and a wolf. Note the correct correspondence
between the feet of the wolf to those of the horse, and the correspondence between the tails. The results are shown without
outliers pruning. In this example, all the features to which no number is attached had been merged; e.g. the segment 9-10
on the horse outline was matched with 3 segments on the wolf outline.

We now present a few image pairs and triplets together with the matching results, which demon-

strate perceptually appealing matching. In Section 3.2.3 below we apply our matching algorithm

to a database of 31 silhouettes given to us by Sharvit & Kimia, and compare our dissimilarity

values to those reported in [122]. The classification results which will be shown in Chapter 4, using

the matching of a few thousands image pairs, may be regarded as an objective examination of the

matching quality.
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Figure 3.3: Dealing with occlusion: partial matching between three images. Points are mapped from (a) to (b) to (c)
and back to (a). Only points which are mapped back to themselves are accepted (order is not important). The points on
the tail in (a) are matched with the shadow (pointed by the arrow) in (b) , but matching (b) with (c) leaves the shadow
unmatched. Hence the tail is not matched back to itself, and the correspondence with the shadow is rejected.
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Figure 3.4: Matching two views of an object subjected
to large foreshortening. Rejected pairs (in circles) were
detected in four iterations of eliminating the (10%) most
distant pairs and re-aligning the others. 33 and 35 features
were extracted on the two outlines; 32 pairs were initially
matched, and 9 pairs were rejected (28%).
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Figure 3.5: Matching of human limbs at different body
configurations. In this case the outlines were extracted with
snakes rather than by gray level clustering (see acknowledg-
ments). Original images are not shown.

In all the experiments reported in this paper we use the same parameter values (defined in

Section 3.3): w1 = 1, w2 = 0.8, w3 = 8.0 and K = 4 (with the exception of Figure 3.6, where

K = 5). Each matching of an image pair took only a few seconds (see Chapter 4).

Figure 3.2 shows two images of different objects. There is a geometrical similarity between

the two silhouettes, which has nothing to do with the semantic similarity between them. The

geometrical similarity includes five approximately vertical swellings or lumps (which describe the

four legs and the tail). In other words, there are many places where the two contours may be

considered locally similar. This local similarity is captured by our matching algorithm.

The two occluding contours of the two animals and the feature points were automatically
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Figure 3.6: Combination of various sources of difficulty: different models, different viewpoints and occlusion. The
merging utility is used to overcome the different number of feature points around the wheels; gap insertion is utilized to
ignore the large irrelevant part.

extracted in the preprocessing stage. Corresponding points are marked in Figure 3.2 by the same

numbers. Hence the tails and feet are nicely matched, although the two shapes are only weakly

similar. The same matching result is obtained under arbitrarily large rotation and scaling of one

image relative to the other.

Figure 3.3 demonstrates the local nature of our algorithm, namely, that partial matching can be

found when objects are occluded. Since our method does not require global image normalization,

the difference in length between the silhouette outlines does not impede the essentially perfect

matching of the common parts. Moreover, the common parts are not identical (note the distance

between the front legs and the number of ears) due to a small difference in viewpoint; this also

does not impede the performance of our algorithm.

Figure 3.3 also demonstrates outliers pruning using three images. In image 3.3b there is a

shadow between two of the leaves (pointed by the arrow), and as a result the outline penetrates

inward. The feature points along the penetration are (mistakenly) matched with features along

the tail in image 3.3a, since the two parts are locally similar. However, we use the procedure of

mapping the points of 3.3a to 3.3b, then to 3.3c and back to 3.3a. Only points which are mapped

back to themselves are accepted as correct matches; these matched are marked by common numbers

in Figure 3.3.

Figures 3.4 and 3.6 show results when matching images taken from very different points of

view. In Figure 3.4 two different views of the same object are matched, and the method of iterative

elimination of distances is demonstrated (see Section 3.3.6). Figure 3.6 shows matching between

three different cars, viewed from very different viewpoints and subjected to occlusion. Matching

under a large perturbation of viewpoint can be successful as long as the silhouettes remain similar
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“enough”. Note that preservation of shape under change of viewpoint is a quality that defines

“canonical” or “stable” views. Stable images of 3D objects were proposed as the representative

images in an appearance based approach to object representation [146].

The last example (Figure 3.5) shows results with an articulated object, matching human limbs

at different body configurations.

3.2.3 Dissimilarity measurements: comparison
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Table 3.1: The dissimilarity values computed between 25 silhouettes (multiplied by 1000 and rounded). For each line,
the columns that correspond to the three nearest neighbors (and the self zero distance) are highlighted. The first, second
and third nearest neighbor are in the same class a fraction of 25/25, 21/25 and 19/25 of the times respectively.

In this section we use our matching algorithm to compute a dissimilarity value, as will be

explained in Section 3.3.6. Good matching is essential for correct dissimilarity estimation, whose

values we use for quantitative comparisons with other methods. We use the image database created

by Sharvit & Kimia (see [122]), which consists of 31 silhouettes of 6 classes of objects (including

fish,airplanes, tools).
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In [122], 25 images were selected out of this database, and their pairwise similarities were

computed. The measure of quality was the number of instances (out of 25) in which the first,

second and third nearest neighbor of an image was found in its own class. We follow the same

procedure, and show in Table 3.1 the dissimilarity values which we obtain for 25 silhouettes.3

We find that the fraction of times (out of 25) that the first nearest neighbor of an image belongs

to its own class is 25/25, namely, it is always the case. For the second and third nearest neighbors

the results are 21/25 and 19/25. In comparison, the results reported in [122] are 23/25, 21/25 and

20/25 respectively, whereas our results for their choice of 25 images are the fractions 25/25, 20/25

and 17/25 respectively. It is to be noted, however, that in the framework of [122] one can use

additional information, specifically, whether the two graphs that represent a pair of shapes have

similar topology.

We conclude that the two methods are comparable in quality when isolated silhouettes are

matched. This is in spite of our using boundary representation, whereas symmetry representation

(shock graph) is used in [122]. The shock graph representation is inherently more sensitive to oc-

clusions, while shock graph matching requires solving the difficult NP-complete graph isomorphism

problem (see Section 3.1). Moreover, our method can easily be adjusted to handle open curves,

by avoiding the assumption that the syntactic representation is cyclic. On the other hand, shock

graphs must distinguish between interior and exterior.

Recently, progress has been made toward computing the edit distance between shock graphs

[134] using a polynomial time algorithm that exploits their special structure. So far, however, the

algorithm is not capable of dealing with invariance to image transformations, and no quantitative

measures have been reported.

3.3 Flexible syntactic matching: details

In this section we give the details of the various procedures and steps involved in the curve matching

algorithm, outlined in Section 3.2.1. Contour representation is discussed in Section 3.3.1. The

initial pruning of candidate global alignments is discussed in Section 3.3.2, where we describe the

procedure INITIALIZE. The syntactic edit operations which are used by SYNTACTIC-STEP, and

3As table 3.1 shows, we have at least 4 images in each class. In [122] the same images were chosen, with the
exception that one of the classes consisted of only 3 images, while the fish class contained 5 images. However, for
members of a class consisting of only 3 images, the three nearest neighbors can no longer be all in the same class.
Hence we modified slightly the choice of selected images.
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their respective costs, are discussed in Section 3.3.3. The details of the dynamic programming

procedure, which SYNTACTIC-STEP uses to minimize the edit distance, are given in Section 3.3.4.

In Section 3.3.5 we define the potentials which are used to guide the search for best starting point

and describe the procedure PREDICT-COST. Finally, the procedure DISSIMILARITY is discussed in

Section 3.3.6.

3.3.1 Preprocessing and contour representation

In the examples shown in this paper, objects appear on dark background, and segmentation is

successfully accomplished by a commercial k-means segmentation tool. A syntactic representation

of the occluding contour is then automatically extracted: it is a polygon whose vertices are either

points of extreme curvature, or points which are added to refine the polygonal approximation. Thus

the primitives of our syntactic representation are line segments, and the attributes are length and

absolute orientation. The number of segments depends on the chosen scale and the shape of the

contour, but typically it is around 50. Coarser scale descriptions may be obtained using merge

operations.

Feature points (vertices) are initially identified at points of high curvature, according to the

following procedure: at every contour pixel p an angle ρ is computed between two vectors u and

v. The vector u is the vectorial sum of m vectors connecting p to its m neighboring pixels on

the left, and the vector v is similarly defined to the right. Points where ρ is locally minimal are

defined as feature points. The polygonal approximation (obtained by connecting these points by

straight lines) is compared with the original outline. If the distance between the contour points

to the polygonal segments is larger than a few pixels, more feature points are added to refine the

approximation.

3.3.2 Global alignment: pruning the starting points

The procedure INITIALIZE receives two cyclic sequences A and A′ of lengths N and N ′ respectively,

as defined in Section 3.2.1. Initially there are NN ′ possible starting points for the syntactic match-

ing procedure; recall that each starting point corresponds to the matching of one segment ai in A to

another segment aj in A′, thus defining the global 2D alignment between the two curves. However,

the number of successful starting points is much smaller than NN ′, and they tend to correspond

to similar global 2D alignment transformations for two reasons: (i) Low cost transformations tend
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to be similar since any pair of segments {ai, a
′
j}, which belongs to a good correspondence list, is

likely to be a good starting point for the syntactic algorithm. (ii) The overall number of good

starting points tends to be small since most of the pairs in A×A′ cannot be extended to a low cost

correspondence sequence; the reason is that it might be possible to find a random match of short

length, but it is very unlikely to successfully match long random sequences.

These observations are used by the procedure INITIALIZE to reduce significantly the number of

candidate starting points. The procedure uses as a parameter the number t of edit operations which

are performed for every one of the NN ′ possible starting points (in our experiments we use t=5 or

10). The pruning proceeds using the relation between starting points and global 2D alignments, as

follows.

Every starting point {ai, a
′
j} is associated with a global 2D alignment, and in particular with a

certain rotation angle that maps the direction of ai to that of a′j . Let n be min(N,N ′), and observe

the distribution of the n rotation angles which achieved the best n edit distances after t steps. If

these angles are distributed sharply enough around some central value c, we conclude that c is a

good estimator for the global rotation. Then, we discard every starting point in A × A ′ whose

associated rotation is too far from c. The remaining set of candidates is the set Ψ (see Figure 3.7).

t=1 t=5 t=10

Figure 3.7: An example of initial pruning. Two curves with n = min(N, N ′) = 50 are matched syntactically using t
edit steps (see text for details). The 50 candidates which achieve best (minimal) edit cost are examined, to see whether
the distribution of their associated rotations shows central tendency. Here we sample the distribution after 1, 5 and 10
syntactic steps. In this example 5-10 steps are sufficient for a reliable estimation of the global rotation angle c. We proceed
by eliminating the candidates whose associated global rotation is too far from c.

For each candidate that remains in Ψ the procedure INITIALIZE computes its future potential,

as discussed in Section 3.3.5, and sorts the list Ψ by increasing potential values. The minimal

edit distance (cost) that has been achieved during the first t steps is returned as cost∗, and the

candidate possessing this cost is returned as {i∗, j∗}.
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3.3.3 Syntactic operations which determine the edit distance

The goal of classical string edit algorithms is to find a sequence of elementary edit operations, which

transform one string into another at a minimal cost. The elementary operations are substitution,

deletion and insertion of string symbols. Converting the algorithm to the domain of vision, symbol

substitution is interpreted as matching two shape primitives, and the substitution cost is replaced

by the dissimilarity between the matched primitives. The dissimilarity measure is discussed in

Section 3.3.3. Novel operations involving gap insertion and the merging of primitives are discussed

in Sections 3.3.3 and 3.3.3.

Similarity between primitives

We define now the similarity between line segments ak and a′l. The cost of a substitution operation

is this value with a minus sign, hence the more similar the segments are, the lower their substitution

cost is. We denote the attributes of ak, a
′
l - orientation and length - by (θ, `) and (θ ′, `′) respectively.

The ratio between the length attributes is denoted relative scale c = `/`′.

The term “reference segments” refers to the starting point segments, which implicitly determine

the global rotation and scale that aligns the two curves (as discussed above). The reference segments

are specified by the argument {i, j} in the call to the procedure SYNTACTIC-STEP, and are denoted

here a0, a
′
0. The segment similarity also depends on the corresponding attributes - orientation,

length and relative scale - of the reference segments: (θ0, `0), (θ′0, `
′
0) and c0 = `0/`

′
0

We first define the component of similarity which is determined by the length (or relative scale)

attribute of two matching segments. We map the two matched pairs of length values {`, ` ′} and

{`0, `
′
0} to two corresponding directions in the (`, `′)-plane, and measure the angle between these

two directions. The cosine of twice this angle is the length-dependent component of our measure

of segment similarity (Figure 3.8). This measure is numerically stable. It is not sensitive to small

scale changes, nor does it diverge when c0 = `0/`
′
0 is small. It is measured in intrinsic units between

−1 and 1. The measure is symmetric, so that the labeling of the contours as “first” and “second”

has no effect.

Let δ be the angle between the vectors [`, `′] and [`0, `
′
0]. Our scale similarity measure is:

S`(`, `
′|`0, `

′
0) = cos 2δ =

4cc0 + (c2 − 1)(c2
0 − 1)

(c2 + 1)(c2
0 + 1)

(3.1)

S` thus depends explicitly on the scale values c and c0 rather than on their ratio, hence it cannot be
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curve 1l

l’

l0

l0’

curve 2

δ

Figure 3.8: Length similarity is measured by comparing the corresponding reference length values [`0, `
′

0] with the
corresponding length values of the current segment [`, `′]. Each length pair is mapped to a direction in the plane, and
similarity is defined as cos(2δ). This value is bounded between -1 and 1.

computed from the invariant attributes `/`0 and `′/`′0. The irrelevance of labeling can be readily

verified, since S`(c, c0) = S`(c
−1, c−1

0 ).

We next define the orientation similarity Sθ between two line segments whose attributes are

θ and θ′ respectively. The relative orientation between them is measured in the trigonometric

direction (denoted θ→ θ′) and compared with the reference rotation (θ0 → θ′0):

Sθ(θ, θ′|θ0, θ
′
0) = cos [(θ → θ′)− (θ0 → θ′0)] (3.2)

As with the scale similarity measure, the use of the cosine introduces non-linearity; we are not

interested in fine similarity measurement when the two segments are close to being parallel or

anti parallel. Our matching algorithm is designed to be flexible, in order to match curves that

are only weakly similar; hence we want to encourage segment matching even if there is a small

discrepancy between their orientations. Similarly, the degree of dissimilarity between two nearly

opposite directions should not depend too much on the exact angle between them. On the other

hand, the point of transition from acute to obtuse angle between the two orientations seems to have

a significant effect on the degree of similarity, and therefore the derivative of Sθ is maximal when

the line segments are perpendicular.

Finally, the combined similarity measure is defined as the weighted sum:

S = w1S` + Sθ (3.3)

The positive weight w1 (which equals 1 in all our experiments) controls the coupling of scale and

orientation similarity.
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Gap opening

In string matching, the null symbol λ serves to define the deletion and insertion operations using

a → λ and λ → a respectively, where a denotes a symbol. In our case, a denotes a line segment

and λ is interpreted as a “gap element”. Thus a → λ means that the second curve is interrupted

and a gap element λ is inserted into it, to be matched with a. We define, customarily, the same

cost for both operations, making the insertion of a into one sequence equivalent to its deletion from

the other.

The cost of interrupting a contour and inserting ξ connected gap elements into it (that are

matched with ξ consecutive segments on the other curve) is defined as w3−w2 · ξ, where w2, w3 are

positive parameters. Thus we assign a penalty of magnitude w3 for each single interruption, which

is discounted by w2 for every individual element insertion or deletion. This predefined quantity

competes with the lowest cost (or best reward) that can be achieved by ξ substitutions. A match

of ξ segments whose cost is higher (less negative) than w3 −w2 · ξ is considered to be poor, and in

this case the interruption and gap insertion is preferred.

In all our experiments we used w2 = 0.8 and w3 = 8.0. (These values were determined in

an ad-hoc fashion, and not by systematic parameter estimation which is left for future research).

These numbers make it possible to match a gap with a long sequence of segments, as required

when curves are partially occluded. On the other hand, isolated gaps are discouraged due to the

high interruption cost. Our algorithm therefore uses deletions in cases of occlusion, while for local

mismatches it uses the merging operation, which is described next.

Segment merging

One advantage of using variant attributes (length and absolute orientation) is that segment merging

becomes possible. We use segment merging as the syntactic homologue of curve smoothing, ac-

complishing noise reduction by local resolution degradation. Segment merging, if defined correctly,

should simplify a contour representation by being able to locally and adaptively change its scale

from fine to coarse.

We define the following merging rule: two adjacent line segments are replaced by the line

connecting their two furthest endpoints. If the line segments are viewed as vectors oriented in the

direction of propagation along the contour, then the merging operation of any number of segments
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is simply their vectorial sum.4 The cost of a merge operation is defined as the dissimilarity between

the merged segment and the one it is matched with. A comparison of this rule with the literature

in given in the appendix.

3.3.4 Minimizing edit cost via dynamic programming

Procedure SYNTACTIC-STEP is given as input two cyclically ordered sequences A = {a1, . . . , aN}
and A′ = {a′1, . . . , a′N ′}, which are partially matched from position i of A and onward, and from

position j of A′ and onward. It uses dynamic programming to extend the edit transformation

between A and A′ by one step. The edit operations and their cost functions were discussed above

in Section 3.3.3.

The notation used in Section 3.2.1 hides, for simplicity, the workspace arrays which are used

for path planning. Let us assume that the procedure SYNTACTIC-STEP can access an array R which

corresponds with the starting point {i, j}. The entry R[µ, ν] holds the minimal cost that can be

achieved when the µ segments of A following ai are matched with the ν segments of A′ following

a′j . We will see later that it is not necessary to keep the complete array in memory.

A syntactic step is the operation of getting an array R which is partially filled, and extending

it by filling some of the missing entries. Our choice of extension is called “block completion”. Let

us assume for simplicity that the reference segments {i, j} are the first ones. There is no loss of

generality here, since the order in A,A′ is cyclic. Initially the computed portion of the array R

corresponds to a diagonal block, whose two corners are R[1, 1] and R[µ, ν]. When the procedure

SYNTACTIC-STEP is applied to R, it extends R by filling in another row (of length ν), and/or another

column (of length µ).

The decision whether a row or a column is to be added depends on the previous values of R, and

is related to the potential computation that is discussed below in Section 3.3.5. Roughly speaking,

we add a row (column) if the minimum of R is in the last computed row (column), and we add

both if the minimum is obtained in the last computed corner.

When extending the block of size µ × ν, every new entry R[k, l] is computed according to the

4Implementation note: it turns out to be more convenient to keep for every line segment the attributes
(`, sin θ, cos θ) instead of (`, θ). It is straightforward to express the orientation similarity Sθ using the new attributes
(and S` is, of coarse, unaffected). The advantage is that merging segments does not involve the computation of any
trigonometric functions. Thus after merge, using the input attributes (`i, sin θi, cos θi) we define x =

∑

i
`i(cos θi)

and y =
∑

i
`i(sin θi), and then ` =

√

x2 + y2, sin θ = x/` and cos θ = y/`.
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following rule:

R[k, l] = min{r1, r2, r3} (3.4)

where

r1 = min
α,β∈Ω

{R[α, β] − S(αk, βl)}

r2 = min
0<α<k

{R[α, l] + w3 − w2 · (k − α)}

r3 = min
0<β<l

{R[k, β] + w3 − w2 · (l − β)}

xy denotes the vectorial sum of the segments (x + 1), . . . , y, and the domain Ω is defined below.

Unlike in the “classical” editing algorithm, the term r1 is computed over a domain Ω, general-

izing the simple substitution operation to the substitution of merged segments. We define Ω as a

triangular subregion of R which contains K(K − 1)/2 entries (Figure 3.9). Namely:

Ω = {α, β | 0 < α < k, 0 < β < l, (k − α) + (l − β) ≤ K}

and the computation of r1 involves K(K − 1)/2 evaluations of alternatives merges. The minimal

value of K is 2, which is the “classical” substitution (diagonal) step.

b1   b2  b3  b4  b5   b6   b7  b8  b9  b10  b11

a1

a2

a3

a4

a5

a6

a7

a8

a9

K−6
 lin

e

Figure 3.9: The entry R[k, l] is updated according to Equation (3.4). Solid lines represent merge steps (with the
“classical” substitution as a special case). Dashed lines represent the interruption and deletion of ξ connected elements.

The minimization domains for r2 and r3 are illustrated in Figure 3.9 by the horizontal and

vertical dashed lines, generalizing the single element deletion operation to the deletion of ξ elements.

This operation is associated with an interruption penalty (w3) and a guaranteed reward (w2ξ), which

competes with the reward of substitutions.

We note that in order to find the minimal value for r2 along the vertical line, it is not necessary

to compare all its k possible values. It is sufficient to keep one index (α0) for each column l, such

that r2 = R[α0, l] + w3 − w2(k − α0). The initial value of α0 is 1, and after entry R[k, l] has been
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evaluated, the value of α0 should be set to k iff R[k, l] ≤ R[α0, l]−w2(k−α0). A similar argument

applies to the computation of r3. Hence both the computation of r2 and r3 have complexity O(1).

Finally, according to the block completion scheme of the array R defined above, it is easily

verified that only the last bK/2c rows and columns of the block need to be stored in memory.

On the other hand, if only these entries are kept, the complete path cannot be restored after the

minimal edit cost is found. Hence in our implementation the procedure TRACE (see Section 3.2.1)

repeats the syntactic procedure for the array possessing the best result, while keeping all of it in

memory. It then follows the best path, which ends at the entry that achieved minimal edit cost,

and returns it as the final matching.

3.3.5 Potential: bounding the edit distance

In order to guide the search for the best starting point, which is interlaced with the syntactic steps,

it is necessary to bound the final minimal cost of a partially computed matching. We use a tight

lower bound on the edit cost estimation, termed “potential”. The optimality of the search is thus

guaranteed. In this section we define the potential function, and explain how it is used by the

procedure PREDICT-COST.

Let us consider an entry R[k, l] in the dynamic programming array R. Without loss of generality,

due to the cyclic segment order, we can assume that the forward path leaving this entry lies in

the rectangular block defined by the corners R[k, l] and R[N,N ′]. We define η and ζ to be the

dimensions of this rectangle: η = min(N − k,N ′− l), and ζ = max(N − k,N ′− l). We also define ε

to be the maximal similarity between segments (ε = 1 + w1 from Equation (3.3)). The lowest cost

substitution thus has the negative cost −ε, which acts as a reward.

The values of the parameters w1, w2, w3 are chosen to guarantee that a diagonal path consisting

of the lowest cost substitutions has the minimal possible cost5. Hence the lowest cost forward path

originating from R[k, l] must contain a diagonal segment of maximal length, namely of length η.

The cost assigned with this part is −εη. In addition to the diagonal part, the forward path may

contain a vertical or horizontal part of length ζ−η. In general, this part can decrease the cost only

if w3 − w2(ζ − η) is negative. However, in the case where the value of R[k, l] is set equal to r2 or

r3 in Equation (3.4), it is the case that the entry [k, l] is already considered to be inside a gap. In

5A sufficient condition is that w2 < ε/2 = 1+w1

2
. If w3 is nonzero, it is sufficient that w2 − ε/2 < w3/x, where x

is the largest possible diagonal path, namely x = min(N, N ′)
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this case we can first extend the gap by ζ− η moves, and only then continue with η diagonal steps.

Thus the interruption penalty is avoided, and the forward path cost becomes −εη − w2(ζ − η).

Combining this bound with the value of R[k, l], we get a lower bound fkl on the minimal edit cost

which can be achieved passing through R[k, l]:

fkl =

{

R[k, l]− εη + min{0, w3 − w2(ζ − η)} if R[k, l] = r1 in Equation (3.4)
R[k, l]− εη − w2(ζ − η) if R[k, l] = r2, r3 in Equation (3.4)

We refer to fkl as an entry potential, and define the potential of the array R as the minimum

over active entry potential. An entry is active if there is a future path computation that will use

its value. Hence the entries occupying the last bK/2c rows and columns of the evaluated block are

active.

The procedure PREDICT-COST receives as input a candidate pair of starting points segments

denoted {i, j}. It computes its potential, which is the potential of the array R associated with

this pair (evidently the procedure must access the dynamic programming array R). The procedure

PREDICT-COST then updates the list Ψ with the new potential value. In our implementation we keep

the list Ψ sorted by increasing potentials, and the procedure PREDICT-COST places the candidate

{i, j} in its proper position, after computing its potential.

3.3.6 Computing curve similarity after matching

When the line segments are syntactically matched, the procedure DISSIMILARITY transforms the

residual distances between their endpoints into a robust dissimilarity value. We may use the

edit distance itself, but this quantity has two drawbacks. It depends on the somewhat arbitrary

parameters of the edit operations (whereas typically the best matching result is not sensitive to

these parameters), and it decreases without bound with increasing edited length. Normalizing the

edit distance with respect to the curve length is not a trivial task [91].

Instead of the minimal edit distance we use its corresponding matching sequence to compute

a robust proximity measure. A closed form expression for the similarity transformation (rotation,

translation and scale) that minimizes the sum of squared distances between matched point sets is

given in [148]. Applying this transformation to our matched points refines the alignment that was

assumed during matching, since at that time the alignment was chosen from a finite set of NN ′

candidates. After optimal alignment we define the dissimilarity d to be equal to the k th shortest

residual distance, where k = 1
2 min(N,N ′).
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In the case of complete matching, the number of matched features is min(N,N ′), and d becomes

the median of the residual distances. The median is known to be a robust estimator, since it is

not affected by extreme outliers. When many feature points are left unmatched, as happens when

the two curves are not similar, d becomes larger than the median (since k is defined by the total

numbers of points, N and N ′). This increases our dissimilarity measure, reflecting the fact that

the matching is partial. If the number of matched features is smaller than k, the dissimilarity is

defined to be ∞.

We also report on two other techniques which we have found useful for identifying and removing

outliers. The first is iterative elimination: in every iteration the matched pairs that are most distant

(after optimal 2D alignment) are eliminated, and the rest are re-aligned. We chose to eliminate

10% of the pairs at every iteration. The motivation is the following: features are matched when

the local pieces of curve around them have similar shape; if after alignment they are also proximal,

meaning that they agree with the global alignment, then the match is likely to be correct.

The other pruning technique can be used when three related images are available (rather than

two). Assume that a feature point p on contour 1 is matched with point p′ on contour 2, and p′ is

matched with p′′ on contour 3. If the matching between 1 and 3 supports the mapping between p

and p′′, then the correspondence list (p↔ p′, p′ ↔ p′′, p↔ p′′) is accepted.

3.3.7 Discussion and comparison to other methods

Below we discuss some issues relating to complexity, invariance and direct proximity computation.

A detailed comparison of our syntactic operations to other methods is given in the appendix.

Complexity

The algorithm develops |Ψ| dynamic programming arrays, and when it terminates each array has

been completed up to a block of some size. Let n2 be the average number of entries in a completed

block. The total number of computed entries is therefore |Ψ|n2. Clearly n is a fraction of N . From

the considerations discussed in Section 3.3.2 it follows that |Ψ| is typically of the order of N as

well. It is possible, although not used here, to constrain the procedure INITIALIZE to return a set

Ψ of size min(N,N ′) exactly. The overall number of computed entries is therefore O(N 3).

Every single entry computation is of complexity O(K 2), since K(K−1)/2 alternative evaluations

are requires to compute r1 in Equation (3.4). Note that K is usually a small constant (we used
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K=4). An entry computation is followed by updating the array potential. We maintain for each

row and column the best score achieved there, hence the array potential is computed in O(K) time

after a block is completed.

How to achieve invariance

Available syntactic matching methods usually achieve scale and rotation invariance (if at all) by

using invariant attributes. The benefit of using invariant attributes is efficiency. The drawback

is that invariant attributes cannot be smoothed by merging, and they are either non local or non

interruptible. For example, in [89] the orientation of a line segment is measured with respect to its

successor, hence the opening of a gap between segments introduces ambiguity into the representation

(see Figure 3.10). In [43] the attributes which describe curve fragments are Fourier coefficients,

and in [2] an attribute called “sphericity” is defined. Both are invariant attributes, but non-

interruptible6.

λ

Figure 3.10: When the primitive attribute is measured relative to a preceding primitive, interrupting the sequence
creates problems. Here, for example, the orientation information is lost when the dotted segment is matched with a gap
element. As a result, the two contours may be matched almost perfectly to each other and considered as very similar.

Moreover, it seems to be impossible to find operators on invariant attributes that are equivalent

to smoothing in real space. Instead, a cascade of different scale representations must be used [139],

where few fragments may be replaced by a single one which is their “ancestor” in a scale space

description. This requires massive preprocessing, building a cascade of syntactical representations

for each curve with consistent fragment hierarchy.

In contrast, our algorithm is invariant with respect to scaling, rotation and translation with-

out relying on invariant attributes, while remaining efficient and capable of comparing complex

6The Fourier coefficients are normalized individually, which means that if every fragment undergoes a different
rigid or scaling transformation, the representation remains unchanged. The sphericity representation behaves in the
same way. The relative size and orientation information is preserved as long as the sequence is not interrupted, since
overlapping fragments are used. Note that in spite of this property the algorithms are applied to partial matching in
the framework of model based recognition, since the solution that preserves the correct relative size and orientation
information between primitives remains a valid solution, and the danger of finding an undesired solution (as is
demonstrated in Figure 3.10) is small.
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real image curves in a few seconds. Furthermore, a novel merging operation was defined, which

accomplished curve simplification and helped in noise reduction and resolution change.

Direct proximity minimization

The conversion of residual distances into a dissimilarity measure is explained in section 3.3.6. The

reader may wonder why we can’t choose a proximity criterion, like the average distance between

matched points or the Hausdorff distance, and minimize it directly. The Hausdorff distance may

appear to be especially attractive, since it is not based on any prior feature pairing [3, 60].

We claim that direct minimization, which is heavily studied in the literature, is not adequate

when the curves are only weakly similar. The reason is that proximity methods treat curves as two

sets of points, and ignore more qualitative “structural” information.

(a) (b) (c) (d)

Figure 3.11: (a),(b) - Two weakly similar curves. The points are extracted automatically from polygonal approximations
that do not depart from the original curves by more than 8 pixels. (c) The desirable matching result, as obtained by our
matching algorithm. The average distance between matched feature points is 25 pixels. The directed Hausdorff distance is
34 pixels. (d) A non desirable pairing of points which yields better proximity value. The average distance between matched
feature points is only 23 pixels. The directed Hausdorff distance is only 29 pixels.

An example is shown in Figure 3.11. In this example we compare two weakly similar curves,

where a permissible alignment transformation includes translation, rotation and uniform scaling.

Assuming that two sets of feature points had been extracted from the two curves, we investigate the

proximity measure which is defined as the average distance between matched points. This measure

is larger for the alignment shown in (c) than for the one shown in (d). Hence a proximity algorithm,

which seeks the optimal alignment that achieves minimal residual distances, will consider (d) as a

better alignment than (c)7.

7Note that the lower proximity value in (d) is not the result of the use of different global scaling, since the
shorter curve appears in (c) and (d) at the same size. Moreover, the lower proximity measure of (d) is obtained even
though many-to-one matches are avoided, and the order of points is kept. Without these constrains, it is easy to
get arbitrarily small proximity values for an arbitrary correspondence by shrinking one set of points and matching it
with only a few points (or even a single point) from the other set.
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We continue with the previous example and investigate instead the use of the directed Hausdorff

distance as the proximity criterion. The directed Hausdorff distance from a point set P to a point

set Q is defined (with the Euclidean norm || · ||) as: h(P,Q) = maxp∈P minq∈Q ||p−q||; it is equal to

the largest distance from some point in P to its nearest neighbor in Q. This measure is asymmetric,

and therefore the symmetric expression max{h(P,Q), h(Q,P )} is often preferred. However, when

there is a large image clutter, as in our case, the symmetric distance is not useful since its value

is determined by the irrelevant part of the curve. Thus the directed distance, measured from the

shorter curve to the longer one, is larger for the alignment shown in (c) than for the one shown

in (d). A proximity algorithm that is based on minimizing the directed Hausdorff distance will

consider (d) as a better alignment than (c).

In contrast, because it uses local structure, our syntactic matching algorithm provides the

correct matching of the curves in Figure 3.11 (shown in part c).
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Chapter 4

Results

In this chapter we apply our clustering algorithm to some fundamental computer vision prob-

lems, namely image segmentation, perceptual grouping of edge elements and image classification.

These problems deal with the aggregation of visual elements, such as pixels, edgels or images, into

coherent groups. In fact, the synthetic point sets examples used in Chapter 2 are no exception,

but in this chapter we focus on real world computer vision problems, analyzing real images and

contours extracted from images. In Sections 4.1 and 4.2 we consider segmentation of intensity and

color images respectively. In Section 4.3 we discuss the case of “unstructured background”, which

includes the problem of grouping edge elements. In Section 4.4 we integrate our contour match-

ing algorithm and our clustering algorithm into an application of image database organization.

Specifically, a collection of 121 images is hierarchically divided into shape categories.

4.1 Segmentation of intensity images

For image segmentation, nodes in the graph represent individual pixels. We consider images where

each pixel has a single intensity attribute. In accordance, the similarity weight wij between pix-

els (nodes) i and j increases with increasing spatial proximity and brightness likelihood. From

Equation (2.2) we have:

wij = e−
d(1)2

ij

a2 −
d(2)2

ij

b2

where d(1) is the Euclidean distance between the pixels in the image plane, d(2) is the intensity

difference between the two pixels, and a, b are scale parameters. As in [109, 127], we determine the

parameters a and b manually. To reduce the number of edges and get a sparse graph, we eliminate
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edges whose weight is below some threshold and consider short range neighborhoods (see captions

of Figures 4.1-4.4 for details).

The observation that the similarity graph is sparse is crucial for practical image segmentation

applications. In [127] a sparse graph was obtained by randomly picking a small number of edges

for each pixel in a limited range neighborhood. We use a similar approach: we consider the eight

nearest neighbors of each pixel, or we consider the four nearest neighbors and randomly pick another

four. We do not observe significant differences between the two methods1. In any case, we exclude

edges whose weight is below some threshold.

Figure 4.1 shows a gray level image taken during a baseball game. We use the same image

used by Shi and Malik [127] to be able to compare the two methods. Next to the gray level

image, the graph of ∆T (r) is shown. It is clear that there are only a few candidate solutions to

consider. The peaks in this graph mark the detection of large objects in the scene. The four levels

of segmentation results which correspond to the four highest peaks are shown below the image and

the impulse graph.

The eight images in the lower box of Figure 4.1 are shown to clarify the operation of the

algorithm. These are intermediate results, and we use them to explain the origin of the peaks of

∆T (r), as well as to illustrate the operation of relabeling. Each column in the lower box is a pair

of segmented images, computed at the transition level r and just before it, at the level r−1. Hence

we see that the origin of the peak at r=3968 is the splitting of the background cluster into two, one

part containing the pixels of the lower player’s body, while the other part containing the rest of the

pixels. Similarly, the peak at r=5615 results from the detection of the upper player’s body, and the

peaks at r=6366 and 8872 result from splitting the background into different regions. Thus large

changes in ∆T (r) reflect the segmentation of large objects in the scene.

The dark blue color in the eight intermediate images marks the pixels which are initially left

unlabeled. In all our real image examples in this chapter, we regard clusters which contain less than

100 pixels as small clusters, and we do not label them. Namely, the parameter S of Section 2.7.3

is set to 100. The pixels which belong to these small clusters are assigned the dark blue color.

The process of relabeling is intended to sustain the larger clusters, and relabel the smaller ones as

discussed in Section 2.7.3. Thus the segmented images in the upper box of Figure 4.1 are obtained

from the first row of images in the lower box, after the relabeling procedure has been applied. Note

1The same image is used in [29] but in different resolution.
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that this procedure can either connect unlabeled pixels to an existing colored grain, or it can create

connected components among unlabeled pixels and assign to them a new tag. For example, the

clusters constructing the two parts of the upper hand at level r=6366 are formed in this way.

We note that it is possible to get even finer level of resolution by setting the parameter S to a

lower value. For example, the palms of the hands of the lower player contain less than 100 pixels,

and they can be detected too if a lower value is used. There is a natural tradeoff between the

required resolution and the robustness to noise that generates spurious clusters.

4.2 Segmentation of color images

Here too nodes in the graph represent individual pixels. The difference between the segmentation

of color images and brightness images lies solely in the similarity measure between pixels. While

brightness is a one dimensional attribute, the color resemblance between pixels is measured in a

three dimensional color space. The weight wij is computed as before, namely

wij = e−
d(1)2

ij

a2 −
d(2)2

ij

b2

but now d(2) is measured in a 3D color space.

A color space is called “perceptually uniform” if a small perturbation to one of its components

is equally perceptible across the space. A decade of psychophysical research at the Commission

Internationale de L’Éclairage (CIE) during the 1960’s resulted in the definition of two color spaces,

called CIE-LAB and CIE-LUV, which are approximately perceptually uniform. We define d(2) to

be the Euclidean distance in (either one of) these spaces. Our experiments do not suggest that one

is better than the other, nor do we find consistent differences with respect to the measure used by

[127] in HSV color space.

Figure 4.2 shows an outdoors scene with a rainbow and a cow. The arrangement of the images

is the same as in Figure 4.1, with the impulse graph of ∆T (r) shown next to the image, and the

three segmentation results which correspond to the three highest peaks in the impulse graph are

shown below. Note the saliency of the leftmost segmentation level at r=678, where a very large

peak is obtained due to the splitting of two very large areas (the sky and the grass regions). The

origin of the other peaks can be seen in the lower box, where the intermediate results at r and r−1

are shown2. The analysis is in CIE-LAB color space.

2Three smaller peaks are seen at r=1650, 9330 and 10282. The segmented images at these values are not shown.
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Figure 4.3 shows four airplanes flying above a desert. We present the analysis in CIE-LUV

color space. The four highest peaks in the graph of ∆T (r) correspond to the separation of the four

planes from the background; each peak separates one plane. The other peaks indicate partitions of

the background into regions of different tones of yellow (not shown).

4.3 Unstructured background and grouping of edge elements

Our previous examples of image segmentation explicitly assume that the images can be partitioned

into regions of coherent brightness or color. If, on the other hand, the image contains a region

of random noise, then the pixels belonging to this region are not similar to each other, and they

cannot be grouped together by standard clustering criteria. Nevertheless, our algorithm is useful

for this case as well, as long as the relabeling option is not used. Our algorithm handles such cases

by letting the random noise objects form many isolated clusters.

Image segmentation with unstructured background

To demonstrate this case we start with a synthetic example, where the task is brightness image

segmentation. Here we follow the recent work of Perona and Freeman [109], who considered the

segmentation of “structured” foreground from “unstructured” background. Figure 4.4a shows a

synthetic image that is generated according to the parameters reported in [109]. Next to it, in the

impulse graph of ∆T (r), we observe a large peak at r=654. The partitions which are obtained

on both sides of this peak are shown in parts (c) and (d). In both (c) and (d), the background

pixels form tiny clusters, each one including a few neighboring pixels which happen to have similar

brightness values. These tiny clusters reflect true structure in the image, which we can screen out

by using some size threshold, leaving these pixels unlabeled.

The parameter S of minimal size of interest reflects prior information, and determines the

resolution of the segmentation. Figures 4.5(a,b) show ∆T (r) obtained for larger values of this

parameter. In this case the interesting clusters are large, and if this information is known in

advance it can be used to clean up the impulse graphs. This will not be the case in our next

example, of perceptual grouping of line segments. Figure 4.5(c,d) shows the partition obtained at

We note that the peak at r=1650 results from the splitting of the grass region, shown in yellow, into the yellow and
dark red regions. The peaks at r=9330 and 10282 are due to the separation of the lower sky areas, later shown in
light blue, red and light green. These peaks are relatively high since they indicate a separation from a large area (the
sky).
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the second highest peak.

The cross validation technique described in Section 2.6 can be applied here. The values which

we get for the first five cross validation indices ρ1 . . . ρ5 are: 0.46, 0.02, 0.08, 0.02, 0.08. These

values are obtained by averaging over 15 different random subsamplings, with standard deviations

of 0.27, 0.05, 0.15, 0.03 and 0.21 respectively. Although the statistics is found to be noisy, its mean

value clearly suggests that only the first partition can be accepted.

A comparison with the normalized cut algorithm [127] and with the factorization algorithm

[109] is presented in Figure 4.6. The results are in agreement with those reported in [109], showing

that the normalized cut algorithm fails completely in the presence of unstructured noise, while the

factorization algorithm performs less well than our method.

Perceptual grouping of line segments

As a second example of separating structure from cluttered background, we consider the problem

known as perceptual grouping of line segments. In such problems the raw data is typically a set of

edgels, or line segments, and accordingly nodes in the graph represent line elements. The task is to

group together a set of line segments that together define a perceptually appealing “edge”, typically

expected to have one or more of the following properties: smoothness, closure, or convexity.

In these problems typically the clusters of interest contain only a few elements in comparison

with the number of elements in the background (the clutter), see Figure 4.7. Our heuristic, which

identifies meaningful partition levels by measuring variations in T (r), does not function as well

under these circumstances, since it measures size variation. It is beyond the scope of this work to

formulate an alternative principle. However, we can still use our method to generate a series of

candidate partitions. The final solution should be selected from this set of candidate partitions,

using an external criterion like good continuity, closure, or convexity.

Figure 4.7 shows a contour of a lemon superimposed on random background. The total number

of line segments in this figure is 440, while the number of segments which construct the lemon

contour is only 44 (signal to noise ratio of about 10%).3 The image and the similarity measure

wij are adopted from [133]. We do not repeat here the similarity (affinity) formula, which is

quite complex, and note that it depends on relative orientation and spatial proximity between line

3In comparison, the signal to noise ratio in Figures 4.4 is about 100% (642 pixels in the central rectangles, 638
pixels in the random background).

80



segments. After the similarity between every two line segments is computed, we discard low weight

edges; our elimination criterion uses the mutual-k principle [10], namely, a weight wij is kept if

edge i is one of the k-nearest neighbors of edge j and vice versa (k=10 is used). The remaining

weights are fed into our clustering algorithm.

Most of the large peaks in the impulse graph of ∆T (r) result from the separation of small sets

of line segments from a large set. However, by the time that the interesting separation occurs,

the cluster which is split is small (see the transition from r=229 to 230), and the splitting is not

accompanied by a large change in T (r). Nevertheless, if we ignore variations in T (r) that result

from segmentation of clusters smaller that 10 elements, as we did in Figure 4.7, then there are only

7 candidate partitions to consider; and as noted above - the selection between them can rely on

additional external perceptual criteria.
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Figure 4.1: Brightness image segmentation. Upper box: the original image of size 147×221, the impulse graph of
∆T (r) and the four segmentation results which correspond to the four highest peaks. Lower box: The intermediate
results obtained before and after each one of the four highest transitions. The intermediate results are shown without
relabeling, with dark blue color assigned to unlabeled pixels. Parameter setting: Intensity range is [0,1], a=8, b=0.1,
edges with weight wij below 0.01 are eliminated, and only edges connecting each pixel with its four spacial nearest neighbors
plus four random neighbors are included. Minimal cluster size of interest is 100. The graph contained 191,756 edges. Time
per iteration: 2.11sec on Pentium II 450 Mhz. M=1000.
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Figure 4.2: Color image segmentation in CIE-LAB color space. Upper box: the original image of size 122×183, the
impulse graph of ∆T (r) (insert shows an enlarged graph), and the three segmentation results which correspond to the three
highest peaks. Lower box: The intermediate results obtained before and after each one of the three highest transitions.
The intermediate results are shown without relabeling, with dark blue color assigned to unlabeled pixels. Parameter

setting: Colors are represented in CIE-LAB color space, a=64, b=9, edges with weight wij below 0.001 are eliminated,
and only edges connecting each pixel with its eight spacial nearest neighbors are included. Minimal cluster size of interest
is 100, and a sample of M=500 cuts is used to estimate the pairing probabilities. The graph contained 71,765 edges.
Time per iteration: 0.89sec on Pentium II 450 Mhz.
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Figure 4.3: Color image segmentation in CIE-LUV color space. Upper box: the original image of size 256×192,
the impulse graph of ∆T (r) and the four segmentation results which correspond to the four highest peaks. Parameter

setting: Colors are represented in CIE-LUV color space, a=64, b=9, edges with weight wij below 0.001 are eliminated,
and only edges connecting each pixel with its four spacial nearest neighbors plus four random neighbors are included.
Minimal cluster size of interest is 100. The graph contained 255,837 edges. Time per iteration: 4.10sec on Pentium II 450
Mhz. M=500.
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Figure 4.4: Separation of homogeneous objects from noisy background. (a) Synthetic 30 × 42 image, generated with
the same parameters as in [109]: the brightness values are uniformly distributed between 0 and 1 for the background,
between 0.2 and 0.21 for the larger rectangle, and between 0.3 and 0.31 for the smaller one. (b) The graph of ∆T (r): the
largest peak appears at r=654, the second largest appears at r=146. Minimal size of interest for a cluster is 10. (c,d) The
segmentation results at r=654,655 that correspond to the largest peak of ∆T (r). Pixels in the Background form isolated
or tiny clusters. Parameter setting: a=3, b=0.1 (like in [109]), only edges with the 8 nearest neighbors of each pixel are
included.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 100 200 300 400 500 600 700 800 900
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 100 200 300 400 500 600 700 800 900

(a) (b) (c) (d)

Figure 4.5: Separation of homogeneous objects from noisy background - II. (a,b) The graphs of ∆T (r) obtained when
the minimal size of interest for a cluster is set to 30 and 100, respectively. (c,d) The segmentation results at r=145,146
that correspond to the second largest peak of ∆T (r). The peaks at the lower r values correspond to spurious clusters
which are formed in the background. For r=146, the peak results from the segmentation of the orange cluster at the lower
left corner.
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Figure 4.6: The performance of other algorithms applied to the data of Figure 4.4. The same preprocessing
and exponential transformation from distances to weights was used (see text). First row: The normalized
cut algorithm [127]. (a) One of the best Ncut partitions (there are many partitions which correspond to zero
eigenvector, 33 of them separate a single pixel). (b) The partition which is suggested by the eigenvector shown
on the left. The five isolated entries are connected to each other, but not to the rest of the image, hence the cut
value is zero. Second row: The factorization method [109]. (c) The first eigenvector of the similarity matrix,
sorted by the value of its entries. There is no clear threshold to choose. (d) The same eigenvector presented using
intensity scale, where the entries are ordered like the image pixels. (e) A log function is applied to the values of
the eigenvector, and the presentation is like in (d).
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Figure 4.7: Perceptual grouping of line segments. The data is shown in the upper left image. If the minimal size of
interest for a cluster is set to 10, then 7 transitions are detected, which are marked by the 7 peaks in the impulse graph of
∆T (r) (upper row, on the right). Each peak signals the segmentation of a set of at least 10 line segments (bottom rows).
The meaningful peak, at r=230, is not high since the cluster of interest is small. The partitions obtained on both sides of
this peak are shown in the bottom row, on the right (r=229, 230).
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4.4 Organization of an image database

We now integrate the two steps of similarity estimation and pairwise clustering into one experi-

ment of image database categorization. The database contains 121 images of 12 different objects;

90 of the images were collected by placing 6 toy models on a turntable, so that the objects could

be viewed from different viewpoints. The other images are the 31 silhouettes discussed in Sec-

tion 3.2.3. For each of the 6 toy models we collected 15 images, by rotating them in azimuth

(ϑ = −20◦,−10◦, 0◦, 10◦, 20◦) and elevation (ϕ = −10◦, 0◦, 10◦). We used models of a cow, wolf,

hippopotamus, two different cars and a child.

The central images (ϑ = ϕ = 0) in each of the three groups of pictures of animal models are side

views (i.e., four legs, head and tail are visible). All the different 15 images of each animal model

are somewhat similar in that the same parts are visible (though in some pictures some parts, such

as 2 legs or a leg and a tail, are merged into one in the silhouette). Thus, there is weak geometrical

similarity between all the 45 silhouettes of the three mammals, and there is weak geometrical

similarity between the 30 different silhouettes of the two cars. A desirable shape categorization

procedure should reveal this hidden hierarchical structure.

All the images were automatically preprocessed, to extract the silhouettes of the objects and

represent them syntactically (see Section 3.3.1). The dissimilarities between the silhouettes are

estimated using the algorithm described in Chapter 3. In order to compare all the image pairs in

our database of 121 images, we performed 7260 matching assignments; this took about 10 hours on

an INDY R4400 175Mhz workstation (about 5 seconds per image pair, on average). The output of

this computation is a dissimilarity matrix dij of size 121× 121, shown in Figure 4.8(a). Part of the

data appears also in Table 3.1.

According to the general approach adopted in this work, our next step is to represent the

images as nodes in a graph, and assign a similarity weight wij to each edge. In accordance with

Equation (2.2) we define

wij = e−
d2
ij

a2

where a is a local scale parameter, here chosen to be the averaged dij to the second nearest neighbor4.

4Determining the local scale a by the second nearest neighbor results in a very fast decay rate of the weights wij .
In this example we cannot determine a by remote neighbors, since some of the clusters of interest contains as few as
four members. This is an unusual case in clustering applications. The larger clusters can be found even if a larger a
is used. See our earlier report in [35], where the SPC algorithm [10] was used for the clustering.

88



20 40 60 80 100 120

20

40

60

80

100

120 0

0.1

0.2

0.3

0 20 40 60 80 100 120

(a) (b)

Figure 4.8: (a) The dissimilarity matrix dij computed for 121 images as described in Chapter 3, by silhouettes
extraction, syntactic matching, and computation of residual distances between matched points. Larger dissimilarity values
are represented by brighter intensities. The infinity value is represented by pure white. Images which belong to the same
class are ordered next to each other, hence the matrix shows a block diagonal structure. The order of the classes is:
cows, hippos, wolves, cars, sport cars, children, hand palms, fish, planes, rabbits, tools and artificial shapes. (b) Clustering
(Chapter 2): The impulse graph of ∆T (r) versus r, computed with 1000 iterations. The peaks correspond to the partitions
shown in Figure 4.9. We have considered peaks above 0.01 to be meaningful.

After transforming dij to wij we threshold the graph (θ = 10−5) to obtain a sparse representation.

Figure 4.8(b) shows the graph of ∆T (r), while the corresponding hierarchical classification

(dendrogram) is shown in Figure 4.9. At the highest level (r=1) all the images belong to a single

cluster. As r is increased, finer structure emerges. Note that related clusters (like the two car

clusters) split at higher r values, which means that our dissimilarity measure is continuous, assigning

low (but reliable) values to weakly similar shapes.

Since humans can do so, we assume that an ideal shape classifier can put the images of every

object in a different class. It is hard to test this hypothesis, since as humans we cannot ignore

the semantic meaning of the shapes. Nevertheless, comparing with the ideal human perceptual

classification, our finest resolution level is almost perfect, with only two classification errors (in the

boxes marked by ∗) and the undesirable split of the fish cluster.

Our categorization is obtained using only intrinsic shape information. The relative size, orienta-

tion and position of the silhouettes within each category is arbitrary. Moreover, global information

like the length of the occluding contour or the area it encloses are not used. Hence we expect that

moderate occlusion will not affect the classification.
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Figure 4.9: The classification tree obtained for an image database consisting of 121 images. The finest classification
level is shown by putting each cluster of silhouettes in a box. For the large clusters representing our own toy models (see
text) the figure shows only 5 exemplars out of 15, but the other 10 are classified correctly as well. Note that the lower levels
of the tree correspond to meaningful hierarchies, where similar classes (like the two cars or the three sets of mammals) are
grouped together. The vertical axis is not in scale.
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Figure 4.10: The application of two agglomerative techniques to the silhouettes data: (a) single linkage, (b) complete
linkage. The horizontal spacing between endpoints (leaves) is proportional to the scale (vertical axis) in which they are
merged together. Hence the lines within cluster are dense, while more space is left between clusters. While the complete
linkage algorithm completely fails, the single linkage algorithm succeeds to fine meaningful structure, although the natural
levels are not salient. We conclude that the images form chained structures, and not compact (isotropic) ones. The
labels near the leaves are: a-cow, b-hippo, c-wolf, d-car, e-sport car, f-child, g-hand palm, h-fish, i-plane, j-rabbit, k-tool,
l-artificial shape.
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Figure 4.11: The factorization algorithm [109] recursively applied to our silhouettes data. The method does not offer
hierarchical interpretation. The threshold at each branching point was selected manually. No threshold could be found to
separate the 30 images of the two different cars. The divisive process at the later stages cuts spurious small clusters.
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Figure 4.12: The normalize cut algorithm [127] recursively applied to our silhouettes data. In tree nodes which split
into at least one terminating leaf we show the entries of the corresponding eigenvector. The branching is halted when, by
inspection, the entries of the eigenvector do not show a clear separation into two groups. The images are ordered in the
same order as in Figure 4.8a, namely images that belong to the same class are adjacent on the x-axis.
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Comparisons

Our image classification procedure consists of two parts: estimation of pairwise dissimilarities and

detection of clusters. The quality of the dissimilarity estimation was considered in Chapter 3. Here

we claim that the veridical hierarchical clustering is an indirect evidence for the quality of our

dissimilarity estimation. The reliable pairwise relations within classes and between related classes

give rise to veridical partitions with a number of clustering methods.

In all our comparison experiments we use as input the same matrix wij , to eliminate any

dependence on the data preprocessing. We apply agglomerative algorithms (Figure 4.10) and two

spectral methods (Figures 4.12, 4.11). The conclusion from the performance of the agglomerative

techniques is that the images form chained structures, where images in the same cluster might be

related to each other not directly but through “mediating” images. Since the nearest neighbors of

all the images are in the same class (see also Table 3.1), the single linkage algorithm performs quite

well, although it does not give hints as to the natural thresholds which determine the hierarchies. On

the other hand, the complete linkage algorithm, which seeks compact structures, fails completely.

The quality of the results obtained by the normalized cut algorithm (Figures 4.12) is comparable

with ours. While our algorithm computes the whole hierarchy at once, the normalized cut algorithm

is applied recursively on each part. The stopping condition of this algorithm is not well formalized;

the devision should be halted when the entries of the eigenvector do not show a clear partition

into two groups. We have inspected the entries and halted the divisive process when we did not

observe a clear partition by eye. In Figures 4.12 we show the eigenvectors that correspond to the

final partition levels.

Next, we recursively apply the factorization method on our data. The partition tree is shown

in Figures 4.11. Note that the 30 images of the two cars cannot be separated into two clusters by

this method, since the principal eigenvector of the corresponding 30× 30 matrix does not indicate

a separation. This method does not suggest hierarchical interpretation of the data, and it breaks

the fish cluster into small pieces, each containing just two members.
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Chapter 5

Discussion

Our goal in this work was to apply cluster analysis as a unified approach for a wide range of

vision applications. Many vision applications can be viewed as data partitioning problems, and

can be addressed by this unified approach. In particular, we have focused on the tasks of image

segmentation, edge elements grouping, and image organization.

The first step in these tasks is to define the pairwise similarity between the visual entities: pixels,

edgels, or shapes. While natural measures exist for pixel similarity, and extensive work is done in

the area of edgels similarity, shape similarity is not well understood. Most of the algorithms in the

literature which address the problem of shape similarity are designed for model based recognition

tasks. Hence they are usually suitable for decision problems, for example when one needs to decide

which model shape in the archive is identical to a given query shape.

Hierarchical image organization necessitates a graded similarity measure, and when the desired

categories are shape categories, then a graded shape similarity measure is necessary. In addition, an

appropriate similarity measure should be invariant with respect to scaling and rigid transformations

of the image, and should be local (avoid using global invariants) in order to be useful in cases of

occlusion. We have shown how a flexible curve matching algorithm can be used to define the

dissimilarity between weakly similar shapes. Our flexible syntactic matching is based on a simple

heuristic, guided by the principle that matched features should lie on locally similar pieces of curve.

Naturally, this principle cannot guarantee that the results would always agree with our human

intuition for “good” matching, but our examples in Section 3.2.2 demonstrate that satisfactory and

intuitive results are usually obtained. We demonstrated excellent results, matching similar curves

under partial occlusion, matching similar curves where the curves depict the occluding contours
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of objects observed from different viewpoints, and matching different but related curves (like the

silhouettes of different mammals or cars).

In order to achieve the large flexibility we introduced a non linear measure of similarity between

line segments, which is not sensitive to either very small or very large differences in their scale and

orientation. Our specific choice of segment similarity, combined with a novel merging mechanism

and an improved interruption operation, added up to a robust and successful algorithm. The most

important properties of our algorithm, which make it advantageous over other successful matching

algorithms, are its relatively low complexity, its locality which allows us to deal with occlusions,

and its invariance to 2D image transformations. Note that “successful” matching depends on the

application at hand. Our method is not suitable for recovering depth from stereo, but it is well

suited for more qualitative tasks, such as the organization of an image database, the selection of

prototypical shapes, and image morphing for graphics or animation.

Getting back to the general scheme that underlies our work, the second step in our unified

approach is to apply cluster analysis to detect internal structures among the visual entities (pixels,

edgels or images). Hence we map the relevant entities to the nodes of a graph, while their pairwise

relations are used to assign weights to the graph edges. We use a canonical weight transformation,

which converts the perceptual measure of distance to exponentially decaying similarity weight1.

Exponential decay is not only supported psychophysically [125, 126, 28], it can be understood from

the properties of the cut cost function that we use. This cost, which is the total similarity weight

between clusters, is affected by the size of the clusters. Large clusters should not be judged similar

just because there are many graph edges connecting them. Exponential decay, as well as local

neighborhoods, avoids this undesirable bias.

When the visual entities are represented as graph nodes and edge weights are assigned, our

novel clustering method can be applied. The central insight to our algorithm is that it converts

the pairwise similarity weights into higher order weights, or “collective” similarities. The collective

similarity of two nodes i, j depends on an integer number r. It is the probability pr
ij that i and j

are at the same side of a random r-way cut which is generated by the contraction algorithm. The

analysis of the contraction algorithm shows that these pairing probabilities are dominated by the

low capacity cuts.

1The method that we chose to compute the similarities between edge elements directly provides us with a similarity
(and not a dissimilarity) measure. It is inherently an exponentially decaying function.
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Nevertheless, the pairing probabilities are not determined by a single pivotal cut (e.g., the

minimum cut), and at this point precisely our algorithm defers from most other clustering algo-

rithms. The usual approach to clustering can be viewed as a search algorithm in some hypothesis

space, where a hypothesis is a feasible partition. Whatever search method is applied, whether it is

heuristic or guided by an objective function, a regular search algorithm ends in some point in the

hypothesis space and returns it as a single possible solution (Section 2.5.3). On the other hand, our

algorithm (and clustering algorithms which are inspired by statistical mechanics) induces a prob-

ability distribution over the hypothesis space, and returns an average solution. Thus we are not

committed to a single partition, and our algorithm acquires a great amount of robustness. Indeed,

we demonstrated in Section 2.5.2 that our algorithm is more stable than spectral algorithms under

data perturbation.

The algorithm generates an average partition at each r level, which is called the typical cut. The

definition of the typical cut rely on the interpretation of 1-pr
ij as the probability that edge (i, j) is

a crossing edge in an “average cut” (Section 2.2). The N typical cuts corresponding to r = 1 . . . N

are the candidate solutions to the clustering problem, and a heuristic criterion is applied to select

some of them as a hierarchy of partitions. Evidently, successful partitions can be selected only if

the set of N candidate typical cuts indeed contains the desired solutions. Whether this is the case

or not, it depends on the output of the first stage of the algorithm, which transforms the pairwise

similarities into the pairing probabilities.

Since the estimation of the pairing probabilities does not require the computation of a particular

minimum cut, the resulting algorithm turned out to be more efficient than explicit minimal cut

computation. A deterministic state of the art algorithm which finds minimal 2-way cut in an

N -nodes |E|-edges graph is proposed in [99], and requires O(N |E|) time. The state of the art

probabilistic approach is based on packing of maximum spanning trees and random sampling [71],

which takes O(|E|log3N) time (for bi-partition). To divide the graph by a cascade of bi-partitions

it is better to compute maximal flows rather than to apply these algorithms recursively. Based

on the Gomory-Hu theorem, the state of the art algorithms require Ω(N 2|E|) time [76]. On the

other hand, our algorithm runs in O(N log2 N) time on sparse graphs that have |E| = O(N) edges.

Complete graphs are not of interest in usual clustering application, but in this case the running time

of our algorithm is O(N 2 log N). In both cases the space complexity is O(|E|). It must be noted

that a parallel implementation of our algorithm is trivial, since it is constructed from O(log N)
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independent iterations. Thus the total work can be easily divided between O(log N) processors.

In Chapter 4 we investigated experimentally the plausibility of our goal, and showed that

using our clustering algorithm we can address different problems in computer vision. Some of

our results were compared with other method, primarily with the recently proposed normalized

cut algorithm [127] and the factorization algorithm [109]. This adds to some comparisons that

are presented in Chapter 2. To be concrete, we compared the performance on synthetic point set

examples in Figures 2.6 and 2.9; we presented in Figure 4.1 our segmentation results using the same

image reported in [127]; we compared our results under unstructured background noise with those

reported in [109] (Figure 4.6); and we analyzed our database of 121 images using other methods in

Figures 4.10-4.11.

We conclude that there are cases where our method works and the normalized cut and the

factorization method fail completely (Figures 2.6,2.9). In other cases, like in the image segmentation

of Figure 4.1, our method appears to work better. In particular, in this example we succeed to

segment fine details such as different body parts which the normalized cut algorithm failed to find.

It must be noted that in addition the complexity of our algorithm appears to be lower: while our

running time is O(N log2 N), the complexity of normalized cut is O(LN), where L is the maximal

number of matrix-vector multiplications allowed in the Lanczos procedure. The number L depends

on many factors, and Shi and Malik observed that it is typically less then O(
√

N).

The factorization algorithm was proposed in [109] in conjunction with the figure-ground problem

that aims to segment a structured “foreground” set of objects from an unstructured “background”

set. The claim was that while the normalized cut algorithm fails in these circumstances, the

factorization algorithm performs well. In Figure 4.6 we reconstructed the example used in [109], and

showed that our algorithm works better than the factorization method, providing that we interpret

small clusters as spurious structures and ignore them. When the unstructured background contains

most of the data points, it might be that our current algorithm will only generate a few candidate

solutions, and the selection between them will have to rely on additional external perceptual criteria

(see the example of grouping edge elements in Section 4.3).

The comparisons between different methods using the image database data (Figures 4.10-4.11)

showed that for this example the normalized cut and our algorithm produced comparable results.

Both methods detected all the relevant partitions. This kind of database structuring could not

have emerged without the reliable estimation of the dissimilarities between weakly similar images.
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Hence the veridical hierarchical organization stands as an indirect and objective evidence to the

quality of our matching and similarity estimation.

The factorization algorithm also succeeded to detect many of the clusters, but its overall per-

formance was not as good as the previous algorithms, and it did not provide a hierarchical inter-

pretation of the data. The single linkage methods performed less well, and the complete linkage

algorithm failed completely due to the chained structure of the clusters.
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Appendix A

An Alternative Implementation of
The Typical Cut Algorithm

The efficient implementation of the first stage of our clustering algorithm is presented in Sec-

tion 2.7.2, and is based on UNION and FIND operations. Using a mapping from node to meta

modes names (names), the inverse mapping members and the array sizes, the FIND operation was

implemented in constant time and the UNION operation was implemented in O(log N) average time.

In the following proposed implementation we use alternative mappings between names, and

implement the UNION operation in constant time, and the FIND operation in nearly constant time

on average. Moreover, we maintain a data structure which supports direct indexing into the edges

which connect two given meta nodes. We therefore believe that the implementation presented here

is more efficient, although we cannot show a complexity bound which reflects this intuition.

The mapping names is implemented as a forest data structure. Hence the members of each

meta node construct a tree, and if node i is the parent of node j then names(j) = i. The root index

is the meta node name. A UNION operation is to make the root of the smaller tree be a child of the

root of the larger, and this takes O(1) time. A FIND operation for node i is to follow the path from

names(i) up to its root, and to return the root index. In addition, during FIND, we change each

node encountered along the path to be a child of the root. This is known as path compression. It

can be shown that in this implementation all the FIND operations which are involved with a single

graph contraction (single iteration of the loop at lines 7–17, Figure 2.14) takes O(Nα(N)) time,

where α is the inverse Ackermann’s function. This function is not a constant, yet α(N) ≤ 4 for all

integers N one is ever likely to encounter.
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Our challenge is to construct a new implementation of CONNECTING-EDGES, which does not use

the members mapping (this mapping cannot be maintained by a constant time union operation).

We define a new data structure, called neighbors. For every meta node u, neighbors(u) is a list of

items of the form {v,Euv}, where v is a meta node which is adjacent to u and Euv is list of edge

indices connecting u and v. There is some arbitrariness in this structure, since the adjacent meta

nodes u and v may be listed either under neighbors(u) or under neighbors(v).

In principle, a UNION operation should be followed by a complicated update of the neighbors

lists. We settle for a partial update. Namely, after the meta node v was renamed u, we concatenate

the lists neighbors(u) and neighbors(v), but we do not search for members of the form {v, . . .} in

other lists. These members stay with a name v which is no longer valid, hence every access to a

meta node name in the data structure neighbors will be followed by a FIND operation, that will

correct the name if necessary.

The new CONNECTING-EDGES procedure is shown in Figure A.1. Lines 1–5 are identical with the

previous version. Line 6 is the UNION operation. The loop in lines 8–15 query all the meta nodes

which are either connected to u or to v. A possible name correction is performed in line 9, then

the adjacent meta nodes are entered into a temporary list A (line 11). However, if u and v are

contracted, it means that they were previously connected, meaning that in the list neighbors(u) we

may find a member called v and vice versa. These members should not be included in A. Instead,

their lists of connecting edges are added to L (line 13).

Finally, line 16 calls for the procedure PURIFY. While constructing the list A it might happen

that some of the members added to it have the same name. The procedure PURIFY sorts the list

A by name, and replaces such members with a single member, whose edge list is the concatenation

of the distributed lists.

In order to keep the length of the neighbors lists as short as possible, we use the following

heuristic (which is not shown in Figure A.1). When a member f = {x,Eux} ∈ neighbors(u) is

to be added to A, we first check whether the length of neighbors(x) is shorter than the current

length of A. In this case, instead of adding f to A, we rename it to be called u, and add it to

neighbors(x).

The reason why we could not find a complexity bound for this version of CONNECTING-EDGES is

that we do not have a bound on the lengths of the neighbors lists. However, our experiments show

that for sparse graphs these lists remain very short, of the order of the maximal node degree in the

100



procedure CONNECTING-EDGES:

input: two meta nodes names u, v

output: list L of connecting edges (and modified mappings)

use mappings: names,neighbors and sizes (see text).

(01) Let L be an empty list of edge indices.

(02) if sizes(u) < sizes(v) then

(03) call CONNECTING-EDGES(v, u) (exchange arguments)

(04) return

(05) end-if

(06) names(v)← u (the UNION operation)

(07) let A be a temporary empty list of neighbors

(08) for each member f = {x,Ex·} in neighbors(u) and in neighbors(v)
(09) x← FIND(x)
(10) if x 6= u, v then

(11) add the (corrected) member f to A
(12) else

(13) add the edge-list Ex· of f to L
(14) end-if

(15) end-loop

(16) PURIFY(A)

(17) neighbors(u)← A
(18) neighbors(v)← NULL

(19) return L

Figure A.1: An alternative implementation for merging meta nodes and finding the edges which connect them.

original graph G.
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Appendix B

Syntactic Operations for Curve
Matching: Comparison

The syntactic operations which underly our curve matching algorithm are defined in Sec-

tion 3.3.3. Here we make a comparison with similar definitions from the literature.

How to measure similarity

Local and scale invariant matching methods usually use the normalized length `/`0. For example,

the ratio between normalized lengths `/`0
`′/`′0

is used in [89, 86] (with global normalization the difference

|`/L− `′/L′| can be used [139, 135]). The ratio between normalized lengths may be viewed as the

ratio between the relative scale c = `/`′ and the reference relative scale c0 = `0/`
′
0. While this scale

ratio is invariant, unlike our measure it is not bounded and is thus less stable.

We are familiar with only one other definition of a symmetric, bounded and scale invariant

measure for segment length similarity [86]. However, their matching algorithm is not syntactic and

is very different from ours. In addition, there is an important qualitative difference between the

two definitions (see Figure B.1), where our measure is more suitable for flexible matching.

As for our measure of orientation difference, we note that a linear measure of orientation dif-

ferences has been widely used by others [135, 136, 89, 16]. The non linear measure used by [86]

differs from ours in exactly the same way as discussed above concerning length.

Reminiscent of our combined similarity measure (3.3), in [111] a coupled measure is used:

the segments are superimposed at one end, and their dissimilarity is proportional to the distance

between their other ends. However, this measure is too complicated for our case, and it has the
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Figure B.1: Scale similarity: the scale c = `/`′ is
compared with the reference scale c0 = `0/`′0. Left:
The binary relation used by Li [86] to measure scale
similarity is exp(−|log(c/c0)|/σ) with σ = 0.5. Right:
Our measure function (Equation (3.1)) is not sensitive
to small scale changes, since it is flat near the line c =
c0.

(a) (b) (c)

Figure B.2: Comparison between merging rules: (a)
A polygonal approximation of a curve, with two dotted
segments which are to be merged. (b) Merging result
according to our scheme. A coarser approximation is
obtained. (c) Merging according to Tsai and Yu [135].
The new polygon does not appear to give a good ap-
proximation.

additional drawback that it is sensitive to the arbitrary reference scale and orientation (in the

character recognition task of [111] it is assumed that characters are of the same scale and properly

aligned).

How to open gaps

All the syntactical shape matching algorithms that we are familiar with make use of deletions and

insertions as purely local operations, as in classical string matching. That is, the cost of inserting a

sequence of gaps into a contour is equal to the cost of spreading the same number of gap elements

in different places along the contour. We distinguish the two cases, since the first typically arises

from occlusion or partial matching, while the second arises typically from curve dissimilarity. In

order to make the distinction we adopt a technique frequently used in protein sequence comparison,

namely, we assign a cost to any event of contour interruption, in addition to the (negative) cost

from deletion/insertion of any single element.

How to merge segments

A similar approach to segment merging (Section 3.3.3) was taken in [139], but their use of invariant

attributes made it impossible to realize the merge operator as an operation on attributes. Specif-

ically, there is no analytical relation between the attributes being merged to the attributes of the

new primitive. Instead, a cascade of alternative representations was used, each one obtained by a

different Gaussian smoothing of the two dimensional curve; a primitive sequence is replaced by its
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“ancestor” in the scale space description1.

Compare the polygonal approximation after merging with the polygon that would have been

obtained had the curve been first smoothed and then approximated. The two polygons are not

identical, since smoothing may cause displacement of features (vertices). However, a displaced ver-

tex cannot be too far from some feature at the finest scale; the location error caused by “freezing”

the feature points is clearly bounded by the length of the longest fragment in the initial (finest

scale) representation. To ensure good multi scaled feature matching our sub-optimal polygonal

approximation is sufficient, and the expensive generation of the multi scale cascade is not neces-

sary. Instead, the attributes of the coarse scale representation may be computed directly from the

attributes of the finer scale.

Merging was defined as an operation on attributes by [135], who also applied the technique

to Chinese character recognition [136]. Their algorithm suffers from some drawbacks concerning

invariance and locality2; below we concentrate on their merging mechanism, and compare it to our

own.

Assume that two line segments characterized by (`1, θ1) and (`2, θ2) are to be merged into one

segment (`, θ). In [135] ` = `1 + `2, and θ is the weighted average between θ1 and θ2, with weights

`1/(`1 + `2) and `2/(`1 + `2), and with the necessary cyclic correction.3 Usually, the polygonal

shape that is obtained using this simple ad-hoc merging scheme cannot approximate the smoothed

contour very well. Satisfactory noise reduction is only achieved in one of the following two extreme

cases: either one segment is dominant (much longer than the other one), or the two segments have

similar orientation. If two or more segments having large variance are merged, the resulting curve

may be very different from the original curve (see Figure B.2). The result of the segment merging

in the finer scale is not an acceptable coarser approximation of the shape.

1The primitive elements used in [139] are convex and concave fragments, which are bounded by inflection points.
The attributes are the fragment length divided by total curve length (a non-local attribute), and the accumulated
tangent angle along the fragment (a non-interruptible attribute). The algorithm cannot handle occlusions or partial
distortions, and massive preprocessing is required to prepare the cascade of syntactical representations for each curve,
with consistent fragment hierarchy.

2The primitives used by [135] are line segments, the attributes are relative length (with respect to the total length)
and absolute orientation (with respect to the first segment). The relative length is, of course, a non-local attribute,
and in addition the algorithm uses the total number of segments, meaning that the method cannot handle occlusions.
The problem of attribute variance due to rotation remains in fact unsolved. The authors assume that the identity of
the first segments is known. They comment that if this information is missing, one may try to hypothesize an initial
match by labeling the segment that is near the most salient feature as segment number one.

3For example, an equal weight average between 0.9π (almost “west”) and −0.9π (almost “west” as well) is π
(“west”) and not zero (“east”).
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