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Abstract

Modern machine learning problems are often about learning a mapping between two high-dimensional
domains. For example, learning a mapping from the domain of images to the domain of words, or
learning which documents are similar to others. We refer to these mappings as dyadic relationships.
In this thesis we focus on learning dyadic relationships encoded in matrix form. For example, a
matrix mapping between image representations and semantic representations, or a matrix acting
as a bilinear form encoding similarity between pairs of documents.

Specifically, we address the challenge of learning dyadic relationships for large-scale high-
dimensional datasets. We employ two sets of tools in developing the methods presented here:
First, we use the rich geometric and algebraic structure of matrices. This includes the Rieman-
nian manifold structure of the set of low-rank matrices, decompositions of orthogonal matrices,
and properties of positive definite matrices. In addition, we concentrate on streaming access algo-
rithms. These are algorithms which have access to a small subset of the data samples or features
at any one time. Streaming algorithms are key for handling huge datasets which do not fit in
memory, and for obtaining fast predictions even before the entire data is available or processed.

This thesis is based on four papers. First, we deal with the problem of learning a similar-
ity measure between sparse high-dimensional instances, applied to image retrieval. We focus on
building a fast algorithm which scales to large datasets, and investigate the role of symmetry and
positive definiteness in its performance. The second paper presents two streaming algorithms for
learning low-rank and low-rank positive definite matrices, applied to learning similarity measures
and multi-label models. The algorithms are based on Riemannian stochastic gradient descent, and
prove to be both fast and robust despite the highly non-convex nature of the low-rank constraint.
The third paper deals with the challenge of learning interpretable relations - how can an algorithm
explain its output in terms which make sense to humans? The work is motivated by the need
to understand a large dataset of high-resolution gene expression images in the mouse brain. The
images exhibit elaborate multi-scale patterns, and the genes themselves exhibit complex interac-
tions, making the data difficult to comprehend. Our method uses the semantic information gained
from the rich existing knowledge on genes and their functions, and gives researchers means for
exploring and understanding the dataset. Finally, the fourth paper deals with the general problem
of efficiently learning orthogonal matrices, motivated by recent applications to tensor decomposi-
tions for method-of-moments estimation of latent variable models. We present a novel Riemannian
coordinate descent algorithm, based on simple sparse orthogonal matrices called Givens rotations.
We show our method produces better results for tensor decomposition compared with the state-
of-the-art, as well as being faster and outperforming a state-of-the-art algorithm for sparse PCA.

We conclude by discussing several future research directions stemming from the work presented

here, as well as building on recent advancements by other researchers.
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Chapter 1

Introduction

Numerous machine learning problems involve a mapping between two high-dimensional domains.
As a common example, multi-class learning can be viewed as learning a mapping from the instance
domain to the label domain. As another example, learning a similarity measure can be viewed
as learning a mapping between a domain to itself. Collaborative filtering can be viewed as learn-
ing a mapping between the user domain and recommended item domain. We call these dyadic
relationships.

In fact, one can argue that the majority of real-life machine learning problems are dyadic or
even polyadic. Computer vision tasks typically involve many labels and objects, a typical biological
application can involve inferring relationships pertaining to thousands of genes and hundreds or
thousands of biological conditions, and learning for ad placements demands learning a relationship
between thousands of ads and millions of possible queries.

A classic mathematical representation for a linear mapping between two high-dimensional do-
mains is the matriz. Using some of the examples above, multi-class learning can be seen as learning
a matrix of classifiers; similarity learning as learning a bilinear form parametrized by a matrix;
and collaborative filtering as completing a partially observed user-item interaction matrix.

Formulating dyadic problems as matrix problems assumes a flat structure on each of the do-
mains. Recently there has been much interest in learning structured dyadic relationships, for
example using the structure of language when learning a model for annotating images (Frome
et al., 2013). Adding complex structure to the domains of the dyadic relationships is beyond the
scope of this thesis, and will be considered in future work.

Learning mappings between high-dimensional spaces is becoming ever more challenging in re-
cent years as the size, richness and requirements from machine learning algorithms have soared.
For example, the number of available labels for images have grown to the tens of millions, as did
the numbers of users and items in item recommendation tasks.

In addition, the recent explosion in the size of available data has outpaced the growth rate
of computing power and local storage capacity. This has made many classical machine learning
methods such as kernel methods increasingly irrelevant, and brought a rising interest in developing
new algorithms suited for these new conditions

This work aims to create methods for learning dyadic relationships suited for handling large-
scale datasets: Ideally, the runtime and memory demands of our methods scale linearly or sublin-
early with the number of instances and with the dimensionality, the methods have low communi-
cation cost, and they are amenable for parallelization.

We combine two sets of tools to approach these goals: The first set of tools is harnessing the rich
algebraic and geometric structure of matrix domains. For example, the many characterizations of
matrix rank provide a fertile ground for creating efficient learning algorithms. As another example,

we use the Riemannian manifold structure of sets such as low-rank positive semidefinite matrices
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or orthogonal matrices to create efficient and scalable algorithms for learning dyadic relationships.

The second set of tools is using a simple yet attractive family of optimization methods partic-
ularly well suited for large datasets: streaming access algorithms. In the streaming access model,
only a small subset of the data is available to the algorithm at any one time. A streaming data
access model enables a small memory footprint, since only a small fraction of a huge dataset is used
for any given computation. In their 2008 paper “The Tradeoffs of Large-scale Learning”, Bous-
quet and Bottou (2008) argued persuasively in favor of using simple streaming access optimization
methods in the large sample regime. They show from a theoretical standpoint why simple stream-
ing methods such as stochastic gradient descent give better generalization when compared with
first order gradient or second order Newton methods which require processing an entire dataset.

An additional important advantage of the streaming data optimization model is handling learn-
ing tasks where the data actually arrives in a stream: for example the task of recommending daily
news items to a user. In such cases the algorithm needs to deliver predictions while the data is
being gathered.

This thesis is organized as follows. Chapters 2.1 and 2.2 build on the basic concept of stochastic
gradient descent, where the data access is to a few instances at a time. We first use sparsity, then the
Riemannian geometry of low-rank matrices, to develop fast and efficient algorithms for learning
dyadic relationships expressed in matrix form. We apply these new algorithms to large-scale
learning of image and document similarity, and to image labelling. In Chapter 2.3 we take a slight
detour and focus on a specific challenge: how to learn similarity models that can be interpreted by
humans? We approach this problem motivated by the need to help scientists understand a newly
available, complex dataset of gene expression maps in the mouse brain. Chapter 2.4 of this thesis
develops a coordinate descent approach for Riemannian space, where the data access is to a few
features at a time. The Riemannian coordinate descent method leads in turn to a new approach
for learning orthogonal matrices and to a novel tensor decomposition method.

In this introduction, we first discuss the applications of learning dyadic relationships in machine
learning. Then we overview some of the basic geometric and algebraic matrix structures used
throughout this thesis, such as positive definiteness and low-rank. Finally, we introduce some basic
tools of optimization, and specifically Riemannian optimization, which have proven so fruitful in

the research presented here.

1.1 Applications of learning dyadic relationships with ma-

trices

This section outlines some motivating examples of applications of learning dyadic relationships in

machine learning, as discussed and applied throughout this thesis.

1.1.1 Metric learning and similarity learning

Many machine learning tasks inherently rely on the existence of a metric or a similarity measure
between pairs of instances. For example, retrieving a document similar to a query document,
nearest-neighbor classification, recommending a similar item, and clustering, all assume that a
way to measure distances between instances exists.

The idea of similarity learning is that this similarity measure or metric can itself be the object
of machine learning. It has been shown in many cases that learning the similarity measure can
dramatically improve the performance of machine learning algorithms (Xing et al., 2002; Bar-Hillel
et al., 2005; Davis et al., 2007; Jain et al., 2008; Weinberger and Saul, 2009; Guillaumin et al.,
2009b,a; Kulis, 2012).
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For example, learning a metric and then using it for nearest neighbor classification has been
used to obtain (at the time) state-of-the-art results in face recognition tasks (Guillaumin et al.,
2009b) and to improve human activity recognition in video (Tran and Sorokin, 2008). As another
example, consider the problem of “query-by-example”, when the user wishes to find images or
documents similar to a query document; in Chapter 2.1 of this thesis we learn a similarity measure
that makes for much better query-by-example retrieval when compared with similarity measures
such as the oft-used cosine similarity measure (Manning et al., 2008).

The metrics most commonly used in machine learning are Mahalanobis distances: For a
pair of vectors z,y € R", the Mahalanobis distance between them is parametrized by a matrix
M € R™ ™ and given by:

distyv(z,y) = \/(x - TM(z — y). (1.1)

For M = I the identity matrix, the Mahalanobis distance is identical to the standard Euclidean

distance.

In order for the function distps to be a true metric, it must be (1) symmetric, (2) positive
on distinct pairs « # y, and (3) obey the triangle inequality. These three conditions are fulfilled
if and only if the matrix M is positive definite (PD). That means that M must be symmetric
with strictly positive eigenvalues (see Definition 1 in Subsection 1.2.1 below). If M is positive
semidefinite (PSD), that is some of its eigenvalues are zero, then the symmetry and triangle
inequality conditions hold, but pairs of vectors might have zero distance despite being distinct.
More precisely, any pair of vectors x,y € R™ whose difference x — y lies in the null space of M
will have Mahalanobis distance of 0. For PD matrices the null space is {0}, meaning only identical

vectors have distance 0. See further discussion on PD and PSD matrices in Subsection 1.2.1 below.

Alternatively, instead of learning a distance metric we can learn a similarity measure parametrized

by a matrix S € R™"*". The similarity measure is given by:
simg(x,y) = z* Sy. (1.2)

If S = I the identity matrix, then simg is simply the standard inner product. For simg to be an
inner product, it must be symmetric and obey simg(z,z) > 0, simg(z,z) = 0 < = = 0. In matrix
terms, symmetry is achieved if and only if the matrix S is symmetric, and positivity if and only
if S is positive definite. Similar to the Mahalanobis case, if S is only positive semidefinite, then
some non-zero vectors will have simg(x,2) = 0: exactly the vectors = in the null space of S .

In Chapter 2.1 of this thesis we introduce a method for learning a similarity measure S, called
OASIS. OASIS is based on the Passive-Aggressive algorithm (Crammer et al., 2006), which is a
close variant of SGD. Using this variant of SGD, along with leveraging sparse instance represen-
tations, makes OASIS an extremely fast method for learning similarity. We applied OASIS to the
challenging task of learning semantic image similarity, for example, learning that two images of
airplanes are similar even when one is on the ground and one is in the air, while an image of an
airplane and a rainbow are not as similar despite both of them showing the sky. OASIS achieved
(then) state-of-the-art results on the Caltech256 dataset (Griffin et al., 2007).

However, OASIS suffered from two caveats. The first caveat is that there is no computation-
ally cheap way to make the similarity positive definite. The most straightforward way would be
projecting onto the set of PSD matrices. However, this projection is computationally intensive,
since it is based on an eigendecomposition, requiring computation time which is cubic in the in-
stance dimension. The second caveat is that the model size scales quadratically with the instance

dimension, even when the instances themselves are sparse.

In order to address these two issues, we introduce in Chapter 2.2 a new algorithm called
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LORETA. LORETA learns a low-rank similarity matrix directly, which yields significant com-
putational and memory benefits. Particularly, if the instance domain is of dimension n and the
similarity matrix is of rank 7, the memory needed for storing the matrix is O(nr) instead of O(n?).
We discuss this point further in Subsection 1.2.2 below. In addition, LORETA is capable of di-
rectly learning a low-rank PSD matrix, without the computational burden of an eigendecomposition
which was needed in our previous work on OASIS. The major innovation introduced in LORETA
is a way to perform computationally efficient SGD within either the manifold of low-rank matrices
or low-rank PSD matrices. Using the manifold structure enables the creation of an efficient and
stable algorithm.

We note that both OASIS and LORETA learn bilinear models, while the non-linear elements
such as image features were precomputed. However, bilinear models can be readily trained as part
of a deeper, nonlinear learner - see for example systems suggested by Zhong et al. (2011); Wu et al.
(2013).

1.1.2 Multiple label learning

Consider the problem of object recognition in images. Suppose we have a large list of possible
objects, L. We wish to have an algorithm that could assign to a given image several object labels
from L, possibly sorted by prominence or confidence. A straightforward way to approach this
problem is to treat it as a collection of |L| binary classification problems, one for each object label
l € L. This method has been used successfully, for example by Crammer and Singer (2003); Kakade
et al. (2008) and more recently has garnered much success in the computer vision community, for
example by Torresani et al. (2010); Li et al. (2010); Deng et al. (2011).

However, in many cases it makes sense to tie the different labels together. For example, if
the task is image labelling, then the classifiers for mammals such as bears, dogs and sheep might
be more similar, or use similar features, when compared with classifiers for sky-scrapers or gui-
tars. Assume there exists a latent label space S of size |S| < |L|, such that the labels of L are
combinations of the latent labels S (Amit et al., 2007).

A matrix formulation of this idea is as follows. Let d be the instance dimension, and let
B € RISI*? be a matrix of classifiers for the latent image space. Assume that the classifiers
for the labels [ € L are linear combinations of the latent label classifiers, and let A € RIZI*ISI
be a matrix encoding the corresponding linear combinations. We then form a classifier matrix
C = AB € RIZIX" such that for an instance x € R™, the product Cz gives a score for each
possible label [ € L. Since the number of latent labels is much smaller than the total number of
labels, the matrix C' is of low-rank. Thus, we have reduced the problem of learning latent label
spaces with linear combinations to the problem of learning a low-rank classifier matrix C'.

In Chapter 2.2 we use this insight and learn a low-rank multi-label matrix model, applying it
to label images from the ImageNet dataset (Deng et al., 2009). The labels for these images form
a hierarchy, with strong correlations between certain label subsets. We show that learning low-
rank multi-label models can significantly improve performance over full-rank models, while saving

memory and computation resources.

1.1.3 Interpretable similarity learning

A challenge faced by many machine learning applications, especially when used in scientific context,
is the difficulty of interpreting the learned model. For example, a scientist working on understand-
ing relations between different genes has only limited use for a machine learning similarity model
that simply states that gene A and gene B are “similar”. Researchers often wish for more insight
into the factors underlying the predicted similarities. This stands in contrast to machine learning

tasks such as object-recognition, where the goal is to replicate a well developed human ability. In
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scientific machine learning applications we often wish to gain a deeper understanding of relations
which are difficult even for human experts to observe.

In Chapter 2.3 we tackle the challenge of creating an interpretable similarity model in the
context of bioimaging. The specific problem motivating us is making sense of a new, large set of
high-resolution gene expression images in mammalian brains made available by the Allen Institute
for Brain Science (Lein et al., 2006; Ng et al., 2009; Hawrylycz et al., 2014). These images convey
the level of expression of each of 20,000 genes on a sub-cellular resolution within mouse brains. Our
aim is to create an algorithm which makes it easier for neuroscientists to understand the relations
between genes, their biological functions, and the genes’ expression patterns in the brain.

To this end we use a two-stage approach leveraging a rich human-curated knowledge base about
genes and their biological functions called the Gene Ontology (Gene Ontology Consortium, 2004).
The Gene Ontology (GO) is a directed acyclic graph (DAG) with nodes corresponding to biological
function, ranging from very general functions at the head of the DAG, such as “metabolism” to
very specific functions such as “negative regulation of systemic arterial blood pressure”. Each of
the functions is annotated with genes that have been shown to relate to that function, with genes
often annotated with multiple biological functions.

The first stage of our interpretable similarity learning approach is training a probabilistic clas-
sifier for each function in the Gene Ontology, aiming to predict biological function from a brain
gene expression image. We then treat the outputs of these classifiers as features. Since the Gene
Ontology is created and curated by humans, using the presence of GO functions as features creates
inherently interpretable features. In the second stage we further use the GO structure for two
purposes: evaluating similarities between genes based on their expression patterns, and explaining
similarities between genes in terms of GO functions. For example, two genes that share many
functions that are close within the GO DAG structure would be deemed similar. These functions
would also be the explanatory factors proposed by the algorithm.

Explaining the similarities opens the possibility for finding distinct types of similarity. For
example, our algorithm can suggest that gene A is similar to gene B because both A and B are
related to a certain neurotransmitter, and that A is similar to gene C because both A and C
relate to a specific metabolic mechanism. In Chapter 2.3 we describe our interpretable similarity
model in detail, and show its use in gaining new insights into the functions and relations between
genes. Sections 3.3 and 3.4 of Chapter 2.3 give a detailed example where our model predicts
several similarities to a gene called Synpo2, while offering distinct and diverse explanations for

these similarities.

1.2 Matrix structures

1.2.1 Positive definiteness

Matrix algebras are in general more intricate than the algebra of the real numbers, even if we
restrict ourselves to the set of square symmetric matrices. For example, the set of square symmetric
matrices isn’t well ordered. However, there is a natural matrix generalization to the idea of a
positive real number - the positive definite (PD) matrix. Similar to a real number, every PD
matrix admits a real matrix square root. This feature is of particular importance when using

matrices to parametrize distances and similarities.

Definition 1. A square symmetric matriz A € R™*™ s positive definite (PD) if all its eigenvalues
are strictly greater than 0, and positive semi-definite (PSD) if all its eigenvalues are greater than

or equal to 0.

Corollary 1. For every PD or PSD matriz A there exists a real matriz B such that A = BBT.
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Proof. Let A= UAUT be the spectral decomposition of A, where UR™*"™ is an orthogonal matrix
such that UUT = UTU = I,,, and A is a real diagonal matrix. This decomposition exists since A is
symmetric. From Definition 1, all the diagonal elements of A are non-negative. Let B = UVAVT,
where the square-root of A is element-wise, and V is any n X n orthogonal matrix. Then A =
BBT. O

If the matrix A is positive semi-definite, then necessarily A has rank k < n, since A could have
0 eigenvalues. In that case, the matrix B can be set to be of dimensions n X k, spanning only the
eigenspace of the non-zero eigenvalues of A.

In both the PD and PSD cases, the existence of a decomposition as in Corollary 1 implies that
the metric distyg (Eq. 1.1), or the similarity simg (Eq. 1.2) in fact rely on a linear transformation
of Euclidean space. Let M = BBT, with B € R**F k < n:

distyv(z,y) = \/(x —y)™™(z —y) = \/(x —y)TBBT (x —y) = disty, (Bz, By), (1.3)

where disty, is simply the Euclidean distance in R (if M is positive definite then k = n). Similarly,
let S = BBT with B € R™*F k < n:

simg(z,y) = 27 Sy = 2 BBy = sim;, (Bx, By).

We see that positive definite and positive semi definite distance and similarity measures can
be understood as follows: apply a linear transformation B to the data, and measure distances or
similarities in the transformed space using the standard Euclidean distance or the standard inner
product. If the distance or similarity is positive semi-definite and not positive definite, then B is
dimension reducing.

Chapters 2.1 and 2.2 of this thesis explore extensively these ideas. In Chapter 2.1 we introduce
an algorithm for learning a general (not necessarily PSD) similarity matrix S. In Section 6 of
Chapter 2.1 we examine the effect of enforcing the PSD attribute on the learned matrix S, by
projecting S onto the set of PSD matrices. In general we find that requiring S to be PSD improves
the quality of the learned similarity measure. This implies that requiring the similarity measure to
rely on an actual Euclidean representation serves as form of prior or regularization for similarity
learning. This was further shown in the work of Qian et al. (2013).

A drawback in enforcing the PSD attribute by projection onto the PSD set is that it is com-
putationally expensive, requiring repeated eigendecompositions to identify the space of negative
eigenvalues. In Chapter 2.2 we explore a new approach allowing us to directly learn a similar-
ity measure parametrized by a PSD matrix. This is done by using the Riemannian geometry
of the set of PSD matrices and optimizing directly over the PSD manifold, avoiding expensive

eigendecompositions altogether.

1.2.2 Low rank

Matrix models in machine learning are often very high-dimensional. For example, the number of
parameters in a matrix similarity model in R” is n2; a full user-item preference matrix model for
collaborative filtering is of size #items X #users, which can be huge - far larger than can be stored
in the memory of a single or even a few modern machines.

Given this potential for very high dimensionality, we are often in search for ways to limit the
number of parameters. Limiting the number of parameters serves two causes: First, it leads to
better generalization, or less overfitting. Second, it makes the model tractable in terms of memory
and computation time.

An extremely useful way to limit the number of parameters in matrix models is imposing a
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low-rank constraint. A matrix X € R™*™ is of rank k if it has a factorization X = ABT, where
A € R and B € R™** are “thin” matrices. The overall number of parameters for a low-rank
X is reduced from n - m to (n + m) - k, which is much smaller if k < min(n,m).

For the special case of a positive semi-definite matrix X, it is straightforward to show that any
rank-k PSD matrix X € R"*™ can be factored as X = AAT with A € R"**, See the discussion in
Subsection 1.2.1 above.

Constraining a matrix to be low-rank can have many interpretations according to the learning

scenario. In the case of similarity learning, we have for a low-rank similarity matrix S = ABT
simg(z,y) = 27 Sy = 2T ABTy = simy, (Az, By). (1.4)

This means that the matrices A and B project the vectors x and y respectively from n dimensions to
a small k-dimensional space, and in that low-dimensional space similarity is given by the standard
inner-product. If S is PSD, then we can factor S = AAT | meaning the projections of the left vector
x and right vector y are identical.

While a low-rank decomposition has clear advantages, it poses difficulties from an optimization
point of view. The set of low-rank matrices is highly non-convex, and in general minimizing a
convex function subject to a rank constraint is NP-hard (Natarajan, 1995). Even finding good
local minima is often hard due to the fact that the decomposition X = AB” is not unique and
has a large invariant space. Let M € RF*¥ be any invertible matrix. Then we can replace the
matrix A by AM and the matrix B by BM 7T, and obtain X = AM (BM_T)T = ABT. This
non-uniqueness makes optimization unstable.

In Chapter 2.2 of this thesis we use the Riemannian manifold structure of the set of low-rank
matrices to resolve these difficulties. We develop an algorithm, LORETA, for numerically stable
learning of low-rank matrices with computational and memory burden which is linear in the number

of parameters of the low-rank factorization.

1.2.3 The structure of orthogonal decompositions

The idea of orthogonal matrix decompositions is extremely powerful and widely used in mathe-
matics and applications. The classic matrix spectral theorem guarantees that for any symmetric
matrix A € R"*" such that A = A7 there exists an orthogonal matrix U € R™*" and a diagonal
matrix A € R"*" such that UUT = UTU = I, (orthogonality) and A = UAUT. If the eigen-
values of A are distinct, then the matrix U contains the eigenvectors of A, and the matrix A the
corresponding eigenvalues.

More generally, the singular value decomposition for any (not necessarily square) matrix B €
R™ ™ is B = USVT with U € R"*", V € R™*™ both orthogonal matrices, and S € R"*™ a
matrix with non-negative entries on its main diagonal, and 0 otherwise.

In machine learning applications, the use of such orthogonal decompositions as the eigendecom-
position and SVD is ubiquitous: Principal Component Analysis (PCA), Latent Semantic Analysis
(Dumais, 2004), dimension reduction via SVD, and matrix completion with SVD (Jain et al., 2010;
Koren et al., 2009) are some of the better known examples.

Looking into constructing efficient streaming algorithms has lead us to look into how these
orthogonal decompositions are calculated in practice (Golub and Van Loan, 2012). In most cases, at
the core of the calculation lies one of two very simple orthogonal matrices: Householder reflections,
or Givens rotations.

A Householder reflection is generated by a normalized vector v € R™ and has the form H =
I —2vvT. H is symmetric and orthogonal, and its determinant is -1.

A Givens rotation is an orthogonal matrix of the form:
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(1 0 . 0 0]
0 -+ cos(@) --- —sin(@) --- 0
0 --- sin® --- cos(d) -+ 0

0 - 0 e 0 —_—

where the entries cos() and sin(f) are on the (i, j) submatrix of G(i, 7, ).

Any orthogonal matrix U € R™*™ with det(U) = 1 can be represented as a product of @
Givens rotations. Any orthogonal matrix can be represented as a product of n Householder reflec-
tions and one Givens rotation.

The simplicity of both Householder and Givens orthogonal operators make them ideal for
efficient optimization. In Chapter 2.4 of this thesis we formally show that the application of
Givens rotations is in fact a form of coordinate descent in the Riemannian manifold of orthogonal
matrices. We use this insight to derive a general, efficient, and parallelizable CD procedure for
learning orthogonal matrices. We apply this method to two problems: first is learning a sparse
PCA model, following the formulation of Journée et al. (2010). Second, we give a new method for
orthogonal tensor decomposition, an optimization problem which has risen to prominence lately as
a means for performing a method-of-moments estimation for statistical models such as Gaussian
Mixture Models and Latent Dirichlet Allocation (Anandkumar et al., 2012a). We show our new
method is consistently more robust than the current state of the art, the Tensor Power Method of
Anandkumar et al. (2012a, 2013).

1.3 Large-scale matrix optimization

Modern data sets are usually large in two different aspects: they include many instances, and
the instances themselves are high-dimensional. For example, the Wikipedia online encyclopedia
includes both millions of documents (instances), and each document is comprised of a vocabulary
containing millions of words, as well as a highly elaborate link and tag structure. The streaming
methods in this thesis adopt one of two approaches: either update the model using a few instances
at a time, or a few dimensions at a time.

These two approaches correspond to two very well known optimization methods: For the case
of updating a model using a few instances at a time, a simple and extremely popular algorithm
is Stochastic Gradient Descent (SGD). The case of updating using a few dimensions at a time
corresponds to a family of methods known as Coordinate Descent (CD).

There is a vast and ongoing research effort into understanding the strengths and weaknesses
of both SGD and CD. A pioneering work analyzing SGD in the framework of online learning is
Bottou (1998). For more current tools and ideas regarding the use of SGD in machine learning,
see work by Zhang (2004); Bottou (2010). For newer ideas regarding parallelizing SGD, see Recht
et al. (2011). For newer analysis regarding SGD for smooth and strongly convex functions, as well
as finite-sample guarantees, see Rakhlin et al. (2011); Shamir and Zhang (2012); Needell et al.
(2013). Finally, for a discussion of SGD on Riemannian manifolds (post-dating the relevant work
in this thesis) see Bonnabel (2013). Regarding coordinate descent, it has been studied extensively
inside the machine learning and statistics communities as a means to solve the dual SVM problem
(Joachims, 1999; Hsieh et al., 2008) and the LASSO and related non-smooth problems (Wu and
Lange, 2008; Friedman et al., 2010; Shalev-Shwartz and Tewari, 2011; Takac et al., 2013). A better
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understanding and stronger convergence guarantees of CD, and specifically randomized CD have
been given in papers by Nesterov (2012); Richtérik and Takac (2014); parallel CD is discussed by
Richtérik and Takac (2012), and a method to perform proximal, non-smooth, and parallel CD is
given by Fercoq and Richtarik (2013).

Chapters 2.1 and 2.2 of this thesis build on the concept of SGD. In chapter 2.1 we leverage sparse
representations and the Passive-Aggressive algorithm (Crammer et al., 2006) which is a variant of
SGD, to obtain an extremely fast algorithm for learning a similarity measure between images. In
Chapter 2.2 we develop the first Riemannian SGD scheme in the manifold of low-rank matrices
and low-rank PSD matrices, creating a fast, stable, and low-memory algorithm for learning of
low-rank matrices. We apply this algorithm to learning of similarity between documents, and to
rank labels for images from the ImageNet dataset Deng et al. (2009). In Chapter 2.4 we develop a
coordinate descent approach for the manifold of orthogonal matrices, using the simple and sparse

Givens rotations (see Subsection 1.2.3 above) as the basic building block.

1.4 Manifolds and Riemannian optimization

In this subsection we outline the general principles of optimization over Riemannian manifolds,
which are used extensively in Chapters 2.2 and 2.4 of this thesis. The standard reference for this
subject is the book “Optimization algorithms on matrix manifolds” by Absil et al. (2009).

Riemannian optimization has emerged in recent years as an exciting tool for solving difficult,
highly non-linear optimization problems (Edelman et al., 1998; Keshavan et al., 2009; Absil et al.,
2009; Journée et al., 2010; Turaga et al., 2011). In this thesis we use the Riemannian manifold
structure of the set of fixed-low-rank matrices to come up with novel, efficient and stable Rie-
mannian stochastic gradient learning algorithms, as detailed in Chapter 2.2. In Chapter 2.4 we
use the Riemannian manifold structure of the orthogonal matrix group to develop a Riemannian
coordinate descent procedure based on successive multiplication of Givens rotations.

An embedded manifold is a smooth subset of an ambient space R"™, locally homeomorphic to
R? with d < n being the manifold dimension (Do Carmo, 1992). For instance the set S"~! = {x :
|zl = 1,2 € R™}, the unit sphere, is an n—1 dimensional manifold embedded in n-dimensional
Euclidean space R™. As another example, the orthogonal group O,,, which comprises of the set of
% dimensional manifold embedded in R™*™. A third example
is the manifold of low-rank matrices, the set of n x m matrices of rank k where k < min(m,n).
This set is an (n+m)k —k? dimensional manifold embedded in R™*™. Embedded manifolds inherit

many properties from the ambient space, a fact which simplifies their analysis. For example, a

orthogonal n X n matrices, is an

canonical Riemannian metric for embedded manifolds is simply the Euclidean metric restricted to
the manifold.

The goal of Riemannian optimization is to minimize a loss function L(WW) under the constraint
that W is a member of a manifold M.

Let us consider now the elements of a very basic optimization procedure - gradient descent
(GD). In order to perform GD in Euclidean space, one obtains the gradient of the function, and
takes a step in that direction. In order to perform this in Riemannian space, two issues must be
addressed: first, define a Riemannian gradient. Second, define a way to take a step in the direction

of the Riemannian gradient while staying within the manifold.

The tangent space

Each point W in an embedded manifold M has a tangent space associated with it, denoted Ty M,
as shown in Fig. 1.1 (for a formal definition of the tangent space, see Chapter 2.2, Appendix A).

The tangent space is a vector space of the same dimension as the manifold that can be identified
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in a natural way with a linear subspace of the ambient space. Let Py denote the linear projection
operator onto the tangent space Ty M.

Given a manifold M and a differentiable function £ : M — R, the Riemannian gradient
VL(W) of L on M at a point W is a vector in the tangent space Tyw M. A very useful property
of embedded manifolds is the following: given a differentiable function f defined on the ambient
space (and thus on the manifold), the Riemannian gradient of f at point W is simply the linear
projection Py of the ordinary gradient of f onto the tangent space Ty M.

Thus, if we denote the regular gradient of £ in R™*™ by VL, we have

VL(W) = Py (VL).

An important consequence follows in case the manifold represents the set of points obeying a
certain constraint. In this case the Riemannian gradient of f is equivalent to the ordinary gradient
of f minus the component which is normal to the constraint. Indeed this normal component is
exactly the component which is irrelevant when performing constrained optimization. See Figure
1.1.

Consider the ¢ + 1 step of an iterative gradient update procedure intended to minimize L(W)
over the manifold M. The Riemannian gradient allows us to compute an update Witz = Wt —
nVL(W), for a given iterate point W?* and step size . This however is not yet a full Riemannian
gradient step, since Witz is almost certainly outside of the manifold M. Observe for example the

unit sphere S”~!. The tangent space at point z € S"~ 1 is
T.8" ' ={zecR": 272 =0}.

The projection operator onto the tangent space T7,S" ! is P,(y) = y — xzTy. Let the Riemannian
gradient at a point 2 € S"~! be the vector P,(y). Then the update vector z — nP,(y) will almost
certainly not be a point on the unit sphere. The obvious step in this case will be to project
x —nP,(y) onto the unit sphere. We will generalize and formalize this idea in the next subsection,

where we examine in general how W'tz can be mapped back onto the manifold M.

Geodesics and retractions

The natural generalization of straight lines to the manifold context are geodesic curves. A geodesic
curve is locally the shortest path between two points on the manifold, or equivalently, a curve
with no acceleration tangent to the manifold (Absil et al., 2009). The ideal way to map Witz =
Wt — pt'VL(W) back to the manifold would be to follow the geodesic curve originating in W*
and going in the direction of VL(W). This is called the exponential mapping (Do Carmo, 1992,
chapter 3), and we apply it to the tangent vector VL(W). Under mild regularity conditions
regarding the loss function £ and the manifold M, applying the exponential mapping to the
Riemannian gradient is guaranteed to yield a sequence converging to a local optimum. However,
for many manifolds, including the low-rank manifold considered considered in Chapter 2.2 below,
calculating the geodesic curve and the resultant exponential mapping is computationally expensive
(Vandereycken et al., 2009).

A major insight from the field of Riemannian manifold optimization is that one can use a family
of mappings called retractions which merely approximate the exponential mapping. Using such
retractions maintains the convergence properties obtained with the exponential mapping, but is
much cheaper computationally for a suitable choice of retraction. Projecting onto the manifold is
in itself a form of retraction (Absil and Malick, 2012), however more efficient or stable retractions
can often be devised. Note that projection on the manifold is different, and usually more difficult,

than projection onto the tangent space, since the manifold is typically a non-linear structure,
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unlike the tangent space. In Chapter 2.2 we introduce a new retraction for the low-rank manifold,
and then use it to derive a Riemannian stochastic gradient algorithm. In Chapter 2.4, we show
how the exact exponential mapping for the orthogonal matrix manifold can be decomposed into
very efficient updates based on Givens rotations (see also Subsection 1.2.3 above). We show these
updates to be a Riemannian equivalent of coordinate descent on the orthogonal manifold, and

apply them to learn sparse PCA models and to perform robust orthogonal tensor decomposition.

Figure 1.1: A three step procedure for computing a retracted gradient at point W?'. Step 1:
ordinary gradient step. Step 2: linearly project ambient gradient onto tangent space Ty ¢ M in
order to get the Riemannian gradient step Wits, Step 3: retract the Riemannian gradient step
back to the manifold.



Chapter 2

Results

In this Chapter I present the main results of this thesis. The Chapter is comprised of four published

papers, as follows:

e Chapter 2.1: Large Scale Online Learning of Image Similarity Through Ranking. Gal
Chechik, Varun Sharma*, Uri Shalit* and Samy Bengio (* equal contribution). Journal
of Machine Learning, 2010.

e Chapter 2.2: Online Learning in the Embedded Manifold of Low-rank Matrices. Uri Shalit,
Daphna Weinshall and Gal Chechik. Journal of Machine Learning, 2012.

e Chapter 2.3: FuncISH: learning a functional representation of neural ISH images. Noa Lis-
covitch*, Uri Shalit* and Gal Chechik (* equal contribution). Bioinformatics, 2013.

e Chapter 2.4: Coordinate-descent for learning orthogonal matrices through Givens rotations.
Uri Shalit and Gal Chechik. International Conference on Machine Learning (ICML), 2014.
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2.1 Large Scale Online Learning of Image Similarity Through
Ranking
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Abstract

Learning a measure of similarity between pairs of objectmisgmportant generic problem in ma-
chine learning. It is particularly useful in large scale liggiions like searching for an image that
is similar to a given image or finding videos that are relevara given video. In these tasks, users
look for objects that are not only visually similar but alssantically related to a given object.
Unfortunately, the approaches that exist today for legrsinch semantic similarity do not scale to
large data sets. This is both because typically their CPUstmréige requirements grow quadrat-
ically with the sample size, and because many methods impmaelex positivity constraints on
the space of learned similarity functions.

The current paper presents OASIS,@nline Algorithm for Scalable Image Similaritgarn-
ing that learns a bilinear similarity measure over sparpeesentations. OASIS is an online dual
approach using the passive-aggressive family of learrnggrithms with a large margin criterion
and an efficient hinge loss cost. Our experiments show th&ISAs both fast and accurate at a
wide range of scales: for a data set with thousands of imégedieves better results than existing
state-of-the-art methods, while being an order of mageifiadter. For large, web scale, data sets,
OASIS can be trained on more than two million images from 15 queries within 3 days on
a single CPU. On this large scale data set, human evaluaiwveed that 35% of the ten nearest
neighbors of a given testimage, as found by OASIS, were stcaily relevant to that image. This
suggests that query independent similarity could be atelyri@arned even for large scale data sets
that could not be handled before.

Keywords: large scale, metric learning, image similarity, onlinertéag
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1. Introduction

Large scale learning is sometimes defined as the regime where learning is limaedhpytational
resources rather than by availability of data (Bottou, 2008). Learnirairavige similarity measure
is a particularly challenging large scale task: since pairs of samples hagetmbidered, the large
scale regime is reached even for fairly small data sets, and learning simitaritgre data sets
becomes exceptionally hard to handle.

At the same time, similarity learning is a well studied problem with multiple real worldi-app
cations. It is particularly useful for applications that aim to discover ned relevant data for a
user. For instance, a user browsing a photo in her aloum may ask to findrsimitdated images.
Another user may search for additional data while viewing an online vidéoawvsing text docu-
ments. In all these applications, similarity could have different flavorseamay search for images
that are similar visually, or semantically, or anywhere in between.

Many similarity learning algorithms assume that the available training data cor¢airgalued
pairwise similarities or distances. However, in all the above examples, this@reumerical value
of pairwise similarity between objects is usually not available. Fortunatelycaneoften obtain
information about theelative similarity of different pairs (Frome et al., 2007), for instance, by
presenting people with several object pairs and asking them to seledithtbat is most similar.
For large scale data, where man-in-the-loop experiments are prohibitivaly, relative similarities
can be extracted from analyzing pairs of images that are returned onwsfn the same text query
(Schultz and Joachims, 2004). For instance, the images that are ragkéddy one of the image
search engines for the query “cute kitty” are likely to be semantically more simaarahrandom
pair of images. The current paper focuses on this setting: similarity informestiextracted from
pairs of images that share a common label or are retrieved in responsertorea text query.

Similarity learning has an interesting reciprocal relation with classification. i@rhand, pair-
wise similarity can be used in classification algorithms like nearest neighboesra@lknethods. On
the other hand, when objects can be classified into (possibly overlambéisges, the inferred labels
induce a notion of similarity across object pairs. Importantly however, similkgdtsning assumes
a form of supervision that is weaker than in classification, since no labeligravided. OASIS is
designed to learn dass-independersimilarity measure with no need for class labels.

A large number of previous studies have focused on learning a similarityuneetigt is also a
metric, like in the case of a positive semidefinite matrix that defines a Mahaladietaace (Yang,
2006). However, similarity learning algorithms are often evaluated in a cooteanking. For in-
stance, the learned metric is typically used together with a nearest-neidabsifier (Weinberger
et al., 2006; Globerson and Roweis, 2006). When the amount of traigitegalbailable is very
small, adding positivity constraints for enforcing metric properties is usefueducing over fitting
and improving generalization. However, when sufficient data is availablie, many modern appli-
cations, adding positive semi-definitiveness constraints consumes e@igel computation time,
and its benefit in terms of generalization are limited. With this view, we take hesp@noach that
avoids imposing positivity or symmetry constraints on the learned similarity measure

The current paper presents an approach for learning semantic similaitgdales up to an
order of magnitude larger than current published approaches. thmponents are combined to
make this approach fast and scalable: First, our approach usesamwstramed bilinear similarity.
Given two imagesp; and p, we measure similarity through a bilinear forpj W p,, where the
matrix W is not required to be positive, or even symmetric. Second we use a sppresentation
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of the images, which allows to compute similarities very fast. Finally, the trainingitigothat
we developed, OASISDnline Algorithm for Scalable Image Similarity learnirig an online dual
approach based on the passive-aggressive algorithm (Crammer2804), It minimizes a large
margin target function based on the hinge loss, and already converggghtguality similarity
measures after being presented with a small fraction of the training pairs.

We find that OASIS is both fast and accurate at a wide range of scalessfandard benchmark
with thousands of images, it achieves better (but comparable) results xtsting state-of-the-
art methods, with computation times that are shorter by orders of magnitudevebescale data
sets, OASIS can be trained on more than two million images within three days ogla 6RU,
and its training time grows linearly with the size of the data. On this large scale etatausnan
evaluations of OASIS learned similarity show that 35% of the ten nearestyaigiof a given image
are semantically relevant to that image.

The paper is organized as follows. We first present our online algor{d#%I|S, based on the
Passive-aggressive family of algorithms. We then present the smaaged extraction technique
used in the experiments. We continue by describing experiments with OASI®blems of image
similarity, at two different scales: a large scale academic benchmark withofeth®usands of
images, and a web-scale problem with millions of images. The paper ends wighussion on
properties of OASIS.

2. Learning Relative Similarity

We consider the problem of learning a pairwise similarity funct®miven data on the relative
similarity of pairs of images.

Formally, let? be a set of images, amg =r(pj, pj) € R be a pairwise relevance measure which
states how stronglp; € 2 is related top; € . This relevance measure could encode the fact that
two images belong to the same category or were appropriate for the sarnge\yaato not assume
that we have full access to all the values oinstead, we assume that we can compare some pairwise
relevance scores (for instancgo;, p;) andr(pi, pk)) and decide which pair is more relevant. We
also assume that whep;, pj) is not available, its value is zero (since the vast majority of images
are not related to each other). Our goal is to learn a similarity fun&ipn p;) that assigns higher
similarity scores to pairs of more relevant images,

S(pi.p") >S(pi,p7), VP, P, P € P suchthatr(p,p) > r(pi,p). 1)

In this paper we overload notation by usipgto denote both the image and its representation as a
column vectomp; € RY. We consider a parametric similarity function that has a bi-linear form,

Sw(pi,pj)) = pf W p; 2

with W € R99. Importantly, if the images; are represented as sparse vectors, namely, only a
numberk; < d of thed entries in the vectop; are non-zeroes, then the value of Equation (2) can be
computed very efficiently even whehis large. SpecificallySy can be computed with complexity

of O(kik;) regardless of the dimensionality
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2.1 An Online Algorithm

We propose an online algorithm based on the Passive-Aggressiy&(Rily of learning algorithms
introduced by Crammer et al. (2006). Here we consider an algorithm $esttuplets of images
pi, P, P € P such thar (pi, p;") > r(pi, p; ).

We aim to find a parametric similarity functiéhsuch that all triplets obey

Sw(pi,p") > Sw(pi.p)+1 (3)

which means that it fulfills Equation (1) with a safety margin of 1. We define @alewiing hinge
loss function for the triplet:

lw(pi, i, P ) = max{0,1—Sw(pi, p") + Sw(pi, P ) } - 4

Our goal is to minimize a global lodsy that accumulates hinge losses (4) over all possible triplets
in the training set:
lw= > lw(p,p"p).
(Pi.p Py )EP

In order to minimize this loss, we apply the Passive-Aggressive algorithatiitely over triplets
to optimizeW. First, W is initialized to some valu&V/®. Then, at each training iteratidn we
randomly select a tripletp;, p;", p;” ), and solve the following convex problem with soft margin:

- 1 .
W' = argmin || W — W' |Z, +CE )
s.t. lw(pi, B, p) <& and &£>0

where ||-||fro is the Frobenius norm (point-wide, norm). Therefore, at each iterationW' is
selected to optimize a trade-off between remaining close to the previous parsvie ! and min-
imizing the loss on the current tripl&t (pi, p;", p; ). Theaggressivenegsaramete€ controls this
trade-off.

OASIS
I nitialization:
Initialize WO = |

Iterations
repeat
Sample three images p", p;, such that (pi, pi") > r(pi, p;)-
UpdateW' = Wi-1 V!

wheret; = min {C, %}

andV' = [pH(py — P, PH(RE — POIT
until (stopping criterion)

Figure 1: Pseudo-code of the OASIS algorithm.
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We follow Crammer et al. (2006) to solve the problem in Equation (5). Wi, PP ) =
0, it is clear thatv' = W'~ satisfies Equation (5) directly. Otherwise, we define the Lagrangian

LW, T.EN) = %\IW—Wi’1II2+CE+T(1—E— pTW (P — p)) — A€ (6)

wheret > 0 andA > 0 are Lagrange multipliers. The optimal solution is such that the gradient
vanishes‘m’(\,’# =0, hence

0L(W,T,EN) i1 o
— W - W-WT"—-1v;=0
where the gradient matriY; = %% = [pt(p =P )., PY(p — p7)]T. The optimal neww is
therefore _
W =Wty @)

where we still need to estimate Differentiating the Lagrangian with respectg§@nd setting it to
zero also yields:
0L(W,T,E,N)
0g
which, knowing that\ > 0, means that < C. Plugging Equations (7) and (8) back into the La-
grangian in Equation (6), we obtain

—C—1-A=0 8)

1 i _
L(0) = STIVil*+T(1— pf (W +TVi) (B — b)) -
Regrouping the terms we obtain
1 i _
L(T) = —ETZIIViIIZH(l— prW i (pt —p))

Taking the derivative of this second Lagrangian with respettaind setting it to 0, we have

0L(T i _

0 il - W ) =0
which yields _

_1-pWNp - p) _ lwies (PR D)

IVil|2 IVil[2
Finally, Sincet < C, we obtain
- -t p~
T:min{c,lwl(pIW} . (9)
Vil

Equations (7) and (9) summarize the update needed for every triplets, p; ). It has been
shown (Crammer et al., 2006) that applying such an iterative algorithm yaetdsnulative online
loss that is likely to be small. It was furthermore shown that selecting theeduring training
using a hold-out validation set achieves good generalization. We alaoHow that multiple runs
of the algorithm converge to provide similar precision (see Figure 7).
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2.2 LossBounds

Following closely the analysis of loss bounds for passive aggres@MNealgorithms developed by
Crammer et al. (2006) we state similatative bounds for the OASIS framework. We do this by
rewriting OASIS as a straightforward linear classification problem. Denpt@;kthe vector ob-
tained by“unfolding” the matriX/ (concatenating all its columns into a single vector) and similarly
X the unfolded matrixpi (p;” — p;)T. Using this notation, the constraint in Equation (3) becomes

with - denoting the standard inner product. This is equivalent to the formulati® afhen the
labely; is always 1. The introduction of slack variables in Equation (5) brings ukeovariant
denoted by Crammer et al. (2006) as PA-I.

The loss bounds in Crammer et al. (2006) relyw@being the zero vector. Since here we
initialize with WO = | (the identity matrix) we need to adapt the analysis slightly. Wete a vector

in ]Rdz obtained by unfolding an arbitrary matiix We define
i=1-W-X and IF’=1-T-X |,

wherel; is the instantaneous loss at round i, ahds the loss suffered by the arbitrary vecfar
The following two theorems rely on Lemma 1 of Crammer et al. (2006), whichestate without

proof:
> T2l =il - 217) < [T Wl .

While in Crammer et al. (2006); is the zero vector, in our ca$® is the unfoldeddentity matrix

We therefore have
|7 —W51? = |3 — 2trace(U) +n.

Using this modified lemma we can restate the relevant bound:

Theorem 1 Let (X3),...(Xw) be a sequence of examples whigies RY, | % || < R for alli=1...M.
Then, for any matridJ € R"2, the number of prediction mistakes made by OASIS on this sequence
of examples is bounded from above by,

M
max{R2,1/C} (Huuém — 2trace(U) +n+2C ler)
i=
where C is the aggressiveness parameter provided to OASIS.

2.3 Sampling Strategy

For real world data sets, the actual number of triplgtsp;", p; ") is typically very large and cannot
be stored in memory. Instead, we use the fact that the number of relevayesifaa a category or

a query is typically small, and keep a list of relevant images for each quesgtegory. For the
case of single-labeled images, we can efficiently retrieve an image thatiarnete a given image,
by first finding its class, and then finding another image from that class.cage of multi-labeled
images is described in Section 5.2.

Specifically, to sample a triplépi, p;", p;”) during training, we first uniformly sample an image

pi from 2. Then we uniformly sample an imag# from the images sharing the same categories
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or queries agj. Finally, we uniformly sample an image from the images that share no category
or query withp;. When the setP is very large and the number of categories or queries is also
very large, one does not need to maintain the set of non-relevant in@geach image: sampling
directly from instead only adds a small amount of noise to the training procedure andéeafipt
harmful.

When relevance feedbackép;, p;) are provided as real numbers and not jast0,1}, one
could use these number to bias training towards those pairs that have arneigliance feedback
value. This can be done by considerir(@;, pj) as frequencies of appearance, and sampling pairs
according to the distribution of these frequencies.

3. Image Representation

The problem of selecting an informative representation of images is still aolved computer
vision challenge, and an ongoing research topic. Different appesafthi image representation
have been proposed including by Feng et al. (2004); Takala et &5)2Md Tieu and Viola (2004).
In the information retrieval community there is wide agreement that a bageatsvepresentation is
a very useful representation for handling text documents in a wide i@fraggplications. For image
representation, there is still no such approach that would be adequaevide variety of image
processing problems. However, among the proposed representatiomssensus is emerging on
usinglocal descriptorsfor various tasks, for example, Lowe (2004); Quelhas et al. (2008)s
type of representation segments the image liegions of interestand extracts visual features from
each region. The segmentation algorithm as well as the region featugeamang approaches,
but, in all cases, the image is then represented as a set of feature dadoribing the regions of
interest. Such a set is often calletbag-of-local-descriptors

In this paper we take the approach of creating a sparse representsgezhdn the framework of
local descriptors. Our features are extracted by dividing each imagevattapping square blocks,
and each block is then described with edge and color histograms. Fohistiggrams, we rely on
uniform Local Binary Pattern§uLBPs) proposed by Ojala et al. (2002). These texture descriptors
have shown to be effective on various tasks in the computer vision literé@jaéa et al., 2002;
Takala et al., 2005), certainly due to their robustness with respect t@eban illumination and
other photometric transformations (Ojala et al., 2002). Local Binary Pat&stimate a texture
histogram of a block by considering differences in intensity at circulaghimrhoods centered on
each pixel. Precisely, we usdRs, patterns, which means that a circle of radius 2 is considered
centered on each block. For each circle, the intensity of the center pigeiripared to the inter-
polated intensities located at 8 equally-spaced locations on the circle,\as shoFigure 2, left.
These eight binary tests (lower or greater intensity) result in an 8-hiteseg, see Figure 2, right.
Hence, each block pixel is mapped to a sequence ambrg256 possible sequences and each
block can therefore be represented as a 256-bin histogram. In faas, lifen observed that the bins
corresponding to non-uniform sequences (sequences with more theams2ions 1— 0 or 0— 1)
can be merged, yielding more compact 59-bin histograms without perforniass¢Ojala et al.,
2002).

Color histograms are obtained by K-means clustering. We first selecttéepaidypical colors
by training a color codebook from the Red-Green-Blue pixels of a lasgeitg set of images using
K-means. The color histogram of a block is then obtained by mapping eadhil@l to the closest
color in the codebook palette.
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Figure 2: An example of Local Binary PattednBPR; 2). For a given pixel, the Local Binary Pattern
is an 8-bit code obtained by verifying whether the intensity of the pixel iatgreor lower
than its 8 neighbors.

Finally, the histograms describing color and edge statistics of each blockoaoatenated,
which yields a single vector descriptor per block. Our local descriparesentation is therefore
simple, relying on both a basic segmentation approach and simple featuresalljaalternative
representations could also be used with OASIS, (Feng et al., 2004giérast al., 2006; Tieu
and Viola, 2004) However, this paper focuses on the learning modela &sshchmark of image
representations is beyond the scope of the current paper.

As a final step, we use the representation of blocks to obtain a repriseifita an image. For
computation efficiency we aim at a high dimensional and sparse vecta. dparcthis purpose, each
local descriptor of an image is represented as a discrete index, callisdial termor visterm and,
like for text data, the image is represented &sg-of-vistermwector, in which each componepit
is related to the presence or absence of visiammp.

The mapping of the descriptors to discrete indexes is performed accdodagodeboolC,
which is typically learned from the local descriptors of the training images gtréemeans clus-
tering (Duygulu et al., 2002; Jeon and Manmatha, 2004; Quelhas et @h).2Z0he assignment of
the weightp; of vistermi in imagep is as follows:

f, o
p=——
/25 (fdj)?

wheref; is the term frequency dfin p, which refers to the number of occurrences of p, while
d; is the inverse document frequency jofwhich is defined as-log(r;), r; being the fraction of
training images containing at least one occurrence of vistgrrithis approach has been found
successful for the task of content based image ranking describecamgi@r and Bengio (2008).

In the experiments described below, we used a large set of images colfemtedhe web
to train the features. This set is described in more detail in Section 5.2. Wdeauset of 20
typical RGB colors (hence the number of clusters used in the k-meangléws evas 20), the block
vocabulary sized = 10000 and our image blocks were of size 64x64 pixels, overlappingy ever
32 pixels. Furthermore, in order to be robust to scale, we extractedsblickarious scales by
successively down scaling images by a factor of 1.25 and extractingahede at each level, until
there were less than 10 blocks in the resulting image. There was on aetagel 70 non-zero
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values (out of 10000) describing a single image. Note that no other infamm@uch as meta-data)
was added in the input vector representation each image.

4. Related Work

Similarity learning can be considered in two main setups, depending on theftyypalable training
labels. First, a regression setup, where the training set consists obpaiogectsx?, x? and their
pairwise similarityy; € R. In many cases however, precise similarities are not available, but rather
a weaker notion of similarity order. In one such setup, the training setatems triplets of objects
xt,x2,x3 and a ranking similarity function, that can tell which of the two p&ics x?) or (x!,x3) is

more similar. Finally, multiple similarity learning studies assume that a binary medssireilarity

is availabley; € {+1,—1}, indicating whether a pair of objects is similar or not.

For small-scale data, there are two main groups of similarity learning ap@meackhe first
approach, learning Mahalanobis distances, can be viewed as lealitiagrgprojection of the data
into another space (often of lower dimensionality), where a Euclidean destardefined among
pairs of objects. Such approaches include Fisher’s Linear Discrimiaatysis (LDA), relevant
component analysis (RCA) (Bar-Hillel et al., 2003), supervised glotsdtic learning (Xing et al.,
2003), large margin nearest neighbor (LMNN) (Weinberger et al.62@6d Metric Learning by
Collapsing Classes (Globerson and Roweis, 2006). A Mahalanobis ckstearning algorithm
which uses a supervision signal identical to the one we employ in OASIS iglé&and Fung
(2006), which learns a special kind of PSD matrix via linear programming. a8® a review by
Yang (2006) for more details.

The second family of approaches, learning kernels, is used to improf@mpance of kernel
based classifiers. Learning a full kernel matrix in a non parametric wasolsgtive except for
very small data. As an alternative, several studies suggested to leaiglaed sum of pre-defined
kernels (Lanckriet et al., 2004) where the weights are being learogddata. In some applications
this was shown to be inferior to uniform weighting of the kernels (Noble 8200 he work of
Frome et al. (2007) further learns a weighting over local distance funétioevery image in the
training set. Non linear image similarity learning was also studied in the conteikinehdionality
reduction, as in Hadsell et al. (2006).

Finally, Jain et al. (2008a,b), based on work by Davis et al. (2007) t@ilmarn metrics in an
online setting. This work is one of the closest work with respect to OASI8arihs a linear model
of a [dis-]similarity function between documents in an online way. The mainrdifiee is that the
work of Jain et al. (2008a) learn a true distance throughout the leapniogss, imposing positive
definiteness constraints, and is slightly less efficient computationally. We @mgthis paper that
in the large scale regime, such a constraint is not necessary given thtaofavailable training
examples.

Another work closely related to OASIS is that of Rasiwasia and Vascos¢2@08), which
also tries to learn a semantic similarity function between images. In their casey&owemantic
similarity is learned by representing each image by the posterior probabilitijpdigin over a pre-
defined set of semantic tags, and then computing the distance between tws asabe distance
between the two underlying posterior distributions. The representatioroingages in this ap-
proach is therefore equal to the number of semantic classes, hence igitlale when the number
of semantic classes is very large as in free text search.
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5. Experiments

Evaluating large scale learning algorithms poses special challenges chiretit available bench-
marks are limited either in their scale, like 30K images in Caltech256 as descsiligdftin et al.
(2007), or in their resolution, such as the tiny images data set of Torralak €007). Large
scale methods are not expected to perform particularly well on small datassee they are de-
signed to extract limited information from each sample. Second, many images welthcannot be
used without explicit permission, hence they cannot be collected andgauk a single database.
Large, proprietary collections of images do exist, but are not availadddyffor academic research.
Finally, except for very few cases, similarity learning approaches irentititerature do not scale
to handle large data sets effectively, which makes it hard to compare a mgaastzale method with
the existing methods.

To address these issues, this paper takes the approach of condupérighents at two different
scales. First, to demonstrate the scalability of OASIS we applied OASIS to-aeadb data with 2.7
million images. Second, to investigate the properties of OASIS more deeplypmpaze OASIS
with small-scale methods using the standard Caltech256 benchmark.

5.1 Evaluation Measures

We evaluated the performance of all algorithms using standard rankioigipremeasures based on
nearest neighbors. For each query image in the test set, all other tess imageranked according
to their similarity to the query image. The number of same-class images among thé@nages
(thek nearest neighbors) was computed. When averaged across test (eilggrswithin or across
classes), this yields a measure known as precision-ak;tomviding a precision curve as a function
of the rankk.

We also calculated thmean average precisiofmAP), a measure that is widely used in the
information retrieval community. To compute average precision, the preeisitop-k is first cal-
culated for each test image. Then, it is averaged over all posikidhat have a positive sample.
For example, if all positives are ranked highest, the average-predssionThe average-precision
measure is then further averaged across all test image queries, yielelmgdin average precision
(mAP).

5.2 Web-Scale Experiment

Our first set of experiments is based on Google proprietary data that isrthess of magnitude
larger than current standard benchmarks. We collected a set%iK text queries submitted to the
Google Image Search system. For each of these queries, we hadtacgesss of relevant images,
each of which is associated with a numerical relevance score. This yialtigdl of~2.7 million
images, which we split into a training set of 2.3 million images and a test set of 0.4 nitieyes
(see Table 1).

Set Number of Queries Number of Images
Training 139944 2292259
Test 41877 402164

Table 1; Statistics of the Web data set.
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5.2.1 EXPERIMENTAL SETUP

We used the query-image relevance information to create an image-imagenceleas follows.
Denote the set of text queries gy and the set of images . For eaclhg € Q, let LPJr denote the
set of images that are relevant to the querand let?; denote the set of irrelevant images. The
query-image relevance is defined by the maRiy : Q x Z — R, and obeyfRq(q, paf) >0and
Rai(d,pg) =0forallge Q, pg € %4, py € Py - We also computed a normalized versiorRgj,
which can be interpreted as a joint distribution matrix, or the probability to ebsequeryg and
an imagep for that query,

RQ| (q) p)
Pr(q’ p) Zq’,p’ RQI (q/a pl)

In order to compute the image-image relevance ma&ijjx: ? x ? — R*, we treated images as
being conditionally independent given the querkegp1, p2|q) = Pr(p1|q)Pr(pz|q), and computed
the joint image-image probability as a relevance measure

Pr(p,p2) = ) Pr(py, p2la)Pr(a) = % Pr(ps|a)Pr(pz | q)Pr(q) .
geQ, geQ

To improve scalability, we used a threshold over this joint distribution, andidered two
images to be related only if their joint distribution exceeded a cutoff value

Rii (P1, p2) = [Pr(p1, P2)]g (10)

where[x]q = x for x > 6 and is zero otherwise. To set the valueBafie have manually inspected a
small subset of pairs of related images taken from the training set. We sktbettarges such
that most of those related pairs had scores above the threshold, while migimige inR); .

Equation 10 is written as if one needs to calculate the full joint m&yixbut this matrix grows
quadratically with the number of images. In practice, we can use the fadghat very sparse, to
quickly create a list with images that are relevant to a given image. To do th@a gh imagep;,
we go over all the queries for which it is relevaRg, (q, pi), and for each of these queries, collect
the list of all images that are relevant to that query. The average nurhaeoes relevant for an
image in our data is small (about 100), and so is the number of images refevamgiven query.
As aresultR, can be calculated efficiently even for large image sets.

We trained OASIS over 2.3 million images in the training set using the sampling mieohan
based on the relevance of each image, as described in Section 2.3. cIdrselgumber of training
iterations, we used as a validation set a small subset of the training setadtieamean average
precision of the model at regular intervals during the training processnifg was stopped when
the mean average precision had saturated, which happened after 160 it@Haiions (triplets).
Overall, training took a total 0£4000 minutes on a single CPU of a standard modern machine.
Finally, we evaluated the trained model on the 400 thousand images of thettest s

5.2.2 RESULTS

We start with specific examples illustrating the behavior of OASIS, and cantivith a quantita-
tive analysis of precision and speed. Table 2 shows the top five imageskedrby OASIS on
four examples of query-images in the test set. The relevant text querieadh image are shown
beneath the image. The first example (top row), shows a query-imagedhbairiginally retrieved
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Query image Top 5 relevant images retrieved by OASIS

illusion, eye illusion,

e ical illusion ilusi ; : =
optical illusion optical illusiol rip illusion, eye tricks circles, moving pictures

scottish fold humor cat

funny stuff, dog cartoon puppies

swiss alps wedge,
bodyboarding

s

panini, bread garlic,
grill cheese

taco bakery greek food food fish, fried fish

Table 2: OASIS: Successful cases from the Web data set

in response to the text query “illusion”. All five images ranked highly by @\8re semantically
related, showing other types of visual illusions. Similar results can be \@aséor the three re-
maining examples on this table, where OASIS captures well the semantics of phiotas (cats
and dogs), mountains and different food items.

In all these cases, OASIS captures similarity that is both semantic and vigwa,tee raw
visual similarity of these images is not high. A different behavior is demaestrian Table 3. It
shows three cases where OASIS was biased by visual similarity and edavigh rankings to im-
ages that were semantically non relevant. In the first example, the assootiflewers is confused
with assortments of food items and a thigh section (5th nearest neighbol) dsosisually similar
shape. The second example presents a query image which in itself hdmite demantic element.
The results retrieved are those that merely match texture of the query imadpea@anno semantic
similarity. In the third example, OASIS fails to capture the butterfly in the query émag

To obtain a quantitative evaluation of OASIS we computed the precision &t tging a thresh-
old 8 = 0, which means that an image in the test set is considered relevant to drgaggy if there
exists at least one text query to which they were both relevant to.

The obtained precision values were quite low, achieving 1.5% precisioa tifhranked image.
This is drastically lower than the precision described below for Caltect&%&b¢could be the result
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Query image Top 5 relevant images retrieved by OASIS

roses bouquet panini, bread garlic, thigh, muscle group
grill cheese

garden vegetable schwitters canyon botswana canyon grand know

insect strawberry chinese food vegetable fruit, vitamin

Table 3: OASIS: Failure cases from the Web data set

of multiple reasons. First, the number of unique textual queries in our datydarge (around
150K), hence the images in this data set were significantly more heteragetiem images in the
Caltech256 data.

Second, and most importantly, our labels that measure pairwise relevengerapartial. This
means that many pairs of images that are semantically related are not labalechasA clear
demonstration of this effect is observed in Tables 2 and 3. The query sflige “scottish fold)
have labels that are usually very different from the labels of the rettiewages (as intfumor
cat’, “agility”) even if their semantic content is very similar. This is a common problem in ctnten
based analysis, since similar content can be described in many diffeagst im the case discussed
here, the partial data on the query-image relevadRgeis further propagated to the image-image
relevance measui,; .

5.2.3 HUMAN EVALUATION EXPERIMENTS

In order to obtain a more accurate estimate of the real semantic precisiorerfwened a rating
experiment with human evaluators. We chose the 25 most relevant itfagesthe test set and
retrieved their 10 nearest neighbors as determined by OASIS. We excljubry-images which
contained porn, racy or duplicates in their 10 nearest neighbors. \Weelkcted randomly a set of
10 negative imagep~ that were chosen for each of the query imagesuch thatR,; (p,p~) = 0.
These negatives were then randomly mixed with the 10 nearest neighbors.

All 25 query images were presented to twenty human evaluators, askindgdhreark which of
the 20 candidate images aemantically relevartb the query imagé.Evaluators were volunteers

1. The overall relevance of an image was estimated as the sum of dsvafithe image with respect to all queries.
2. The description of the task as given to the evaluators is provided inn&ppA.
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selected from a pool of friends and colleagues, many of which hadierge with search or ma-
chine vision problems. We collected the ratings on the positive images andataitthe precision
at topk.

(A) (B)
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Figure 3: (A) Precision at togk as a function ok neighbors computed agairi®f; (6 = 0) for the
web-scale test set(B) Precision at tofk as a function ok neighbors for the human
evaluation subset(C) Mean precision for 5 selected queries. Error bars denote the
standard error of the mean. To select the queries for this plot, we ficslated the mean-
average precision per query, sorted the queries by their mAP, andesetbe queries
ranked at position 1, 6, 11, 16, and D) Precision of OASIS and human evaluators,
per query, using rankings of all (remaining) human evaluators as agtouth.

Figure 3(B) shows the average precision across all queries andatvalu Precision peaks
at 42% and reaches 35% at the top 10 ranked image, being significantir iigtn the values
calculated automatically usirfgy; .

We observed that the variability across different query images was atgdigh. Figure 3(C)
shows the precision for 5 different queries, selected to span the cdimyerage-precision values.
The error bars at each curve show the variability in the responsesfefedif evaluators. The
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precision of OASIS varies greatly across different queries. Someyduages were “easy” for
OASIS, yielding high scores from most evaluators, while other quertesved images that were
consistently found to be irrelevant by most evaluators.

We also compared the magnitude of variability across human evaluators, wi#hility across
gueries. We first calculated the mAP from the precision curves of evergycand evaluator, and
then calculated the standard deviation in the mAP of every evaluator ancenf query. The
mean standard deviation over queries was 0.33, suggesting a largeligrialhe difficulty of
image queries, as observed in Figure 3(C) . The mean standard deviaioevaluators was.B5,
suggesting that different evaluators had very different notions at wiages should be regarded as
“semantically similar” to a query image.

Finally, to estimate an “upper bound” on the difficulty of the task, we also cteadpiine pre-
cision of the human evaluators themselves. For every evaluator, we eseahitings of all other
evaluators as ground truth, to compute his precision. As with the ranks 8f&Ave computed the
fraction of evaluators that marked an image as relevant, and repeategpaiately for every query
and human evaluator, providing a measure of “coherence” per gigyre 3(D) shows the mean
precision obtained by OASIS and human evaluators for every queryridaia. For some queries
OASIS achieves precision that is very close to that of the mean human ®vallramany cases
OASIS achieves precision that is as good or better than some evaluators.

5.2.4 $EED AND SCALABILITY

We further studied how the runtime of OASIS scales with the size of the traieingrgure 4 shows
that the runtime of OASIS, as found by early stopping on a separate vaftidaiogrows linearly
with the train set size. We compare this to the fastest result we found in thédierbased on a fast
implementation of LMNN by Weinberger and Saul (2008). LMNN learns a éMafobis distance
for k-nearest neighbor classification, aiming to have the nearest neightzosaumple belong to the
same class, and samples from different classes separated by a lagie mhe LMNN algorithm
is known to scale quadratically with the number of objects, although their iexgets with MNIST
data show that the active set of constraints grows linearly. This couléteube MNIST has 10
classes only. In many real world data however, the number of classesltygrows almost linearly
with the number of samples.

5.3 Caltech256 Data Set

To compare OASIS with small-scale methods we useCleech256lata set (Griffin et al., 2007).
This data set consists of 30607 images that were obtained from Google seagsh and from
PicSearch.comimages were assigned to 257 categories and evaluated by humang ito @msure
image quality and relevance. After we have pre-processed the imagesaibdd in Section 3 and
filtered images that were too small, we were left with 29461 images in 256 categdio allow
comparisons with other methods in the literature that were not optimized f@espggresentation,
we also reduced the block vocabulary sizkom 10000 to 1000. This processed data is available
online athttp://ai.stanford.edutgal/Research/OASIS

Using the Caltech256 data set allows us to compare OASIS with existing similanityiriga
methods. For OASIS, we treated images that have the same labels as similsanientabels were
used for comparing with methods that learn a metric for classification, aglEdbelow.
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Figure 4: Comparison of the runtime of OASIS and fast-LMNN by Weinbeeagpel Saul (2008),

over a wide range of scales. LMNN results (on MNIST data) are fastar @ASIS
results on subsets of the web data. However LMNN scales quadraticallyheittumber
of samples, hence is three times slower on 60K images, and may be infeashaaddting
2.3 million images.

5.3.1 GOMPAREDMETHODS

We compared the following approaches:

1.

2.

OASIS. - The algorithm described above in Section 2.1.

Euclidean. - The standard Euclidean distance in feature space. The initialization ofSDAS
using the identity matrix is equivalent to this distance measure.

. MCML - Metric Learning by Collapsing Classes (Globerson and Roweis, 200% ap-

proach learns a Mahalanobis distance such that samples from the sasarelasapped to
the same point. The problem is written as a convex optimization problem, andweibed
the gradient-descent implementation provided by the authors.

. LMNN - Large Margin Nearest Neighbor Classification (Weinberger et al.6R0Dhis ap-

proach learns a Mahalanobis distancelforearest neighbor classification, aiming to have the
k-nearest neighbors of a given sample belong to the same class while esfropialifferent
classes are separated by a large margin. As a preprocessing phamss, \ineae projected to a
basis of the principal components (PCA) of the data, with no dimensionalitgtiedusince
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this improved the precision results. We also compared with a fast implementatidiN,
that uses a clever scheme of maintaining a set of active constraints (\\ginlamd Saul,
2008). We used the web data discussed above to compare with previobishpd results
obtained with fast-LMNN on MNIST data (see Figure 4).

5. LEGO - Online metric learning (Jain et al., 2008a). LEGO learns a Mahalanobisdésta
in an online fashion using a regularized per instance loss, yielding a os&midefinite
matrix. The main variant of LEGO aims to fit a given set of pairwise distanés.used
another variant of LEGO that, like OASIS, learns from relative distancesur experimental
setting, the loss is incurred for same-class examples being more than a distiice away,
and different class examples being less than a certain distance awaf) U§«S the LogDet
divergence for regularization, as opposed to the Frobenius nomninusASIS.

For all these approaches, we used an implementation provided by thesaufigorithms were
implemented in Matlab, with runtime bottlenecks implemented in C for speedup (eXE&®D).
We test below two variants of OASIS applied to the Caltech256 data set: datliah implementa-
tion, and one that has@components. We usedz + implementation of OASIS for the web-scale
experiments described below.

We have also experimented with the methods of Xing et al. (2003) and ROAHiBal et al.,
2003). We found the method of Xing et al. (2003) to be too slow for the satariexperiments.
RCA is based on a per-class eigen decomposition that is not well defined the number of
samples is smaller than the feature dimensionality. We therefore experimentedpséthrocessing
phase of dimensionality reduction followed by RCA, but results were infésiother methods and
were not included in the evaluations below. RCA also did not perform wadintested on the full
data, where dimensionality was not a problem, possibly because it is righéégo handle well
sparse data.

5.3.2 EXPERIMENTAL PrROTOCOL

We tested all methods on subsets of classes taken from the Caltech28iBorgp&ach subset was
built such that it included semantically diverse categories, spanning ltharige of classification
difficulty, as measured by Griffin et al. (2007). We used subsets of 4i2e20, 50 and 249 classes
(we used 249 classes since classes 251-256 are strongly correlttesther classes, and since
class 129 did not contain enough large images). The full lists of categoréech set are given in
Appendix B. For each set, images from each class were split into a traigiireg 40 images and a
test set of 25 images, as proposed by Griffin et al. (2007).

We used cross-validation to select the values of hyper parameters faigatithms except
MCML. Models were learned on 80% of the training set (32 images), aald&tied on the remain-
ing 20%. Cross validation was used for setting the following hyper parasdter early stopping
time for OASIS; thew parameter for LMNN ¢ € {0.125,0.25,0.5}), and the regularization param-
etern for LEGO (n € {0.02,0.08,0.32}). We found that LEGO was usually not sensitive to the
choice ofn, yielding a variance that was smaller than the variance over differeas-aaidation
splits. Results reported below were obtained by selecting the best valuelofgier parameter and
then training again on the full training set (40 images). For MCML, we usedéfiault parameters
supplied with the code from the authors, since its very long run time and multipdengéers made
it non-feasible to tune hyper parameters on this data.
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Figure 5: Mean average precision of OASIS as a function of the nunfltesiining steps. Error
bars represent standard error of the mean over 5 selections of trédiinmages) and
test (25 images) sets. Performance is compared with a baseline obtaingthesirive
Euclidean metric on the feature vector. C=0A) 10 classes. Test performance saturates
around 30K training steps, while going over all triplets would require 2.8 millieps
(B) 20 classes.

5.3.3 ReESULTS

Figure 5 traces the mean average precision over the training and thetdesst ggorogresses during
learning. For the 10 classes task, precision on the test set saturtéammamd 35K training steps),
and then decreases very slowly.

Figure 6 and Table 4 compare the precision obtained with OASIS, with fawpeting ap-
proaches, as described above (Section 5.3.1). OASIS achievasteatlg superior results through-
out the full range ok (number of neighbors) tested, and on all four sets studied. Interestingly
found that LMNN performance on the training set was often high, suggethat it overfits the
training set. This behavior was also noted by Weinberger et al. (2006)rie sf their experiments.

OASIS achieves superior or equal performance, with a runtime thatés tasabout two orders
of magnitudes than MCML, and about one order of magnitude faster tha¥NLM he run time of
OASIS and LEGO was measured until the point of early stopping.

Table 5 shows the total CPU time in minutes for training each of the algorithms cethfraea-
sured on a standard 1.8GHz Intel Xeon CPU). For the purpose of eofaiparison with competing
approaches, we tested two implementations of OASIS: The first was fully imptech#atlab. The
second had the core of the algorithm implemente@ and called from MatlaB.LMNN code and
MCML code were supplied by the authors and implemented in Matlab, with cot®ipglemented
in C. LEGO code was supplied by the authors and fully implemented in Matlab.

Importantly, we found that Matlab does not make full use of the speedtipdhabe gained by
sparse image representation. As a result,Gf@"" implementation of OASIS that we tested is
significantly faster.

3. The OASIS code is available onlinetdtp://ai.stanford.edutgal/Research/OASIS
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10 classes OASIS MCML LEGO LMNN  Euclidean

Matlab Matlab+C Matlab Matlab+C -

Mean avg prec| 33+1.6 29417 274+0.8 24416 23+0.9
Toplprec. |43+40 39451 39448 38+54 37+4.1
Top10prec. | 38+13 33+18 32+12 29+21 27+15
Top50prec. | 23+15 22+13 20+05 18+15 18+0.7

20 classes OASIS MCML LEGO LMNN Euclidean

Mean avg. prec| 21+14 17+£12 16+1.2 14+0.6 14+0.7
Toplprec. |294+26 264+23 26+27 26+30 25+2.6
Top1O0prec. | 24+19 21+15 20+14 19+10 18+1.0
Top50prec. | 15+04 14+05 13+06 11+02 12+0.2

50 classes OASIS MCML LEGO LMNN Euclidean

Mean avg. prec| 12+0.4 * 9+04 8+0.4 9+0.4
Top 1 prec. 21+16 * 18+0.7 18+1.3 17+0.9
Top 10 prec. | 16+0.4 * 13+0.6 12+05 13+0.4
Top 50 prec. | 10+0.3 * 8+0.3 7+0.2 8+0.3

Table 4: Mean average precision and precision at top 1, 10, and 8@ofrgpared methods. Values
are averages over 5 cross validation foltlszalues are the standard deviation across the 5
folds. A ™ denotes cases where a method took more than 5 days to gmver

OASIS OASIS MCML LEGO LMNN (naive) fast-LMNN
classes Matlab Matlab+C Matlab+C Matlab Matlab+C Matlab+C
10 42415 012+ .03 1835-210 143+44 337+169 247+ 209

20 4548 0.154+.02 7425-106 533+49 631+ 40 365+ 62
50 25+2 16+.04 * 711+ 28 960+ 80 2109+ 67
249 485+113 113+.15 * *ok Kk Kk

Table 5: Runtime (minutes) of all compared methods. Values are averageS oxoss validation
folds, £ values are the standard deviation across the 5 folds. denotes cases where a
method took more than 5 days to converge <A 'denotes cases where performance was
worse than the Euclidean baseline.

5.4 Paralle Training

We presented OASIS as optimizing an objective function at each step. GABES is based on the
PA framework, it is also known to minimize a global objective of the form

HWHIZZro +Cz|i
T
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(A) 10 classes (B) 20 classes
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0 ) . . . )
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Figure 6: Comparison of the performance of OASIS, LMNN, MCML, LE@@d the Euclidean
metric in feature space. Each curve shows the precision & s function ok neigh-
bors. The results are averaged across 5 train/test partitions (40 traimaggs, 25 test
images), error bars are standard error of the means (s.e.m.), blacdddashdenotes
chance performancg€A) 10 classes(B) 20 classes(C) 50 classes.

as shown by Crammer et al. (2006) This objective is convex since theslhsm® linear inW.
For such convex functions, it is guaranteed that any linear combinatiswiations is superior than
each of the individual solutions. This property suggests another wagttlap training, by training
multiple rankers in parallel and averaging the resulting models. Each of tividimal models can
be trained with a smaller number of iterations. Note however that there is nargea that the total
CPU time is improved.

Figure 7 demonstrates this approach; we trained 5 or 10 rankers in parallplot the test set
mean average precision as a function of the number of training iterations.
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Figure 7: Comparing individual rankers and a linear combination of 5 @mauikers. Results are
for an experiment with 249 classes of the Caltech256 data set.
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Figure 8: Comparison of Symmetric variants of OASIS) 10 classes(B) 20 classes.

6. Symmetry and Positivity

The similarity matriXW learned by OASIS is not guaranteed to be positive or even symmetric. Some
applications, like ranking images by semantic relevance to a given image ceekp@vn to be
non-symmetric when based on human judgement (Tversky, 1977). ldove\some applications
symmetry or positivity constraints reflect a prior knowledge that may helfdgp overfitting.
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Furthermore positiv§V impose a Mahalanobis metric over the data, that can be further factorized
to extract a linear projection of the data into a Euclidean spaé&vy = (Ax)T(Ay) such that
ATA =W. Such projectior of the data can be useful for visualization and exploratory analysis of
data for example in scientific applications. We now discuss variants of Oth&t&arn a symmetric

or positive matrices.

6.1 Symmetric Similarities

A simple approach to enforce symmetry is to project the OASIS m@tehto the set of symmetric
matricesW’ = symW) = % (WT +W). The update procedure then consists of a series of gradient
steps followed by projection to the feasible set (of symmetric matrices). Tpisagh is sometimes
called projected gradient, and we denote it h@rdine-Proj-Oasis Alternatively, projection can
also be applied after learning is completed (denoted ResgOasis.

Alternatively, the asymmetric score functi@ (pi, p;) in the losslw can be replaced with a
symmetric score

Su(pi,pj) =—(pi—p) "W (pi—pj) -

and derive an OASIS-like algorithm (which we c8lissim-Oasiy The optimal update for this
loss has a symmetric gradievit = (pi — p;") (i — )" — (pi— P ) (pi — p; ). Therefore, ifw®
is initialized with a symmetric matrix (for example, the identity matrix) i are guaranteed to
remain symmetricDissim-Oasiss closely related to LMNN (Weinberger et al., 2006). This can be
seen be casting the batch objective of LMNN, into an online setup, whicthedermerr(W) =
—w- Sy (pi, p) + (1—w) -y (pi, pi", p7). This online version of LMNN becomes equivalent to
Dissim-Oasis fow = 0.

Figure 8 compares the precision of the different symmetric methods with theargASIS.
All symmetric variants performed slightly worse, or equal to the original asymer@ASIS. Asym-
metric OASIS is also twice faster than DISSIM-OASIS. The precisioRrof-Oasiswas equivalent
to that of OASIS. This was because the asymmetric OASIS learning ruldlgctaaverged to an

almost-symmetric model (as measured by a symmetry ipdék) = |‘S3"|”\},‘T‘V2)“2 =0.94).

6.2 Positive Similarity

Most similarity learning approaches focus on learning metrics. In the coot©ASIS, whenW is
positive semi definite (PSD), it defines a Mahalanobis distance over thegn@e matrix square-
root of W, ATA = W can then be used to project the data into a new space in which the Euclidean
distance is equivalent to th& distance in the original space.

We experimented with positive variants of OASIS, where we repeatedjgqten the learned
model onto the set of PSD matrices, once evdtgrations. Projection is done by taking the eigen
decompositioWW =V -D-VT whereV is the eigenvector matrix aridl is the diagonal eigenvalues
matrix limited to positive eigenvalues. Figure 9 traces precision on the tesrsaghout learning
for various values df.

The effect of positive projections is complex. First, continuously projgatirtce every few steps
helps to reduce overfitting, as can be observed by the slower declineldimscurve (upper smooth
curve) compared to the orange curve (lowest curve). Howevem ptmection is performed after
many steps (instead of continuously), performance of the projected raciellly outperforms the
continuous-projection model (upper jittery curve). The reason for fféstds likely to be that the
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Figure 9: Mean average precision (mAP) during training for three PSi2giion schemes, using
the set of 20 classes from caltech256.

estimates of the positive sub-space are very noisy when only baseewarsarhples (see also Chen
et al. 2009, Section 2.1). Indeed, accurate estimation of the negatispasgbis known to be a
hard problem, because small perturbations can turn a negative but greaitadue, into a small but
positive one. As a result, the set of vectors selected based on hawitiggeigenvalues, is highly
variable. We found that this effect was so strong, that the optimal profestrategy is to avoid
projection throughout learning completely. Instead, projecting into PSD laféening (namely,
after a model was chosen using early stopping) provided the bestmparioe in our experiments.

An interesting alternative to obtain a PSD matrix was explored by Kulis et a09j2@nd
Jain et al. (2008a). Using a LogDet divergence between two matbiggX,Y) = tr(XY~1) —
log(det(XY~1)) ensures that, given an initial PSD matrix, all subsequent matrices will beaBSD
well. It would be interesting to test the effect of using LogDet regularinatiche OASIS setup.

7. Discussion

We have presented OASIS, a scalable algorithm for learning image similarttgaptures both
semantic and visual aspects of image similarity. Three key factors contribthe szalability of
OASIS. First, using a large margin online approach allows training to cgeveren after seeing a
small fraction of potential pairs. Second, the objective function of OARI&s not require the sim-
ilarity measure to be necessarily a metric during training, although it appeaasurally converge
to a symmetric solution. Finally, we use a sparse representation of low letatdés which allows
computing scores very efficiently.
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We found that OASIS performs well in a wide range of scales: fromlprob with thousands
of images, where it slightly outperforms existing metric-learning approadbdarge web-scale
problems, where it achieves high accuracy, as estimated by human ekaluato

OASIS differs from previous methods in that the similarity measure that it4gamot forced to
be a metric, or even symmetric. When the number of available samples is small,gflistosadd
constraints that reflect prior knowledge on the type of similarity measureceaqgb to be learned.
However, we found that these constraints were not helpful everrédnigms with a few hundreds
of samples. Interestingly, human judgements of pairwise similarity are knowa &symmetric, a
property that can be easily captured by an OASIS model.

OASIS learns a class-independent model: it is not aware of which guerieategories were
shared by two similar images. As such, it is more limited in its descriptive powelt exldkely that
class-dependent similarity models could improve precision. On the other tlasd-independent
models could generalize to handle classes that were not observed thaiinigg, as in transfer
learning. Large scale similarity learning, applied to images from a large varietiasses, could
therefore be a useful tool to address real-world problems with a lamgpéeuof classes.
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Appendix A. Human Evaluation

The following text was given as instructions to human evaluators when jgdganrelevance of
images to a query image.

Scenari o:

A user is searching images to use in a presentation he/she plans to
give. The user runs a standard image search, and selects an imge
the *‘query image’'. The user then wishes to refine the search and
[ ook for images that are SEMANTI CALLY sinmilar to the query inage

The difficulty lies, in the definition of **SEMANTICALLY' . This can
have many interpretations, and you should take that into account.

So for instance, if you see an image of a big red truck, you can
interpret the user intent (the notion of semantically simlar) in
various ways:

- any big red truck

- any red truck

- any big truck

- any truck

- any vehicle
You should interpret ‘*SEMANTICALLY'' in a broad sense rather than
inastrict sense but feel free to draw the line yourself (although
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be consistent).

Your task:
You will see a set of query images on the left side of the screen,
and a set of potential candidate matches, 5 per row, on the
right. Your job is to decide for each of the candidate inages if it
is a good semantic match to the query inmage or not. The default is
that it is NOT a good match. Furthernore, if for sonme reason you
cannot make-up your mnd, then answer ‘‘can’t say'’.

Appendix B. Caltech256 Class Sets

e 10 classes. bear, skyscraper, billiards, yo-yo, minotaur, roulette-wheel, hamm laptop-
101, hummingbird, blimp.

e 20classes: airplanes-101, mars, homer-simpson, hourglass, waterfall, helezejp01, mountain-
bike starfish-101, teapot, pyramid, refrigerator, cowboy-hat, girgdiestick, crab-101, bird-
bath, fighter-jet tuning-fork, iguana, dog.

e 50classes: car-side-101, tower-pisa, hibiscus, saturn, menorah-101, mmwlzartman, chandelier-
101, backpack, grapes, laptop-101, telephone-box, binoculalisgpter-101, paper-shredder,
eiffel-tower, top-hat, tomato, star-fish-101, hot-air-balloon, twegzenic-table, elk, kangaroo-
101, mattress, toaster, electric-guitar-101, bathtub, gorilla, jesussthcormorant, man-
dolin, light-house, cake, tricycle, speed-boat, computer-mousersiam, chimp, pram, fried-
egg, fighter-jet, unicorn, greyhound, grasshopper, goose, gudrnking-straw, snake, hot-
dog.

e 249 classes: classes 1-250, excluding class 129 (leopards-101), which hadHess65 large

enough images.

References

A. Bar-Hillel, T. Hertz, N. Shental, and D. Weinshall. Learning distancefions using equivalence
relations. InProc. of 20th International Conference on Machine Learning (ICMiage 11, 2003.

L. Bottou. Large-scale machine learning and stochastic algorithm&IR& 2008 Workshop on
Optimization for Machine Learnin@008.

Y. Chen, E.K. Garcia, M.R. Gupta, A. Rahimi, and L. Cazzanti. Similarity-Badassification:
Concepts and algorithm3he Journal of Machine Learning Researdld:747-776, 2009.

K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. SingelindJpassive-aggressive
algorithms.Journal of Machine Learning Research (JML.R)551-585, 2006.

J.V. Davis, B. Kulis, P. Jain, S. Sra, and |.S. Dhillon. Information-théomaetric learning. In
Proceedings of the 24th international conference on Machine learniages 209-216. ACM
Press New York, NY, USA, 2007.

1133



Scalable Streaming Learning Of Dyadic Relationships 41

CHECHIK, SHARMA, SHALIT AND BENGIO

P. Duygulu, K. Barnard, N. de Freitas, and D. Forsyth. Object neitiog as machine translation:
Learning a lexicon for a fixed image vocabulary. Enropean Conference on Computer Vision
(ECCV) pages 97-112, 2002.

S.L. Feng, R. Manmatha, and V. Lavrenko. Multiple Bernoulli relevancdetsdfor image and video
annotation. INEEE Computer Society Conference on Computer Vision and Pattern Rigoag
(CVPR) 2004.

A. Frome, Y. Singer, F. Sha, and J. Malik. Learning globally-considteral distance functions for
shape-based image retrieval and classificatiorntiernational Conference on Computer Visjon
pages 1-8, 2007.

A. Globerson and S. Roweis. Metric learning by collapsing clagséances in Neural Information
Processing System$8:451, 2006.

D. Grangier and S. Bengio. A discriminative kernel-based model to rangasiom text queries.
Transactions on Pattern Analysis and Machine Intelligence (TPABO(8):1371-1384, 2008.

D. Grangier, F. Monay, and S. Bengio. Learning to retrieve images tieahgueries with a discrim-
inative model. Innternational Conference on Adaptive Multimedia Retrieval (ANMIRP6.

G. Griffin, A. Holub, and P. Perona. Caltech-256 object categorysdatalechnical Report 7694,
California Institute of Technology, 2007.

R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by leamainigvariant mapping.
In IEEE Computer Society Conference on Computer Vision and Pattern Rgoag(CVPR)
volume 2, 2006.

P. Jain, B. Kulis, I. Dhillon, and K. Grauman. Online metric learning anddmstiarity search. In
Advances in Neural Information Processing Systemkime 22, 2008a.

P. Jain, B. Kulis, and K. Grauman. Fast image search for learned métrleE£E Computer Society
Conference on Computer Vision and Pattern Recognition (CVpaRjes 1-8, 2008b.

J. Jeon and R. Manmatha. Using maximum entropy for automatic image annadtatiternational
Conference on Image and Video Retrigyages 24-32, 2004.

B. Kulis, M.A. Sustik, and I.S. Dhillon. Low-rank kernel learning with bnegn matrix divergences.
Journal of Machine Learning ResearctD:341-376, 2009.

G.R.G. Lanckriet, N. Cristianini, P. Bartlett, L. EI Ghaoui, and M.l. Jordaearning the kernel
matrix with semidefinite programminglournal of Machine Learning Research (JML.RB)27—
72, 2004.

D. G. Lowe. Distinctive image features from scale-invariant keypoihisernational Journal of
Computer Vision (IJCV)60(2):91-110, 2004.

W.S. Noble. Multi-kernel learning for biology. INIPS 2008 workshop on kernel learnjrizP08.

1134



Scalable Streaming Learning Of Dyadic Relationships 42

LARGE SCALE ONLINE LEARNING OF IMAGE SIMILARITY

T. Ojala, M. Pietikainen, and T. Maenpaa. Multiresolution gray-scale afadion invariant texture
classification with local binary pattern§ransactions on Pattern Analysis and Machine Intelli-
gence (TPAMI)24(7):971-987, 2002.

P. Quelhas, F. Monay, J. M. Odobez, D. Gatica-Perez, T. Tuytelaaadd . J. Van Gool. Modeling
scenes with local descriptors and latent aspectihitérnational Conference on Computer Visjon
pages 883—-890, 2005.

N. Rasiwasia and N. Vasconcelos. A study of query by semantic examplerd linternational
Workshop on Semantic Learning and Applications in Multime2it98.

R. Rosales and G. Fung. Learning sparse metrics via linear programnmiftyodeedings of the
12th ACM SIGKDD international conference on Knowledge discoverydatd mining pages
367-373. ACM New York, NY, USA, 2006.

M. Schultz and T. Joachims. Learning a distance metric from relative casopar InAdvances
in Neural Information Processing Systems 16: Proceedings of the 20@8renceBradford
Book, 2004.

V. Takala, T. Ahonen, and M. Pietikainen. Block-based methods for imaigieval using local
binary patterns. i8candinavian Conference on Image Analysis (SQ2805.

K. Tieu and P. Viola. Boosting image retrievdhternational Journal of Computer Vision (IJCV)
56(1):17 — 36, 2004.

A. Torralba, R. Fergus, and W. T. Freeman. Tiny images. Techniqad®#IT-CSAIL-TR-2007-
024, Computer Science and Atrtificial Intelligence Lab, Massachusetitutesof Technology,
2007. URLht t p: // dspace. nit. edu/ handl e/ 1721. 1/ 37291.

A. Tversky. Features of similarityPsychological Revievd4(4):327-352, 1977.

K. Weinberger, J. Blitzer, and L. Saul. Distance metric learning for largegjimaearest neighbor
classification.Advances in Neural Information Processing Systets1473, 2006.

K.Q. Weinberger and L.K. Saul. Fast solvers and efficient implementatmmdigtance metric
learning. InICML25, pages 1160-1167, 2008.

E.P. Xing, A.Y. Ng, M.l. Jordan, and S. Russell. Distance metric learning agblication to
clustering with side-information. In S. Becker, S. Thrun, and K. ObesnaditorsAdvances in
Neural Information Processing Systems ftages 521-528, Cambridge, MA, 2003. MIT Press.

L. Yang. Distance metric learning: A comprehensive survey. Technégart, Michigan State
University, 2006.

1135



Scalable Streaming Learning Of Dyadic Relationships 43

2.2 Online Learning in the Embedded Manifold of Low-rank

Matrices



Scalable Streaming Learning Of Dyadic Relationships 44

Journal of Machine Learning Research 13 (2012) 429-458 Stdur6/11; Revised 11/11; Published 2/12

Online Learning in the Embedded Manifold of Low-rank Matrices

Uri Shalit * URI.SHALIT@MAIL .HUJI.AC.IL
Computer Science Department and ICNC/ELSC

The Hebrew University of Jerusalem

91904 Jerusalem, Israel

Daphna Weinshall DAPHNA@CS.HUJI.AC.IL
Computer Science Department

The Hebrew University of Jerusalem

91904 Jerusalem, Israel

Gal Chechik' GAL@GOOGLE.COM
The Gonda Brain Research Center

Bar Illan University

52900 Ramat-Gan, Israel

Editor: Léon Bottou

Abstract

When learning models that are represented in matrix fornfer@ng a low-rank constraint can
dramatically improve the memory and run time complexityileshroviding a natural regularization
of the model. However, naive approaches to minimizing fiemstover the set of low-rank matrices
are either prohibitively time consuming (repeated singutdue decomposition of the matrix) or
numerically unstable (optimizing a factored represeatatf the low-rank matrix). We build on
recent advances in optimization over manifolds, and desem iterative online learning procedure,
consisting of a gradient step, followed bysacond-order retractiolack to the manifold. While
the ideal retraction is costly to compute, and so is the ptime operator that approximates it, we
describe another retraction that can be computed effigidhtias run time and memory complexity
of O((n+m)k) for a rankk matrix of dimensionm x n, when using an online procedure with
rank-one gradients. We use this algorithmQRETA, to learn a matrix-form similarity measure
over pairs of documents represented as high dimension&dréecLORETA improves the mean
average precision over a passive-aggressive approachdabcaized model, and also improves over
a full model trained on pre-selected features using the saemory requirements. We further
adapt LORETA to learn positive semi-definite low-rank matrices, promglian online algorithm
for low-rank metric learning LORETA also shows consistent improvement over standard weakly
supervised methods in a large (1600 classes and 1 milliogesjausingmageNext multi-label
image classification task.

Keywords: low rank, Riemannian manifolds, metric learning, retracs, multitask learning,
online learning

1. Introduction

Many learning problems involve models represented in matrix form. Thesalamahetric learning,
collaborative filtering, and multi-task learning where all tasks operatetbeesame set of features.

x. Also at The Gonda Brain Research Center, Bar llan University, 38&0nat-Gan, Israel.
T. Also at Google Research, 1600 Amphitheatre Parkway, Mountain @ienp4043.
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In many of these tasks, a natural way to regularize the model is to limit the f&mé corresponding
matrix. In metric learning, a low-rank constraint allows to learn a low dimensi@paesentation

of the data in a discriminative way. In multi-task problems, low-rank constraimtgde a way to

tie together different tasks. In all cases, low-rank matrices can besepied in a factorized form
that dramatically reduces the memory and run-time complexity of learning arrémcke with that

model. Low-rank matrix models could therefore scale to handle substantially mare features

and classes than models with full rank dense matrices.

Unfortunately, the rank constraint is non-convex, and in the genas&l, aninimizing a convex
function subject to a rank constraint is NP-hard (Natarajan, 199&)a result of these issues, two
main approaches have been commonly used to address the problem mfgearder a low-rank
constraint. Sometimes, a matkit € R™™ of rankk is represented as a product of two low dimen-
sion matrice®V = ABT, A € R™K B € R™K and simple gradient descent techniques are applied to
each of the product terms separately (Bai et al., 2009). Secondciwjgradient algorithms can
be applied by repeatedly taking a gradient step and projecting back to tholehari low-rank
matrices. Unfortunately, computing the projection to that manifold becomegojiiedly costly for
large matrices and cannot be computed after every gradient step.

Work in the field has focused mostly on two realms. First, learning low-rarsitipe semi-
definite (PSD) models (as opposed to general low-rank models), as inattks wf Kulis et al.
(2009) and Meyer et al. (2011). Second, approximating a noisy matiwosdérvations by a low-
rank matrix, as in the work of Negahban and Wainwright (2010). Thisisasemmonly addressed
in the field of recommender systems. Importantly, the current paper doesldiess the problem
of low-rank approximation to a given data matrikut rather addresses the problem of learning a
low-rank parametric modeh the context of ranking and classification.

In this paper we propose new algorithms for online learning on the manifatthvefank matri-
ces. Itis based on an operation caltettaction, which is an operator that maps from a vector space
that is tangent to the manifold, into the manifold (Do Carmo, 1992; Absil et al8R0Retrac-
tions include the projection operator as a special case, but also inclugfeopiérators that can be
computed substantially more efficiently. We use second order retractioesetogd LORETA —an
online algorithm for learning low-rank matricesoReTA has a memory and run time complexity of
O((n+ m)k) per update when the gradients have rank one. We show below that éhefcask-one
gradients is relevant to numerous online learning problems.

We test LORETAIN two different domains and learning tasks. First, we learn a bilinear similarity
measure among pairs of text documents, where the number of featutéstr{tes) representing each
document could become very largeoORETA performed better than other techniques that operate
on a factorized model, and also improves retrieval precision by 33% asarethpiith training a
full rank model over pre-selected most informative features, using ammbfe memory footprint.
Second, we appliedbRETAto image multi-label ranking, a problem in which the number of classes
could grow to millions. LORETA significantly improved over full rank models, using a fraction of
the memory required. These two experiments suggest that low-rank optimizatidd become
very useful for learning in high-dimensional problems.

1. Some special cases are solvable (notably, PCA), relying mainly galainvalue decomposition (Fazel et al., 2005)
and semi-definite programming techniques. For SDP of kank it is not known whether this problem is NP-hard.
Fork = 1 it is equivalent to the MAX-CUT problem (Briét et al., 2010). Both SD#l &VD scale poorly to large
scale tasks.
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This paper is organized as follows. We start with an introduction to optimizationanifolds,
describing the notion of retractions. We then derive our low-rank onlamieg algorithm in three
variants: one which learns a general low-rank matrix, one which ledovs-eank PSD matrix, and
one which concentrates most of the learning in a reduced dimensiona&l. spaally we test our
algorithms in two applications: learning similarity of text documents, and multi-lareging on a
set of one million images.

This paper extends a shorter version published in Advances in Nedaaihlation Systems
(Shalit et al., 2010), by adding a new PSD version of the algorithm, muchriacgée and wider
experiments, giving a full mathematical discussion and proofs, and addimgugh complexity
analysis.

2. Optimization on Riemannian Manifolds

The field of numerical optimization on smooth manifolds has advanced sigtifidarthe past
few years. For a recent exposition on this subject see Absil et al8jJ200e start with a short
introduction to embedded manifolds, which are the focus of this paper.

An embedded manifolis a smooth subset of an ambient sp&e For instance, the set
{x:||x|]2=1,x € R"}, the unit sphere, is am-1 dimensional manifold embeddedrirdimensional
spaceR". As another example, therthogonal group @, which comprises of the set of orthogo-
nal n x n matrices, is arf(”z;l) dimensional manifold embedded BR™". Here we focus on the
manifold of low-rank matrices, namely, the set ofx m matrices of rank wherek < mn. It
is an (n+m)k — k? dimensional manifold embedded &*™, which we denoteM,"™, or plainly
M. Embedded manifolds inherit many properties from the ambient spacet, &t simplifies
their analysis. For example, the natural Riemannian metric for embedded fdangaimply the
Euclidean metric restricted to the manifold.

Motivated by online learning, we focus here on developing a stochastitiegit descent proce-
dure to minimize a loss functios over the manifold of low-rank matrice&; "™,

min L(W) st W e m™

To illustrate the challenge in this problem, consider a simple stochastic gradissert algorithm
(Figure 1). At every step of the algorithm, a gradient step updaté — 02 (W!) takes the model
outside of the manifoldM and has to be mapped back onto the manifold. The most common
mapping operation is tharojectionoperation, which, given a poilt — [0 £(W") outside the man-
ifold, would find the closest point ifif. Unfortunately, the projection operation is very expensive
to compute for the manifold of low-rank matrices, since it basically involves gutan value de-
composition. Here we describe a wider class of operations cadteattions that serve a similar
purpose: they find a point on the manifold that is in the direction of the gradierexplain how re-
tractions are computed, we first describe the notiontahgent spacand theRiemannian gradient

of a function on a manifold.

2.1 Riemannian Gradient and the Tangent Space

Each poin\WV in an embedded manifol@ has a tangent space associated with it, dendjgd!/
as shown in Figure 2 (for a formal definition of the tangent space, seerffix A). The tangent
space is a vector space of the same dimension as the manifold that can bestienéfhatural way
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Figure 1: Projection onto the manifold is just a particular case of a retracfRmtractions are
defined as operators that approximate the geodesic gradient flow onifelcha

with a linear subspace of the ambient space. Itis usually simple to compute taedimgctiorRy
of any point in the ambient space onto the tangent spacH .

Given a manifoldM and a differentiable functios : M — R, theRiemannian gradientl £ (W)
of L onM at a pointW is a vector in the tangent spatg M. A very useful property of embedded
manifolds is the following: given a differentiable functidrdefined on the ambient space (and thus
on the manifold), the Riemannian gradientfo&t pointW is simply the linear projectioRy of the
Euclidean gradient of onto the tangent spade, M .

Thus, if we denote the Euclidean gradientoin R™™ by (.2, we haved £(W) = Ry(0£). An
important consequence follows in case the manifold represents the sahts pbeying a certain
constraint. In this case the Riemannian gradient & equivalent to the Euclidean gradient of
minus the component which is normal to the constraint. Indeed this normal camipis exactly
the component which is irrelevant when performing constrained optimization.

The Riemannian gradient allows us to compMé% =W —ntOL(W), for a given iterate point
W' and step sizg'. We now examine howv+2 can be mapped back onto the manifold.

2.2 Retractions

Intuitively, retractionscapture the notion of "going along a straight line" on the manifold. The math-
ematically ideal retraction is called tlegponential mappin@Po Carmo, 1992, Chapter 3): it maps
the tangent vectaf € TwM to a point along a geodesic curve which goes throdgim the direc-

tion of § Figure 1. Unfortunately, for many manifolds (including the low-rank manitwdsidered
here) calculating the geodesic curve is computationally expensive (Mayudken et al., 2009). A
major insight from the field of Riemannian manifold optimization is that one can etsactions
which merely approximate the exponential mapping. Using such retractionsaingithe conver-
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gence properties obtained with the exponential mapping, but is much cleeeppeutationally for a
suitable choice of mapping.

Definition 1 Given a point W in an embedded manifaM, a retraction is any function \R :
TwM — M which satisfies the following two conditions (Absil et al., 2008, Chapter 4):

1. Centering: R/(0) =W.

2. Local rigidity: The curvey: (—¢,&) — M defined byy; (1) = Ry(1€) satisfies
vz (0) = &, wherey is the derivative of by T.

It can be shown that any such retraction approximates the exponentiginmgap a first or-
der (Absil et al., 2008) Second-order retractionsvhich approximate the exponential mapping to
second order aroundy, have to satisfy in addition the following stricter condition:

A, (decz) T_O> o

dr?

for all £ € TwM, whereRy is thelinear projection from the ambient space onto the tangent space
TwM. When viewed intrinsically, the curiy (t&) defined by a second-order retraction has zero
acceleration at poitw/, namely, its second order derivatives are all normal to the manifold. &ste b
known example of a second-order retraction onto embedded manifoldspsdjleetion operation
(Absil and Malick, 2010), which maps a poiKtto the pointY € M which is closest to it in the
Frobenius norm. That is, the projectionXfonto 4/ is simply:

Proja,(X) = argmi|X — Y o
YeM

Importantly, such projections are viewed here as one type of a secoeidegproximation to the
exponential mapping, which can be replaced by any other secondretdestions, when computing
the projection is too costly (see Figure 1).

Given the tangent space and a retraction, we now define a Riemanni@ngmdescent proce-
dure for the loss at pointW! € /. Conceptually, the procedure has three steps (Figure 2):

1. Step 1: Ambient gradient: Obtain the Euclidean gradieﬁtL(Wt) in the ambient space.

2. Step 2: Riemannian gradient:Linearly project the ambient gradient onto the tangent space
TwM. Computet! = Ryt (OL(WY)).

3. Step 3: Retraction: Retract the Riemannian gradieit back to the manifold:W!+1 =
R (€).
With a proper choice of step size, this procedure can be proved to healectinvergence for

any retraction (Absil et al., 2008). In practice, the algorithm merges these steps for efficiency,
as discussed in the next section.
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WRYL(W)

Pyt (VL(W)

Figure 2: A three step procedure for computing a retracted gradiewirgt\'. Step 1: standard
(Euclidean) gradient step. Step 2: linearly project ambient gradienttangent space
TwM in order to get the Riemannian gradi€ht Step 3: retract the Riemannian gradient
! back to the manifold.

3. Online Learning on the Low-rank Manifold

Based on the retractions described above, we now present an onltinghaigfor learning low-rank

matrices, by performing stochastic gradient descent on the manifold ofHlpkwmatrices. We name
the algorithm LORETA (for a LOw rank RETraction Algorithin At every iteration the algorithm
suffers some loss, and performs a Riemannian gradient step followegktraetion to the manifold

Mk”’m. Section 3.1 discusses general online updates. Section 3.2 discusses/themmon case
where the online updates induce a gradient of raskl.

Algorithm 1 : Online algorithm for learning in the manifold of low-rank matrices

Input: Initial low-rank model matris\/® € #4,"™. ExamplegXo, X4, ...). Loss functionc. Gradient
descent step sizég° nt,...). _
Output: Final low-rank model matrisy na ¢ a4,

repeat:
Get example
Calculate the stochastic loss gradidﬁlz:(wt; Xt)
Linearly project onto the tangent spaéé:= Ry (0L(W!; %))
Retract back to the manifoltV'*1 = Ry (—n'&!)
until stopping condition is satisfied
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In what follows, lowercase Greek letters lik@lenote an abstract tangent vector, and uppercase
Roman letters liké\ denote concrete matrix representations as kept in memory (taking float
numbers to store). We intermix the two notations, as41AZ, when the meaning is clear from the
context. The set afi x k matrices of rank is denotedR™K,

3.1 The General-Rank LORETA Algorithm

In online learning we are repeatedly given a rargeadient matrixZ = 0LW, and want to compute
a step orﬂv[k”’m in the direction ofZ. As a first step we find its linear projection onto the tangent
spaceZ = Ry(Z).

We start with a lemma that gives a representation of the tangent 3pate (Figure 2), ex-
tending the constructions given by Vandereycken and Vandewall®)201he general manifold of
low-rank matrices.

Lemma 2 LetW e M,"™ have a (non-unique) factorization W ABT, where Ac Rk, B e Rk,
Let A, € R™("K and B, ¢ R™ (™K pe the orthogonal complements of A and B respectively, such
that AAA=0,BTB=0, ATA, =In_«, B[B, =In k. The tangent space """ at W is:

T M_ [A A M NI BT . M kak N R(m—k)xk N R(n—k)xk
W - J_] N2 O B]'_ . S s N1 € 5 IN2 S .

Proof The proofis given in Appendix A. [ |

We note that the assumption thataindB are both of full column rank is tantamount to assuming
that the modeW is exactly of rankk, and no less. Lef € Tw M be a tangent vector ¥/ = AB' .
From the characterization above it follows tlgatan be decomposed in a unique manner into three
orthogonal component§:= £AB 4 §ABL | EALB \where:

EAP—AMBT, &P —ANB[, EMB—A N,B. (1)

Itis easy to verify that each pair is orthogonal, following from the relatishs = 0, BTB = 0.

We wish to find the three matricéd, N; andN, associated witlZ = Ry(Z), such thatZ =
AMBT + AN/BT +A; N,BT. We can find each of the matricé, N; andN, separately, because
each belongs to a space orthogonal to the other two. Thus we solve thvergllinree problems:

argmin ||Z_AMBTH|2:r07

MGRKXK
argmin HZ_ANIB-JI—_HIZ:ro;
Ny Rk
argmin  |[|Z—A;NBT||2,,.
NpeR (%K

To find the minimum of each of these three equations, we compute the ders/atid set them
to zero. The solutions involve the pseudoinverse& andB. SinceA andB are of full column rank,
their pseudoinverses afé = (ATA)~!AT, B" = (B"B)!B'.
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M = (ATA)"IATZB(BTB) 1 = ATZB!", )
N; =BTZTAATA) 1 =BTZTAT
N, = A[ZB(BTB) 1 =ATzB'".

The matrixAA" is the matrix projecting onto the column spacefpfand similarly forB. We
will denote these matrices ¥n, Pg, etc. For the matrices projecting on®o andB,’s columns
we actually havePy, = ALAI because the columns &, are orthogonal, and likewise fdtg, .
Substituting the expressionskguation(2) into expressions of the components of the Riemannian
gradient vector irEquation(1), we obtain:

EA°=PaZRs, &% =PazRs,, EMP=PaZRs.
We can now define the retraction. The following theorem presents thetietrave will apply.

Theorem 3 LetWe M*", W = ABT, and W' = BTTAT. Let& € TwM",
§ =&ABLEABL L EAB asin Equation(1), and let:

1 1 1

Vi =W éE.AB EALB éEABVVTE,AB éEALBw'I'EAB 7
1 1 1

V2 W EEAB EABL éEABV\/TEAB EEAB\NTEABL

The mapping
Rw(§) =VaW'V;

is a second order retraction from a neighborho®g C TwM,"" to M,

Proof The proof is given in Appendix B. [ |

A more succinct representation of this retraction is the following:

Lemma 4 The retraction R(§) can be presented as:

Rw(€) = {A <|k+ %M — ;w) +ALN; (|k— ;M)} .

1 1 2 1 T
{B (Ik+2MT -5 (MT) > +B.N; <|k ZMT>] :
Proof The proof is given in Appendix C. [ |

As aresult from Lemma 4, we can calculate the retraction as the produat &hwarank factors:
the first is am x k matrix, the second lax mmatrix. Given a gradierifl £(x) in the ambient space,
we can calculate the matricé$, N; and N, which allow us to represent its projection onto the
tangent space, and furthermore allow us to calculate the retraction. Weavaall the ingredients
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Algorithm 2 : Naive Riemannian stochastic gradient descent

Input:  Matrices A € R™K, B € R™k st. W = AB'. Gradient matrixG € R™™ sit.
G = —n0L(W) € R™™ where OL(W) is the gradient in the ambient space amd> O is
the step size.

Output: Matricesz; € R™K, Z, € R™K such thaZ;Z] = Ry(—nOL(W)).

Compute: matrix dimension
AT = (ATA)1AT, BT = (B"B)~1BT kxn, kxm
A, B, = orthogonal complements & B nx (n—k), mx(m—Kk)
M = ATGB™ k x k
N; = B GTAT (m—Kk) x k
N, = AT GB™™ (n—Kk) x k
leA(IkJr%M—%M2)+ALN2(I|<—%M) nx k
Z, =B (lx+3MT —1(MT)?) + B Ny (I — 2MT) mx k

necessary for a Riemannian stochastic gradient descent algorithm. rddedlpre is outlined in
Algorithm 2.

Algorithm 2 explicitly computes and stores the orthogonal complement maticesndB |,
which in the low rank cask < m,n, have sizeD(mn), the same as the full siz&l. To improve
the memory complexity, we use the fact that the matribgsand B, always operate with their
transpose. SincA; andB, have orthogonal columns, the matmgAI is actually the projection
matrix that we denoted earlier I , and likewise foB ;. Because of orthogonal complementarity,
these projection matrices are equalte- Py andl, — Ps respectively. Thus we can write N, =
(I - AAT) ZB'", and a similar identity foB | N.

Consider now the case where the gradient matrix is of raake is available in a factorized
form Z = G;GJ, with G; € R™", G, € R™". Using the factorized gradient we can reformulate the
algorithm to keep in memory only matrices of size at most fnax) x k or max(n,m) x r. Optimiz-
ing the order of matrix operations so that the number of operations is minimized glgorithm
3. The runtime complexity of Algorithm 3 is readily computed based on matrix multiplicsitio
complexity? and isO ((n+m)(k—+r)?).

3.2 LORETA With Rank-one Gradients

In many learning problems, the gradient malth)L(W) required for a gradient step update has a
rank of one. This is the case for example, when the matrix mabatts as a bilinear form on two
vectors,p andg, and the loss is a piecewise linear functiorpdivq (as in Grangier and Bengio,
2008; Chechik et al., 2010; Weinberger and Saul, 2009; Shalev+&hetal., 2004 and Section 7.1
below). In that case, the gradient is the rank-one outer product npatfix As another example,
consider the case of multitask learning, where the matrix mateperates on a vector inppf and
the loss is the squared log#/p — q||? between the multiple predictioMp and the true labels.
The gradient of this loss i@Vp —q)p", which is again a rank-one matrix. We now show how to

2. We assume throughout this paper the use of ordinary (schoolbmakix multiplication.
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Algorithm 3 : LORETA-r - General-rank Riemannian stochastic gradient descent

Input: MatrjcesA € RQX", B e RQXK s.t. W = ABT. MatricesG; € R™", G, € R™' s.t.
G1G) = —nOL(W) € R™™ where[£(W) is the gradient in the ambient space ang 0 is the
step size.

Output: Matricesz; € R1™K, Z, € R™K such thaZ;Z] = Ry(—nOL(W)).

Compute: matrix dimension  runtime complexity
Al = (ATA)"1AT, B'=(B"B) BT kxn, kxm O((n+m)k?)
a=A"G;, b;=B"G kxr, kxr O((n+m)kr)
aa=Aa nxr O(nkr)
Q=bi" & rxr O(kr?)
ag3=—3%+ 38 Q+G1—3G1-Q nxr o(nr?)
Zi=A+az-bi" nxk O(nkr)
b, = (G}B) - BT rxm O(mkr)
by =—3b+3Q b, +G] —3Q-GJ rxm o(mr?)
Z] =B" +a;-bs kxm O(mkr)

reduce the complexity of each iteration to be linear in the modelkavthen the rank of the gradient
matrix isr = 1.

Algorithm 4 : L ORETA-1 - Rank-one Riemannian stochastic gradient descent

Input: MatricesA € R™K, B € R™¥ s.t. W = ABT. MatricesA! andB', the pseudo-inverses #f
andB respectively. Vectorp € R™1, g € R™? s.t. pq" = —nOL(W) € R™M, where[0L(W) is
the gradient in the ambient space anpd O is the step size.

Output: MatricesZ; € R, Z, e R™ s.t. ;7] = Ry(—nOL(W)). MatricesZ] andz], the
pseudo-inverses af; andZ, respectively.

Compute: matrix dimension runtime complexity
ag=A".p,b;=B".q kx1 O((n+m)k)
aa=Aa nx1 O(nk)
s=by"-a 1x1 O(k)
ag=a(—5+3s)+p(1-39) nx1 o(n)
Zi=A+az-b; nxk O(nk)
b,=(q"B)-B' 1xm O(mK)
b =D (-3 +3s)+qT(1-3s) 1xm o(m)
Zl =BT +a;-bs kxm O(mK)
ZI = rank_one pseudoinversaipdatéA, A", ag, by) kxn O(nk)
Z;r = rank_one pseudoinversaipdatéB, B b3, a;) kxm O(mK)

Given rank-one gradients, the most computationally demanding step in Algaith the com-
putation of the pseudo-inverse of the matriéeandB, takingO(nk?) andO(mk®) operations. All
other operations ar®(max(n,m) - k) at most. To speed up calculations we use the fact that for
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r = 1 the outputsZ; andZ, become rank-one updates of the input matriéesdB. This enables

us to keep the pseudo-invers&sandB' from the previous round, and perform a rank-one update
to them, following a procedure developed by Meyer (1973). The fulkedare is included in Ap-
pendix D. This procedure is similar to the better known Sherman-Morrigonuia for the inverse

of a rank-one perturbed matrix, and its computational complexity forafk matrix is O(nk) op-
erations. Using that procedure, we derive our final algorithoRETA-1, the rank-one Riemannian
stochastic gradient descent. Its overall time and space complexity ar®oth m)k) per gradient
step. It can be seen that th@RETA-1 algorithm uses only basic matrix operations, with the most
expensive ones being low-rank matrix-vector multiplication and low-rank mataitix addition.
The memory requirement of RRETA-1 is about 4k (assumingm = n), since it receives four in-
put matrices of sizek (A, B, A", BT) and assuming it can compute the four outps ZZ,ZI,ZZ),
in-place while destroying previously computed terms.

4. Online Learning of Low-rank Positive Semidefinite Matrices

In this section we adapt the derivation above to the special case of poséividefinite (PSD)
matrices. PSD matrices are of special interest because they encodeadiidean metric. Am-by-
nPSD matrixW of rankk can be factored a4 =Y YT, with Y € R™X, Thus, the bilinear formt™w z
is equal to(Y X T (Y 2, which is a Euclidean inner product in the space spanned'vgolumns.
These properties have led to an extensive use of PSD matrix models in mdtsicalarity learning,
see, for example, Xing et al. (2002), Goldberger et al. (2005), Gdoimeand Roweis (2006), Bar-
Hillel et al. (2006) and Jain et al. (2008). The sehdiy-n PSD matrices of rankforms a manifold
of dimensionnk — k(kgl), embedded in the Euclidean sp&&" (Vandereycken et al., 2009). We
denote this manifold by, (k,n).

We now give a characterization of the tangent space of this manifold, désntiereycken and
Vandewalle (2010).

Lemma5 Let W € S, (k,n) have a (non-unique) factorization W YY", where Ye R™K, Let
Y, € R™("K pe the orthogonal complement of Y such thAYY¥= 0, YTY, = I,_«. The tangent
space ta$; (k,n) atW is:

TwsSy (k) =4 [Y Y] S NIVE ) ge gk N e pO-0xk g
Wo+ R, 1 N 0 YI . ) ) .
Proof See Vandereycken and Vandewalle (2010), Proposition 5.2. [ |

Let& € TwsS, (k,n) be atangent vector & = Y YT. As shown by Vandereycken and Vandewalle
(2010),& can be decomposed into two orthogonal componéntssS+&P. Given a rank- gradient
matrix Z, and using the projection matricBg andR,, they show that:

Z+7Z7
5 Ry,

zZ+277 z+Z7
EP = RQTPY + R(TRQ
Using this characterization of the tangent vector when given an ambiadiegtZ, one can

define a retraction analogous to that defined in Section 3. This retractiefersed to aﬂ(ﬁ) in
Vandereycken and Vandewalle (2010).

E5=PR
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Theorem 6 Let W e S, (k,n), W =YY", and W' be its pseudo-inverse. L&tc TwS, (k,n), & =
£S1 &P, as described above, and let

_ ls, p losytes lepgtes
V=W IE+E 8ES\NE 2EF’WE.

The mapping §°(&) = VW'V is a second order retraction from a neighborhood
Bw C TW5+(k, n) to 5+(k, n).

Proof See Vandereycken and Vandewalle (2010), Proposition 5.10. [ |

Algorithm 5 : LORETA-1-PSD- Rank-one Riemannian PSD stochastic gradient descent

Input: A matrixY € RQX"J StW=YY". The maNtrixYT, the pseudoinverse 8t Vectorsp € R™,
qeR™ st pq" = —nOL(W) € R™™ where[1£(W) is the gradient in the ambient space and
n > 0 is the step size.

Output: Matrix Z € Rk, s.t.2ZT = RESP(—n0L(W)). Matrix ZT, the pseudo-inverse &

Compute: matrix dimension runtime

complexity
hy=Y'p kx1 O(nk)
h, =YTq kx1 O(nk)
ng = thhl 1x1 O(k)
Np = hzThz 1x1 O(k)
H:L:th nx1 O(nk)
Hg = Yh2 nx1 ( )
s=h;"hy 1x1 0o(k)
I = (— 4+3zs)h1+(% %s)p+32n1h2 niq nx1 o(n)
lo=(—%+ 392+ (2 — §9)a+ 5nhy — Snap nx1 o(n)
P = |1h2 nxk O(nk)
P, = |2h1 nxk O(nk)
Z=Y+P+P nxk O(nk)
Ztemp_ rank_one pseudoinversaipdatéY,Y’ Il,hz) kxn O(nk)
Z' =rank_one pseudoinversaipdateY + Pl,Ztemp l2,h1) kxn O(nk)

Following the derivation of algorithms 2-4, and after some rearrangementghbtain a PSD
version of the IORETA-1 algorithm. This PSD version is given in Algorithm (5). The algorithm
is very similar to LORETA-1 , but instead of learning a general rakknatrix it learns a positive
semidefinite ranl matrix. The computational complexity and memory complexity of a gradient
step for this algorithm i©(nk), namely, it is linear in the reduced number of model parameters.

5. Manifold Identification

Until now, we formalized the problem of learning a low-rank matrix based dactorization
W = AB. At test time, computing the bilinear score using the model can be even faser w

440



Scalable Streaming Learning Of Dyadic Relationships 56

ONLINE LEARNING IN THE EMBEDDED MANIFOLD OF LOW-RANK MATRICES

the data is sparse. For instance, given two vectpendx, with ¢; andc, non-zero values, com-
puting the bilinear formx] ABTx, requiresO(c;k + k+kc;) = O((c1 + ¢2)k) operations, and can be
significantly faster than the dense case. However, at training time dReta-1 algorithm still has
a complexity ofO((m+ n)k) for each iteration even when the data is sparse.

The current section describes an attempt to aday®eTA-1 such that it treats sparse data more
efficiently. The empirical evaluation of this adaptation showed mixed resuitsy® include the
derivation for completeness. The main idea is to separate the low-ranktwojéeto two steps.
First, a projection to a low dimensional spaeethat can be computed efficiently whgiis sparse.
Then, learning a second matrix, whose role is to tune the representatiorkigifmensional space.

To explain the idea, we focus on the case of learning a low-rank modehvg@icametrizes
a similarity function. The model % = ABT, A € R™K, B € R™K. The similarity between two
vectorsp,q € R" is then given by

Sim(p,q) =p'Wq = (A"p)" - (B'q). 3
This similarity measure can be viewed as the cosine similarif§fibetween the projected vectors
BTq andATp. We now introduce another similarity model which operates directly in the gegjec
space. Formally, we hawd € R**¥, and the similarity model is

Sim(p,q) = (A"p)"M(BTq) = p' AMB'q. 4)

Clearly, since the model in Equation (4) involves only linear matrix multiplicationslgsrip-
tive power is equivalent to that of the model Equation (3). However, st the potential to be
learned faster. To speed the training we can iterate between learningténgmjections A,B us-
ing LORETA, and learning the inner low-dimensional similarity motielusing standard methods
operating in the low-dimensional space. Specifically, the idea is to exsopiate steps d¥l for
every update step @&,B (Algorithm 6). Afters update steps thl, it is decomposed using SVD to
obtainM = USV', and these factors are used to update the outer projectionsAisingUsqrt(S),
B« BVsartS).

Consider the computational complexity: Given two sparse vegiors with ¢; andc, non-zero
values respectively, projecting them usigndB to the low dimensional space takesk(c; + 7)),
and an update step of M tak€Xk?). DecomposingVl using SVD takeO(k%), so the overall
complexity fors updates iO (k- (s(k+ ¢y +C2) +k?)). Whens > k the cost of decomposition is
amortized across mary updates and does not increase the overall complexity. The updat&of
takesO(k(n+m)) as before. This approach is related to the idea of manifold identificatiorri{@®@be
and Wright, 2007), where the learning AfB "identifies" a manifold of rank and the inner steps
operate to tune the representation within that subspace.

This iterative procedure could be a significant speed up compared toigieadbO((m+ n)k).
Unfortunately, when we tested this algorithm in a similarity learning task (as itiocBet.1), its
performance was not as good as that @fRETA-1. The main reason was numerical instability:
The matrixM typically collapsed to match few directions A&y and decomposing it has amplified
the sam@A directions. This approach awaits deeper investigation which is outsidedpe s€the
current paper.

6. Related Work

A recent summary of many advances in the field of optimization on manifolds & diy Absil
et al. (2008). Advances in this field have lately been applied to matrix complgteshavan et al.,
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Algorithm 6 : Manifold identification meta-algorithm

Input: Initial model matricesA € R™K, B ¢ R™k s.t. W = ABT. MatricesA" and B, the
pseudo-inverses @& andB respectively. Loss function.

Output: MatricesA € R™K, B e R™K s.t.W = AB'.

Parameters: n1: LORETA step size n»: low-dimensional similarity learning step size.number
of low-dimensional learning steps per round

repeat:
(01, G2) = DL(ABT)
[A,B,A",B] = LORETA (A,B,A",B",01,0,,n1)
initialize M = I
fori=1:s
[91,92] = OL(AMBT)
M = full — rank— metric— learning(M, A" g1, BT g2, 12)
endfor
U,SV]=svdM)
A=A-U-sqrt(9
B=B-V-sqrt(S)
until stopping condition is satisfied

2010), tensor-rank estimation (Eldén and Savas, 2009; Ishteva diHl), @1d sparse PCA (Journée
etal., 2010b).

Broadly speaking, there are two kinds of manifolds used in optimization. dtafeembedded
manifolds manifolds that form a subset of Euclidean space, and are the onespl@yen this work.
The second kind argquotient manifoldswhich are formed by defining an equivalence relation on
a Euclidean space, and endowing the resulting equivalence classes \ajiprapriate Riemannian
metric. For example, the equivalence relation®drdefined byx ~y <= 3\ > 0, x = Ay, yields a
quotient space called thieal projective spac#hen given a proper Riemannian metric.

More specific to the field of low-rank matrix manifolds, work has been dan¢he general
problem of optimization with low-rank positive semi-definite (PSD) matrices. [&itest and most
relevant is the work of Meyer et al. (2011). In this work, Meyer andbegues develop a framework
for Riemannian stochastic gradient descent on the manifold of PSD matiingspply it to the
problem of kernel learning and the learning of Mahalanobis distandesir inain technical tool is
that of quotient manifolds mentioned above, as opposed to the embeddedlchamfuse in this
work. Another paper which uses a quotient manifold representation isfthatirnée et al. (2010a),
which introduces a method for optimizing over low-rank PSD matrices.

In their 2010 paper (Vandereycken and Vandewalle, 2010), Vagydken et al. introduced a
retraction for PSD matrices in the context of modeling systems of partial eliffied equations. We
build on this work in order to construct our methods of learning genethP&D low-rank matrices.

In general, the problem of minimizing a convex function over the set of kmkmatrices was
addressed by several authors, including Fazel (2002). Recht(2040) and more recently Jain
et al. (2011) also consider the same problem, with additional affine conistrand its connection
to recent advances in compressed sensing. The main tools used in thesegra the trace norm
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(sum of singular values) and semi-definite programming. See also Faalel(2005) for a short
introduction to these methods.

More closely related to the current paper are the papers by Kulis et0819Y2nd Meka et al.
(2008). Kulis et al. (2009) deal with learning low-rank PSD matrices, us®lthe rank-preserving
log-det divergence and clever factorization and optimization in orderrigvedan update rule with
runtime complexity oO(nk?) for ann x n matrix of rankk. Meka et al. (2008) use online learning
in order to find a minimal rank square matrix under approximate affine camtstra’he algorithm
does not directly allow a factorized representation, and depends arraeie” component, which
typically requires to compute an SVD.

Multi-class ranking with a large number of features was studied by Bai €&@09), and in the
context of factored representations, by Weston et al. (2011) (WEABVSABIE combines pro-
jected gradient updates with a novel sampling scheme which is designed to miairaizieing loss
named WARP. WARP is shown to outperform simpler triplet sampling appreackiece WARP
yields rank-1 gradients, it can easily be adapted for Riemannian SGDyeblgave experiments
with such sampling schemes to future work.

7. Experiments

We tested IORETA in two learning tasks: learning a similarity measure between pairs of text doc-
uments using the 20-newsgroups data collected by Lang (1995), anthpéo rank image label
annotations based on a multi-label annotated set, usingrthgeNetdata set (Deng et al., 2009).
Matlab code for IORETA-1 is available online atttp://chechiklab.biu.ac.il/research/LORETA

7.1 Learning Similarity on the 20 Newsgroups Data Set

In our first set of experiments, we looked at the problem of learning a sitpitaeasure between
pairs of text documents. Similarity learning is a well studied problem, closelyetela metric
learning (see Yang 2007 for a review). It has numerous applicationfinmation retrieval such as
query by exampleand finding related content on the web.

One approach to learn pairwise relations is to measure the similarity of two dotspneg € R"
using a bilinear form parametrized by a mo#ék R"™":

Sw(p.q) =p'Waq.

Such models can be learned online (Chechik et al., 2010) and were shaeaimeve high precision.
Sometimes the matriw is required to be symmetric and positive definite, which means it actually
encodes a metric, also known as a Mahalanobis distance. Unfortunatedyttse number of param-
eters grows as?, storing the matri%V in memory is only feasible for limited feature dimensionality.
To handle larger vocabularies, like those containing all textual terms fouadorpus, a common
approach is to pre-select a subset of the features and train a mod¢hevew dimensional data.
However, such preprocessing may remove crucial signals in the datdf ésatures are selected in
a discriminative way.

To overcome this difficulty, we useddrETA-1 and LORETA-1-PSD to learn a rankparametriza-
tion of the modeW. This model can be factorized W= AB', whereA, B € R™K for the general
case, or a¥V = AAT for the PSD case. In each of our experiments, we selected a subsétasf
tures, and trained a rakkmodel. We varied the number of featureand the rank of the matrik
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S0 as to use a fixed amount of memory. For example, we used a rank-10wiibde0K features,
and a rank-50 model with XOfeatures.

7.1.1 3SMILARITY LEARNING WITH LORETA-1

We use an online procedure similar to that in Grangier and Bengio (208&}laechik et al. (2010).
At each round, three instances are sampled: a query docupaeRt, and two documents,, p_ €
R" such thap, is known to be more similar tq thanp_. We wish that the model assigns a higher
similarity score to the paifg, p-) than the paifq, p—), and hence use the online ranking hinge loss
defined asw(q,p+,p-) = [1—Sw(d,p+) +Sw(a,p-)],, where[z] , = maxz0).

We initialized the model to be a truncated identity matrix, with only the krshes along the
diagonal. This corresponds in our case to choosingtimest informative terms as the initial data
projection.

7.1.2 DATA PREPROCESSING ANDFEATURE SELECTION

We used the 20 newsgroups data set (people.csail.mit.edu/jrennie/20Nepsgrcontaining 20
classes with approximately 1000 documents each. We removed stop wordid hot apply stem-
ming. The document terms form a vocabulary of 50,000 terms, and we stkestghset of these
features that conveyed high information about the identity of the class o draining set) using
theinfogaincriterion (Yang and Pedersen, 1997). This is a discriminative criteriaahwheasures
the number of bits gained for category prediction by knowing the presaraigsence of atermin a
document. The selected features were normalized ukid§j and then represented each document
as a bag of words. Two documents were considered similar if they shaasditie class label, out
of the possible 20 labels.

7.1.3 EXPERIMENTAL PROCEDURE ANDEVALUATION PROTOCOL

The 20 newsgroups site proposes a split of the data into train and testVsetsepeated splitting 5
times based on the sizes of the proposed splits (a train / test ratio of 65%)/ 8&evaluated the
learned similarity measures using a ranking criterion. We view every dodugrieithe test set as a
query, and rank the remaining test documgnksy their similarity scores" Wp. We then compute
the precision (fraction of positives) at the topanked documents. We then average the precision
over all positiong such that there exists a positive example in thertofhis final measure is called
mean average precisignd is commonly used in the information retrieval community (Manning
et al., 2008, Chapter 8).

7.1.4 GOMPARISONS

We compared bRETA with the following approaches.

1. Naive gradient descent(GD): similar to Bai et al. (2009). The model is represented as a
product of two matrice§V = AB'. Stochastic gradient descent steps are computed over the
factorsA andB, for the same loss used byYoRETA lw(q,p+,p-). The GD steps are:

Anew=A-nNd(p-—p4)'B,
Brew=B—n(p-—p:)q'A.
We found this approach to be very unstable, and thus its results areasenped.
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2. Naive PSD gradient descentsimilar to the method above, except that now the model is con-
strained to be PSD. The model is represented as a préducAA”. Stochastic gradient de-
scent steps are computed over the fagtéor the same loss used bYORETA: lw(Q,p+,p-).

As shown by Meyer et al. (2011), this is in fact equivalent to Riemann@rhastic GD in the
manifold of PSD matrices when this manifold is endowed with a certain metric therautho
call theflat metric

The GD step is:

Anew=A-1 (q(p- —p+)T +(p- —p)q") A

The step sizey was chosen by cross validation. This approach was more stable in the PSD
case than in the general case, probably because the invariant ggads bnly the group

of orthogonal matrices (which are well-conditioned), as opposed to thgguf invertible
matrices which might be ill-conditioned.

3. Iterative Passive-Aggressive (PA)since we found the above general GD procedlij¢o be
very unstable, we experimented with a related online algorithm from the famihasdive-
aggressive algorithms (Crammer et al., 2006). We iteratively optimizeAogeren a fixedB
and vice versa. The optimization is a tradeoff between minimizing thelygsand limiting
how much the models change at each iteration. The steps sizes for upflaimdB are
computed to be:

lw(d, p+,p-) c)
192~ IBT(ps —p )2~ )"

. lw (9, p+,pP-) )
ng = mm( .C).
® [(p+ —p_)II2- [IATq]]2

C is a predefined parameter controlling the maximum magnitude of the step sizendmp
cross-validation. This procedure is numerically more stable because wbthelization by
the norms of the matrices multiplied by the gradient factors.

na = min(

4. Full rank similarity learning models. We compared with two full rank online metric learn-
ing methods, LEGO (Jain et al., 2008) and OASIS (Chechik et al., 2016 &gorithms
learn a full (non-factorized) model, and were run with= 1000, in order to be consistent
with the memory constraint of @RETA-1. We have also compared with both full-rank mod-
els using rank 2000, that is, 4 times the memory constraint. We have not caohwaidin batch
approaches such as Kulis et al. (2009), since they are not expecealédao very large data
sets such as those our work is ultimately aiming towards.

In addition, we have experimented with the method for learning PSD matriceg agolar
geometry characterization of the quotient manifold, due to Meyer et al.1j20This method'’s
runtime complexity iO((n+m)k?), and we have found that its performance was not in line with
the methods described above.

7.1.5 RESULTS

Figure 3c shows the mean average precision obtained with all the abovedsiett@rRETA out-
performs the other approaches across all ranksRETA-PSD achieves slightly higher precision
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than LORETA. The reason may be that similarity was defined based on two samples beltmging
a common class, and this relation is symmetric and transitive, two relations wigdlespected

by PSD matrices but not by general similarity matrices. MoreoveRETA-PSD learned faster
along the training iterations when compared withRETA - see Figure 3a for a comparison of the
learning curves. Interestingly, for bothDRETA algorithms learning a low-rank model of rank 30,
using the best 16660 features, was significantly more precise than lgarninich fuller model of
rank 100 and 5000 features, or a model using the full 50000 wordaberg but with rank 10 . The
intuition is that LORETA can be viewed as adaptively learning a linear projection of the data into
low dimensional space, which is tailored to the pairwise similarity task.

7.2 Image Multilabel Ranking

Our second set of experiments tackled the problem of learning to rarlk Fabémages taken from
a large number of classé¢ks = 1660 with multiple labels per image.

In our approach, we learn a linear classifier ondeatures for each labele ¢ = {1,...,L},
and stack all models together to a single matlixc R-<". At test time, given an image € R",
the productWp provides scores for every label for that imgge Given ground truth labeling, a
good model would rank the true labels higher than the false ones. Eadi tbevmatrix model can
be thought of as a sub-model for the corresponding label. Imposing-aaiokvconstraint on the
model implies that these sub-models are linear combinations of a smaller nuniéemdimodels.
Alternatively, we can view learning a factored rakikaodelW = AB' as learning a projection and
classifier in the projected space concurrently. The ma&tiprojects the data ontokadimensional
space, and the matrik consists ofL classifiers operating in the low-dimensional space. The data
we used for the experiment hadl500 labels, but the full ImageNet data set currently1&a5000
labels, and is growing.

7.2.1 ONLINE LEARNING OF LABEL RANKINGS WITH LORETA-1

At each iteration, an imageis sampled, and using the current modéthe scores for all its labels
are computed/Vp. These scores are compared with the ground truth labgliadyi, ...,y } C C.
We wish for all the scores of the true labels to be higher than the scorésefather labels by
a margin of 1. Thus, the learner suffers a multilabel multiclass hinge losdlewgo Lety =
argmaxg, (Wp)s, be the negative label which obtained the highest score, wieépgs is the gh
component of the score vectdfp.

The loss is thenZ(W,p,y) = S{_1 [(Wp)y— (Wp)y, + 1], which is the sum of the margins
between the top-ranked false label and all the positive labels which vidtaedargin of one from
it. We used the subgradie@ of this loss for LORETA: for the set of indices, i»,...ig C y which
incurred a non zero hinge loss, theow of G is p, and for the rowy Gis —d-p. The matrixG is
rank one, unless no loss was suffered in which case itis 0.

The non-convex and stochastic nature of the learning proceduredtbgddo try several initial
conditions:

e Zero matrix: in this initialization we begin with a low-rank matrix composed entirely of
zeros. This matrix is not included in the low-rank maniféif"™, since its rank is less than
k. We therefore perform a simple pre-training session in which we addhgradients until
a matrix of rankk is obtained. In practice we added the firgt fubgradients (each such
subgradient being of rank one), and then performed an SVD to obtabestgankk model.
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Figure 3: (a) Mean average precision (mAP) over 20 newsgroupsdeas traced alongdRETA
learning for various ranks. Curve values are averages over 5testisplits. (b) Com-
parison of the learning curves ofdRETA and LORETA-PSD. LORETA-PSD learns faster
than LORETA across all ranks (shown are results for ranks 10, 40 and 100mA®) of
different models with varying rank. For each rank, a different nundfdeatures was
selected using an information gain criterion, such that the total memory rewgntdas
kept fixed (humber of features rank is constant). 50000 features were used for rank
= 10. LEGO and OASIS were trained with the same memory (using 1000 feanck
rank=1000), as well as with 4 times the same memory (rank=2000). Emrsrdeaote
the standard error of the mean over 5 train-test splits.

We chose R because we wanted to ensure that the matrix we obtain has rank greajaabr e

tok.
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Figure 4: ImageNet data. Mean average precision (mAP) as a functitwe sdnkk. Curves are
means over five train-test splits. Error bars denote the standard &trer mean. Note
the different scale of the left and right figure. All hyper parametensevwgelected using
cross validation. Three different initializations were used: the zero mategro padded
k x k identity matrix, and a product of two i.i.d. Gaussian matrices. See Section 7t2.1 fo
details.

e Zero-padded identity: we begin with a matrix composed of tlkex k identity matrixl, on
the top left corner, padded with zeros so as to fornh amn matrix. This is guaranteed to be
of rankk. The choice of the location of the identity matrix block is arbitrary.

¢ Independent Gaussian we sample independently the entries of the two factor matAces
R™K BR™K from a standard normal distribution. This model is thus initialized as a product
of two random Gaussian matrices.

7.2.2 DATA SET AND PREPROCESSING

We used data from the ImageNet 2010 Challenge (www.imagenet.org/clesle&yRC/2010/)
containing images labeled with respect to the WordNet hierarchy. Each inesgmanually labeled
with a single class label (for a total of 1000 classes). We added labadaébrimage, using classes
along the path to the root of the hierarchy (adding 676 classes in total)iséé&erded ancestor labels
covering more than 10% of the images, leaving 1660 labels (5.2 labels per atnayerage). We
used ImageNet's bag of words representation, based on vector qougritET features with a
vocabulary of 1000 words, followed hiftidf normalization.

7.2.3 EXPERIMENTAL PROCEDURE ANDEVALUATION PROTOCOL

We trained on two data sets. A medium scale one of 50000 images, and adsaigeetconsisting
of 908210 images. We tested on 20000 images for the medium scale, argiad6R®es for the
large scale. The quality of the learned label ranking was evaluated usintein average precision
(mAP) criterion mentioned in 7.1.3 above (Manning et al., 2008, Chapter 8).
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ImageNet 1M Precision vs. Time
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Figure 5: (a) Mean average precision (mAP) as function of single CBtegsing time in seconds
for different algorithms and model ranks, presented on a log-scaldrixMerceptron
(black squares) and Group Multi-Class Perceptron (purple crossed)oth full rank
(rank=1000), and their curves are reproduced on all six panetofaparison. For each
rank and algorithm (bRETA and PA), we used the best performing initialization scheme.
(b) mAP of the best performing model for different algorithms and time poi&tsor
bars represent standard deviation across 5 train-test splits.
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7.2.4 GOMPARISONS

We compared the performance obRETA on this task with three other approaches:

1. PA - lterative Passive-Aggressive same as described in Section 7.1.4 above for the 20
Newsgroups experiment.

2. Matrix Perceptron: a full rank stochastic subgradient descent. The model is initialized as a
zero matrix of size 166& 1000, and in each round the loss subgradient is subtracted from it.
After a sufficient number of rounds, the model is typically full rank andsge

3. Group Multi-Class Perceptron: a mixed (2,1) norm online mirror descent algorithm (Kakade
et al., 2010). This algorithm encourages a group-sparsity pattern withileéinned matrix
model, thus presenting an alternative form of regularization when cowhpétk low-rank
models.

LorETA and PA were run using a range of model ranks. For all three methodstgiinsize (or
the C parameter for PA) was chosen by 5-fold cross validation on a validsdio

7.2.5 RESULTS

Figure 4 plots the mAP precision ofdRETA and PA for different model ranks, while showing on
the right the mAP of the full rank 1000 Matrix Perceptron g&dl) norm algorithms. IORETA
significantly improves over all other methods across all ranks. Howewemote that IORETA,
being a non-convex algorithm, does depend significantly on the method ofiziaitian, with the
zero-padded identity matrix being the best initialization for lower rank modetktrenzero matrix
the best initialization for higher rank models (rarkL50).

In Figure 5 we show the accuracy as a function of CPU tim on a single CPthddifferent
algorithms and model ranks. We ran Matlab R2011a on an Intel Xeon 2.Z7r@¢hine, and
used Matlab’s si ngl et hr ead flag to control multithreading. The higher-ranloRETA models
outperform all others both in the short time scalel(000 sec.) and the long time scale 100,000
sec.). For some of the higher-rank models there is evident overtrainisgnad point, but this
overtraining could be avoided by adopting an early-stopping procedure

8. Discussion

We presented @RETA, an algorithm which learns a low-rank matrix based on stochastic Rie-
mannian gradient descent and efficient retraction to the manifold of loWw-raatrices. IORETA
achieves superior precision in a task of learning similarity in high dimensieaslife spaces, and
in multi-label annotation, where it scales well with the number of classes. Ava8a&nt of LORETA
can be used efficiently for low-rank metric learning.

There are many ways to tie together different classifiers in a multi-class séttadpave seen
here that a low-rank assumption coupled with a Riemannian SGD proceatipezrformed the (2,1)
mixed norm. Other approaches leverage the hierarchical structureimliemmany of these tasks.
For example, Deng et al. (2011) use the label hierarchy of ImageNetipute a similarity measure
between images.

For similarity learning, the approach we take in this paper uses a weakviiperbased on
ranking similar pairs: one only knows that the p@jrp..) is more similar than the paiqg,p-). In
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some cases, a stronger supervision signal is available, like the classeshaibjects are known. In
these cases, Deng et al. (2011) have shown how to use class identitiestact good features by
training an SVM classifier on each class and using its scaled output atugefe@ihey show that
such features can lead to very good performance, with the addedtagedhat the features can be
learned in parallel. The weak supervision approach that we take herécdirasdle the case, which
is particularly common in large scale data sets collected through web ustrgyawhere weaker
supervision is much easier to collect.

In this paper, we used simple sampling schemes for both the similarity learningatigle-
labelling experiments. More elaborate sampling techniques such as thpssgddy Weston et al.
(2011), which focus on “hard negatives”, may vyield significant penfince improvements. As
these approaches typically involve rank-one gradients when implementediras learning algo-
rithms, they are well suited for being used in conjunction withRIETA, and this will be the subject
of future work.

LoREeTAYields a factorized representation of the low-rank matrix. For similarity legrnirese
factors project to a low-dimensional space where similarity is evaluatedecetfic For classifica-
tion, it can be viewed as learning two matrix components: one that projectsgieiimensional
data into a low dimension, and a second that learns to classify in the low dimenkidooth
approaches, the low-dimensional space is useful for extracting thanelstructure from the high-
dimensional data, and for exploring the relations between large numbeleseés.
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Appendix A. Proof of Lemma 2

We formally define the tangent space of a manifold at a point on the manifaldhan describe an
auxiliary parametrization of the tangent space to the manitgl" at a pointW € 4"

Definition 7 The tangent spaceyPM to a manifold™ C R" at a point We M is the linear space
spanned by all the tangent vectors at 0 to smooth cupveés — M such thaty(0) =W. That is,
the set of tangents iR" to smooth curves within the manifold which pass through the point W.

In order to characterize the tangent spacﬂ@‘m, we look into the properties of smooth curves
y, where for each, y(t) € M.

For any such curve, because of the r&rdssumption, we may assume that fortal R, there
exist (non-unique) matriced(t) € R, B(t) € R™K, such thay(t) = A(t)B(t)T. We now wish to
find the tangent vectors to these curves. By the product rule we have:

¥(0) = A(0)B(0)" +A(0)B(0)".
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SinceW = y(0) = A(0)B(0)" = AB™ we have folW = ABT:
Tw MM = {AXT+YBT|X eRka,YeR”Xk}. (5)

This is because any choice of matri¢esy such thaiX = B, Y = Awill give us some tangent vector,
and for any tangent vector there exist such matrices. The spaceialotealy a linear space. Being
a tangent space to a manifold, it has the same dimension as the mafrifelch)k — k2.

Recall the definition of the tangent space given in Lemma 1:

M N[BT
o= (A ATl ] [or

To prove Lemma 2, it is easy to verify by counting that the dimension of theespadefined
in Equation (6) above i$n+ m)k — k?. Using the notation above, we can see that by taking
MBT +N;BT andY = A, N, the space defined in Equation (6) is includediin;, "™ as defined in
Equation (5). Since itis a linear subspace of equal dimension, bothspacst be equdll

] ‘M e R Ny € RIMR%K N, R(”k)x"} ®

Appendix B. Proof of Theorem 3

We state the theorem again here.

Theorem 8 LetWe M,"™, W = ABT, and W' = B'TAT. Let& € TwM"", & = EAB+ EABL 1 EAB,
asin 1, and let:

1 1 1

Vl W EEAB EALB éEABVVTE,AB EEALBWTEAB ,
1 1 1

V2 W éEAB EABL éEAB\MTEAB EEAB‘MTEABL

The mapping
Rw(€) =VaW 'V, 7)
is a second order retraction from a neighborho®g, C TwM,"" to M,

Proof To prove that Equation (7) defines a retraction, we first showMpit'\V; is a rankk matrix.
Note that there exist matriceg € R™* andZ, € R™K such thav; = ;BT and ,\V, = AZ). A
sufficient condition for the matricez; andZ, to be of full rank is that the matri¥ is of limited
norm. Thus, for all tangent vectors lying in some neighborh®gdc TwM,"" of 0 € TwM,"™,
the above relation is indeed a retraction to the manifold. In practice this is agueblem, as the
set of matrices not of full rank is of zero measure, and in practice we fuand these matrices to
always be of full rank. ThuRy(§) = ViW™, = z;BTB(BTB)~1(ATA)1ATAZ] = 7,77, which,
given thatz; andZ, are of full column rank, is exactly a rarkn x m matrix.

Next we show thaRy (&) is a retraction, and of second order. It is obvious Rgt0) =W,
since the projection of the zero vector is zero, and &ifsEAB. and&A:B are all zero.

ExpandingvsW 'V, up to second order terms & many terms cancel and we end up with:

RN(E) :W‘FEAB‘FEABL+EALB+EALBWTEABL+O(HEH3)
=W+ &+ 4 BWTEAB O] ).
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Local first order rigidity is immediately apparent. If we expand the only sécorder term,
EABWTEABL we see that it equals; NoNTBT. We claim this term is orthogonal to the tangent
spaceTWﬂ/{k”’m. If we take, using the characterization in Lemma 2, an arbitrary tangetrvec
AMBT + ANTBT +A; NoBT in Tw M,"™, we can calculate the inner product:

((ALN2NTBT) , (AMBT + ANT BT + A NoB")) =

tr (B N:NJATAMBT + B NyNJATANT BT +B; NiNJATA NpBT) =

tr (BiNiNJ ATA NoBT) =

tr (BTBLNiNJATA ;) =0
with the equalities stemming from the fact ttA = 0, B[ B = 0, and from standard trace identi-

ties. Thus, the second order term cancels out if we project the seeorétive of the curve defined
by the retraction, as required by the second-order condition

RN <dRN(TE> |TO) =0 VE c TwM.

dr?
We see that the second order term is contained in the normal space. mbisd=s the proof
that the retraction is a second order retraction. [ |

Appendix C. Proof of Lemma 4

Let us see how can we calculate the needed terms explicitly. When evaluatirexphession

ViWV,, we can use the algebraic relatiol$W' = P andW'W = Pz. From this we can conclude
that: WWTEAB — gAB gAB\T\W — gAB EALBWT\W = EALB andWWIEABL — §ABL These relations,

along with many terms that cancel out, lead to the following expression:

Rw(§) =VaW'v, =
W + E,AB‘I’ E'ABL + EALB _ }EABVVTE'AB\NTEAB _ §EABVVTEAB\NTEABL
8 8
3ALB TcA tAB A B\/TcAB A Byp/TcAl
— MBwTEABY LBWTEABL _ gALBYTEAB TEABL
SN PWIEAAWTER® 4 gA B TS — M B TE A g
—‘riEAB\NTEAB\NTEAB\NTEABL _’_iEALBWTEABVVTEAB\NTEAB
16 16
n 1 EABYY TEABYY TEABYY TEAB | }EmBW’rEABWTEABEABL
64 4 '

We now substitute the matricés, N; andN, into the above relation. Most terms cancel out.
For example, we have the ident&BWTEAB = AM2BT, EABWTEABWTEAB — AMSBT and so forth.
We obtain the following relation:

1
Rw (&) = ABT + AMB™ + AN/ B +A; N,B™ — éAM3BT
3 3

— éAMZNIB[ — éALNZMZBT +A;NoNTBT — A NoMN] BT
1 1 1 1
+ HSAM?’NlT BT + A L NoM3BT + alAM“BT + AL NoM2NT BT .
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Collecting terms by the leftmost and rightmost factors, we obtain:

- 1la, 1A ot
RN(E)—A<Ik+M 8M +64M>B

3 1
Al lg—=M2+ —M3NBT
+ <k 8 +16 > 1D

3 1
AN (Ilg—=M2+—=-M3)BT
+ iz(k 8" T16 )

1
+ALN; <Ik— M+ 4M2> N{BT

Finally, treating the first and fourth lines as a polynomial expressid,iand taking its poly-
nomial square root, we can split the above sum into the product of>ak matrix and ak x m
matrix:

Rw(€) = {A <|k+ %M — ;w) +ALN; (|k— ;M)} .
81k M= 5 (MT)) +BuNy <.k_;MT>}T.

Appendix D. Rank One Pseudoinverse Update Rule

For completeness we develop below the procedure for updating thegasesrde of a rank-1 per-
turbed matrix (Meyer, 1973), following the derivation of Petersen ardbBen (2008). We wish
to find a matrixG such that for a given matriA along with its pseudo-invers&’, and vectors of
appropriate dimensionandd, we have:

(A+cd) =AT+G.
We have used the fact thathas a full column rank to simplify slightly the algorithm of Petersen
and Pedersen (2008).
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ABSTRACT

Motivation: High-spatial resolution imaging datasets of mammalian
brains have recently become available in unprecedented amounts.
Images now reveal highly complex patterns of gene expression
varying on multiple scales. The challenge in analyzing these images
is both in extracting the patterns that are most relevant functionally
and in providing a meaningful representation that allows neuroscien-
tists to interpret the extracted patterns.

Results: Here, we present FuncISH—a method to learn functional
representations of neural in situ hybridization (ISH) images. We repre-
sent images using a histogram of local descriptors in several scales,
and we use this representation to learn detectors of functional (GO)
categories for every image. As a result, each image is represented
as a point in a low-dimensional space whose axes correspond to
meaningful functional annotations. The resulting representations
define similarities between ISH images that can be easily explained
by functional categories. We applied our method to the genomic set of
mouse neural ISH images available at the Allen Brain Atlas, finding that
most neural biological processes can be inferred from spatial expres-
sion patterns with high accuracy. Using functional representations, we
predict several gene interaction properties, such as protein—protein
interactions and cell-type specificity, more accurately than competing
methods based on global correlations. We used FunclISH to identify
similar expression patterns of GABAergic neuronal markers that were
not previously identified and to infer new gene function based on
image-image similarities.

Contact: noalis@gmail.com

Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION

In recent years, high-resolution expression data measured in
mammalian brains became available in quantities and qualities
never witnessed before (Henry and Hohmann, 2012; Lein ef al.,
2007; Ng et al., 2009), calling for new ways to analyze neural
gene expression images. Most existing methods for bio-imaging
analysis were developed to handle data with different character-
istics, like Drosophila embryos (Frise et al., 2010; Peng et al.,
2007; Pruteanu-Malinici et al., 2011) or cellular imagery
(Coelho et al., 2010; Peng et al., 2010). The mammalian brain,
composed of billions of neurons and glia, is organized in highly
complex anatomical structures and poses new challenges for
analysis. Current approaches for analyzing brain images are
based on smooth non-linear transformations to a reference

*To whom correspondence should be addressed.
"The authors wish it to be known that, in their opinion, the first two
authors should be regarded as joint First Authors.

atlas (Davis and Eddy, 2009; Hawrylycz et al., 2011) and may
be insensitive to fine local patterns like those emerging from the
layered structure of the cerebellum or the spatial distribution
of cortical interneurons.

Another challenge for automatic analysis of biological images
lies in providing human interpretable analysis. Most machine-
vision approaches are developed for tasks in analysis of natural
images, like object recognition. In such tasks, humans can under-
stand the scene effortlessly and infer complex relations between
objects easily. In bio-imaging, however, the goal of image ana-
lysis is often to reveal features and structures that are hardly seen
even by experts. It is, therefore, important that an image analysis
approach provides meaningful interpretation to any patterns or
structures that it detects.

Here, we develop a method to learn functional representations
of expression images by using predefined functional ontologies.
This approach has two main advantages, accuracy and interpret-
ability, and it builds on a growing body of work in object
recognition in natural images, showing how images can be rep-
resented using the activations of a large set of detectors (Deng
et al., 2011; Li et al., 2010a, b; Malisiewicz, 2012; Malisiewicz
et al., 2011; Torresani et al., 2010). For object recognition, the
detectors may include common objects, like a detector for
the presence of a chair, a mug or a door. Here, we show how
to adapt this idea to represent gene expression images, by train-
ing a large set of detectors, each corresponding to a known func-
tional category, like axon guidance or glutamatergic receptors.
Once this representation is trained, every gene is represented as
a point in a low-dimensional space whose axes correspond to
functional meaningful categories.

We describe in Section 2.2 how to learn functional represen-
tations in a discriminative way and demonstrate the effectiveness
of the approach on in situ hybridization (ISH) gene expression
images of the adult mouse brain collected by the Allen Institute
for Brain Science (Lein et al., 2007). ISH image analysis has been
used in the past to infer gene biological functions from spatial
co-expression in non-neural tissues (Frise et al., 2010). However,
inferring functions based on gene expression patterns in the brain
is believed to be hard, as several studies found very low variabil-
ity between transcriptomic patterns of different brain regions,
sometimes even lower than between-subject variability for the
same area (Khaitovich et al., 2004, 2005). Neural expression
patterns are usually studied using methods that average
expression values over a brain region, and this averaging removes
fine-resolution spatial information that may differentiate
between brain regions. Here, we analyze high-resolution ISH
images at several scales, taking into account subtle, even cellular
resolution, information for functional inference.

© The Author 2013. Published by Oxford University Press.
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We find that gene function can indeed be inferred from neural
ISH images, particularly in biological processes that are related
to neural activities. Our approach detects related genes with
better accuracy based on the similarity of their functional repre-
sentations. Furthermore, these similarities can be explained and
interpreted using semantic terms.

2 METHODS
2.1 The data

We used whole-brain, expression-masked images of gene expression
measured using ISH, publicly available at the Allen Brain Atlas (www.
brain-map.org, also see Supplementary Material). Expression was
measured for the entire mouse genome. For each gene, a different adult
mouse brain was sliced into 100 -um thick slices, mMRNA abundance was
measured and the slice was imaged. The database holds image series
for >20 K transcripts. Most genes have one corresponding image series,
containing ~25 imaged brain slices. Some genes were imaged more than
once and have several associated image series. In our analysis, we used the
most medial slice for each image series, yielding a typical image size of
8 K x 16 K pixels. In all, 4823 of the available 21 174 images showed no
expression in the brain and were ignored in subsequent analysis, leaving

16351 images representing 15612 genes. We also tested our approach on
a larger image set constructed by taking three images for each gene: the
medial slice, and lateral slices at 30% and 50% of brain size (from one
hemisphere). The results with this three-image set were mixed, and all
results reported later in the text are for the one-slice dataset
(Supplementary Material). Figure 1 shows examples of images, demon-
strating the complexity of neural expression patterns across brain regions
and multiple scales. The images analyzed in our study were in gray scale
but are shown here as color-coded by expression intensity for better
visualization.

2.2 A functional representation of images

We present a method to identify similarities between neural ISH images
and to explain these similarities in functional terms.

Our method consists of a visual phase, where we transform the raw pixel
images into a robust visual representation, and a semantic phase, where we
transform that visual representation using a set of 2081 gene-function de-
tectors. The output of these detectors comprises a higher-order semantic
representation of the images in a gene-functional space (Fig. 2). Similar
two-phase systems have recently been proposed and applied successfully
for tasks, such as cross-domain image similarity and object detection in
natural images (Deng et al., 2011; Li et al., 2010a, b; Malisiewicz, 2012;
Malisiewicz et al., 2011; Torresani et al., 2010).

A B

Input image

Cluster descriptors
into “visual words”

Overlay SIFT
descriptors in 4 scales
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@ .
@
I ‘_/ | |
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Create “bag-of- @
words” representation 2
Create semantic
@ representation

Apply semantic
term classifiers

Fig. 2. Illustration of the image processing pipeline. (A) Original image in pixel grayscale indicating level of gene expression. (B) Local SIFT descriptors
are extracted from image at 4 resolutions. (C) Descriptors from all 16351 images are clustered into 500 representative ‘visual words’ for each resolution
level using k-Means. (D) Each image is represented as a histogram counting the occurrences of visual words. (E) L2-regularized logistic regression
classifiers are applied for 2081 GO categories. (F) The final 2081 dimensional image representation
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For the first, visual, phase, we first represent each image as a collection
of local descriptors using SIFT features (Lowe, 2004). This step aims to
address the problem that ISH brain images of the same gene vary signifi-
cantly in shape and size when measured in different brains (Kirsch ez al.,
2012). SIFT features are histograms of oriented gradients on a small grid.
The resulting image-patch SIFT descriptor is invariant to small rotation
and illumination (but not to scale), making imaged-slices from different
brains more comparable. We computed SIFT descriptors of dimension
128 extracted on a dense grid spanning the full image (Bosch et al., 2006,
2007; Csurka and Dance, 2004), at four spatial resolutions. In ISH
images, different information lies in different descriptor sizes, and we
wish that the representation captures spatial patterns both at the level
of single cells, micro-circuitry and at the coarser level of distribution of
expression across brain layers. To capture information at multiple scales,
we used the VLFeat implementation of SIFT (Vedaldi and Fulkerson,
2010), where scale-invariance is not incorporated automatically.
Specifically, each image is represented as a collection of ~1 M SIFT
descriptors, computed by down sampling each image at a factor of 1,
2, 4 and 8. As the descriptors were extracted from high-resolution images,
which are mostly dark, many descriptors were completely dark and were
discarded.

Next, to achieve a compact non-linear representation of each image,
we aggregate the descriptors from all images for a given resolution level
and cluster them to form a dictionary of distinct “visual words’ per each
resolution level. We used the original Lloyd optimization for k-Means
with L, distance, initializing the centroids by randomly sampling data
points. The clustering procedure was repeated multiple times (n = 3), and
the solution with the lowest energy was used. We tested four different
dictionary sizes (k= 100, 200, 500 and 1000), all yielding similar results
(Supplementary Material), and we report later in the text results for
k=500, which obtained slightly higher accuracies. Next, we construct a
standard ‘bag-of-words™>**! description of each image. As a result of this
process, each image is described by four concatenated 500-dimensional
vectors counting how many times each ‘visual word’ appeared in it at a
given resolution level. We also added a count of the number of zero
descriptors per resolution level, ending up with a 2004-dimensional
vector describing each image. Using this approach, similar spatial infor-
mation from different brain regions is preserved, as opposed to using
global correlation-based approaches.

We then turn to the second, ‘semantic’, phase, and represent each
image by a set of functional descriptors. Given a set of predefined
Gene Ontology (GO) annotations of each gene, we train one separate
classifier for each known biological annotation category, using the SIFT
bag-of-words representation as an input vector. Specifically, here, we
trained a set of 2081 L,-regularized logistic regression classifiers [using
LIBLINEAR (Fan et al., 2008)] corresponding to biological-processes
GO classes that have 15-500 annotated genes (Supplementary
Material). We trained the classifiers using two layers of 5-fold cross-
validation, performed as follows: the full set of 16351 gene images was
split into five non-overlapping equal sets (without controlling for the
number of positives in each split), training the classifiers on four of
them and testing performance on the fifth unseen test set of images.
This procedure was repeated five times, each time with a different set
acting as the test set. All accuracy and other results later in the text are
reported for a held-out test set that was not used during training.

To tune the logistic regression regularization hyperparameter, we used
a second layer of cross-validation. We repeated the splitting procedure
within each of the five training sets, splitting each of them again into five
subsets of images, using four for training and the fifth as a validation set.
The regularization hyperparameter was selected from the values (0.001,
0.01, 0.1, 1, 10 and 100). At the end of this process, each gene is then
represented as a vector of ‘activations’, corresponding to the likelihood
that the gene belongs to one functional category, such as ‘forebrain
development® or ‘regulation of fatty acid transport’.

The representation described earlier in the text removes important
information about global location in the brain. We, therefore, also
tested an approach using spatial pyramids (Lazebnik et al., 2006),
where descriptor histograms are computed separately for different parts
of the image. Unfortunately, this approach results in feature vectors
whose dimensionality was too high for the current dataset and yielded
poor classification results (Supplementary Material).

2.3 Similarity between functional profiles

We use two gene—gene similarity measures in this work, taking each gene
as a vector of functional category activations. The first, flat-sim, is simply
the linear correlation of two functional category activation vectors. The
second, GO-sim, takes into account the known directed acyclic graph
(DAG) structure among the functional categories of the GO annotation.

Formally, the flat-sim score between a pair of L,-normalized feature
vectors a = (aj ...ay,) and b = (by ...b,,) is given by their dot product

Slat-sim (a,b) = "/", a; - b;. This additive similarity measure allows as-

sessing the contribution of each individual feature to the overall similarity
score, by setting the contribution of the feature i (corresponding to GO
category i) to a; - b;. Thus, for each pair of similar images, we can sort the
GO categories by order of their contribution to the similarity, providing a
semantic interpretation of the correlation.

However, flat-sim does not take into account that the activation of
some functional categories can be far more informative than others. For
example, two genes that share a specific function like ‘negative regulation
of systemic arterial blood pressure’ are much more likely to be functionally
similar than a pair of genes sharing a more general category like ‘metab-
olism’. We address this issue by adapting a functional similarity measure
between gene products developed by (Schlicker et al., 2006), which we
refer to as GO-sim. GO-sim is designed to give high similarity scores to
gene pairs that share many specific and similar functional categories. We
treat our model’s functional activations as binary annotations (using a
threshold of 0.5) and calculate GO-sim as follows.

For each GO category i, we calculate its information content (IC) as

1C(i):—logm%, which measures the specificity of each

category. For each pair of categories i/ and j, we consider the set
of their common ancestors anc(i,j) and define sim,y(i,)) =
20C(k)
B g}fgf ) ICO+ICH)
between 0 and 1, and attains larger values for pairs of categories that are

(1 — 10~7¢%)) The measure sin,; is symmetric, bounded

both specific and close to each other in the GO graph.

In our method, each gene is annotated with multiple categories.
Naively, we could calculate the mean sim,,; measure between all pairs
of categories, but calculating this mean could give weight to many irrele-
vant categories and be sensitive to the addition of extra annotations to a
gene. Instead, we use a more robust method to measure similarity
between two sets of function annotations, developed by (Schlicker
et al., 2006). This method relies on the most similar gene pairs, instead
of all the pairs. For two binary activation vectors a = (a ...da,),
b= (by...b,) define a matrix Sj = sim(i, j)a;p;. Then we define

SiMgy_p = %Z?;l(vrrllax Sj) that measures for each annotation of a its
Jj=l..m

most similar annotation in » and averages across all of @ ‘s annotations.
We similarly define sin_,, with the roles of @ and b switched, and use it
to define GO-sim= max(sin,_p, simy_,,). To assess the contribution of
individual gene functional annotations to the GO-sim measure, we look at
the category pairs (i) corresponding to the highest values of Sj. Each
such pair also has its ‘most informative common ancestor’” MICA(i, ) =

argmax%(l — 10~1®), These ancestor functional categories give

keanc(i, j)

a succinct interpretation of the similarity between genes a and b.
Computing GO-sim for n=16351 genes, each with m functional

annotations, is computationally burdensome, requiring O(n’m?)
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operations. In this study, we, therefore, use only 164 brain-related cate-
gories of the 2081 functional categories for calculating GO-sim.

3 RESULTS

We start with evaluating the quality of the low-dimensional
semantic representation that we learned in two aspects: the
classification accuracy for individual semantic terms and the
precision of our gene-gene similarity measure compared with
a spatial correlation-based method. We then take a closer look
at discriminative spatial patterns, mapping them back onto raw
images. Finally, we use the geometry of the low-dimensional
semantic space to infer new gene functions via gene similarities
and their interpretations.

3.1 Predicting functional annotations using brain
ISH images

We applied FuncISH to 16 K ISH images of 15 K genes, and we
mapped each image to a vector corresponding to 2000 GO cate-
gories as functional features. We used the area under the ROC
curve (AUC) as a measure of classification accuracy. All evalu-
ations were performed on a separate held-out test set. We find that
37% of the GO categories tested yielded a test set AUC value that
was significantly above random (permutation test, P <0.05). This
was encouraging, as the variability of expression between brain
regions was previously shown to be very low (Khaitovich et al.,
2004, 2005). This suggests that fine spatial resolution in neural
tissues can reveal highly meaningful expression patterns.

Which functional categories can be best predicted by ISH
images? Table 1 lists the top 15 GO categories that achieved
the best test-set AUC classification scores. Interestingly, these
include mostly biosynthesis/metabolism processes and neural
processes. To further test whether neural categories achieve
higher classification values based on neural expression patterns,
Figure 3 compares the AUC scores of 164 categories related to
the nervous system with the AUC scores of the remaining cate-
gories. As expected, neural GO categories receive significantly
higher AUCs (Wilcoxon, P<107%), with 69% of categories
yielding significantly above random AUC values.

These AUC values suggest that when a gene is represented as a
feature vector of classifiers activations, many of the features
carry a meaningful signal. The axes of the new low-dimensional
representation correspond to functional properties of each gene,
linking functions of the genes to the geometry of the space in
which they are embedded.

3.2 Comparison with Neuroblast, the ABA
image-correlation tool

How well does FuncISH compare with other methods suggested
for finding similarity between these images? We compared
our results with NeuroBlast, a method to detect image-image
similarities available on the ABA website (Hawrylycz et al.,
2011). This method uses a non-linear mapping of the images to
a reference anatomical atlas to apply voxel-voxel correlation
between the images.

To evaluate the quality of the similarity measure, we used
three sets of pairwise relations as evidence of gene related-
ness: (i) markers of known cell types (Cahoy et al., 2008), such

Table 1. The GO categories classified with highest test-set AUC values

GO ID GO category name No. of AUC
genes
GO:0060311 Negative regulation of elastin catabolic process 17 1
GO:0042759 Long-chain fatty acid biosynthetic process 23 0.98
GO:0009449  y-Aminobutyric acid biosynthetic process 20 0.96
GO0:0009448  y-Aminobutyric acid metabolic process 23 0.96
G0:0032348 Negative reg. of aldosterone biosynthetic process 21 0.94
GO:2000065 Negative regulation of cortisol biosynthetic process 21 0.94
GO:0043206 Fibril organization 23 0.94
GO:0031947 Negative reg. of glucocorticoid biosynthetic process 22 0.94
GO:0042136 Neurotransmitter biosynthetic process 23 0.94
GO:0022010 Central nervous system myelination 29 0.89
GO0:0008038 Neuron recognition 20 0.87
GO:0042220 Response to cocaine 30 0.87
GO:0050919 Negative chemotaxis 16 0.86
GO:0042274 Ribosomal small subunit biogenesis 15 0.86
GO:0016486 Peptide hormone processing 17 0.85
0.25 T T T
=~ "Neural
— Non-neural
0.2f 1
= 0.15f
"—
£
o
L
=) 0.1f
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o
0.051
0
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AUC

Fig. 3. AUC scores for GO categories related to the nervous system
(dashed, red) and the remaining categories (solid, blue). AUC scores
are significantly higher for neural categories (Wilcoxon test, p<1073%).
The red and blue ticks indicate the median of each set

as astrocytes or oligodendrocytes; (il) occurrence in the same
KEGG pathway (Kanehisa, 2002); and (iii) a set of known pro-
tein—protein interactions taken from IntAct (Kerrien et al., 2012).
For each of the 16531 genes, we ranked the 100 most similar
genes according to four different similarity measures:
(1) FuncISH GO-sim, (ii) FuncISH flat-sim, (iii) cosine similarity
between the SIFT bag-of-words representations (Fig. 2D) and
(iv) the ABA NeuroBlast tool. For each of the pairwise relations
(cell-type markers, KEGG pathway and PPIs), we plot the mean
fraction of relations retrieved at the top-K most similar genes
(precision-at-k), a standard method in information retrieval
(Manning and Raghavan, 2009). Figure 4 shows that for all
three validation labels, FuncISH GO-sim provides superior
precision for the top 10 ranked similar genes. The superior
precision of GO-sim over flat-sim is presumably because
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Fig. 4. Precision at top-K for similarity defined by (A) cell type marker (B) KEGG pathways (C) protein—protein interaction. Precision was measured
using functional representations (FuncISH, purple lines for GO-sim, orange for flat-sim), SIFT (red) and NeuroBlast (blue)

GO-sim weighs categories more correctly and also possibly be-
cause GO-sim was limited to brain-related categories that tend to
be more accurately predicted (Fig. 3). On the other hand, we see
that NeuroBlast outperforms flat-sim in most cases.

3.3 Identifying and explaining similarities between
GABAergic neuron markers

We now turn to a deeper look into the similarity predictions.
Interestingly, the highest classification scores were achieved for
the neural-related categories GABA biosynthetic process and
GABA metabolic process (shown in Table 1), implying that our
algorithm can identify spatial patterns of GABAergic neurons.
A prominent member of the GABAergic neuron marker family
is parvalbumin B (Pvalb), which encodes for a calcium-binding
protein. We examined the genes that are most similar to Pvalb,
and we found that another GABAergic neuronal marker and a
calcium-binding protein, calbindin D28K (Calbl), is at the top 15
most similar gene lists for all associated image series. Pvalb and
Calbl belong to a family of cellular Ca>* buffers in GABAergic
interneurons. The third member in this family is calretinin
(Calb2). Looking at the similarity rank of Calbl and Calb2,
Calb2 ranks at the top 2 percentile (of 16351 images in the data-
set) at 16 of 17 cases. Similarities between these three genes were
not identified by NeuroBlast. This may be because NeuroBlast
uses spatial correlation measures that produce results heavily
reliant on the spatial location of expression, whereas FuncISH
can identify patterns that can appear in different regions of the
brain. A major benefit of representing genes in the functional
embedding space is that similarities between genes can be ‘ex-
plained’ in functional terms. Calbl, Pvalb and Calb2 are all
involved in regulation of synaptic plasticity (Schwaller, 2012).
When looking at the semantic interpretations explaining the
similarities between the genes, 6 of the top 10 GO
categories are indeed directly related to synaptic plasticity, such
as ‘synaptic transmission’, ‘regulation of synaptic plasticity’ and
‘learning’.

3.4 Finding important spatial patterns in different scales
using SIFT ‘visual words’

A major advantage of representing ISH images with SIFT
descriptors is the ability to point directly to spatial patterns in

these complex images. Although their name suggest differently,
SIFT descriptors at several scales capture different types of pat-
terns. Figure 5 shows three visual words for each of the four
scales, selected as the visual words that contributed most to clas-
sification. Scale invariance is often assumed when analyzing nat-
ural images, as objects are photographed at varying distances.
ISH images, however, contain distinctive information in the dif-
ferent scales. As Figure 5 demonstrates, the four sizes of visual
words correspond to grids capturing different neural entities. The
smallest descriptors cover an actual area of 36 x 36 um? and cap-
ture fine-scaled information, such as cell shapes and cell densi-
ties; the medium-size discriminative descriptors of 72 x 72 pm?
tend to trace thinner cell layers; larger descriptor sizes of
144 x 144 pm? and 288 x 288 um> can cover large and intricate
patterns of a mixture of cells and cell types in a tissue.
Interestingly, the four visual words with the highest contribution
to classification were the words counting the zero descriptors in
each scale. This means that the highest information content lies
in ‘least informative’ descriptors, and that overall expression
levels (‘sparseness’ of expression) are important factors in func-
tional prediction of genes based on their spatial expression. Our
method presents a new representation of ISH imagery as SIFT
descriptors, and using multiple scales allows revealing the multi-
resolution nature of the images.

Which scale carries the most meaningful signal for functional
prediction? Figure S5E shows the mean absolute value of visual
words weights in every scale for all GO categories, showing that
all scales contribute significantly to the scores, with the medium
contributing most.

Figure SA-D shows descriptors that contributed to classifica-
tion of all the categories. Furthermore, each GO category has its
own visual words that are important to its classification, and
looking into their details reveals spatial properties that are
unique to specific biological processes.

As an interesting example of this effect, we considered the
gene adducin B (Add2). Add2 is annotated to several GO cate-
gories, including ‘positive regulation of protein binding’ and
‘actin filament bundle assembly’. Figure 6 overlays the top
weighted visual words of the two categories over the Add2
ISH image. It is easy to see that the descriptors important for
classification of ‘actin filament bundle assembly’ are much smal-
ler than those important for classification of the more general
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Fig. 5. Representing ISH images with visual words. (A, B, C, D) The three visual words with highest absolute weight (averaged over all categories) at
each scale. The SIFT descriptors (red grid) are plotted on top of each panel. The histogram of oriented gradients used in the SIFT descriptor is plotted in
the center of each element of the grid,as a set of red lines, where the length of the line correspond to the magnitude of the gradient in its direction.
(E) Mean absolute weight for the four scales of visual words calculated over classifiers for all categories

Fig. 6. The visual words important in classifying Add2 GO categories are
overlaid on the Add2 ISH image. Larger descriptors are needed for the
classification of ‘regulation of protein binding’ (A), while the discrimina-
tive visual words for ‘actin filament bundle assembly’ (B) are much smal-
ler, capturing properties such as cell shapes. The descriptors are color-
coded by their importance in classification, highest importance is in
bright yellow

category ‘positive regulation of protein binding’  (t-test,
P<107"7). This implies that small-scaled features, such as spe-
cific cell shapes, are important to identify genes related to actin
filament bundle assembly processes. Actin assemblies are im-
portant for the navigation of neural growth cones, by re-orient-
ing growth cones away from inhibitory cues (Challacombe
et al., 1996). Representing the images with histograms of ori-
ented gradients could capture tiny differences in cell shapes that

are in the process of synapse formation, a developmental pro-
cess occurring continuously throughout adulthood (Vidal-Sanz
et al., 1987).

3.4 Inferring new gene functions via explainable
similarities

We now demonstrate how the semantic representation learned
by FuncISH can be used to propose new gene functional anno-
tations. Consider as an example the gene synaptopodin 2
(Synpo2) that is known to bind actin, but otherwise has little
known associated information. FuncISH can be used to propose
functional annotations for synpo2 by looking at the genes that
are similar to Synpo2 and considering both the GO functions
that contribute to this similarity and the spatial pattern of
expression.

First, we find that Synpo2 is similar to two other genes
Npepps and Rasa4, but for different reasons (the list of top
five semantic explanations for these similarities is shown in
Table 2). Npepps is an aminopeptidase that is active specifically
in the brain (Hui, 2007), and the similarity between Synpo2 and
Npepps is explained by processes related to protein processing,
such as ubiquitination and protein proteolysis. At the same time,
Rasa4 is a GTPase-activating protein that suppresses the Ras/
mitogen-activated protein kinase pathway in response to Ca>"
(Vigil et al., 2010), and the similarity between Synpo2 and Rasa4
is explained by high-level neural processes, such as axon guid-
ance or synaptic transmission.

Interestingly, Synpo2 and Rasa4 are expressed in different
brain regions: looking at their spatial expression patterns reveals
that Synpo2 is expressed exclusively in the thalamus, whereas
Rasa4 is expressed in olfactory areas. Therefore, their similarity
is not in their global expression patterns across regions, but
rather in local spatial patterns. This could reflect expression in
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Table 2. Top 10 GO annotations explaining the similarities between the gene Synpo2 and Npepps (left column) and Rasa4 (right column)

Synpo2—Npepps

Synpo2—Rasa4

GO ID GO name GO ID GO name

GO:0070646 Protein modification by small protein removal G0:0006836 Neurotransmitter transport

GO:0006412 Translation GO:0051970 Negative regulation of transmission of nerve impulse
GO:0016567 Protein ubiquitination GO:0050805 Negative regulation of synaptic transmission
GO0:0051603 Proteolysis involved in cellular protein catabolic process GO:0007411 Axon guidance

GO0:0032446 Protein modification by small protein conjugation GO:0031645 Negative regulation of neurological system process

similar cell types or tissues that exhibit similar spatial distribution
at different brain regions. Npepps is more ubiquitously expressed
in the brain, and it is located in the thalamic area where synpo2 is
expressed. The co-location of Synpo2 and Npepps suggests they
could be participating in similar biological processes in these
areas, possibly in protein-modification processes as suggested
by the list of top explanations for the similarity.

4 SUMMARY

We present FunclSH—a method to learn functional representa-
tions of neural ISH images, yielding an interpretable measure
of similarity between complex images that are difficult to ana-
lyze and interpret. Using FuncISH, we successfully infer ~700
functional annotations from neural ISH images, and we use
them to detect gene-gene similarities. This approach reveals
similarities that are not captured by previous global correl-
ation-based methods, but it also ignores important global
location information. Combining local and global patterns
of expression is, therefore, an important topic for further
research, as well as the use of more sophisticated non-linear clas-
sifiers, such as kernel-SVM, for creating better representations.
Importantly, FuncISH provides semantic interpretations for
similarity, enabling the inference of new gene functions from
spatial co-expression.
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Supplementary material

Using expression-masked images

Images in the Allen dataset are provided in two formats: the raw imagery, and images that
were processed as previously described® to remove the background, yielding expression-
masked images. The analysis was applied to the masked images. This is a big advantage
when examining expression patterns, as noise effects coming from cytoarchitecture and
underlying brain structures is reduced. Examples of a pair of images are given below in Fig
S1.

Figure S1: Regular (a) and expression-masked (b) examples of ISH images as
provided by the Allen Brain Atlas, for the gene Tubal. While the expression masked
images are presented in color, the color images are in fact derived from gray-scale
images, which we have used in this work.

Robustness of bag-of-words representations

In order to validate the stability of the bag-of-words gene representations, we
measured the similarities between pairs of representations of images that are of the
same gene but from different image series, and the similarities between the
representations of different genes.

Similarity is much higher for representations of the same gene (Wilcoxon difference
of medians test, p<10'200). The similarity values are shown in figure S2. This implies
that representations of the same gene, derived from different image series are
indeed stable and are representative of the gene.
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Figure S2: The similarity in the representation of same-gene pairs (blue) and
different-gene pairs (red). Each curve shows the histogram of similarity values.
Same-gene image series have highly similar representations.

Choosing the dictionary size

In order to choose the size of the visual word dictionary, we performed analysis with
four dictionary sizes: 100, 200, 500 and 1000. Figure S3 shows mean test-set AUC
values obtained using the different dictionary sizes. Mean AUC across categories is
insensitive to the size of the dictionary (K). To check how stable the representations
are between the different K's, we measured the Pearson correlation between AUC
values of the 2081 GO categories using the different dictionary sizes. Correlation
values are very high and are shown in table R1. The lowest correlation value is 0.846,
between K=100 and K=1000, and is still highly significant (P<10™%). Correspondence
between AUC values for the 2081 GO categories obtained using the two dictionary
sizes are shown in figure S4, showing indeed a high linear correspondence.

0.835

0.837

Mean test AUC

0.625

100 200 500 1000
K

Figure S3: Mean test-AUC values for dictionary size K=100, 200, 500, 1000. Error
bars indicate standard error of mean across five folds in cross-validation data.
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Dictionary size | 100 200 500 1000
(K)

100 1 0.896 0.861 0.846
200 0.896 1 0.896 0.883
500 0.861 0.896 1 0.917
1000 0.846 0.883 0.917 1

Table S1: Pearson's rho correlation values between AUC results for 2081 categories,
compared across the 4 different dictionary sizes. Correlations are high (the lowest is
0.846 between K=100 and K=1000)

1
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0.81

0.71
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Mean test-AUCs, K=100

Figure S4: Mean test-set AUCs for dictionary size K=100 versus K=1000. This pair of
dictionary sizes is the least correlated among all dictionary size pairs. It can be seen
that even in this case, the correlation is high and indicative of a stable
representation.

Choice of GO category size:

We chose GO categories with a number of annotations ranging from 15 to 500
genes. We set the lower limit to 15 in order to provide enough positive examples for
testing the classifiers across five cross-validation partitions. The higher limit is set to
500 to preclude the resulting semantic explanations from being very general (we use
more specific categories such as "regulation of long-term neuronal synaptic
plasticity" or "glutamate receptor signaling pathway" and avoid general categories
such as "transport” or "biological regulation").

To make sure that this choice of categories did not cause a bias in the classification
results, we checked the relation between category size and test-set AUC scores. No
significant relation between the size of the GO category and the resulting AUC values
(Figure S5).
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Figure S5: Mean AUC (averaged over test-splits) for the GO categories vs. GO
category size (number of genes in the category). There's no significant relation
between classification success of a category and the number of genes annotated to
it.

Using several slices from each image series

In order to take into fuller account the 3D structure of the brain, we repeated the full
set of our experiments while including two additional sagittal sections. The three
sections used were taken from one hemisphere, capturing the medial section and
also the 30% and 50% marks on the medial-lateral axis. An example of three such
slices is shown in Figure S6.

Figure S6: Each image series was represented with three slices, the most medial (a),
and the 30% (b) and 50% (c) marks on the medial-lateral axis.

The results of the experiments using multiple slices were inconclusive. In some
measures of performance, such as the correlation of our funcISH scores with known
PPl interactions, adding more slices has improved the correlations. In others, such as
correlations with cell types and pathways, the performance measures did not
improve and even deteriorated slightly. The reasons for this inconsistency could be
that the location of the non-medial slices is more variable, due to variation across
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brains. We note that in the main paper we report the results using a single medial
slice.

Applying a spatial pyramid kernel to the images

A major goal of brain-image analysis is to develop a representation that captures
both low level texture and gross-anatomy structure. While the visual bag-of-words
representation we have used in our work removes global structures, a main
advantage is the ability to find small-scaled spatial patterns that are location-
independent in the brain.

To combine local patterns with global structures in the same representation, we
tested a representation of the data using spatial pyramid kernels®. In this approach,
every image is split into 4 and 16 rectangles and the bag of words method is applied
to each rectangle separately (Figure S7). The resulting feature vector is a
concatenation of the 1+4+16 = 21 dictionaries. This approach has been shown to be
highly successful in machine vision tasks®>*. The down side of this approach is that it
inflates the feature dimensionality significantly, and requires reducing the dictionary
size. In our experiments, we tested a dictionary size 100, which provides similar
accuracies as the dictionary size of 500 used in the rest of the analysis (as shown
above).

Figure S7: A spatial pyramid approach to extracting dense SIFT features. Features
were extracted in the full image (a) and the image divided into four parts (b) and 16
parts (c).

The spatial pyramid approach yielded an overall mean AUC of 0.6231, which is
slightly and insignificantly lower than the mean AUC obtained without the pyramidal
kernel, 0.6322. We conclude that the increase in feature dimensionality hurts more
than the gain obtained by describing different brain regions separately.

These results illustrate the challenging tradeoff when computing both local and
global features. An alternative approach could be based on data-dependent
segmentation of images into anatomic structures (like the thalamus, cortex or
cerebellum) followed by coding each structure separately. Such segmentation is a
topic for a separate research.
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2.4 Coordinate-descent for learning orthogonal matrices through

Givens rotations
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Abstract A major challenge when optimizing over the set of orthog-
onal matrices is that simple updates such as matrix addi-
tion usually break orthonormality. Correcting by orthonor
malizing a matrixV € R%*? is typically a costly pro-
cedure: even a change to a single element of the matrix,
may requireO(d?) operations in the general case for re-

orthogonalization.

Optimizing over the set of orthogonal matrices
is a central component in problems like sparse-
PCA or tensor decomposition. Unfortunately,
such optimization is hard since simple operations
on orthogonal matrices easily break orthogonal-
ity, and correcting orthogonality usually costs a
large amount of computation. In this paper, we present a new approach for optimization
over the manifold of orthogonal matrices, that is based on
a series of sparse and efficient-to-compute updates that op-
eratewithin the set of orthonormal matrices, thus saving

the need for costly orthonormalization. The approach can

Here we propose a framework for optimiz-
ing orthogonal matrices, that is the parallel of
coordinate-descent in Euclidean spaces. It is
based orGivens-rotationsa fast-to-compute op-

eration that affects a small number of entries in
the learned matrix, and preserves orthogonality.

We show two applications of this approach: an al-
gorithm for tensor decompositions used in learn-

be seen as the equivalent of coordinate descent in the mani-
fold of orthonormal matrices. Coordinate descent methods
are particularly relevant for problems that are too big to fit
in memory, for problems where one might be satisfied with

a partial answer, or in problems where not all the data is

ing mixture models, and an algorithm for sparse-
PCA. We study the parameter regime where a
Givens rotation approach converges faster and
achieves a superior model on a genome-wide
brain-wide mRNA expression dataset.

available at one timeRjichtarik & Takac, 2012.

We start by showing that the orthogonal-matrix equivalent
of a single coordinate update is applying a sinGlieens
rotation to the matrix. In sectior8 we prove that for a
differentiable objective the procedure converges to alloca
optimum under minimal conditions, and prove @1 /7))
convergence rate for the norm of the gradient. Sectibns
and5 describe two applications: (1) sparse PCA, including
Optimization over orthogonal matrices — matrices whosea variant for streaming data; (2) a new method for orthogo-
rows and columns form an orthonormal basisRSf— is  nal tensor decomposition. We study how the performance
central to many machine learning optimization problemsof the method depends on the problems hyperparameters
Prominent examples includerincipal Component Analy- using synthetic data, and demonstrate that it achieves supe
sis(PCA), Sparse PCAandindependent Component Anal- rior accuracy on an application of sparse-PCA for analyz-
ysis (ICA) In addition, many new applications of tensor or-ing gene expression data.

thogonal decompositions were introduced recently, includ

ing Gaussian Mixture Models, Multi-view Models and La- 2 Coordinate descent on the orthogonal

tent Dirichlet Allocation (e.g.Anandkumar et al(20123; : :

Hsu & Kakade(2013). matrix manifold

1. Introduction

_ y ) ~ Coordinate descent (CD) is an efficient alternative to gra-
Proceedings of theg1*" International Conference on Machine gient descent when the cost of computing and applying a

Learning Beijing, China, 2014. JMLR: W&CP volume 32. Copy- radient st t a sinal rdinate is small relative t m
right 2014 by the author(s). gradient step at a single coordinate Is small relative 10-Co
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puting the full gradient. In these cases, convergence can k2. 1.2. THE DIRECTIONAL DERIVATIVE
achieved with a smaller number of computing operations

although using a larger number of (faster) steps. fn analogy to the Euclidean case, the Riemannian direc-

tional derivative off in the direction of a vectot/(2 €
Applying coordinate descent to optimize a function in-Ty; O, is defined as the derivative of a single variable
volves choosing a coordinate basis, usually the standarfilinction which involves looking af along a single curve
basis. Then calculating a directional derivative in the di{Absil et al, 2009:

rection of one of the coordinates. And finally, updating the

iterate in the direction of the chosen coordinate. To gener-

alize CD to operate over the set of orthogonal matrices, we _d _d
need to generalize these ideas of directional derivatinds a VaflU)= d@fw(e)) o=0 df (UBExpm(642)) 0=0
updating the orthogonal matrix in a “straight direction”. @)

Note thatV, f(U) is a scalar. The definition means that the
In the remaining of this section, we introduce the set ofdirectional derivative ig”’ with f restricted to the geodesic
orthogonal matrices();, as a Riemannian manifold. We curve going througl in the directionl/ <.
then show that applying coordinate descent to the Rieman-
nian gradient amounts to multiplying by Givens rotations.2 1.3. THE DIRECTIONAL UPDATE
Throughout this section and the next, the objective fumctio

is assumed to be a differentiable functipn Oy — R. Since the Riemannian equivalent of walking in a straight
line is walking along the geodesic curve, taking a step of

sizen > 0 from a pointU € Oy in directionUS) € Ty Oy

amounts to:

The orthogonal matrix manifol@, is the set ofl x d matri- Unert = UEXpM(nQ2) , 2

cesU such thal/UT = UTU = I,. Itis a@ dimen-

sional smooth manifold, and is an embedded submanifol§Ve also have to define the orthogonal basisSaew(d).

of the Euclidean spack?*? (Absil et al, 2009. Here we usgle;e] —ejel : 1 <i < j < d}. We denote

. . ... each basis vector d%;; = e;e! —ejel |1 <i<j<d.
Each pointU € O, has a tangent space associated with It,eac basis vector d8;; = e;c; —eje;, 1<i<j<d

a @ dimensional vector space, that we will use below
in order to capture the notion of 'direction’ on the man-
ifold. The tangent space is denoté@ O,, and defined Coordinate descent is a popular method of optimization in

2.1. The orthogonal manifold and Riemannian gradient

2.2. Givens rotations as coordinate descent

by TyOq = {Z € R4 7 = UQ : @ = —QT} = Euclidean spaces. It can be more efficient than computing
USkew(d), whereSkew(d) is the set of skew-symmetric full gradient steps when it is possible to (1) compute effi-
d x d matrices. ciently the coordinate directional derivative, and (2) lsgpp
the update efficiently. We will now show that in the case of
2.1.1. GEODESIC DIRECTIONS the orthogonal manifold, applying the update (step 2) can

o . . .. . be achieved efficiently. The cost of computing the coordi-
The natural generalization of straight lines to the madifol s o
. . . nate derivative (step 1) depends on the specific nature of the
context aregeodesic curvesA geodesic curve is locally - .
. . objective functionf, and we we show below several cases
the shortest curve between two points on the manifold, or . L
. . : where that can be achieved efficiently.
equivalently, a curve with no acceleration tangent to the
manifold (Absil et al, 2009. For a pointU € O; and a  Let H;; be a coordinate direction, 167y, f(U) be the
“direction” UQ € Ty O, there exists a single geodesic line corresponding directional derivative, and choose step siz
that passes throughl in direction(). Fortunately, while »n > 0. A straightforward calculation based on E§.
computing a geodesic curve in the general case might bshows that the updaté, ... = UExpm(—nH,;) obeys
hard, computing it forO, has a closed form expression:
v:(=1,1) = Og4,v(0) = UExpm(6S2), where~(6) with Expm(—nH, ;) —
0 € (—1,1) is the parameterization of the curve, and Expm P i) =
is the matrix exponential function. 1 - 0 e 0 - 0

In the special case where the operdiampm () is applied : : : :
to a skew-symmetric matrif, it maps2 into an orthogo- 0 -+ cos(n) -+ =—sin(n) -~ 0
nal matrix!. As a resultyy(6) = UExpm(6S) is also an : : :
orthogonal matrix for alb. 0 - sin(p) --- cos(n) -+ 0

'Because Expii2)Expm(Q)” = Expm(Q)Expm(Q”) = : : : :
Expm(Q)Expm(—Q) =T

0 --- 0 0 1
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This matrix is known as a Givens rotation
(Golub & Van Loan 2012 and is denotedx (i, j, —n). It
hascos(n) at the(i,i) and (4, j) entries, andtsin(n) at

the (j,4) and (i, j) entries. It is a simple and sparse or-

thogonal matrix. For a dense matrik € R?*<, the linear
operationA — AG(i, j,n) rotates the'* and;*"* columns
of A by an anglen in the plane they span. Computing
this operation cost6d multiplications and additions. As

3. Convergence rate for Givens coordinate
minimization

In this section, we show that under the assumption that

the objective functiory is differentiable Algorithm 1 con-

verges to critical point of the functiofy and the only stable

convergence points are local minima. We further show that
the expectation w.r.t. the random choice of coordinates of

a result, computing Givens rotations successively for althe squared,-norm of the Riemannian gradient converges

@ coordinatesH;; takesO(d®) operations, the same
order as ordinary matrix multiplication. Therefore the

to 0 with a rate ofO(+) whereT is the number of itera-
tions. The proofs, including some auxiliary lemmas, are

relation between the cost of a single Givens relative to #rovided in the supplemental material. Overall we pro-
full gradient update is the same as the relation betweelide the same convergence guarantees as provided in stan-
the cost of a single coordinate update and a full updat&ard non-convex optimization (e.gNemirovski (1999;

is in Euclidean space. We note that any determinant-

orthogonal matrix can be decomposed into at nﬁié%ﬁ
Givens rotations.

2.3. The Givens rotation coordinate descent algorithm

PBertsekag1999).

Definition 1. Riemannian gradient

The Riemannian gradienV f(U) of f at point U €

04 is the matrixUQ, whereQ € Skew(d), Qj; =

—Q;; = Vi f(U),1 < i < j < dis defined to be
the directional derivative as given in Eql, and Q;; =

Based on the definition of Givens rotation, a natural algog. The norm of the Riemannian gradiqm‘Vf(U)HQ =
rithm for optimizing over orthogonal matrices is to perform 7(V f(U)V f(U)T) = 1912,
a sequence of rotations, where each rotation is equivalent {hofinition 2. A point U. c 0, is asymptotically stable

a coordinate-step in CD.

To fully specify the algorithm we need two more ingredi-

with respect to Algorithml() if it has a neighborhood of
U.. such that all sequences generated by Algorittjm(th

ents: (1) Selecting a schedule for going over the coordistarting pointly € V converge td/..
nates and (2) Selecting a step size. For scheduling, w&heorem 1. Convergence to local optimum
chose here to use a random order of coordinates, followin¢r) The sequence of iteratég of Algorithm (1) satisfies:

many recent coordinate descent papRisitarik & Takac,
2012 Nesteroy2012 Patrascu & Necoar2013.

For choosing the step sizgwe use exact minimization,
since we found that for the problems we aim to solve, usin

exact minimization was usually the same order of complex-

ity as performing approximate minimization (like using an
Armijo step ruleBertsekag1999; Absil et al.(2009).

Based on these two decisions, Algorithf) {s a random
coordinate minimization technique.

Algorithm 1 Riemannian coordinate minimization @y
Input: Differentiable objective functiory, initial matrix
Uy € Oy
t=0
while not convergedio
1. Sample uniformly at random a pdixt), j(¢)) such
thatl <i(¢) < j(t) <d.
2. 0441 = argmin f (Uy - G(4,4,0)).
(2

3. Uty1 = U - G(3, §, 0t 11).
4.t =1t + 1.
end while
Output: Uyinai.

lim;, ||V f(U:)|| = 0. This means that the accumula-
tion points of the sequendé/, }$2, are critical points of

b) Assume the critical points gf are isolated. LeU, be
critical point of f. ThenUs, is a local minimum off if

and only if it is asymptotically stable with regard to the se-

guence generated by Algorithr)(

Definition 3. For an iterationt of Algorithm (@), and a set

of indices(i(t), j(t)), we define the auxiliary single vari-

able functiong;” :

9/ (0) = f (U - G(i, 5,9)) , (3)
Note thatg!’ are differentiable and periodic with a period
of 2. SinceQy is compact and is differentiable there
exists a single Lipschitz constah{ f) > 0 for all g,°.

Theorem 2. Rate of convergence

Let f be a continuous function with-Lipschitz directional
derivatives®. Let U, be the sequence generated by Al-
gorithm 1. For the sequence of Riemannian gradients
V() € Ty, Oq4 we have:

L-d (f(UO) — frnm)

T+1 - @)

2l <
ogltagXTE [va(Ut)HQ} =

2Because?, is compact, any functiorf with a continuous
second-derivative will obey this condition.
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The proof is a Riemannian version of the proof for the ratewheren is the number of sampled s the input dimension-
of convergence of Euclidean random coordinate descent fality andm is the number of PCA components computed.
non-convex functionsRatrascu & Necoara2013 and is  This objective is once-differentiable and the objective ma
provided as supplemental material. trix U grows with the number of samples

4._S|_3arse PCA _ _ o 4.1. Givens rotation algorithm for the full casem = n
Principal component analysis (PCA) is a basic dimeny e choose the number of principal componentso be
sionality reducing technl((i]ue used throughout the SCIeNCeZqyal to the number of samplesve can apply Algorithm

. em . o
Given a data setl € R?*" of n observations ini di- (1)) girectly to solve the optimization problem of E.
mensions, the principal compgnents are a set of .Orthog‘Explicitly, at each round, for choice of coordinate§, j)
nal vectorszy, zs,..., 2, € R, such that the variance anqg g matrixt/, € 0, the resulting coordinate minimiza-
Stz AATz; is maximized. The data is then repre- jjop, problem is:

sented in a new coordinate systetn = Z7A where

— dxm m_d
Z =z1,%2,..,2m] €R . argmin—z [[(AUG (4, §,6)) 4] _7}1 =
One drawback of ordinary PCA is lack of interpretabil- ¢ j=1i=1
ity. In the original datad, each dimension usually has d
an understandable meaning, such as the level of expresrgmin — ZHCOS(O)(AUt)ki + sin(0) (AU ;| — 72+
sion of a certain gene. The dimensionsdhowever are 0 k=1
typically linear combinations of all gene expression lev- [| = sin(0) (AU} ) yi + cos(0) (AU )xj| — 7]
els, and as such are much more difficult to interpret. A (6)

common approach to the problem of findiimgerpretable
principal components is Sparse PCZo(i etal, 2006  Algorithm 2 Riemannian coordinate minimization for
Jourree et al.201Q d’Aspremont et al.2007 Zhang etal.  sparse PCA

2012 Zhang & Ghaoyi2019. SPCA aims to find vec- |nput: Data matrixA € R**™, initial matrix Uy € O,,,
tors z; as in PCA, but which are also sparse. In the gene- gparsity parameter > 0

expression example, the non-zero components afight t=0
correspond to a few genes that explain well the structure of 47 — 4. ¢, .
the dataA. while not convergedio

One of the most popular approaches for solving the prob- 1 Samp!e unifqrmly atrandom a pai¢), j(t)) such
lem of finding sparse principal components is the work ~ thatl <:i(t) <j(t) <n.
by Jourrée et al.(2010. In their paper, they formalize 2.0141 = arggnax
the problem as finding the optimum of the following con- Zd (I , 2

! Lo . . et ([[cos(0) (AU ) icry + sin(0) (AU ) o) | — 712
strained optimization problem to find the sparse basis vec- I = sin(0) (AU ) i) + cos(0) (AU 00| — 712).

tors Z: 3AU = AU - G(i(t), j(1)), Op1).
argmax ~ Tr(ZTAU) — v Z | Zi;] (5) 4ot =1t+1.
UeRnxm, zcRdxm ij end while
d 5. Z = solveForZ(AU,~) Il Algorithm 6 of
st. U'U =T, > Z5=1Vi=1...m . Jourrée et al(2010.
m Y . dxn
i1 Output: Z e R

Jourree et al. provide an algorithm to solve Eithat has  gee Algorithm ) for the full procedure. In practice, there
two parts: The first and more time consuming part findsig no need to store the matricés in memory, and one
an optimalU, from which optimalZ is then found. We  c4n work directly with the matrixAU;. Evaluating the ex-
focus here on the problem of flnglng the mattix Note  hression in Eq.6 for a givend requiresO(d) operations,
that whenm = n, the constrainU” U = I,,, implies that  \yhere is the dimension of the data. We found in practice
U'is an orthogonal matrix. that optimizing Eq6 required an order of 5-10 evaluations.
We use a second formulation of the optimization problemOVverall each iteration of Algorithn?j requiresO(d) oper-
also given by Joutge et al. in section 2.5.1 of their paper: ations.

m d
4.2. Gi tati Igorithm for th
argmax Z Z”(A . U)U‘ o ’VB,— Ivens rotation algoritnm 1or tne casem < n

UeRm*m 53 5 The major drawback of Algorithm?j is that it requires the

st. UTU = I, number of principal components to be equal to the num-
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ber of samples:. This kind of “full dimensional sparse %9
PCA’ may not be necessary when researchers are interesi
to obtain a small number of components. We therefore dig®*
velop a streaming version of Algorithn2)( For a small
given m, we treat the data as if only, samples exist at _ o
any time, giving an intermediate moddl/ € R4, Af- = — Cenoratzed Power metnod N
ter a few rounds of optimizing over this subset of samples °  * 2 3 4 Ot odees © !

we use a heuristic to drop one of the previous samples and (a) explained variance (b) number of non-zeros
incorporate a new sample. This gives us a streaming ver-

sion of the algorithm because in every phase we need onl¥igyre 1.(a) The explained variance as function of FLOPS of the
m samples of the data in memory. The full details of thecoordinate minimization method from Algorithrand of the gen-

=== Givens coordinate minimization
== Generalized Power method

mean # non-zeros

mean explain:
o
w

)

algorithm are given in the supplemental material. eralized power method hiourrée et al(2010), on a prostate can-
cer gene expression dataset. (b) The number of non-zeros in the
4.3. Experiments sparse PCA matrix as function of FLOPS of the coordinate mini-

mization method from Algorithn2 and of the generalized power
Sparse PCA attempts to trade-off two variables: the fracmethod bydourree et al(2010, on a prostate cancer gene expres-
tion of data variance that is explained by the model's comsion dataset. The size of the sparse PCA matriRj$00 x 102.
ponents, and the level of sparsity of the components. In our
experiment, we monitor a third important parameter, the
number of floating point operations (FLOPS) performed
to achieve a certain solution. To compute the number of

FLOPS we counted the number of additions and multipli-

cations computed on each iteration. This does not inclug8"¢€ procedgre suggested in this cas@ay et a'-(2009’ )
pointer arithmetic. which takes into account the fact that the sparse principal

components are not orthogonal.

We first examined Algorithn? for the case wheren = )
bor the Generalized Power Method we use the grdedy

n. We used the prostate cancer gene expression data . . X
Singh et al.(2003. This dataset consists of the gene ex-/ersion ofJourree et al.(2010, with the parametey set
pression levels for 52 tumor and 50 normal samples ovel® 1- We found the greedy version to be more stable and
12,600 genes, resulting inl&, 600 x 102 data matrix. to be able to produce sparse solutions when the number of
components was: > 1. We used values of ranging from
We compared the performance of our approach with that 0.01 to 0.2, and two stopping conditions: “convergence”,
theGeneralized Power Methasf Jourree et al(2010. We  where the algorithm was run until its objective converged
focus on this method for comparisons because both methyithin a relative tolerance level afd—*, and “early stop”
ods optimize the same objective function, which allows towhere we stopped the algorithm after 14% of the iterations
characterize the relative strengths and weaknesses of thequired for convergence. For our algorithm we used the
two approaches. same range of values, and an early-stop condition where

As can be seen in Figure the Givens coordinate mini- the algorithm was stopped after using 14% of the samples.

mization method finds a sparser solution with better exfigure 2 demonstrates the tradeoff between floating point
plained variance, and does so faster than the generalizesherations and explained variance for SPCA with 3, 5 and
power method. 10 components and with 3 sparsity levels: 5%, 10% and

We tested the streaming version of the coordinate descerP%: _Usmg low dimensions is often useful for y|sual ex-
algorithm for sparse PCA (Algorithm 5, supp. material) ploration of the data. Each dot represents one instance of

on arecent large gene expression data set collected from H?e_ algorithm, run with a certain vaIue@hnd stoppmg en-

six human brains{awrylycz et al, 2013. Overall, each of terion. To avp|d clutter we on.Iy show .|nstances which per-
the 20K human genes was measured at 3702 different braffmed best in terms of explained variance or few FLOPS.
locations, and this data can be used to study the spatial patthen strong sparsity is required (5% or 10% sparsity),
terns of mMRNA expression across the human brain. Wehe Givens-rotation coordinate descent algorithm finds so-
again compared the performance of our approach with thatitions faster (blue rectangles are more to the left in Figur
of the Generalized Power Methaaf Jourrée et al(2010.  2), and these solutions are similar or better in terms of ex-

We split the data into 5 train/test partitions, with eaclntra plaioned variance. F]f_)r(ljov;/‘-diﬂensional Ilgssdsparse scuist;]o g
setincluding 2962 examples and each test set including 74@04 sparsity) we find that the generalized power metho
examples. We evaluated the amount of variance explaineff’dS comparable or better solutions using the same compu-

by the model on the test set. We use the adjusted Var‘ational cost, but only when the number of components is
small, as seen in Figutec,f,i.
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Figure 2.The tradeoff between explained variance and computational cost ®&afd 10-component sparse PCA models applied to
human gene expression data. The models are constrained for masipausity of 5% (a), (d) & (g), 10% (b), (e) & (h) and 20% (c), (f)

& (i). Red pluses indicate the Generalized Power metlodi{ee et al, 2010; blue squares represent the Givens coordinate procedure.
See Subsectiof.3for experimental conditions. Explained variance was adjusted follo&mget al.(2006.

5. Orthogonal tensor decomposition 5.1. Orthogonal tensor decomposition

Recently it has been shown that many classic mathe problem of tensor decomposition is very hard in gen-
chine learning problem such as Gaussian Mixture Moderal Kolda & Bader 2009. However, a certain class of

els and Latent Dirichlet Allocation can be solved effi-tensors known asrthogonally decomposabkensors are
ciently by using 3rd order momentéifandkumar et al. easier to decompose, as has been discussed recently by
2012a Hsu & Kakade 2013 Anandkumar et al.2012hc;  Anandkumar et a20123; Hsu & Kakade(2013 and oth-
Chaganty & Liang2013. These methods ultimately rely ers. Here we introduce the problem of orthogonal tensor
on finding an orthogonal decomposition of 3-way tensorsdecomposition, and provide a new characterization of the
T e R4*4xd and reconstructing the solution from this de-solutions to the decomposition problem as extrema of an
composition. Here we show that the problem of finding anoptimization problem on the orthogonal matrix manifold.
orthogonal decomposition f_or_a tt_enSb“r € R can The resulting algorithm is similar to one recently proposed
e Pl Dioles 1 1 Ty st (2013, iowever, we aim for ul o
problem, and compare it.s performance on a task of fin _aI|z'at|or.1, while 'they focu; on.fmdlng agooq Iow-ran.k ap-
ing aGa;Jssian Mixture Model with a state-of-the-art tensodr’lpmx'matlon' Thls results in dlffe_rent objectlye functéon
decomposition method, the robust Tensor Power Metho urs involves third-order polynomials @;, while Ishteva

X . t al.'s results in sixth-order polynomials on the low-rank
(Anandkumar etal20123. We find that the Givens coor- compact Stiefel manifold. Diagonalizing the tengoris

: . %ttainable in our case thanks to the strong assumption that
number of mixture components is large.



Scalable Streaming Learning Of Dyadic Relationships 96

Coordinate-descent for learning orthogonal matrices through Gvens rotations

it is orthogonally decomposable. Nonetheless, both mettor this we need to calculate the form of the function
ods are extensions of Jacobi’s eigenvalue algorithm to the;’ (0) = f (U - G(i, j,6)). We have:
tensor case, in different setups. iy

We start with preliminary notations and definitions. We fo-
cus here on symmetric tensdfsc R4*4* <, A third-order

tensor is symmetric if its values are identical for any per-
mutationo of the indices: withl}, ;,,, = 1;

> T(wwup,ue) + T (i, 1, ) + T (i, 1y, ;).
k#i,j

a(io(2)i0(3)" _ ~

We also view a tensdF as a trilinear map. where we usedi; = cos(f)u; + sin(f)u; anda; =
T @ R x R x RY — R T(o,upus) = 0500 —snO)u:

Zi,bﬂzl TabcV1aV26V3c- Denote byT the tensor such thatli;x = T'(u;, uj, ug).
we also use the three-form tensor product of a//é Will abuse notation and dendte = T'(U, U, U). The
tensor?T is the three-way multiplication of" by the ma-
trix U. This is the lifting of the matrix operation/ =
M(U,U) = UMUT to the tensor domain.

Finally,
vectoru € R? with itself. v ® v ® u € RI*Ixd
(u® u® u)gpe = uq - up - ue. Such a tensor is called a
rank-onetensor.
Definition 4. A symmetric tensdF is orthogonally decom- Collecting terms, using the symmetry‘tfand some basic
posable if there exists an orthonormal sgt...vy € R?,  trigonometric identities, we then have:
and positive scalars, ... A\q > 0 such that: B ~ 3 R ~
d 9:(6) =cos®(8) (Tm + Tjj5 = 3Tij5 — 3Tjn‘) ©)
T = )\i’Ui@’Ui@’Ui. 7 . ~ ~ ~ ~

; ( ) ") +sin®(0) (Tm = Tjjj — 3Tij5 + 3Tm)
Unlike matrices, most symmetric tensors are not or- +cos(6) (3Tm‘ + 3Tjii)
thogonally decomposable. However, as shown by ) ~ -
Anandkumar etal. (20129; Hsu & Kakade (2013; +sin(0) (3Tijj B 3Tj”) '
Anandkumar et al.(2013, several problems of interest,
notably Gaussian Mixture Models and Latent Dirichlet |n each step of the algorithm, we maximizg (6) over
Allocation do give rise to third-order moments which are _r < ¢ < 7. The scalar functio’ has at most 3 max-

orthogonally decomposable in the limit of infinite data.  jma that can be obtained in closed form solution, and thus
The goal of orthogonal tensor decomposition is, given arfan be maximized in constant time.

orthogonally decomposable tendgrto find the orthogonal
vector sew, ... vg € R% and the scalars,, ... \g > 0.

Algorithm 3 Riemannian coordinate maximization for or-
thogonal tensor decomposition
We now show that finding an orthogonal decomposition cannpyt:  Symmetric tensof’ € R4*4x4,

be stated as an optimization problem o@&y. Initialize t = 0,7° = T, Uy = I,.
Theorem 3. LetT € R**?*4 have an orthogonal decom-  while not convergedio
position as in Definitior4, and consider the optimization 1. Sample uniformly at random a péirt), j(¢)) such
problem thatl <i(t) < j(t) <d.
d 2. ObtainT,, T¢. ., Tt ., T,
(%%}if(U) - z; T iy wiy us), ®) 3.6, = argmaxjgjgj(e)ijwhiareg? is defined as ir®.

= 0
whereU = [u; us ... ug]. The stable stationary points of 4. THY =T (G(i,7,0,), G(i, §,0;), G(i, 7, 04)).
the problem are exactly orthogonal matricéssuch that Il Three way multiplication of”* by G(i, 5, 6;).
u; = vr(;) for a permutationr on [d]. The maximum value 5. Upy1 = U:G(i,7,04).
they attain is)>%_, \;. 6.t =t+1.

end while

The proof is given in the supplemental material. output: Uinar.

5.2. Coordinate minimization algorithm for orthogonal

tensor decomposition The most computationally intensive part of Algoritt8iis

line 4. Multiplying a tensor by the Givens rotati6i{(s, j, 0)
We now adapt Algorithni for solving the problem of or- only affects tensor entries on thi¢h andj-th slice. This
thogonal tensor decomposition of a tenggrby maximiz-  requiresO(d?) operations per iteration. In Section D of the
ing the objective functior8, f(U) = Zle T(ui,us,ui).  supplemental material we provide a different version of thi
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Figure 3.Clustering performance in terms of normalized M 0.82 16K 36K SOK 106K ZOCK
of the Givens algorithm vs. the tensor power method of Number of samples

Anandkumar et al(20123. Clustering by fitting a GMM from

samples drawn from a 20-component GMM with varying dimen-gq, - 4 Same task as Figug but for fixed dimensior = 100
sion, using 3rd order moments. Reconstruction is performed fron}md varying number of samples.

(a) 10K and (b) 200K samples. Blue line with triangles marks the
Givens coordinate method. Red line with circles marks the tensor
power method, and the black line is the optimal performance if all
GMM parameters are known.
performance of both algorithms across all sample sizes for

dimension= 100. We see that the coordinate minimization
method again performs better for larger sample sizes. We

observed this phenomenon for 50 components as well, and
algorithm which does not require calculating the teriBor  for mixture models with larger variance.

Instead, it operates directly on the data points, calawgati
cross products on demand. This version of the algorith

has complexity per step @¥(#samples) instead. We described a framework to efficiently optimize differen-
5.3. Experiments tiable functions over the manifold of orthogonal matrices.

Hsu & Kakade(2013 andAnandkumar et a{20123 have The apprpach is based on Givens rotati_ons, which We_show
recently shown how fitting a Gaussian Mixture Model can be viewed as the parallel of coordlna,te updates in Eu-
(GMM) with common spherical covariance can be reducedf!id€an spaces. We prove the procedure’s convergence to
to orthogonally decomposing a third moment tensor. we? chal optimum. Using th.|s framewprk, we develop'ed'al-
evaluate the Givens coordinate minimization algorithm us3°7ithms for two unsupervised learning problems: Finding
ing this problem. We compare with a state of the art tensoPPaS€ principal components; and leaming a Gaussian mix-

decomposition method, the robust tensor power method, 447 model through orthogonal tensor decomposition. Our
given inAnandkumar et a2012a. method poses an alternative to the tensor power method for

We generated GMMs with the following parameters: num-°rthogonal tensor decompositions. Our alternative extend
ber of dimensions if{10, 20, 50, 100, 200}, number of the way the Jacobi eigenvalue algorithm is an alternative to
samples in{10K, 30K, 50K, 100K, 200K }. We used 20 the matrix power method for matrix decompositions.

components, each with a spherical variance of 2. Th&ve expect that the proposed framework can be further ex-
centers were sampled from a Gaussian distribution withended to other problems requiring learning over orthogo-
an inverse-Wishart distributed covariance matrix. GlVenna| matrices induding ICA. Moreover’ coordinate descent
the samples, we constructed the 3rd order moment, d@pproaches have some inherent advantages and are some-
composed it, and reconstructed the model following thgjmes petter amenable to parallelization. Developing dis-

procedure inAnandkumar et al(20123. We then clus-  tribyted Givens-rotation algorithms would be an interegti
tered the samples according to the reconstructed modg|tyre research direction.

and measured theormalized mutual informatioiNMI)
(Manning et al. 2009 between the learned clustering and
the true clusters.

np. Conclusion
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A. Proofs of theorems of Section 3 —(V£(U)ij (Z1)ji = —(Vf(U))ji , and(Z;) gy = 0 for

all other coordinateék, 1).
Below we use a slightly modified definition of Algorithm &,1)

1. The difference lies only in the sampling procedure, andr he sequence of tangent vectafise Ty, O, is easily seen
is essentially a technical difference to ensure that each c&o be gradient relatedim sup & — oo(V f(Uy), Z;) < 0
ordinate step indeed improves the objective or lies at an og- This follows fromZ, being equal to exactly two coordi-
timum, so that the proofs could be stated more succinctly. nates ofV f(U; ), with all other coordinates being 0.

_ _ _ _ S— Using the optimal step size as we do assures at least as
Algor|tlhm 4 R|emann|an coordinate minimization @, large an increasg (U;) — f(U,+1) as using the Armijo
sampling variant step size ruleArmijo, 1966 Bertsekas1999. Using the
Input:  Differentiable objective functiory, initial matrix  fact that the manifoldD, is compact, we obtain by the-

Uo € Oq orem 4.3.1 and corollary 4.3.2 dfbsil et al. (2009 that

=0 limg o0 [V (U] =0

while not convergedio i ) .

1. Sample coordinate paits(¢), j(t)) such thatt <  (P) Since Algorithm4 produces a monotonically decreas-

i(t) < j(t) < d uniformly at random without replace- ing sequencg (U,), and since the manifol@®, is compact,

ment, until the objective function can improve we are in the conditions of Theorems 4.4.1 and 4.4.2 of
2. Upyq = argmin f (U, - G(i, 4,0)). Absil et al.(2009. These imply that the only critical points
0 which are local minima are asymptotically stable.
3.t=t+1
end while N

Definition 1. A pointU, € O, is asymptotically stable We now provide a rate of convergence proof. This proof
with respect to Algorithnd if it has a neighborhood’ of IS @ Riemannian version of the proof for the rate of con-
U, such that all sequences generated by Algorithmith ~ vergence of Euclidean random coordinate descent for non-

starting pointlUy € V converge tdJ,. convex functions given batrascu & Necoarg2013.
Definition 2. For an iterationt of Algorithm4, and a set of

Theorem 1. Convergence to local optimum indices(i(t), j(t)), we define the auxiliary single variable

(a) The sequence of iteraté§ of Algorithm 4 satisfies:  functiong,’ :

lim;, ||V f(U¢)|]| = 0. This means that the accumula- y

tion points of the sequend@/, }2, are critical points off. 9/ (0) = [ (U:- G(i,5,0)), )

(b) Assume the critical points of are isolated. Let/, be

a critical point of f. ThenU, is a local minimum off  Note thatg/’ are differentiable and periodic with a period
if and only if it is asymptotically stable with regard to the of 2r. SinceQ, is compact andf is differentiable there
sequence generated by Algorithin exists a single Lipschitz constaht /) > 0 for all g;”.

. . . . . 1To obtain a rigorous proof we slightly complicated the sam-
Proof. (a) Algorithm 4 is obtained by taking a step in pling procedure in line 1 of Algorithm 1, such that coordinates

each iteratiort in the direction of the tangent vectdf;,  with 0 gradient are not resampled until a non-zero gradient is sam-
such that for the coordinaté¢s(t), j(t)) we have(Z;);; =  pled.
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Theorem 2. Rate of convergence
Let f be a continuous function wittl-Lipschitz direc-

tional derivatives. Let U, be the sequence generated by
Algorithm 4. For the sequence of Riemannian gradients

Vf(U;) € Ty, O4 we have:

L. d2 (f(UO) - fmzn)

T+1 - (@)

max B [||Vf (U] <

0<t<T

Lemma 1. Letg : R — R be a periodic differentiable

function, with period2w, and L—Lipschitz derivativey’.
Then there for alb € [ 7]: g(6) < g(0)+0g'(0)+ %62

Proof. We have for alb,

l9'(6) — ¢'(0)] < L[#]. We now have:g(f) — g(0) —
6 0

09'(0) = [y ¢'(7) = g'(0)dr < [y 1g'(T) — ¢'(0)]dr <

9 Lirldr = Loz, D

o t+1

Corollary 1. Letg = Gt 1)j(t41)"

of Algorithm4, we have:

f(U) = f(Uis1) > 5=V f(U)? for the same constarit

defined inl.

Proof. By the definition of ¢ we have f(U;11) =
mgin g(#), and we also have(0) = f(U;). Finally, by
Eq. 1 of the main paper we ha¥g;; f(U;) = ¢'(0). From
Lemmal, we haveg(f) — g(0) < 6g'(0) + £62. Mini-

mizing the right-hand side with respect #p we see that

min {g(0) ~g(0)} = 77(¢/(0))*. Substitutingf (Up.) =
moin 9(8) .f(Uy) = ¢(0), and -V, f(U;) = ¢'(0) com-
pletes the result.

Proof of Theorem 2By Corollary 1, we have f(U;) —
fUe1) > 3=V f(Up)?. Recall that:V,; f(U,) is the

whereU = [uj us ...

Under the conditions

B. Proofs of theorems of Section 5

Definition 4. A tensorT is orthogonally decomposabig
there exists an orthonormal set of vectors. .. vg € RY,
and positive scalars,, ... Ay > 0 such that:

d
T:Z)\i(vi@?vi@?)i)« (%)

=1

Theorem 3. LetT € R* ¥4 have an orthogonal decom-
position as in Definition 4, and consider the optimization
problem
d
BT () = 3 Ty viy ), (6)
ugq). The stable stationary points of

the problem are exactly orthogonal matridéssuch that
u; = vr(;) for a permutationr on [d]. The maximum value

they attain isy%_| \;.

Proof. For a tensor7” denote vetT’) € R% the

vectorization of 77 using some fixed order of indices.

SetT(U) = Y0 (wi ® wp ® uy), With T(U)ape =
Zle UjqUipUic. The sum of trilinear forms in EQ6 is
equivalent to the inner product R’ between?'(U/) and
T Y T s w) = Yoy Y Tabetiatiantic =
> abe Tabe (Z?:l uiauibuic) = D abe TopeT(U)ape =

veqT) - vedT'(U7)). Consider the following two facts:

1) T(U)ape < 1 Va,b,c = 1...d: since the vectors

u; are orthogonal, all their components, < 1. Thus
T(U)abc = Zg:1 UjqUipUie < Zgzl UiqUip =< 1, where

the last inequality is because the sum is the inner product
of two rows of an orthogonal matrix.

(2,9) and(j, i) entry of Vf(Uy). If we take the expectation () ||veq7'(U))||2 = d. This is easily checked by forming
of both sides with respect to a uniform random choice ofyt the sum of squares explicitly, using the orthonormality

indicesi, j such thatl <i < j < d, we have:

1

m|\vf(Ut)||27 (3

Ef(Ut) = f(Uiy1)] =

of the rows and columns of the matiikx

Assume without loss of generality thét = [;. This is

because we may replace the terfs:;, u;, u;) in the ob-

jective with (VT u;, VT u;, VTu;), and because the man-

Summing the left-hand side gives a telescopic sum whicifold V7 Oy is identical toO,. Thus we have thal is a

can be bounded by(Uy) — [}Iélél 7)) = f(Uo) = fmin-

Summing the right-hand side and using this bound, we o

tain
T
SCE[IVAUIE] < L-d*(f(Uo) = fmin)  (4)
t=0
. , ) -
This means that OglgnTE [V f(U)|13] <
L-d*(f(Uo)= fmin
((Wo) = fin) -

2Because?, is compact, any functiorf with a continuous
second-derivative will obey this condition.

b-

diagonal tensor, with,,, = Ay > 0,a = 1...d. Con-
sidering facts (1) and (2) above, we have the following in-
equality:
d A
. . ) — . <
ye%;T(uz,uz,uz) maxvedT(U)-T < (7)
max vedT) - T s.t. |[vedT)|l <1 A |lvedT)|% = d.
T
8
T is diagonal by assumption, with exactlynon-zero en-
tries. Thus the maximum ofJ is attained if and only if
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Algorithm 5 Riemannian coordinate minimization for
streaming sparse PCA
Input: Data streamu; € R?, number of sparse principal

componentsn, initial matrix Uy € O,,, sparsity param-
etery > 0, number of inner iterations.

AU = [aqaz . ..ap) - Uy . I1AU is of sized x m
while not stoppedio
fort=1...Ldo

1. Sample uniformly at random a pdii(t),
such thatl < i(t) < j(t) <m.
2. 0,41 = argmax

0

S ([cos(0) (AU sy +5in(0) (AU ) iy | =12
+[| = 5in(0) (AU ) ity + cos(0)(AU) iy — )
3.AU = AU - G(i(t), j (1)), Or41).

end for

4. i = argm1n||(AU)

J(t))

+l\')._.

).

5 Sample new data point,c.,.
6. (AU).
end while
Z = solveForZ(AU,~) Il Algorithm 6 of
Jourree et al(2010.
Output: Z € R¥*™

Jimin — (new-

Thaa = 1,a =1...d, and all other entries ¢f are0. The
value at the maximum is them_, A

The diagonal ones tensdf can be decomposed into
Zf 16 ®e; ® e;. Interestingly, in the tensor case, un

like in the matrix case, the decomposition of orthogona

tensors isuniqueupto permutation of the factor&uskal
1977 Kolda & Bader 2009. Thus, the only solutions
which attain the maximum of are those where; = e ;),
i=1,...d. O

C. Algorithm for streaming sparse PCA

D. Alternate version of orthogonal tensor
decomposition algorithm - lazy tensor
evaluation

Algorithm 3 in the main text is “Riemannian coordinate
maximization for orthogonal tensor decomposition”. The
version presented there assumes that thelfulld x d ten-
sorT is given as input to the algorithm. Typically in the
applications we consider here, this tensor is formed as a
third order moment from a given dataset. Lete R4

be the data matrix, consisting ef observation withd di-
mensions. In the simplest case we will have thg, =
Z?:l Ay Aji Ay More complex cases (for example when
applying the method to fit an LDA model) still require sim-
ple vector operations which coSk(n) computations to ob-
tain each valud’; ;.

We can therefore adopt a lazy computation model, and re-
frain from constructing the entire moment ten§oin ad-
vance. Instead we may calculate the entfigg only on
demand, and on each step apply the Givens rotation to the
data matrixinstead of the tensor. This requir@$n) oper-
ations, as we will be rotating theand; dimensions (rows)

of the data matrixd. See Algorithm6 below.

Overall the computational cost of each step of this version
of the algorithm i<D(n) wheren is the number of data sam-
ples. This is compared 0 (d?) operations for the version
presented in the main text, whetés typically not the orig-
inal data dimension, but the number of latent variables such
as latent topics in LDA or mixture components in a GMM.
SeeAnandkumar et al2012 for more details.

Algorithm 6 Riemannian coordinate maximization for or-
thogonal tensor decomposition with lazy tensor evaluation

IInput Data matrixA € R4*". ProcedureS(A) for ob-
taining single tensor entries from with computational
costO(n).

Initialize t = 0, Ay = A, Uy = 1.

while not convergedio
1. Sample uniformly at random a pairt),
thatl <i(t) < j(t) <d.

2. ObtainT;;, Tjj;, Tijj, Tyii from A, by S(A,).

j(t)) such

Following are the details for the streaming sparse PCA ver-
sion of our algorithm used in the experiments of section
4. The algorithm itself is brought in Algorithrb. The
algorithm starts with running the original coordinate mini
mization procedure on the first samples. It then chooses
the column with the leadt and replaces it with a new data

3.6, = argmax g7 (0), whereg!” is defined as in Eq.

9 of the maln text.

4. Ay = G(i,4,0:)T Ay
5. Ut+1 = UtG(’L',j, 9,5)
6.t =1+ 1.

end while

sample, and then re-optimizes on the new set of sampleSutput: Uy

There is no need for it to converge in the inner iterations;
and in practice we found that order steps after each new
sample are enough for good results.
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Chapter 3

Discussion

3.1 Summary of contributions of this thesis

In this thesis we presented methods for learning dyadic relationships, focusing on methods for
large-scale and high-dimensional data. We first presented OASIS, a fast and effective streaming
similarity learning algorithm, which at the time of publication achieved state-of-the-art results on
the task of ranking images by similarity. OASIS is based on sparse updates to a full-rank matrix,
and scales well with many samples. However, OASIS suffered from two potential drawbacks.
First is that OASIS memory and computation complexity scales quadratically with the problem
dimension. The second drawback is that there is no efficient way to enforce a positive semi-definite
constraint on the matrix model learned by OASIS, hampering the ability to turn OASIS into a
true metric, or deriving a proper embedding from it.

In Chapter 2.2 we introduced LORETA, a streaming algorithm for learning low-rank matrices.
LORETA is a Riemannian stochastic gradient descent algorithm. Using the manifold structure
allows for memory and computational efficiency, scaling linearly with the problem dimensionality
and with the model rank. Furthermore, optimizing within the low-rank manifold is a key factor in
avoiding the numerical instability often associated with learning low-rank models. This instability
is especially problematic in the streaming setting because of its noisy nature. We applied LORETA
both to similarity learning problems and to the task of learning a multi-label model for images. It
has also been used by Lim and Lanckriet (2014) for ranking songs by similarity.

In Chapter 2.3 we took on a challenge presented by scientific applications of similarity learning.
When similarity learning is applied to image or song retrieval, the main goal is to mimic human
perceptions of similarity. On the other hand, in scientific applications such as brain imaging and
genetics, scientists are interested in gaining insight about questions such as why two brain scans
or two genes are similar. We tackled this challenge in the field of gene expression images of the
brain. Our approach is easily generalized to other domains where rich knowledge-bases exist, such
as proteomics or MRI scans.

In order to learn interpretable similarity models we first mapped the brain gene expression
images into a high-dimensional semantic representation. We did this by learning multiple classifiers
which mapped the gene expression images into semantically meaningful categories, taken from the
Gene Ontology. The categories themselves have a directed acyclic graph structure relating general
and specific categories. We then used the semantic meaning of the categories and the structure
between the categories to obtain an interpretable similarity measure. Our method can explain why
two gene expression images are similar by using semantic categories from the Gene Ontology, as
well as distinguish between different types of similarities based on those same categories.

Finally, in Chapter 2.4 we took on the challenge of scaling up the learning of orthogonal ma-

trices. We were motivated by the new applications of orthogonal matrices in tensor decomposition
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for method-of-moments estimations of latent variable models (Anandkumar et al., 2012a,b; Hsu
and Kakade, 2013; Anandkumar et al., 2014), as well as by applications to sparse PCA and in-
dependent component analysis. We used the manifold structure of the orthogonal matrix group
to define the Riemannian equivalent of Euclidean coordinates. The equivalent turns out to be
simple, sparse orthogonal matrices called Givens rotations, which are rotation matrices that fix an
(n — 2)-dimensional space and perform a rotation on the remaining 2-dimensional subspace. Any

2=1) Givens rotations. We prove

n X n orthogonal matrix can be decomposed into a product of
that successively applying Givens rotations to an orthogonal matrix is exactly the Riemannian
equivalent of Euclidean coordinate updates. Thus our algorithm enjoys the same advantages of
scalability, parallelization and speed of Euclidean coordinate methods (Nesterov, 2012; Richtarik
and Tak4¢, 2014), while preserving the orthogonal structure at all steps. We showed that while
our method is not faster compared with the state-of-the-art method for orthogonal tensor decom-
position, our method is significantly more robust to noise. For sparse PCA, we showed our method
is both faster and achieves better solutions for this highly non-convex problem.

In the future work section below we discuss some interesting questions that turned up during

our work on learning orthogonal matrices, as well as some future applications.

3.2 Future work

To conclude this thesis we look into several possible future directions stemming from the work

presented herein.

Hidden convexity on the orthogonal matrix manifold

When applying the Givens orthogonal coordinate descent algorithm presented in Chapter 2.4 to
tensor decomposition, we noticed an intriguing phenomenon: the iterates seemed to consistently
have a linear convergence rate to an optimal solution, as shown for example in Figure 3.1. This
occurred in a wide variety of experimental conditions with both real and synthetic data, while our

theoretical guarantees only provided for local optima, with a sublinear convergence rate.

10° ¢

= Givens coordinate minimization

Frobenius reconstruction error
=
(@)

0 500 ) 1000 1500
Iterations

Figure 3.1: Convergence of the Riemannian coordinate descent algorithm presented in Chapter
2.4. Shown is the convergence of the 100 dimension model presented in Figure 3.b. of Chapter 2.4,
where a Gaussian Mixture Model is fit using the the third order moment (following Anandkumar
et al. (2012a)). A linear convergence rate is observed.

A recent paper by Belkin et al. (2014) gives a very interesting perspective which might explain

this phenomenon. In the terms of Riemannian optimization, Belkin et al. introduce a quotient
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structure on the orthogonal matrix manifold. They use the fact that in many cases, orthogonal
matrix models are invariant to permutation and change of sign - this is for example the case in
eigendecompositions. Thus, Belkin et al. “quotient out” this invariance. They then present a
class of functions that are convex on that quotient structure, a class which includes the objective
function for orthogonal tensor decomposition. The algorithm Belkin et al. employ is a form of
Riemannian gradient descent. They show linear and super-linear convergence results to global
optima. A natural question is how can the orthogonal coordinate methods presented in Chapter
2.4 be adapted to the quotient structure Belkin et al. propose, and how can the strong convergence

theory be applied to orthogonal coordinate updates with Givens rotations.

Learning orthogonal matrices for matrix completion

Matrix completion (MC) is a well known problem in machine learning and data analysis (Candés
and Recht, 2009; Candés and Tao, 2010; Keshavan et al., 2010). The problem is as follows:
Assume there exists an approximately low-rank matrix R € R™*™  which we can only observe
a small subset of its entries. The goal of MC is to reconstruct the matrix R from the subset of
observed entries. A major motivation and application for MC is its importance in collaborative
filtering for recommender systems, where the goal is recommending new items to a user based on

the preferences of other users.

The usual formulation of the collaborative filtering approach to recommendation systems, is
having input consisting of a set of triplets (i, j, 7). This triplet indicates that user ¢ has a preference
r regarding item j. The preference r is a numeric value such as a rating from 1 to 5, or a binary
value such a click or its absence. The task is to predict what will be user i’s preference for an item
j', for which she has not given a preference indication. The assumption is that such prediction
is possible by using the preferences of other users who have in turn given feedback on item j’, as
well as other items. A standard mathematical formulation of the MC problem is as follows (Koren
et al., 2009; Jain et al., 2013). Assume there are n users and m items, and a sparsely observed

Rnxm

ratings matrix R € as above. Denote by  the set of pairs (i, ) for which feedback exists.
Denote by Pq the matrix projecting onto this set, such that [Po(X)];; = X;; if (4,5) € Q, and
[Po(X)]i; = 0 otherwise. The goal is to find a low-rank factorization of R into a “user” matrix

A € R™* and an “item” matrix B € R™**, that has low mean squared error:

. _ TVI2 _ s TR _ p. .32
min [|Pa(R) — Pa(AB™) [} g{g;'l(%gmz& Rij)’. (3.1)
=114|(4,5

If one fixes the factor A in Eq. 3.1 above, then solving for B is a straightforward least-squares
problem, and likewise if B is fixed and we are solving for A. Solving these two least-squares
problems alternately until convergence is one of the standard algorithms for solving the matrix
completion problem (Koren et al., 2009; Jain et al., 2013; Hardt, 2013). It is straightforward to
show (Jain et al., 2013; Hardt, 2013) that in fact one can use an n x k orthogonal matrix U such

that U spans the column space of A, instead of A itself.

Given such a matrix U € R™* spanning the column space of the user matrix A, the least
square solution for each row B; € R¥ of B has a closed form. Let s(j) C [1...n] denote the subset
of users that have given a rating to the item j. Let Uy, € RI*G)I*k be the submatrix of the rows
of U corresponding to those users. For simplicity we will assume that Us(j) is of rank-k, though
this may be relaxed. Let r; € RI*GI denote the ratings given by these |s(j)| users to the item j.

Then we have:

B; = (U1,Us)) ULy (3.2)



Scalable Streaming Learning Of Dyadic Relationships 106

Substituting 3.2 into the objective 3.1 we obtain the following optimization problem:

m -1
. T T 2
plun ; 1Us(5) (Us(j)US(j)) Usiyri — 7ill2 (3.3)

st. UTU =1,

Posing the problem of matrix completion as an optimization problem over orthogonal matrices
lets one use efficient optimization tools such as Givens rotations and Householder reflections to find
the optimal matrix subspace. This is further motivated by recent breakthroughs in the theoretical
analysis of alternating minimization presented in the works of Jain et al. (2013), Hardt (2013)
and Hardt and Wootters (2014). These papers all show that under certain conditions, alternating
least-squares leads to an optimal solution of the MC problem while being computationally efficient.
Interestingly, they all measure convergence in terms of the principal angles between the model and
the optimal subspace. Thus this line of work is essentially about analyzing the properties of
the orthogonal matrices spanning the “user” and “item” matrices. Therefore we believe that an
interesting avenue for future research is understanding how minimizing Eq. 3.3 by means of Givens
rotations or Householder reflections behaves both in terms of the principal angle to the optimal

solution and in terms of computational complexity.

Efficient block-coordinate optimization for positive definite matrices

Our work on Givens rotations in Chapter 2.4 presented a way to perform low-complexity updates
to a matrix while conserving a non-trivial global constraint - orthogonality. We are currently
looking into a conceptually similar problem regarding positive definite (PD) matrices. As we have
previously seen, PD matrices are useful as models for metric or similarity learning. Therefore, we
wish to find a way to perform efficient block-coordinate updates to a PD matrix while conserving
the PD constraint. Our motivation is the fact that the most common method of enforcing the
PD constraint is computationally expensive - a full eigendecomposition. In Chapter 2.2 we dealt
with this challenge in the case of low-rank positive semidefinite matrices by using the Riemannian
manifold structure of the low-rank PD set. A drawback of the low-rank Riemannian manifold
algorithm is its lack of convexity, making theoretical analysis very difficult.

A promising approach is learning a full-rank PD matrix while performing updates to a single
column and row of the matrix in such a way that the PD constraint is automatically maintained.
This has the added advantage of maintaining a PD model all along the optimization process, which
is useful in the streaming setting.

The way we maintain the PD property is by using the Schur complement (Zhang, 2006) of the
matrix model: Let A be an n x n PD matrix, and suppose without loss of generality that we wish

to update the n-th column and n-th row of A (note that in order to maintain symmetry we must

B T
update both). Partition A as: " | where B is the (n—1) x (n — 1) upper-left block, v is an
v s

n — 1 dimensional column vector, and s is a scalar. Our block-coordinate update involves updating
v and s while keeping B fixed. By the Schur complement condition, the matrix A is PD if and
only if the block B is PD and s — v B~!v > 0. Since A is PD, we immediately have that B is PD

as well, leaving us with a single quadratic constraint on v and s:
s —vT B7v > 0. (3.4)

Given an objective function f we minimize f as a function of v € R”~! and s € R under the convex
constraint 3.4. The minimization can be either exact or approximate, depending on the nature of
the objective f. Note that the constraint 3.4 involves the inverse of the (n — 1) x (n — 1) block
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B. This can be obtained efficiently by maintaining the inverse of A and performing a Sherman-
Morrison-Woodbury matrix inverse update.

As is normally the case for coordinate optimization (Richtdrik and Takac, 2014; Nesterov, 2012),
performing the update efficiently requires that f decomposes over the block we are using (a single
row and column). Luckily, this is the case for a wide range of objectives, including those normally
used for similarity learning such as the triplet loss we used for OASIS, and the loss function of the
popular metric learning method LMNN (Weinberger et al., 2005; Weinberger and Saul, 2009).

Preliminary results indicate that the block-coordinate updates work at least as well as compa-
rable metric and similarity learning methods. It does so while maintaining a PD model all along

the optimization path, without resorting to an eigendecomposition.

New applications for interpretable similarity learning

The work presented in Chapter 2.3 of this thesis was focused on a specific application: Assisting
scientists in understanding and exploring the complex relations between genes, their expression
patterns in the brain, and their biological functions.

However, we believe that the ideas in Chapter 2.3 can be generalized to other domains and can
be improved upon. One very interesting application is in the field of medical imaging such as MRI
and X-ray scans. While there are quite a few attempts of applying similarity and metric learning
to bioimaging (e.g. Godil et al., 2008; Shedden et al., 2009; Wei et al., 2009; Wernick et al., 2010;
Chi et al., 2013), none have looked into the challenge of ezplaining the similarity predicted by the
model. We believe that identifying similar scans while providing semantic interpretations is key
in encouraging adoption in the medical community, while opening up new avenues for improving
the model and its interaction with human experts. In addition, an interpretable similarity tool
could be valuable in the training of health-care workers, as well as for the patients themselves. A
relevant knowledge base for this application is the text and diagnoses given by doctors to these
scans. These can be used as labels and featured as semantic interpretation that the model learns,

similar to the role the Gene Ontology categories played in our work on gene expression images.
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72) TR0 OHYA DIDIND MY P2 NN NTNID DY MIDI NMITIND MNDNT-NTNID NPYIN MY
DXNNMP NN .Y 1T OMT DDIN0N DN HY NTPNY IN,DIDND MNHN P2 NN NTNY Ovnd
NNNA OXTNPNRN OMTNT DXON NTNYI DX TPHNNN VX N N .OPTN?T DD NIN DNDNID
NOMAN NNVN N POVIND NN PAT ANNN DY XM P2 NONNN NNIVN ,NPNTY .NNIVN

.DYN0N P JPXT NTNIPHRN MINDDI NMIAND

YY) ODYTH DINN YNVNRN NAY OO TNT DXON NTNIY HY VAN D TPNNN NN XD 19INI
,TPUNT OND NIPY MOLIWN DX NNAY TN HY DD HY DXV NYWI YWY DIVIY 1IN .72 TN
SV )N DY NN ,NT D9 .MNIVN DY PYYN MI2TRMI MITVMINIT 1IN DOWNNYN DN
MYIVN HY NMOM ,NPDIMNNIN MXVN DY DX ,ITH NN MXIVNN NP
NY Y92 TN DNIININ NON DN YT DY DXNIMIMONRI DITIINND NN ,90NA .1PIAPN MITIN
YTRN VRN 50 INN LDIMANND IN MMIT DY NNSNIND NIAP-NND DY) OOYa 0PN
NYOI 1N KD TWUN DMPIY DINM PNRND DY MTTINNND NN DN DI YN DY DNNINON

TN IN PR YR NN DI DIV TIY PN N2 DMIVOND qoN) , RAM 1oy

=27 MINDIYT P2 JPRYT DTN NN YW YA PO PYRIN .DMINNRND NYIIN DY NODIAN 1T MN
,PNHN DININR NONL DTPHNN NX .NMNN MNN Y DINNT ONW» DY ,MPDT NPT
PN DY DWAYN NPAPN 1PIVNDOD INDIN TN DMIPINY L,DIDVTY DN MNNND DNMINND
MPIVNM MTIT-MDNI MXIVH NTNODY ONT YN DY DINIIVIN NY 1NN NWUN IINRNDN
D219 2PN DY DOTIN 1PNIYT DY DODTIN NTIOY 12 DIVNRNYN NN .TPIAVH MITTIN MIT-MDIND)
NYPNN N DOPINY 2N 2NN DMVDIVD LINITI YTYY DY DODIAN DMNDMINIRD .NPNN
5S¢ NNNA PO OWIOYN TINNDN .NDMIN THITN DN DY NNP-NON ONRND MINY MDN Y
DYNNIN IOV VIAN X PADNY D1 NNIN-NTNY DNININ DRN — YIPAD DINNIN DXON NTND
DONM VDRI PIANY TNXN P IR B NTIAYD 7PSDVN TOTR-)2 NAY OMININ DN PPV
MNNNA 925N NN D) 20,000 HY MVXAN NN NN NN PNV NNXOHRN ,MNNN YW 91T
NY .09 NI PONN MY NHRMP DNNY DN P ,NMY MORPOI MIAIND NN MNP
NUNNYN DN NRY NOIWN .MNID NIAND NDYPD NT DN DX NIAND DMNNN NON DN
NNVIY INDPIAN OTIPON D) MTIN YT DOINN DIPYY Y17 MNINNND GONIV PVIND Y12
NN N0 .ONTN VNN IR INY DP2RYN NN PN NPNY DIYNNIN DIYTNHD NPAIYN
97NN T YA NPNY NPDMNINNIN MNIVN HY NDOW NI YW NIHHIN dYIL PO MWD
SV DYTIN TIYY NNIY ,DNDV P19 APIINNNN MXIVN HY DOVTN DMIVY» MIApya
DI MODTNNIP NITYY NWTN NV DINXND DX .DO0ININT NVIY MYNNNI DMIN DINYNI

(Givens Rotations) 7022 »112°0” DY MOTI MVIVO NPINMNNNIN MXIVN DY NODIANN

P19 1OY2 DY AN DXV NMININAD XN NNVIY 01D ND2INN NVIWD IRV YD DIXRIND DN
Y13 NP NVIYD NNXNYNL TN DXV MININD NNXANI NN NNVIY 15 11D .0MINVN

.sparse PCA
AND THXIMN NTIAYNND DOY2NN OOTXNY IPNN 1D 99901 DT DN ,D\’Ub
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