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Abstract

Modern machine learning problems are often about learning a mapping between two high-dimensional
domains. For example, learning a mapping from the domain of images to the domain of words, or
learning which documents are similar to others. We refer to these mappings as dyadic relationships.
In this thesis we focus on learning dyadic relationships encoded in matrix form. For example, a
matrix mapping between image representations and semantic representations, or a matrix acting
as a bilinear form encoding similarity between pairs of documents.

Specifically, we address the challenge of learning dyadic relationships for large-scale high-
dimensional datasets. We employ two sets of tools in developing the methods presented here:
First, we use the rich geometric and algebraic structure of matrices. This includes the Rieman-
nian manifold structure of the set of low-rank matrices, decompositions of orthogonal matrices,
and properties of positive definite matrices. In addition, we concentrate on streaming access algo-
rithms. These are algorithms which have access to a small subset of the data samples or features
at any one time. Streaming algorithms are key for handling huge datasets which do not fit in
memory, and for obtaining fast predictions even before the entire data is available or processed.

This thesis is based on four papers. First, we deal with the problem of learning a similar-
ity measure between sparse high-dimensional instances, applied to image retrieval. We focus on
building a fast algorithm which scales to large datasets, and investigate the role of symmetry and
positive definiteness in its performance. The second paper presents two streaming algorithms for
learning low-rank and low-rank positive definite matrices, applied to learning similarity measures
and multi-label models. The algorithms are based on Riemannian stochastic gradient descent, and
prove to be both fast and robust despite the highly non-convex nature of the low-rank constraint.
The third paper deals with the challenge of learning interpretable relations - how can an algorithm
explain its output in terms which make sense to humans? The work is motivated by the need
to understand a large dataset of high-resolution gene expression images in the mouse brain. The
images exhibit elaborate multi-scale patterns, and the genes themselves exhibit complex interac-
tions, making the data difficult to comprehend. Our method uses the semantic information gained
from the rich existing knowledge on genes and their functions, and gives researchers means for
exploring and understanding the dataset. Finally, the fourth paper deals with the general problem
of efficiently learning orthogonal matrices, motivated by recent applications to tensor decomposi-
tions for method-of-moments estimation of latent variable models. We present a novel Riemannian
coordinate descent algorithm, based on simple sparse orthogonal matrices called Givens rotations.
We show our method produces better results for tensor decomposition compared with the state-
of-the-art, as well as being faster and outperforming a state-of-the-art algorithm for sparse PCA.

We conclude by discussing several future research directions stemming from the work presented
here, as well as building on recent advancements by other researchers.
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Chapter 1

Introduction

Numerous machine learning problems involve a mapping between two high-dimensional domains.
As a common example, multi-class learning can be viewed as learning a mapping from the instance
domain to the label domain. As another example, learning a similarity measure can be viewed
as learning a mapping between a domain to itself. Collaborative filtering can be viewed as learn-
ing a mapping between the user domain and recommended item domain. We call these dyadic
relationships.

In fact, one can argue that the majority of real-life machine learning problems are dyadic or
even polyadic. Computer vision tasks typically involve many labels and objects, a typical biological
application can involve inferring relationships pertaining to thousands of genes and hundreds or
thousands of biological conditions, and learning for ad placements demands learning a relationship
between thousands of ads and millions of possible queries.

A classic mathematical representation for a linear mapping between two high-dimensional do-
mains is the matrix. Using some of the examples above, multi-class learning can be seen as learning
a matrix of classifiers; similarity learning as learning a bilinear form parametrized by a matrix;
and collaborative filtering as completing a partially observed user-item interaction matrix.

Formulating dyadic problems as matrix problems assumes a flat structure on each of the do-
mains. Recently there has been much interest in learning structured dyadic relationships, for
example using the structure of language when learning a model for annotating images (Frome
et al., 2013). Adding complex structure to the domains of the dyadic relationships is beyond the
scope of this thesis, and will be considered in future work.

Learning mappings between high-dimensional spaces is becoming ever more challenging in re-
cent years as the size, richness and requirements from machine learning algorithms have soared.
For example, the number of available labels for images have grown to the tens of millions, as did
the numbers of users and items in item recommendation tasks.

In addition, the recent explosion in the size of available data has outpaced the growth rate
of computing power and local storage capacity. This has made many classical machine learning
methods such as kernel methods increasingly irrelevant, and brought a rising interest in developing
new algorithms suited for these new conditions

This work aims to create methods for learning dyadic relationships suited for handling large-
scale datasets: Ideally, the runtime and memory demands of our methods scale linearly or sublin-
early with the number of instances and with the dimensionality, the methods have low communi-
cation cost, and they are amenable for parallelization.

We combine two sets of tools to approach these goals: The first set of tools is harnessing the rich
algebraic and geometric structure of matrix domains. For example, the many characterizations of
matrix rank provide a fertile ground for creating efficient learning algorithms. As another example,
we use the Riemannian manifold structure of sets such as low-rank positive semidefinite matrices
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or orthogonal matrices to create efficient and scalable algorithms for learning dyadic relationships.
The second set of tools is using a simple yet attractive family of optimization methods partic-

ularly well suited for large datasets: streaming access algorithms. In the streaming access model,
only a small subset of the data is available to the algorithm at any one time. A streaming data
access model enables a small memory footprint, since only a small fraction of a huge dataset is used
for any given computation. In their 2008 paper “The Tradeoffs of Large-scale Learning”, Bous-
quet and Bottou (2008) argued persuasively in favor of using simple streaming access optimization
methods in the large sample regime. They show from a theoretical standpoint why simple stream-
ing methods such as stochastic gradient descent give better generalization when compared with
first order gradient or second order Newton methods which require processing an entire dataset.

An additional important advantage of the streaming data optimization model is handling learn-
ing tasks where the data actually arrives in a stream: for example the task of recommending daily
news items to a user. In such cases the algorithm needs to deliver predictions while the data is
being gathered.

This thesis is organized as follows. Chapters 2.1 and 2.2 build on the basic concept of stochastic
gradient descent, where the data access is to a few instances at a time. We first use sparsity, then the
Riemannian geometry of low-rank matrices, to develop fast and efficient algorithms for learning
dyadic relationships expressed in matrix form. We apply these new algorithms to large-scale
learning of image and document similarity, and to image labelling. In Chapter 2.3 we take a slight
detour and focus on a specific challenge: how to learn similarity models that can be interpreted by
humans? We approach this problem motivated by the need to help scientists understand a newly
available, complex dataset of gene expression maps in the mouse brain. Chapter 2.4 of this thesis
develops a coordinate descent approach for Riemannian space, where the data access is to a few
features at a time. The Riemannian coordinate descent method leads in turn to a new approach
for learning orthogonal matrices and to a novel tensor decomposition method.

In this introduction, we first discuss the applications of learning dyadic relationships in machine
learning. Then we overview some of the basic geometric and algebraic matrix structures used
throughout this thesis, such as positive definiteness and low-rank. Finally, we introduce some basic
tools of optimization, and specifically Riemannian optimization, which have proven so fruitful in
the research presented here.

1.1 Applications of learning dyadic relationships with ma-
trices

This section outlines some motivating examples of applications of learning dyadic relationships in
machine learning, as discussed and applied throughout this thesis.

1.1.1 Metric learning and similarity learning

Many machine learning tasks inherently rely on the existence of a metric or a similarity measure
between pairs of instances. For example, retrieving a document similar to a query document,
nearest-neighbor classification, recommending a similar item, and clustering, all assume that a
way to measure distances between instances exists.

The idea of similarity learning is that this similarity measure or metric can itself be the object
of machine learning. It has been shown in many cases that learning the similarity measure can
dramatically improve the performance of machine learning algorithms (Xing et al., 2002; Bar-Hillel
et al., 2005; Davis et al., 2007; Jain et al., 2008; Weinberger and Saul, 2009; Guillaumin et al.,
2009b,a; Kulis, 2012).
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For example, learning a metric and then using it for nearest neighbor classification has been
used to obtain (at the time) state-of-the-art results in face recognition tasks (Guillaumin et al.,
2009b) and to improve human activity recognition in video (Tran and Sorokin, 2008). As another
example, consider the problem of “query-by-example”, when the user wishes to find images or
documents similar to a query document; in Chapter 2.1 of this thesis we learn a similarity measure
that makes for much better query-by-example retrieval when compared with similarity measures
such as the oft-used cosine similarity measure (Manning et al., 2008).

The metrics most commonly used in machine learning are Mahalanobis distances: For a
pair of vectors x, y ∈ Rn, the Mahalanobis distance between them is parametrized by a matrix
M ∈ Rn×n, and given by:

distM(x, y) =
√

(x− y)T M(x− y). (1.1)

For M = I the identity matrix, the Mahalanobis distance is identical to the standard Euclidean
distance.

In order for the function distM to be a true metric, it must be (1) symmetric, (2) positive
on distinct pairs x 6= y, and (3) obey the triangle inequality. These three conditions are fulfilled
if and only if the matrix M is positive definite (PD). That means that M must be symmetric
with strictly positive eigenvalues (see Definition 1 in Subsection 1.2.1 below). If M is positive
semidefinite (PSD), that is some of its eigenvalues are zero, then the symmetry and triangle
inequality conditions hold, but pairs of vectors might have zero distance despite being distinct.
More precisely, any pair of vectors x, y ∈ Rn whose difference x − y lies in the null space of M
will have Mahalanobis distance of 0. For PD matrices the null space is {0}, meaning only identical
vectors have distance 0. See further discussion on PD and PSD matrices in Subsection 1.2.1 below.

Alternatively, instead of learning a distance metric we can learn a similarity measure parametrized
by a matrix S ∈ Rn×n. The similarity measure is given by:

simS(x, y) = xT Sy. (1.2)

If S = I the identity matrix, then simS is simply the standard inner product. For simS to be an
inner product, it must be symmetric and obey simS(x, x) ≥ 0, simS(x, x) = 0⇔ x = 0. In matrix
terms, symmetry is achieved if and only if the matrix S is symmetric, and positivity if and only
if S is positive definite. Similar to the Mahalanobis case, if S is only positive semidefinite, then
some non-zero vectors will have simS(x, x) = 0: exactly the vectors x in the null space of S .

In Chapter 2.1 of this thesis we introduce a method for learning a similarity measure S, called
OASIS. OASIS is based on the Passive-Aggressive algorithm (Crammer et al., 2006), which is a
close variant of SGD. Using this variant of SGD, along with leveraging sparse instance represen-
tations, makes OASIS an extremely fast method for learning similarity. We applied OASIS to the
challenging task of learning semantic image similarity, for example, learning that two images of
airplanes are similar even when one is on the ground and one is in the air, while an image of an
airplane and a rainbow are not as similar despite both of them showing the sky. OASIS achieved
(then) state-of-the-art results on the Caltech256 dataset (Griffin et al., 2007).

However, OASIS suffered from two caveats. The first caveat is that there is no computation-
ally cheap way to make the similarity positive definite. The most straightforward way would be
projecting onto the set of PSD matrices. However, this projection is computationally intensive,
since it is based on an eigendecomposition, requiring computation time which is cubic in the in-
stance dimension. The second caveat is that the model size scales quadratically with the instance
dimension, even when the instances themselves are sparse.

In order to address these two issues, we introduce in Chapter 2.2 a new algorithm called
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LORETA. LORETA learns a low-rank similarity matrix directly, which yields significant com-
putational and memory benefits. Particularly, if the instance domain is of dimension n and the
similarity matrix is of rank r, the memory needed for storing the matrix is O(nr) instead of O(n2).
We discuss this point further in Subsection 1.2.2 below. In addition, LORETA is capable of di-
rectly learning a low-rank PSD matrix, without the computational burden of an eigendecomposition
which was needed in our previous work on OASIS. The major innovation introduced in LORETA
is a way to perform computationally efficient SGD within either the manifold of low-rank matrices
or low-rank PSD matrices. Using the manifold structure enables the creation of an efficient and
stable algorithm.

We note that both OASIS and LORETA learn bilinear models, while the non-linear elements
such as image features were precomputed. However, bilinear models can be readily trained as part
of a deeper, nonlinear learner - see for example systems suggested by Zhong et al. (2011); Wu et al.
(2013).

1.1.2 Multiple label learning

Consider the problem of object recognition in images. Suppose we have a large list of possible
objects, L. We wish to have an algorithm that could assign to a given image several object labels
from L, possibly sorted by prominence or confidence. A straightforward way to approach this
problem is to treat it as a collection of |L| binary classification problems, one for each object label
l ∈ L. This method has been used successfully, for example by Crammer and Singer (2003); Kakade
et al. (2008) and more recently has garnered much success in the computer vision community, for
example by Torresani et al. (2010); Li et al. (2010); Deng et al. (2011).

However, in many cases it makes sense to tie the different labels together. For example, if
the task is image labelling, then the classifiers for mammals such as bears, dogs and sheep might
be more similar, or use similar features, when compared with classifiers for sky-scrapers or gui-
tars. Assume there exists a latent label space S of size |S| � |L|, such that the labels of L are
combinations of the latent labels S (Amit et al., 2007).

A matrix formulation of this idea is as follows. Let d be the instance dimension, and let
B ∈ R|S|×d be a matrix of classifiers for the latent image space. Assume that the classifiers
for the labels l ∈ L are linear combinations of the latent label classifiers, and let A ∈ R|L|×|S|

be a matrix encoding the corresponding linear combinations. We then form a classifier matrix
C = AB ∈ R|L|×n, such that for an instance x ∈ Rn, the product Cx gives a score for each
possible label l ∈ L. Since the number of latent labels is much smaller than the total number of
labels, the matrix C is of low-rank. Thus, we have reduced the problem of learning latent label
spaces with linear combinations to the problem of learning a low-rank classifier matrix C.

In Chapter 2.2 we use this insight and learn a low-rank multi-label matrix model, applying it
to label images from the ImageNet dataset (Deng et al., 2009). The labels for these images form
a hierarchy, with strong correlations between certain label subsets. We show that learning low-
rank multi-label models can significantly improve performance over full-rank models, while saving
memory and computation resources.

1.1.3 Interpretable similarity learning

A challenge faced by many machine learning applications, especially when used in scientific context,
is the difficulty of interpreting the learned model. For example, a scientist working on understand-
ing relations between different genes has only limited use for a machine learning similarity model
that simply states that gene A and gene B are “similar”. Researchers often wish for more insight
into the factors underlying the predicted similarities. This stands in contrast to machine learning
tasks such as object-recognition, where the goal is to replicate a well developed human ability. In
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scientific machine learning applications we often wish to gain a deeper understanding of relations
which are difficult even for human experts to observe.

In Chapter 2.3 we tackle the challenge of creating an interpretable similarity model in the
context of bioimaging. The specific problem motivating us is making sense of a new, large set of
high-resolution gene expression images in mammalian brains made available by the Allen Institute
for Brain Science (Lein et al., 2006; Ng et al., 2009; Hawrylycz et al., 2014). These images convey
the level of expression of each of 20,000 genes on a sub-cellular resolution within mouse brains. Our
aim is to create an algorithm which makes it easier for neuroscientists to understand the relations
between genes, their biological functions, and the genes’ expression patterns in the brain.

To this end we use a two-stage approach leveraging a rich human-curated knowledge base about
genes and their biological functions called the Gene Ontology (Gene Ontology Consortium, 2004).
The Gene Ontology (GO) is a directed acyclic graph (DAG) with nodes corresponding to biological
function, ranging from very general functions at the head of the DAG, such as “metabolism” to
very specific functions such as “negative regulation of systemic arterial blood pressure”. Each of
the functions is annotated with genes that have been shown to relate to that function, with genes
often annotated with multiple biological functions.

The first stage of our interpretable similarity learning approach is training a probabilistic clas-
sifier for each function in the Gene Ontology, aiming to predict biological function from a brain
gene expression image. We then treat the outputs of these classifiers as features. Since the Gene
Ontology is created and curated by humans, using the presence of GO functions as features creates
inherently interpretable features. In the second stage we further use the GO structure for two
purposes: evaluating similarities between genes based on their expression patterns, and explaining
similarities between genes in terms of GO functions. For example, two genes that share many
functions that are close within the GO DAG structure would be deemed similar. These functions
would also be the explanatory factors proposed by the algorithm.

Explaining the similarities opens the possibility for finding distinct types of similarity. For
example, our algorithm can suggest that gene A is similar to gene B because both A and B are
related to a certain neurotransmitter, and that A is similar to gene C because both A and C
relate to a specific metabolic mechanism. In Chapter 2.3 we describe our interpretable similarity
model in detail, and show its use in gaining new insights into the functions and relations between
genes. Sections 3.3 and 3.4 of Chapter 2.3 give a detailed example where our model predicts
several similarities to a gene called Synpo2, while offering distinct and diverse explanations for
these similarities.

1.2 Matrix structures

1.2.1 Positive definiteness

Matrix algebras are in general more intricate than the algebra of the real numbers, even if we
restrict ourselves to the set of square symmetric matrices. For example, the set of square symmetric
matrices isn’t well ordered. However, there is a natural matrix generalization to the idea of a
positive real number - the positive definite (PD) matrix. Similar to a real number, every PD
matrix admits a real matrix square root. This feature is of particular importance when using
matrices to parametrize distances and similarities.

Definition 1. A square symmetric matrix A ∈ Rn×n is positive definite (PD) if all its eigenvalues
are strictly greater than 0, and positive semi-definite (PSD) if all its eigenvalues are greater than
or equal to 0.

Corollary 1. For every PD or PSD matrix A there exists a real matrix B such that A = BBT .
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Proof. Let A = UΛUT be the spectral decomposition of A, where URn×n is an orthogonal matrix
such that UUT = UTU = In, and Λ is a real diagonal matrix. This decomposition exists since A is
symmetric. From Definition 1, all the diagonal elements of Λ are non-negative. Let B = U

√
ΛV T ,

where the square-root of Λ is element-wise, and V is any n × n orthogonal matrix. Then A =
BBT .

If the matrix A is positive semi-definite, then necessarily A has rank k ≤ n, since A could have
0 eigenvalues. In that case, the matrix B can be set to be of dimensions n× k, spanning only the
eigenspace of the non-zero eigenvalues of A.

In both the PD and PSD cases, the existence of a decomposition as in Corollary 1 implies that
the metric distM (Eq. 1.1), or the similarity simS (Eq. 1.2) in fact rely on a linear transformation
of Euclidean space. Let M = BBT , with B ∈ Rn×k, k ≤ n:

distM(x, y) =
√

(x− y)T M(x− y) =
√

(x− y)TBBT (x− y) = distIk
(Bx,By), (1.3)

where distIk
is simply the Euclidean distance in Rk (ifM is positive definite then k = n). Similarly,

let S = BBT with B ∈ Rn×k, k ≤ n:

simS(x, y) = xT Sy = xTBBT y = simIk
(Bx,By).

We see that positive definite and positive semi definite distance and similarity measures can
be understood as follows: apply a linear transformation B to the data, and measure distances or
similarities in the transformed space using the standard Euclidean distance or the standard inner
product. If the distance or similarity is positive semi-definite and not positive definite, then B is
dimension reducing.

Chapters 2.1 and 2.2 of this thesis explore extensively these ideas. In Chapter 2.1 we introduce
an algorithm for learning a general (not necessarily PSD) similarity matrix S. In Section 6 of
Chapter 2.1 we examine the effect of enforcing the PSD attribute on the learned matrix S, by
projecting S onto the set of PSD matrices. In general we find that requiring S to be PSD improves
the quality of the learned similarity measure. This implies that requiring the similarity measure to
rely on an actual Euclidean representation serves as form of prior or regularization for similarity
learning. This was further shown in the work of Qian et al. (2013).

A drawback in enforcing the PSD attribute by projection onto the PSD set is that it is com-
putationally expensive, requiring repeated eigendecompositions to identify the space of negative
eigenvalues. In Chapter 2.2 we explore a new approach allowing us to directly learn a similar-
ity measure parametrized by a PSD matrix. This is done by using the Riemannian geometry
of the set of PSD matrices and optimizing directly over the PSD manifold, avoiding expensive
eigendecompositions altogether.

1.2.2 Low rank

Matrix models in machine learning are often very high-dimensional. For example, the number of
parameters in a matrix similarity model in Rn is n2; a full user-item preference matrix model for
collaborative filtering is of size #items×#users, which can be huge - far larger than can be stored
in the memory of a single or even a few modern machines.

Given this potential for very high dimensionality, we are often in search for ways to limit the
number of parameters. Limiting the number of parameters serves two causes: First, it leads to
better generalization, or less overfitting. Second, it makes the model tractable in terms of memory
and computation time.

An extremely useful way to limit the number of parameters in matrix models is imposing a
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low-rank constraint. A matrix X ∈ Rn×m is of rank k if it has a factorization X = ABT , where
A ∈ Rn×k and B ∈ Rm×k are “thin” matrices. The overall number of parameters for a low-rank
X is reduced from n ·m to (n+m) · k, which is much smaller if k � min(n,m).

For the special case of a positive semi-definite matrix X, it is straightforward to show that any
rank-k PSD matrix X ∈ Rn×n can be factored as X = AAT with A ∈ Rn×k. See the discussion in
Subsection 1.2.1 above.

Constraining a matrix to be low-rank can have many interpretations according to the learning
scenario. In the case of similarity learning, we have for a low-rank similarity matrix S = ABT

simS(x, y) = xT Sy = xTABT y = simIk
(Ax,By). (1.4)

This means that the matrices A and B project the vectors x and y respectively from n dimensions to
a small k-dimensional space, and in that low-dimensional space similarity is given by the standard
inner-product. If S is PSD, then we can factor S = AAT , meaning the projections of the left vector
x and right vector y are identical.

While a low-rank decomposition has clear advantages, it poses difficulties from an optimization
point of view. The set of low-rank matrices is highly non-convex, and in general minimizing a
convex function subject to a rank constraint is NP-hard (Natarajan, 1995). Even finding good
local minima is often hard due to the fact that the decomposition X = ABT is not unique and
has a large invariant space. Let M ∈ Rk×k be any invertible matrix. Then we can replace the
matrix A by AM and the matrix B by BM−T , and obtain X = AM

(
BM−T

)T = ABT . This
non-uniqueness makes optimization unstable.

In Chapter 2.2 of this thesis we use the Riemannian manifold structure of the set of low-rank
matrices to resolve these difficulties. We develop an algorithm, LORETA, for numerically stable
learning of low-rank matrices with computational and memory burden which is linear in the number
of parameters of the low-rank factorization.

1.2.3 The structure of orthogonal decompositions

The idea of orthogonal matrix decompositions is extremely powerful and widely used in mathe-
matics and applications. The classic matrix spectral theorem guarantees that for any symmetric
matrix A ∈ Rn×n such that A = AT there exists an orthogonal matrix U ∈ Rn×n and a diagonal
matrix Λ ∈ Rn×n such that UUT = UTU = In (orthogonality) and A = UΛUT . If the eigen-
values of A are distinct, then the matrix U contains the eigenvectors of A, and the matrix Λ the
corresponding eigenvalues.

More generally, the singular value decomposition for any (not necessarily square) matrix B ∈
Rn×m is B = USV T with U ∈ Rn×n, V ∈ Rm×m both orthogonal matrices, and S ∈ Rn×m a
matrix with non-negative entries on its main diagonal, and 0 otherwise.

In machine learning applications, the use of such orthogonal decompositions as the eigendecom-
position and SVD is ubiquitous: Principal Component Analysis (PCA), Latent Semantic Analysis
(Dumais, 2004), dimension reduction via SVD, and matrix completion with SVD (Jain et al., 2010;
Koren et al., 2009) are some of the better known examples.

Looking into constructing efficient streaming algorithms has lead us to look into how these
orthogonal decompositions are calculated in practice (Golub and Van Loan, 2012). In most cases, at
the core of the calculation lies one of two very simple orthogonal matrices: Householder reflections,
or Givens rotations.

A Householder reflection is generated by a normalized vector v ∈ Rn and has the form H =
I − 2vvT . H is symmetric and orthogonal, and its determinant is -1.

A Givens rotation is an orthogonal matrix of the form:
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G(i, j, θ) =



1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · cos(θ) · · · −sin(θ) · · · 0
...

...
. . .

...
...

0 · · · sin(θ) · · · cos(θ) · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1


,

where the entries cos(θ) and sin(θ) are on the (i, j) submatrix of G(i, j, θ).
Any orthogonal matrix U ∈ Rn×n with det(U) = 1 can be represented as a product of n(n−1)

2
Givens rotations. Any orthogonal matrix can be represented as a product of n Householder reflec-
tions and one Givens rotation.

The simplicity of both Householder and Givens orthogonal operators make them ideal for
efficient optimization. In Chapter 2.4 of this thesis we formally show that the application of
Givens rotations is in fact a form of coordinate descent in the Riemannian manifold of orthogonal
matrices. We use this insight to derive a general, efficient, and parallelizable CD procedure for
learning orthogonal matrices. We apply this method to two problems: first is learning a sparse
PCA model, following the formulation of Journée et al. (2010). Second, we give a new method for
orthogonal tensor decomposition, an optimization problem which has risen to prominence lately as
a means for performing a method-of-moments estimation for statistical models such as Gaussian
Mixture Models and Latent Dirichlet Allocation (Anandkumar et al., 2012a). We show our new
method is consistently more robust than the current state of the art, the Tensor Power Method of
Anandkumar et al. (2012a, 2013).

1.3 Large-scale matrix optimization

Modern data sets are usually large in two different aspects: they include many instances, and
the instances themselves are high-dimensional. For example, the Wikipedia online encyclopedia
includes both millions of documents (instances), and each document is comprised of a vocabulary
containing millions of words, as well as a highly elaborate link and tag structure. The streaming
methods in this thesis adopt one of two approaches: either update the model using a few instances
at a time, or a few dimensions at a time.

These two approaches correspond to two very well known optimization methods: For the case
of updating a model using a few instances at a time, a simple and extremely popular algorithm
is Stochastic Gradient Descent (SGD). The case of updating using a few dimensions at a time
corresponds to a family of methods known as Coordinate Descent (CD).

There is a vast and ongoing research effort into understanding the strengths and weaknesses
of both SGD and CD. A pioneering work analyzing SGD in the framework of online learning is
Bottou (1998). For more current tools and ideas regarding the use of SGD in machine learning,
see work by Zhang (2004); Bottou (2010). For newer ideas regarding parallelizing SGD, see Recht
et al. (2011). For newer analysis regarding SGD for smooth and strongly convex functions, as well
as finite-sample guarantees, see Rakhlin et al. (2011); Shamir and Zhang (2012); Needell et al.
(2013). Finally, for a discussion of SGD on Riemannian manifolds (post-dating the relevant work
in this thesis) see Bonnabel (2013). Regarding coordinate descent, it has been studied extensively
inside the machine learning and statistics communities as a means to solve the dual SVM problem
(Joachims, 1999; Hsieh et al., 2008) and the LASSO and related non-smooth problems (Wu and
Lange, 2008; Friedman et al., 2010; Shalev-Shwartz and Tewari, 2011; Takáč et al., 2013). A better
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understanding and stronger convergence guarantees of CD, and specifically randomized CD have
been given in papers by Nesterov (2012); Richtárik and Takáč (2014); parallel CD is discussed by
Richtárik and Takáč (2012), and a method to perform proximal, non-smooth, and parallel CD is
given by Fercoq and Richtárik (2013).

Chapters 2.1 and 2.2 of this thesis build on the concept of SGD. In chapter 2.1 we leverage sparse
representations and the Passive-Aggressive algorithm (Crammer et al., 2006) which is a variant of
SGD, to obtain an extremely fast algorithm for learning a similarity measure between images. In
Chapter 2.2 we develop the first Riemannian SGD scheme in the manifold of low-rank matrices
and low-rank PSD matrices, creating a fast, stable, and low-memory algorithm for learning of
low-rank matrices. We apply this algorithm to learning of similarity between documents, and to
rank labels for images from the ImageNet dataset Deng et al. (2009). In Chapter 2.4 we develop a
coordinate descent approach for the manifold of orthogonal matrices, using the simple and sparse
Givens rotations (see Subsection 1.2.3 above) as the basic building block.

1.4 Manifolds and Riemannian optimization

In this subsection we outline the general principles of optimization over Riemannian manifolds,
which are used extensively in Chapters 2.2 and 2.4 of this thesis. The standard reference for this
subject is the book “Optimization algorithms on matrix manifolds” by Absil et al. (2009).

Riemannian optimization has emerged in recent years as an exciting tool for solving difficult,
highly non-linear optimization problems (Edelman et al., 1998; Keshavan et al., 2009; Absil et al.,
2009; Journée et al., 2010; Turaga et al., 2011). In this thesis we use the Riemannian manifold
structure of the set of fixed-low-rank matrices to come up with novel, efficient and stable Rie-
mannian stochastic gradient learning algorithms, as detailed in Chapter 2.2. In Chapter 2.4 we
use the Riemannian manifold structure of the orthogonal matrix group to develop a Riemannian
coordinate descent procedure based on successive multiplication of Givens rotations.

An embedded manifold is a smooth subset of an ambient space Rn, locally homeomorphic to
Rd, with d ≤ n being the manifold dimension (Do Carmo, 1992). For instance the set Sn−1 = {x :
‖x‖2 = 1, x ∈ Rn}, the unit sphere, is an n−1 dimensional manifold embedded in n-dimensional
Euclidean space Rn. As another example, the orthogonal group On, which comprises of the set of
orthogonal n×n matrices, is an n(n−1)

2 dimensional manifold embedded in Rn×n. A third example
is the manifold of low-rank matrices, the set of n ×m matrices of rank k where k < min(m,n).
This set is an (n+m)k−k2 dimensional manifold embedded in Rn×m. Embedded manifolds inherit
many properties from the ambient space, a fact which simplifies their analysis. For example, a
canonical Riemannian metric for embedded manifolds is simply the Euclidean metric restricted to
the manifold.

The goal of Riemannian optimization is to minimize a loss function L(W ) under the constraint
that W is a member of a manifoldM.

Let us consider now the elements of a very basic optimization procedure - gradient descent
(GD). In order to perform GD in Euclidean space, one obtains the gradient of the function, and
takes a step in that direction. In order to perform this in Riemannian space, two issues must be
addressed: first, define a Riemannian gradient. Second, define a way to take a step in the direction
of the Riemannian gradient while staying within the manifold.

The tangent space

Each pointW in an embedded manifoldM has a tangent space associated with it, denoted TWM,
as shown in Fig. 1.1 (for a formal definition of the tangent space, see Chapter 2.2, Appendix A).
The tangent space is a vector space of the same dimension as the manifold that can be identified
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in a natural way with a linear subspace of the ambient space. Let PW denote the linear projection
operator onto the tangent space TWM.

Given a manifold M and a differentiable function L : M → R, the Riemannian gradient
∇L(W ) of L onM at a point W is a vector in the tangent space TWM. A very useful property
of embedded manifolds is the following: given a differentiable function f defined on the ambient
space (and thus on the manifold), the Riemannian gradient of f at point W is simply the linear
projection PW of the ordinary gradient of f onto the tangent space TWM.

Thus, if we denote the regular gradient of L in Rn×m by ∇̃L, we have

∇L(W ) = PW (∇̃L).

An important consequence follows in case the manifold represents the set of points obeying a
certain constraint. In this case the Riemannian gradient of f is equivalent to the ordinary gradient
of f minus the component which is normal to the constraint. Indeed this normal component is
exactly the component which is irrelevant when performing constrained optimization. See Figure
1.1.

Consider the t+ 1 step of an iterative gradient update procedure intended to minimize L(W )
over the manifold M. The Riemannian gradient allows us to compute an update W t+ 1

2 = W t −
η∇L(W ), for a given iterate point W t and step size η. This however is not yet a full Riemannian
gradient step, since W t+ 1

2 is almost certainly outside of the manifoldM. Observe for example the
unit sphere Sn−1. The tangent space at point x ∈ Sn−1 is

TxSn−1 = {z ∈ Rn : xT z = 0}.

The projection operator onto the tangent space TxSn−1 is Px(y) = y−xxT y. Let the Riemannian
gradient at a point x ∈ Sn−1 be the vector Px(y). Then the update vector x− ηPx(y) will almost
certainly not be a point on the unit sphere. The obvious step in this case will be to project
x− ηPx(y) onto the unit sphere. We will generalize and formalize this idea in the next subsection,
where we examine in general how W t+ 1

2 can be mapped back onto the manifoldM.

Geodesics and retractions

The natural generalization of straight lines to the manifold context are geodesic curves. A geodesic
curve is locally the shortest path between two points on the manifold, or equivalently, a curve
with no acceleration tangent to the manifold (Absil et al., 2009). The ideal way to map W t+ 1

2 =
W t − ηt∇L(W ) back to the manifold would be to follow the geodesic curve originating in W t

and going in the direction of ∇L(W ). This is called the exponential mapping (Do Carmo, 1992,
chapter 3), and we apply it to the tangent vector ∇L(W ). Under mild regularity conditions
regarding the loss function L and the manifold M, applying the exponential mapping to the
Riemannian gradient is guaranteed to yield a sequence converging to a local optimum. However,
for many manifolds, including the low-rank manifold considered considered in Chapter 2.2 below,
calculating the geodesic curve and the resultant exponential mapping is computationally expensive
(Vandereycken et al., 2009).

A major insight from the field of Riemannian manifold optimization is that one can use a family
of mappings called retractions which merely approximate the exponential mapping. Using such
retractions maintains the convergence properties obtained with the exponential mapping, but is
much cheaper computationally for a suitable choice of retraction. Projecting onto the manifold is
in itself a form of retraction (Absil and Malick, 2012), however more efficient or stable retractions
can often be devised. Note that projection on the manifold is different, and usually more difficult,
than projection onto the tangent space, since the manifold is typically a non-linear structure,
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unlike the tangent space. In Chapter 2.2 we introduce a new retraction for the low-rank manifold,
and then use it to derive a Riemannian stochastic gradient algorithm. In Chapter 2.4, we show
how the exact exponential mapping for the orthogonal matrix manifold can be decomposed into
very efficient updates based on Givens rotations (see also Subsection 1.2.3 above). We show these
updates to be a Riemannian equivalent of coordinate descent on the orthogonal manifold, and
apply them to learn sparse PCA models and to perform robust orthogonal tensor decomposition.

Figure 1.1: A three step procedure for computing a retracted gradient at point W t. Step 1:
ordinary gradient step. Step 2: linearly project ambient gradient onto tangent space TW tM in
order to get the Riemannian gradient step W t+ 1

2 . Step 3: retract the Riemannian gradient step
back to the manifold.



Chapter 2

Results

In this Chapter I present the main results of this thesis. The Chapter is comprised of four published
papers, as follows:

• Chapter 2.1: Large Scale Online Learning of Image Similarity Through Ranking. Gal
Chechik, Varun Sharma*, Uri Shalit* and Samy Bengio (* equal contribution). Journal
of Machine Learning, 2010.

• Chapter 2.2: Online Learning in the Embedded Manifold of Low-rank Matrices. Uri Shalit,
Daphna Weinshall and Gal Chechik. Journal of Machine Learning, 2012.

• Chapter 2.3: FuncISH: learning a functional representation of neural ISH images. Noa Lis-
covitch*, Uri Shalit* and Gal Chechik (* equal contribution). Bioinformatics, 2013.

• Chapter 2.4: Coordinate-descent for learning orthogonal matrices through Givens rotations.
Uri Shalit and Gal Chechik. International Conference on Machine Learning (ICML), 2014.
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2.1 Large Scale Online Learning of Image Similarity Through
Ranking
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Abstract
Learning a measure of similarity between pairs of objects isan important generic problem in ma-
chine learning. It is particularly useful in large scale applications like searching for an image that
is similar to a given image or finding videos that are relevantto a given video. In these tasks, users
look for objects that are not only visually similar but also semantically related to a given object.
Unfortunately, the approaches that exist today for learning such semantic similarity do not scale to
large data sets. This is both because typically their CPU andstorage requirements grow quadrat-
ically with the sample size, and because many methods imposecomplex positivity constraints on
the space of learned similarity functions.

The current paper presents OASIS, anOnline Algorithm for Scalable Image Similaritylearn-
ing that learns a bilinear similarity measure over sparse representations. OASIS is an online dual
approach using the passive-aggressive family of learning algorithms with a large margin criterion
and an efficient hinge loss cost. Our experiments show that OASIS is both fast and accurate at a
wide range of scales: for a data set with thousands of images,it achieves better results than existing
state-of-the-art methods, while being an order of magnitude faster. For large, web scale, data sets,
OASIS can be trained on more than two million images from 150Ktext queries within 3 days on
a single CPU. On this large scale data set, human evaluationsshowed that 35% of the ten nearest
neighbors of a given test image, as found by OASIS, were semantically relevant to that image. This
suggests that query independent similarity could be accurately learned even for large scale data sets
that could not be handled before.
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1. Introduction

Large scale learning is sometimes defined as the regime where learning is limited bycomputational
resources rather than by availability of data (Bottou, 2008). Learning a pairwise similarity measure
is a particularly challenging large scale task: since pairs of samples have to be considered, the large
scale regime is reached even for fairly small data sets, and learning similarity for large data sets
becomes exceptionally hard to handle.

At the same time, similarity learning is a well studied problem with multiple real world appli-
cations. It is particularly useful for applications that aim to discover new and relevant data for a
user. For instance, a user browsing a photo in her album may ask to find similar or related images.
Another user may search for additional data while viewing an online video orbrowsing text docu-
ments. In all these applications, similarity could have different flavors: a user may search for images
that are similar visually, or semantically, or anywhere in between.

Many similarity learning algorithms assume that the available training data contains real-valued
pairwise similarities or distances. However, in all the above examples, the precise numerical value
of pairwise similarity between objects is usually not available. Fortunately, onecan often obtain
information about therelative similarity of different pairs (Frome et al., 2007), for instance, by
presenting people with several object pairs and asking them to select the pair that is most similar.
For large scale data, where man-in-the-loop experiments are prohibitivelycostly, relative similarities
can be extracted from analyzing pairs of images that are returned in response to the same text query
(Schultz and Joachims, 2004). For instance, the images that are ranked highly by one of the image
search engines for the query “cute kitty” are likely to be semantically more similar than a random
pair of images. The current paper focuses on this setting: similarity information is extracted from
pairs of images that share a common label or are retrieved in response to a common text query.

Similarity learning has an interesting reciprocal relation with classification. On one hand, pair-
wise similarity can be used in classification algorithms like nearest neighbors or kernel methods. On
the other hand, when objects can be classified into (possibly overlapping)classes, the inferred labels
induce a notion of similarity across object pairs. Importantly however, similaritylearning assumes
a form of supervision that is weaker than in classification, since no labels are provided. OASIS is
designed to learn aclass-independentsimilarity measure with no need for class labels.

A large number of previous studies have focused on learning a similarity measure that is also a
metric, like in the case of a positive semidefinite matrix that defines a Mahalanobisdistance (Yang,
2006). However, similarity learning algorithms are often evaluated in a context of ranking. For in-
stance, the learned metric is typically used together with a nearest-neighbor classifier (Weinberger
et al., 2006; Globerson and Roweis, 2006). When the amount of training data available is very
small, adding positivity constraints for enforcing metric properties is usefulfor reducing over fitting
and improving generalization. However, when sufficient data is available,as in many modern appli-
cations, adding positive semi-definitiveness constraints consumes considerable computation time,
and its benefit in terms of generalization are limited. With this view, we take here anapproach that
avoids imposing positivity or symmetry constraints on the learned similarity measure.

The current paper presents an approach for learning semantic similarity that scales up to an
order of magnitude larger than current published approaches. Threecomponents are combined to
make this approach fast and scalable: First, our approach uses an unconstrained bilinear similarity.
Given two imagesp1 and p2 we measure similarity through a bilinear formpT

1 Wp2, where the
matrix W is not required to be positive, or even symmetric. Second we use a sparserepresentation

1110

Scalable Streaming Learning Of Dyadic Relationships 17



LARGE SCALE ONLINE LEARNING OF IMAGE SIMILARITY

of the images, which allows to compute similarities very fast. Finally, the training algorithm that
we developed, OASIS,Online Algorithm for Scalable Image Similarity learning, is an online dual
approach based on the passive-aggressive algorithm (Crammer et al.,2006). It minimizes a large
margin target function based on the hinge loss, and already converges tohigh quality similarity
measures after being presented with a small fraction of the training pairs.

We find that OASIS is both fast and accurate at a wide range of scales: for a standard benchmark
with thousands of images, it achieves better (but comparable) results than existing state-of-the-
art methods, with computation times that are shorter by orders of magnitude. For web-scale data
sets, OASIS can be trained on more than two million images within three days on a single CPU,
and its training time grows linearly with the size of the data. On this large scale data set, human
evaluations of OASIS learned similarity show that 35% of the ten nearest neighbors of a given image
are semantically relevant to that image.

The paper is organized as follows. We first present our online algorithm,OASIS, based on the
Passive-aggressive family of algorithms. We then present the sparse feature extraction technique
used in the experiments. We continue by describing experiments with OASIS onproblems of image
similarity, at two different scales: a large scale academic benchmark with tensof thousands of
images, and a web-scale problem with millions of images. The paper ends with a discussion on
properties of OASIS.

2. Learning Relative Similarity

We consider the problem of learning a pairwise similarity functionS, given data on the relative
similarity of pairs of images.

Formally, letP be a set of images, andr i j = r(pi , p j)∈R be a pairwise relevance measure which
states how stronglyp j ∈ P is related topi ∈ P . This relevance measure could encode the fact that
two images belong to the same category or were appropriate for the same query. We do not assume
that we have full access to all the values ofr. Instead, we assume that we can compare some pairwise
relevance scores (for instancer(pi , p j) andr(pi , pk)) and decide which pair is more relevant. We
also assume that whenr(pi , p j) is not available, its value is zero (since the vast majority of images
are not related to each other). Our goal is to learn a similarity functionS(pi , p j) that assigns higher
similarity scores to pairs of more relevant images,

S(pi , p
+
i )> S(pi , p

−
i ) , ∀pi , p

+
i , p

−
i ∈ P such thatr(pi , p

+
i )> r(pi , p

−
i ). (1)

In this paper we overload notation by usingpi to denote both the image and its representation as a
column vectorpi ∈ Rd. We consider a parametric similarity function that has a bi-linear form,

SW(pi , p j)≡ pT
i W p j (2)

with W ∈ Rd×d. Importantly, if the imagespi are represented as sparse vectors, namely, only a
numberki ≪ d of thed entries in the vectorpi are non-zeroes, then the value of Equation (2) can be
computed very efficiently even whend is large. Specifically,SW can be computed with complexity
of O(kik j) regardless of the dimensionalityd.
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2.1 An Online Algorithm

We propose an online algorithm based on the Passive-Aggressive (PA) family of learning algorithms
introduced by Crammer et al. (2006). Here we consider an algorithm that uses triplets of images
pi , p

+
i , p

−
i ∈ P such thatr(pi , p

+
i )> r(pi , p

−
i ).

We aim to find a parametric similarity functionSsuch that all triplets obey

SW(pi , p
+
i )> SW(pi , p

−
i )+1 (3)

which means that it fulfills Equation (1) with a safety margin of 1. We define the following hinge
loss function for the triplet:

lW(pi , p
+
i , p

−
i ) = max

{
0,1−SW(pi , p

+
i )+SW(pi , p

−
i )

}
. (4)

Our goal is to minimize a global lossLW that accumulates hinge losses (4) over all possible triplets
in the training set:

LW = ∑
(pi ,p

+
i ,p

−
i )∈P

lW(pi , p
+
i , p

−
i ) .

In order to minimize this loss, we apply the Passive-Aggressive algorithm iteratively over triplets
to optimizeW. First, W is initialized to some valueW0. Then, at each training iterationi, we
randomly select a triplet(pi , p

+
i , p

−
i ), and solve the following convex problem with soft margin:

Wi = argmin
W

1
2
‖W−Wi−1‖2

Fro +Cξ (5)

s.t. lW(pi , p
+
i , p

−
i )≤ ξ and ξ ≥ 0

where‖·‖Fro is the Frobenius norm (point-wiseL2 norm). Therefore, at each iterationi, Wi is
selected to optimize a trade-off between remaining close to the previous parametersWi−1 and min-
imizing the loss on the current tripletlW(pi , p

+
i , p

−
i ). TheaggressivenessparameterC controls this

trade-off.

OASIS
Initialization:

Initialize W0 = I

Iterations
repeat

Sample three imagesp, p+i , p
−
i , such thatr(pi , p

+
i )> r(pi , p

−
i ).

UpdateWi = Wi−1+ τiVi

whereτi = min
{

C,
lWi−1(pi ,p

+
i ,p

−
i )

‖Vi‖2

}

andVi = [p1
i (p

+
k − p−k ), . . . , p

d
i (p

+
k − p−k )]

T

until (stopping criterion)

Figure 1: Pseudo-code of the OASIS algorithm.
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We follow Crammer et al. (2006) to solve the problem in Equation (5). WhenlW(pi , p
+
i , p

−
i ) =

0, it is clear thatWi = Wi−1 satisfies Equation (5) directly. Otherwise, we define the Lagrangian

L(W,τ,ξ,λ) =
1
2
‖W−Wi−1‖2+Cξ+ τ(1−ξ− pT

i W(p+i − p−i ))−λξ (6)

whereτ ≥ 0 andλ ≥ 0 are Lagrange multipliers. The optimal solution is such that the gradient
vanishes∂L(W,τ,ξ,λ)

∂W = 0, hence

∂L(W,τ,ξ,λ)
∂W

= W−Wi−1− τVi = 0

where the gradient matrixVi =
∂LW
∂W = [p1

i (p
+
i − p−i ), . . . , p

d
i (p

+
i − p−i )]

T . The optimal newW is
therefore

W = Wi−1+ τVi (7)

where we still need to estimateτ. Differentiating the Lagrangian with respect toξ and setting it to
zero also yields:

∂L(W,τ,ξ,λ)
∂ξ

=C− τ−λ = 0 (8)

which, knowing thatλ ≥ 0, means thatτ ≤ C. Plugging Equations (7) and (8) back into the La-
grangian in Equation (6), we obtain

L(τ) =
1
2

τ2‖Vi‖2+ τ(1− pT
i (W

i−1+ τVi)(p
+
i − p−i )) .

Regrouping the terms we obtain

L(τ) =−1
2

τ2‖Vi‖2+ τ(1− pT
i Wi−1(p+i − p−i )) .

Taking the derivative of this second Lagrangian with respect toτ and setting it to 0, we have

∂L(τ)
∂τ

=−τ‖Vi‖2+(1− pT
i Wi−1(p+i − p−i )) = 0

which yields

τ =
1− pT

i Wi−1(p+i − p−i )
‖Vi‖2 =

lWi−1(pi , p
+
i , p

−
i )

‖Vi‖2 .

Finally, Sinceτ ≤C, we obtain

τ = min

{
C,

lWi−1(pi , p
+
i , p

−
i )

‖Vi‖2

}
. (9)

Equations (7) and (9) summarize the update needed for every triplets(pi , p
+
i , p

−
i ). It has been

shown (Crammer et al., 2006) that applying such an iterative algorithm yieldsa cumulative online
loss that is likely to be small. It was furthermore shown that selecting the bestWi during training
using a hold-out validation set achieves good generalization. We also show below that multiple runs
of the algorithm converge to provide similar precision (see Figure 7).
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2.2 Loss Bounds

Following closely the analysis of loss bounds for passive aggressive (PA) algorithms developed by
Crammer et al. (2006) we state similarrelative bounds for the OASIS framework. We do this by
rewriting OASIS as a straightforward linear classification problem. Denote by −→wi the vector ob-
tained by“unfolding” the matrixW (concatenating all its columns into a single vector) and similarly
−→xi the unfolded matrixpi(p

+
i − p−i )

T . Using this notation, the constraint in Equation (3) becomes

−→wi ·−→xi > 1 ,

with · denoting the standard inner product. This is equivalent to the formulation ofPA when the
label yi is always 1. The introduction of slack variables in Equation (5) brings us tothe variant
denoted by Crammer et al. (2006) as PA-I.

The loss bounds in Crammer et al. (2006) rely on−→w0 being the zero vector. Since here we
initialize withW0 = I (the identity matrix) we need to adapt the analysis slightly. Let−→u be a vector

in Rd
2

obtained by unfolding an arbitrary matrixU. We define

l i = 1−−→wi ·−→xi and l∗i = 1−−→u ·−→xi ,

wherel i is the instantaneous loss at round i, andl∗i is the loss suffered by the arbitrary vector−→u .
The following two theorems rely on Lemma 1 of Crammer et al. (2006), which we restate without
proof:

∑τi(2l i − τi‖xi‖2−2l∗i )≤ ‖−→u −−→w0‖2 .

While in Crammer et al. (2006)−→w0 is the zero vector, in our case−→w0 is the unfoldedidentity matrix.
We therefore have

‖−→u −−→w0‖2 = ‖U‖2
Fro −2trace(U)+n .

Using this modified lemma we can restate the relevant bound:

Theorem 1 Let (−→x1),...,(
−→xM) be a sequence of examples where−→xi ∈Rd2

, ‖−→xi ‖ ≤R for all i= 1...M.
Then, for any matrixU ∈ Rn2, the number of prediction mistakes made by OASIS on this sequence
of examples is bounded from above by,

max{R2,1/C}
(
‖U‖2

Fro −2trace(U)+n+2C
M

∑
i=1

l∗i
)

where C is the aggressiveness parameter provided to OASIS.

2.3 Sampling Strategy

For real world data sets, the actual number of triplets(pi , p
+
i , p

−
i ) is typically very large and cannot

be stored in memory. Instead, we use the fact that the number of relevant images for a category or
a query is typically small, and keep a list of relevant images for each query or category. For the
case of single-labeled images, we can efficiently retrieve an image that is relevant to a given image,
by first finding its class, and then finding another image from that class. The case of multi-labeled
images is described in Section 5.2.

Specifically, to sample a triplet(pi , p
+
i , p

−
i ) during training, we first uniformly sample an image

pi from P . Then we uniformly sample an imagep+i from the images sharing the same categories
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or queries aspi . Finally, we uniformly sample an imagep−i from the images that share no category
or query with pi . When the setP is very large and the number of categories or queries is also
very large, one does not need to maintain the set of non-relevant images for each image: sampling
directly fromP instead only adds a small amount of noise to the training procedure and is notreally
harmful.

When relevance feedbacksr(pi , p j) are provided as real numbers and not just∈ {0,1}, one
could use these number to bias training towards those pairs that have a higher relevance feedback
value. This can be done by consideringr(pi , p j) as frequencies of appearance, and sampling pairs
according to the distribution of these frequencies.

3. Image Representation

The problem of selecting an informative representation of images is still an unsolved computer
vision challenge, and an ongoing research topic. Different approaches for image representation
have been proposed including by Feng et al. (2004); Takala et al. (2005) and Tieu and Viola (2004).
In the information retrieval community there is wide agreement that a bag-of-words representation is
a very useful representation for handling text documents in a wide rangeof applications. For image
representation, there is still no such approach that would be adequate for a wide variety of image
processing problems. However, among the proposed representations,a consensus is emerging on
using local descriptorsfor various tasks, for example, Lowe (2004); Quelhas et al. (2005).This
type of representation segments the image intoregions of interest, and extracts visual features from
each region. The segmentation algorithm as well as the region features vary among approaches,
but, in all cases, the image is then represented as a set of feature vectorsdescribing the regions of
interest. Such a set is often called abag-of-local-descriptors.

In this paper we take the approach of creating a sparse representation based on the framework of
local descriptors. Our features are extracted by dividing each image intooverlapping square blocks,
and each block is then described with edge and color histograms. For edgehistograms, we rely on
uniform Local Binary Patterns(uLBPs) proposed by Ojala et al. (2002). These texture descriptors
have shown to be effective on various tasks in the computer vision literature(Ojala et al., 2002;
Takala et al., 2005), certainly due to their robustness with respect to changes in illumination and
other photometric transformations (Ojala et al., 2002). Local Binary Patterns estimate a texture
histogram of a block by considering differences in intensity at circular neighborhoods centered on
each pixel. Precisely, we useLBP8,2 patterns, which means that a circle of radius 2 is considered
centered on each block. For each circle, the intensity of the center pixel iscompared to the inter-
polated intensities located at 8 equally-spaced locations on the circle, as shown on Figure 2, left.
These eight binary tests (lower or greater intensity) result in an 8-bit sequence, see Figure 2, right.
Hence, each block pixel is mapped to a sequence among 28 = 256 possible sequences and each
block can therefore be represented as a 256-bin histogram. In fact, it has been observed that the bins
corresponding to non-uniform sequences (sequences with more than 2transitions 1→ 0 or 0→ 1)
can be merged, yielding more compact 59-bin histograms without performanceloss (Ojala et al.,
2002).

Color histograms are obtained by K-means clustering. We first select a palette or typical colors
by training a color codebook from the Red-Green-Blue pixels of a large training set of images using
K-means. The color histogram of a block is then obtained by mapping each block pixel to the closest
color in the codebook palette.
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Figure 2: An example of Local Binary Pattern (LBP8,2). For a given pixel, the Local Binary Pattern
is an 8-bit code obtained by verifying whether the intensity of the pixel is greater or lower
than its 8 neighbors.

Finally, the histograms describing color and edge statistics of each block areconcatenated,
which yields a single vector descriptor per block. Our local descriptor representation is therefore
simple, relying on both a basic segmentation approach and simple features. Naturally, alternative
representations could also be used with OASIS, (Feng et al., 2004; Grangier et al., 2006; Tieu
and Viola, 2004) However, this paper focuses on the learning model, anda benchmark of image
representations is beyond the scope of the current paper.

As a final step, we use the representation of blocks to obtain a representation for an image. For
computation efficiency we aim at a high dimensional and sparse vector space. For this purpose, each
local descriptor of an imagep is represented as a discrete index, calledvisual termor visterm, and,
like for text data, the image is represented as abag-of-vistermsvector, in which each componentpi

is related to the presence or absence of vistermi in p.
The mapping of the descriptors to discrete indexes is performed accordingto a codebookC,

which is typically learned from the local descriptors of the training images through k-means clus-
tering (Duygulu et al., 2002; Jeon and Manmatha, 2004; Quelhas et al., 2005). The assignment of
the weightpi of vistermi in imagep is as follows:

pi =
fi di√

∑d
j=1( f j d j)2

,

where fi is the term frequency ofi in p, which refers to the number of occurrences ofi in p, while
d j is the inverse document frequency ofj, which is defined as−log(r j), r j being the fraction of
training images containing at least one occurrence of vistermj. This approach has been found
successful for the task of content based image ranking described by Grangier and Bengio (2008).

In the experiments described below, we used a large set of images collectedfrom the web
to train the features. This set is described in more detail in Section 5.2. We used a set of 20
typical RGB colors (hence the number of clusters used in the k-means for colors was 20), the block
vocabulary sized = 10000 and our image blocks were of size 64x64 pixels, overlapping every
32 pixels. Furthermore, in order to be robust to scale, we extracted blocks at various scales by
successively down scaling images by a factor of 1.25 and extracting the features at each level, until
there were less than 10 blocks in the resulting image. There was on averagearound 70 non-zero
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values (out of 10000) describing a single image. Note that no other information (such as meta-data)
was added in the input vector representation each image.

4. Related Work

Similarity learning can be considered in two main setups, depending on the type of available training
labels. First, a regression setup, where the training set consists of pairsof objectsx1

i ,x
2
i and their

pairwise similarityyi ∈ R. In many cases however, precise similarities are not available, but rather
a weaker notion of similarity order. In one such setup, the training set consists of triplets of objects
x1

i ,x
2
i ,x

3
i and a ranking similarity function, that can tell which of the two pairs(x1,x2) or (x1,x3) is

more similar. Finally, multiple similarity learning studies assume that a binary measure of similarity
is availableyi ∈ {+1,−1}, indicating whether a pair of objects is similar or not.

For small-scale data, there are two main groups of similarity learning approaches. The first
approach, learning Mahalanobis distances, can be viewed as learning alinear projection of the data
into another space (often of lower dimensionality), where a Euclidean distance is defined among
pairs of objects. Such approaches include Fisher’s Linear DiscriminantAnalysis (LDA), relevant
component analysis (RCA) (Bar-Hillel et al., 2003), supervised globalmetric learning (Xing et al.,
2003), large margin nearest neighbor (LMNN) (Weinberger et al., 2006) and Metric Learning by
Collapsing Classes (Globerson and Roweis, 2006). A Mahalanobis distance learning algorithm
which uses a supervision signal identical to the one we employ in OASIS is Rosales and Fung
(2006), which learns a special kind of PSD matrix via linear programming. See also a review by
Yang (2006) for more details.

The second family of approaches, learning kernels, is used to improve performance of kernel
based classifiers. Learning a full kernel matrix in a non parametric way is prohibitive except for
very small data. As an alternative, several studies suggested to learn a weighted sum of pre-defined
kernels (Lanckriet et al., 2004) where the weights are being learned from data. In some applications
this was shown to be inferior to uniform weighting of the kernels (Noble, 2008). The work of
Frome et al. (2007) further learns a weighting over local distance function for every image in the
training set. Non linear image similarity learning was also studied in the context of dimensionality
reduction, as in Hadsell et al. (2006).

Finally, Jain et al. (2008a,b), based on work by Davis et al. (2007), aimto learn metrics in an
online setting. This work is one of the closest work with respect to OASIS: itlearns a linear model
of a [dis-]similarity function between documents in an online way. The main difference is that the
work of Jain et al. (2008a) learn a true distance throughout the learningprocess, imposing positive
definiteness constraints, and is slightly less efficient computationally. We argue in this paper that
in the large scale regime, such a constraint is not necessary given the amount of available training
examples.

Another work closely related to OASIS is that of Rasiwasia and Vasconcelos (2008), which
also tries to learn a semantic similarity function between images. In their case, however, semantic
similarity is learned by representing each image by the posterior probability distribution over a pre-
defined set of semantic tags, and then computing the distance between two images as the distance
between the two underlying posterior distributions. The representation sizeof images in this ap-
proach is therefore equal to the number of semantic classes, hence it will not scale when the number
of semantic classes is very large as in free text search.
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5. Experiments

Evaluating large scale learning algorithms poses special challenges. First,current available bench-
marks are limited either in their scale, like 30K images in Caltech256 as described by Griffin et al.
(2007), or in their resolution, such as the tiny images data set of Torralba et al. (2007). Large
scale methods are not expected to perform particularly well on small data sets, since they are de-
signed to extract limited information from each sample. Second, many images on the web cannot be
used without explicit permission, hence they cannot be collected and packed into a single database.
Large, proprietary collections of images do exist, but are not available freely for academic research.
Finally, except for very few cases, similarity learning approaches in current literature do not scale
to handle large data sets effectively, which makes it hard to compare a new large scale method with
the existing methods.

To address these issues, this paper takes the approach of conducting experiments at two different
scales. First, to demonstrate the scalability of OASIS we applied OASIS to a web-scale data with 2.7
million images. Second, to investigate the properties of OASIS more deeply, we compare OASIS
with small-scale methods using the standard Caltech256 benchmark.

5.1 Evaluation Measures

We evaluated the performance of all algorithms using standard ranking precision measures based on
nearest neighbors. For each query image in the test set, all other test images were ranked according
to their similarity to the query image. The number of same-class images among the topk images
(thek nearest neighbors) was computed. When averaged across test images(either within or across
classes), this yields a measure known as precision-at-top-k, providing a precision curve as a function
of the rankk.

We also calculated themean average precision(mAP), a measure that is widely used in the
information retrieval community. To compute average precision, the precision-at-top-k is first cal-
culated for each test image. Then, it is averaged over all positionsk that have a positive sample.
For example, if all positives are ranked highest, the average-precisionis 1. The average-precision
measure is then further averaged across all test image queries, yielding the mean average precision
(mAP).

5.2 Web-Scale Experiment

Our first set of experiments is based on Google proprietary data that is twoorders of magnitude
larger than current standard benchmarks. We collected a set of∼150K text queries submitted to the
Google Image Search system. For each of these queries, we had accessto a set of relevant images,
each of which is associated with a numerical relevance score. This yieldeda total of∼2.7 million
images, which we split into a training set of 2.3 million images and a test set of 0.4 millionimages
(see Table 1).

Set Number of Queries Number of Images
Training 139944 2292259
Test 41877 402164

Table 1: Statistics of the Web data set.
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5.2.1 EXPERIMENTAL SETUP

We used the query-image relevance information to create an image-image relevance as follows.
Denote the set of text queries byQ and the set of images byP . For eachq∈ Q , let P+

q denote the
set of images that are relevant to the queryq, and letP−

q denote the set of irrelevant images. The
query-image relevance is defined by the matrixRQI : Q ×P → R+, and obeysRQI(q, p+q )> 0 and
RQI(q, p−q ) = 0 for all q∈ Q , p+q ∈ P+

q , p−q ∈ P−
q . We also computed a normalized version ofRQI,

which can be interpreted as a joint distribution matrix, or the probability to observe a queryq and
an imagep for that query,

Pr(q, p) =
RQI(q, p)

∑q′,p′ RQI(q′, p′)
.

In order to compute the image-image relevance matrixRII : P ×P → R+, we treated images as
being conditionally independent given the queries,Pr(p1, p2|q) = Pr(p1|q)Pr(p2|q), and computed
the joint image-image probability as a relevance measure

Pr (p1, p2) = ∑
q∈Q

Pr (p1, p2|q)Pr (q) = ∑
q∈Q

Pr(p1 | q)Pr(p2 | q)Pr(q) .

To improve scalability, we used a threshold over this joint distribution, and considered two
images to be related only if their joint distribution exceeded a cutoff valueθ

RII (p1, p2) = [Pr(p1, p2)]θ (10)

where[x]θ = x for x> θ and is zero otherwise. To set the value ofθ we have manually inspected a
small subset of pairs of related images taken from the training set. We selected the largestθ such
that most of those related pairs had scores above the threshold, while minimizing noise inRII .

Equation 10 is written as if one needs to calculate the full joint matrixRII , but this matrix grows
quadratically with the number of images. In practice, we can use the fact thatRQI is very sparse, to
quickly create a list with images that are relevant to a given image. To do this given an imagepi ,
we go over all the queries for which it is relevantRQI(q, pi), and for each of these queries, collect
the list of all images that are relevant to that query. The average number of queries relevant for an
image in our data is small (about 100), and so is the number of images relevantfor a given query.
As a result,RII can be calculated efficiently even for large image sets.

We trained OASIS over 2.3 million images in the training set using the sampling mechanism
based on the relevance of each image, as described in Section 2.3. To select the number of training
iterations, we used as a validation set a small subset of the training set to trace the mean average
precision of the model at regular intervals during the training process. Training was stopped when
the mean average precision had saturated, which happened after 160 millioniterations (triplets).
Overall, training took a total of∼4000 minutes on a single CPU of a standard modern machine.
Finally, we evaluated the trained model on the 400 thousand images of the test set.

5.2.2 RESULTS

We start with specific examples illustrating the behavior of OASIS, and continue with a quantita-
tive analysis of precision and speed. Table 2 shows the top five images as ranked by OASIS on
four examples of query-images in the test set. The relevant text queries for each image are shown
beneath the image. The first example (top row), shows a query-image that was originally retrieved
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Query image Top 5 relevant images retrieved by OASIS

Table 2: OASIS: Successful cases from the Web data set

in response to the text query “illusion”. All five images ranked highly by OASIS are semantically
related, showing other types of visual illusions. Similar results can be observed for the three re-
maining examples on this table, where OASIS captures well the semantics of animal photos (cats
and dogs), mountains and different food items.

In all these cases, OASIS captures similarity that is both semantic and visual, since the raw
visual similarity of these images is not high. A different behavior is demonstrated in Table 3. It
shows three cases where OASIS was biased by visual similarity and provided high rankings to im-
ages that were semantically non relevant. In the first example, the assortment of flowers is confused
with assortments of food items and a thigh section (5th nearest neighbor) which has visually similar
shape. The second example presents a query image which in itself has no definite semantic element.
The results retrieved are those that merely match texture of the query image and bear no semantic
similarity. In the third example, OASIS fails to capture the butterfly in the query image.

To obtain a quantitative evaluation of OASIS we computed the precision at topk, using a thresh-
old θ = 0, which means that an image in the test set is considered relevant to a queryimage, if there
exists at least one text query to which they were both relevant to.

The obtained precision values were quite low, achieving 1.5% precision at the top ranked image.
This is drastically lower than the precision described below for Caltech256,and could be the result
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Query image Top 5 relevant images retrieved by OASIS

Table 3: OASIS: Failure cases from the Web data set

of multiple reasons. First, the number of unique textual queries in our data is very large (around
150K), hence the images in this data set were significantly more heterogeneous than images in the
Caltech256 data.

Second, and most importantly, our labels that measure pairwise relevance are very partial. This
means that many pairs of images that are semantically related are not labeled assuch. A clear
demonstration of this effect is observed in Tables 2 and 3. The query images (like “scottish fold”)
have labels that are usually very different from the labels of the retrieved images (as in “humor
cat”, “ agility”) even if their semantic content is very similar. This is a common problem in content-
based analysis, since similar content can be described in many different ways. In the case discussed
here, the partial data on the query-image relevanceRQI is further propagated to the image-image
relevance measureRII .

5.2.3 HUMAN EVALUATION EXPERIMENTS

In order to obtain a more accurate estimate of the real semantic precision, we performed a rating
experiment with human evaluators. We chose the 25 most relevant images1 from the test set and
retrieved their 10 nearest neighbors as determined by OASIS. We excluded query-images which
contained porn, racy or duplicates in their 10 nearest neighbors. We also selected randomly a set of
10 negative imagesp− that were chosen for each of the query imagesp such thatRII (p, p−) = 0.
These negatives were then randomly mixed with the 10 nearest neighbors.

All 25 query images were presented to twenty human evaluators, asking themto mark which of
the 20 candidate images aresemantically relevantto the query image.2 Evaluators were volunteers

1. The overall relevance of an image was estimated as the sum of relevances of the image with respect to all queries.
2. The description of the task as given to the evaluators is provided in Appendix A.

1121

Scalable Streaming Learning Of Dyadic Relationships 28



CHECHIK, SHARMA , SHALIT AND BENGIO

selected from a pool of friends and colleagues, many of which had experience with search or ma-
chine vision problems. We collected the ratings on the positive images and calculated the precision
at topk.
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Figure 3: (A) Precision at topk as a function ofk neighbors computed againstRII (θ = 0) for the
web-scale test set.(B) Precision at topk as a function ofk neighbors for the human
evaluation subset.(C) Mean precision for 5 selected queries. Error bars denote the
standard error of the mean. To select the queries for this plot, we first calculated the mean-
average precision per query, sorted the queries by their mAP, and selected the queries
ranked at position 1, 6, 11, 16, and 21.(D) Precision of OASIS and human evaluators,
per query, using rankings of all (remaining) human evaluators as a ground truth.

Figure 3(B) shows the average precision across all queries and evaluators. Precision peaks
at 42% and reaches 35% at the top 10 ranked image, being significantly higher than the values
calculated automatically usingRII .

We observed that the variability across different query images was also very high. Figure 3(C)
shows the precision for 5 different queries, selected to span the rangeof average-precision values.
The error bars at each curve show the variability in the responses of different evaluators. The
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precision of OASIS varies greatly across different queries. Some query images were “easy” for
OASIS, yielding high scores from most evaluators, while other queries retrieved images that were
consistently found to be irrelevant by most evaluators.

We also compared the magnitude of variability across human evaluators, with variability across
queries. We first calculated the mAP from the precision curves of every query and evaluator, and
then calculated the standard deviation in the mAP of every evaluator and of every query. The
mean standard deviation over queries was 0.33, suggesting a large variability in the difficulty of
image queries, as observed in Figure 3(C) . The mean standard deviation over evaluators was 0.25,
suggesting that different evaluators had very different notions of what images should be regarded as
“semantically similar” to a query image.

Finally, to estimate an “upper bound” on the difficulty of the task, we also computed the pre-
cision of the human evaluators themselves. For every evaluator, we used the rankings of all other
evaluators as ground truth, to compute his precision. As with the ranks of OASIS, we computed the
fraction of evaluators that marked an image as relevant, and repeated this separately for every query
and human evaluator, providing a measure of “coherence” per query.Figure 3(D) shows the mean
precision obtained by OASIS and human evaluators for every query in our data. For some queries
OASIS achieves precision that is very close to that of the mean human evaluator. In many cases
OASIS achieves precision that is as good or better than some evaluators.

5.2.4 SPEED AND SCALABILITY

We further studied how the runtime of OASIS scales with the size of the training set. Figure 4 shows
that the runtime of OASIS, as found by early stopping on a separate validation set, grows linearly
with the train set size. We compare this to the fastest result we found in the literature, based on a fast
implementation of LMNN by Weinberger and Saul (2008). LMNN learns a Mahalanobis distance
for k-nearest neighbor classification, aiming to have the nearest neighbors of a sample belong to the
same class, and samples from different classes separated by a large margin. The LMNN algorithm
is known to scale quadratically with the number of objects, although their experiments with MNIST
data show that the active set of constraints grows linearly. This could be because MNIST has 10
classes only. In many real world data however, the number of classes typically grows almost linearly
with the number of samples.

5.3 Caltech256 Data Set

To compare OASIS with small-scale methods we used theCaltech256data set (Griffin et al., 2007).
This data set consists of 30607 images that were obtained from Google imagesearch and from
PicSearch.com. Images were assigned to 257 categories and evaluated by humans in order to ensure
image quality and relevance. After we have pre-processed the images as described in Section 3 and
filtered images that were too small, we were left with 29461 images in 256 categories. To allow
comparisons with other methods in the literature that were not optimized for sparse representation,
we also reduced the block vocabulary sized from 10000 to 1000. This processed data is available
online athttp://ai.stanford.edu/∼gal/Research/OASIS.

Using the Caltech256 data set allows us to compare OASIS with existing similarity learning
methods. For OASIS, we treated images that have the same labels as similar. Thesame labels were
used for comparing with methods that learn a metric for classification, as described below.

1123

Scalable Streaming Learning Of Dyadic Relationships 30



CHECHIK, SHARMA , SHALIT AND BENGIO

60 600 10K 100K 2M

9sec

37sec

5min

3hrs

2days

ru
nt

im
e 

(m
in

)

number of images (log scale)

 

 

3 hrs
60K

5 min

~190 days

1.5 hrs
100K

2 days
2.3M

fast LMNN (MNIST 10 categories)
projected extrapolation (2nd poly)
OASIS (Web data)

Figure 4: Comparison of the runtime of OASIS and fast-LMNN by Weinberger and Saul (2008),
over a wide range of scales. LMNN results (on MNIST data) are faster than OASIS
results on subsets of the web data. However LMNN scales quadratically withthe number
of samples, hence is three times slower on 60K images, and may be infeasible for handling
2.3 million images.

5.3.1 COMPARED METHODS

We compared the following approaches:

1. OASIS. - The algorithm described above in Section 2.1.

2. Euclidean. - The standard Euclidean distance in feature space. The initialization of OASIS
using the identity matrix is equivalent to this distance measure.

3. MCML - Metric Learning by Collapsing Classes (Globerson and Roweis, 2006).This ap-
proach learns a Mahalanobis distance such that samples from the same class are mapped to
the same point. The problem is written as a convex optimization problem, and we have used
the gradient-descent implementation provided by the authors.

4. LMNN - Large Margin Nearest Neighbor Classification (Weinberger et al., 2006). This ap-
proach learns a Mahalanobis distance fork-nearest neighbor classification, aiming to have the
k-nearest neighbors of a given sample belong to the same class while examples from different
classes are separated by a large margin. As a preprocessing phase, images were projected to a
basis of the principal components (PCA) of the data, with no dimensionality reduction, since
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this improved the precision results. We also compared with a fast implementation ofLMNN,
that uses a clever scheme of maintaining a set of active constraints (Weinberger and Saul,
2008). We used the web data discussed above to compare with previously published results
obtained with fast-LMNN on MNIST data (see Figure 4).

5. LEGO - Online metric learning (Jain et al., 2008a). LEGO learns a Mahalanobis distance
in an online fashion using a regularized per instance loss, yielding a positive semidefinite
matrix. The main variant of LEGO aims to fit a given set of pairwise distances.We used
another variant of LEGO that, like OASIS, learns from relative distances. In our experimental
setting, the loss is incurred for same-class examples being more than a certaindistance away,
and different class examples being less than a certain distance away. LEGO uses the LogDet
divergence for regularization, as opposed to the Frobenius norm used in OASIS.

For all these approaches, we used an implementation provided by the authors. Algorithms were
implemented in Matlab, with runtime bottlenecks implemented in C for speedup (exceptLEGO).
We test below two variants of OASIS applied to the Caltech256 data set: a pureMatlab implementa-
tion, and one that has aC components. We used aC++ implementation of OASIS for the web-scale
experiments described below.

We have also experimented with the methods of Xing et al. (2003) and RCA (Bar-Hillel et al.,
2003). We found the method of Xing et al. (2003) to be too slow for the sets inour experiments.
RCA is based on a per-class eigen decomposition that is not well defined when the number of
samples is smaller than the feature dimensionality. We therefore experimented witha preprocessing
phase of dimensionality reduction followed by RCA, but results were inferior to other methods and
were not included in the evaluations below. RCA also did not perform well when tested on the full
data, where dimensionality was not a problem, possibly because it is not designed to handle well
sparse data.

5.3.2 EXPERIMENTAL PROTOCOL

We tested all methods on subsets of classes taken from the Caltech256 repository. Each subset was
built such that it included semantically diverse categories, spanning the full range of classification
difficulty, as measured by Griffin et al. (2007). We used subsets of sizes 10, 20, 50 and 249 classes
(we used 249 classes since classes 251-256 are strongly correlated with other classes, and since
class 129 did not contain enough large images). The full lists of categoriesin each set are given in
Appendix B. For each set, images from each class were split into a training set of 40 images and a
test set of 25 images, as proposed by Griffin et al. (2007).

We used cross-validation to select the values of hyper parameters for allalgorithms except
MCML. Models were learned on 80% of the training set (32 images), and evaluated on the remain-
ing 20%. Cross validation was used for setting the following hyper parameters: the early stopping
time for OASIS; theω parameter for LMNN (ω ∈ {0.125,0.25,0.5}), and the regularization param-
eterη for LEGO (η ∈ {0.02,0.08,0.32}). We found that LEGO was usually not sensitive to the
choice ofη, yielding a variance that was smaller than the variance over different cross-validation
splits. Results reported below were obtained by selecting the best value of the hyper parameter and
then training again on the full training set (40 images). For MCML, we used the default parameters
supplied with the code from the authors, since its very long run time and multiple parameters made
it non-feasible to tune hyper parameters on this data.
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Figure 5: Mean average precision of OASIS as a function of the number of training steps. Error
bars represent standard error of the mean over 5 selections of training(40 images) and
test (25 images) sets. Performance is compared with a baseline obtained using the näıve
Euclidean metric on the feature vector. C=0.1(A) 10 classes. Test performance saturates
around 30K training steps, while going over all triplets would require 2.8 million steps.
(B) 20 classes.

5.3.3 RESULTS

Figure 5 traces the mean average precision over the training and the test sets as it progresses during
learning. For the 10 classes task, precision on the test set saturates early (around 35K training steps),
and then decreases very slowly.

Figure 6 and Table 4 compare the precision obtained with OASIS, with four competing ap-
proaches, as described above (Section 5.3.1). OASIS achieved consistently superior results through-
out the full range ofk (number of neighbors) tested, and on all four sets studied. Interestingly, we
found that LMNN performance on the training set was often high, suggesting that it overfits the
training set. This behavior was also noted by Weinberger et al. (2006) in some of their experiments.

OASIS achieves superior or equal performance, with a runtime that is faster by about two orders
of magnitudes than MCML, and about one order of magnitude faster than LMNN. The run time of
OASIS and LEGO was measured until the point of early stopping.

Table 5 shows the total CPU time in minutes for training each of the algorithms compared (mea-
sured on a standard 1.8GHz Intel Xeon CPU). For the purpose of a faircomparison with competing
approaches, we tested two implementations of OASIS: The first was fully implemented Matlab. The
second had the core of the algorithm implemented inC and called from Matlab.3 LMNN code and
MCML code were supplied by the authors and implemented in Matlab, with core parts implemented
in C. LEGO code was supplied by the authors and fully implemented in Matlab.

Importantly, we found that Matlab does not make full use of the speedup that can be gained by
sparse image representation. As a result, theC/C++ implementation of OASIS that we tested is
significantly faster.

3. The OASIS code is available online athttp://ai.stanford.edu/∼gal/Research/OASIS
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10 classes OASIS MCML LEGO LMNN Euclidean

Matlab Matlab+C Matlab Matlab+C -

Mean avg prec 33±1.6 29±1.7 27±0.8 24±1.6 23±0.9
Top 1 prec. 43±4.0 39±5.1 39±4.8 38±5.4 37±4.1
Top 10 prec. 38±1.3 33±1.8 32±1.2 29±2.1 27±1.5
Top 50 prec. 23±1.5 22±1.3 20±0.5 18±1.5 18±0.7

20 classes OASIS MCML LEGO LMNN Euclidean

Mean avg. prec 21±1.4 17±1.2 16±1.2 14±0.6 14±0.7
Top 1 prec. 29±2.6 26±2.3 26±2.7 26±3.0 25±2.6
Top 10 prec. 24±1.9 21±1.5 20±1.4 19±1.0 18±1.0
Top 50 prec. 15±0.4 14±0.5 13±0.6 11±0.2 12±0.2

50 classes OASIS MCML LEGO LMNN Euclidean

Mean avg. prec. 12±0.4 ∗ 9±0.4 8±0.4 9±0.4
Top 1 prec. 21±1.6 ∗ 18±0.7 18±1.3 17±0.9
Top 10 prec. 16±0.4 ∗ 13±0.6 12±0.5 13±0.4
Top 50 prec. 10±0.3 ∗ 8±0.3 7±0.2 8±0.3

Table 4: Mean average precision and precision at top 1, 10, and 50 of all compared methods. Values
are averages over 5 cross validation folds;± values are the standard deviation across the 5
folds. A ’*’ denotes cases where a method took more than 5 days to converge.

OASIS OASIS MCML LEGO LMNN (naive) fast-LMNN

classes Matlab Matlab+C Matlab+C Matlab Matlab+C Matlab+C

10 42±15 0.12± .03 1835±210 143±44 337±169 247±209
20 45±8 0.15± .02 7425±106 533±49 631±40 365±62
50 25±2 1.6± .04 ∗ 711±28 960±80 2109±67
249 485±113 1.13± .15 ∗ ∗∗ ∗∗ ∗∗

Table 5: Runtime (minutes) of all compared methods. Values are averages over 5 cross validation
folds,± values are the standard deviation across the 5 folds. A ’∗’ denotes cases where a
method took more than 5 days to converge. A ’∗∗’ denotes cases where performance was
worse than the Euclidean baseline.

5.4 Parallel Training

We presented OASIS as optimizing an objective function at each step. SinceOASIS is based on the
PA framework, it is also known to minimize a global objective of the form

‖W‖2
Fro +C∑

i

l i
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Figure 6: Comparison of the performance of OASIS, LMNN, MCML, LEGOand the Euclidean
metric in feature space. Each curve shows the precision at topk as a function ofk neigh-
bors. The results are averaged across 5 train/test partitions (40 trainingimages, 25 test
images), error bars are standard error of the means (s.e.m.), black dashed line denotes
chance performance.(A) 10 classes.(B) 20 classes.(C) 50 classes.

as shown by Crammer et al. (2006) This objective is convex since the losses l i are linear inW.
For such convex functions, it is guaranteed that any linear combination ofsolutions is superior than
each of the individual solutions. This property suggests another way to speed up training, by training
multiple rankers in parallel and averaging the resulting models. Each of the individual models can
be trained with a smaller number of iterations. Note however that there is no guarantee that the total
CPU time is improved.

Figure 7 demonstrates this approach; we trained 5 or 10 rankers in parallel and plot the test set
mean average precision as a function of the number of training iterations.
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Figure 7: Comparing individual rankers and a linear combination of 5 and 10 rankers. Results are
for an experiment with 249 classes of the Caltech256 data set.
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Figure 8: Comparison of Symmetric variants of OASIS.(A) 10 classes.(B) 20 classes.

6. Symmetry and Positivity

The similarity matrixW learned by OASIS is not guaranteed to be positive or even symmetric. Some
applications, like ranking images by semantic relevance to a given image query are known to be
non-symmetric when based on human judgement (Tversky, 1977). However, in some applications
symmetry or positivity constraints reflect a prior knowledge that may help avoiding overfitting.
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Furthermore positiveW impose a Mahalanobis metric over the data, that can be further factorized
to extract a linear projection of the data into a Euclidean space:xTWy = (Ax)T(Ay) such that
ATA = W. Such projectionA of the data can be useful for visualization and exploratory analysis of
data for example in scientific applications. We now discuss variants of OASISthat learn a symmetric
or positive matrices.

6.1 Symmetric Similarities

A simple approach to enforce symmetry is to project the OASIS modelW onto the set of symmetric
matricesW′ = sym(W) = 1

2

(
WT +W

)
. The update procedure then consists of a series of gradient

steps followed by projection to the feasible set (of symmetric matrices). This approach is sometimes
called projected gradient, and we denote it hereOnline-Proj-Oasis. Alternatively, projection can
also be applied after learning is completed (denoted hereProj-Oasis).

Alternatively, the asymmetric score functionSW(pi , p j) in the losslW can be replaced with a
symmetric score

S′W(pi , p j)≡−(pi − p j)
T W (pi − p j) .

and derive an OASIS-like algorithm (which we callDissim-Oasis). The optimal update for this
loss has a symmetric gradientV′i = (pi − p+i )(pi − p+i )

T − (pi − p−i )(pi − p−i )
T . Therefore, ifW0

is initialized with a symmetric matrix (for example, the identity matrix) allWi are guaranteed to
remain symmetric.Dissim-Oasisis closely related to LMNN (Weinberger et al., 2006). This can be
seen be casting the batch objective of LMNN, into an online setup, which hasthe formerr(W) =
−ω ·S′W(pi , p

+
i )+ (1−ω) · l ′W(pi , p

+
i , p

−
i ). This online version of LMNN becomes equivalent to

Dissim-Oasis forω = 0.
Figure 8 compares the precision of the different symmetric methods with the original OASIS.

All symmetric variants performed slightly worse, or equal to the original asymmetric OASIS. Asym-
metric OASIS is also twice faster than DISSIM-OASIS. The precision ofProj-Oasiswas equivalent
to that of OASIS. This was because the asymmetric OASIS learning rule actually converged to an
almost-symmetric model (as measured by a symmetry indexρ(W) = ‖sym(W)‖2

‖W‖2
= 0.94).

6.2 Positive Similarity

Most similarity learning approaches focus on learning metrics. In the context of OASIS, whenW is
positive semi definite (PSD), it defines a Mahalanobis distance over the images. The matrix square-
root of W, ATA = W can then be used to project the data into a new space in which the Euclidean
distance is equivalent to theW distance in the original space.

We experimented with positive variants of OASIS, where we repeatedly projected the learned
model onto the set of PSD matrices, once everyt iterations. Projection is done by taking the eigen
decompositionW = V ·D ·VT whereV is the eigenvector matrix andD is the diagonal eigenvalues
matrix limited to positive eigenvalues. Figure 9 traces precision on the test set throughout learning
for various values oft.

The effect of positive projections is complex. First, continuously projecting once every few steps
helps to reduce overfitting, as can be observed by the slower decline of the blue curve (upper smooth
curve) compared to the orange curve (lowest curve). However, when projection is performed after
many steps (instead of continuously), performance of the projected modelactually outperforms the
continuous-projection model (upper jittery curve). The reason for this effect is likely to be that the
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Figure 9: Mean average precision (mAP) during training for three PSD projection schemes, using
the set of 20 classes from caltech256.

estimates of the positive sub-space are very noisy when only based on a few samples (see also Chen
et al. 2009, Section 2.1). Indeed, accurate estimation of the negative subspace is known to be a
hard problem, because small perturbations can turn a negative but small eigenvalue, into a small but
positive one. As a result, the set of vectors selected based on having positive eigenvalues, is highly
variable. We found that this effect was so strong, that the optimal projection strategy is to avoid
projection throughout learning completely. Instead, projecting into PSD after learning (namely,
after a model was chosen using early stopping) provided the best performance in our experiments.

An interesting alternative to obtain a PSD matrix was explored by Kulis et al. (2009) and
Jain et al. (2008a). Using a LogDet divergence between two matricesDld(X,Y) = tr(XY−1)−
log(det(XY−1)) ensures that, given an initial PSD matrix, all subsequent matrices will be PSDas
well. It would be interesting to test the effect of using LogDet regularization in the OASIS setup.

7. Discussion

We have presented OASIS, a scalable algorithm for learning image similarity that captures both
semantic and visual aspects of image similarity. Three key factors contribute tothe scalability of
OASIS. First, using a large margin online approach allows training to converge even after seeing a
small fraction of potential pairs. Second, the objective function of OASISdoes not require the sim-
ilarity measure to be necessarily a metric during training, although it appears tonaturally converge
to a symmetric solution. Finally, we use a sparse representation of low level features which allows
computing scores very efficiently.
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We found that OASIS performs well in a wide range of scales: from problems with thousands
of images, where it slightly outperforms existing metric-learning approaches, to large web-scale
problems, where it achieves high accuracy, as estimated by human evaluators.

OASIS differs from previous methods in that the similarity measure that it learns is not forced to
be a metric, or even symmetric. When the number of available samples is small, it is useful to add
constraints that reflect prior knowledge on the type of similarity measure expected to be learned.
However, we found that these constraints were not helpful even for problems with a few hundreds
of samples. Interestingly, human judgements of pairwise similarity are known to be asymmetric, a
property that can be easily captured by an OASIS model.

OASIS learns a class-independent model: it is not aware of which queries or categories were
shared by two similar images. As such, it is more limited in its descriptive power andit is likely that
class-dependent similarity models could improve precision. On the other hand, class-independent
models could generalize to handle classes that were not observed duringtraining, as in transfer
learning. Large scale similarity learning, applied to images from a large varietyof classes, could
therefore be a useful tool to address real-world problems with a large number of classes.
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Appendix A. Human Evaluation

The following text was given as instructions to human evaluators when judging the relevance of
images to a query image.

Scenario:
A user is searching images to use in a presentation he/she plans to

give. The user runs a standard image search, and selects an image,
the ‘‘query image’’. The user then wishes to refine the search and
look for images that are SEMANTICALLY similar to the query image.

The difficulty lies, in the definition of ‘‘SEMANTICALLY’’. This can
have many interpretations, and you should take that into account.

So for instance, if you see an image of a big red truck, you can
interpret the user intent (the notion of semantically similar) in
various ways:

- any big red truck
- any red truck
- any big truck
- any truck
- any vehicle

You should interpret ‘‘SEMANTICALLY’’ in a broad sense rather than
in a strict sense but feel free to draw the line yourself (although
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be consistent).

Your task:
You will see a set of query images on the left side of the screen,

and a set of potential candidate matches, 5 per row, on the
right. Your job is to decide for each of the candidate images if it
is a good semantic match to the query image or not. The default is
that it is NOT a good match. Furthermore, if for some reason you
cannot make-up your mind, then answer ‘‘can’t say’’.

Appendix B. Caltech256 Class Sets

• 10 classes: bear, skyscraper, billiards, yo-yo, minotaur, roulette-wheel, hamburger, laptop-
101, hummingbird, blimp.

• 20 classes: airplanes-101, mars, homer-simpson, hourglass, waterfall, helicopter-101, mountain-
bike starfish-101, teapot, pyramid, refrigerator, cowboy-hat, giraffe, joy-stick, crab-101, bird-
bath, fighter-jet tuning-fork, iguana, dog.

• 50 classes: car-side-101, tower-pisa, hibiscus, saturn, menorah-101, rainbow, cartman, chandelier-
101, backpack, grapes, laptop-101, telephone-box, binoculars, helicopter-101, paper-shredder,
eiffel-tower, top-hat, tomato, star-fish-101, hot-air-balloon, tweezer,picnic-table, elk, kangaroo-
101, mattress, toaster, electric-guitar-101, bathtub, gorilla, jesus-christ, cormorant, man-
dolin, light-house, cake, tricycle, speed-boat, computer-mouse, superman, chimp, pram, fried-
egg, fighter-jet, unicorn, greyhound, grasshopper, goose, iguana, drinking-straw, snake, hot-
dog.

• 249 classes: classes 1-250, excluding class 129 (leopards-101), which had lessthan 65 large
enough images.
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Abstract
When learning models that are represented in matrix forms, enforcing a low-rank constraint can
dramatically improve the memory and run time complexity, while providing a natural regularization
of the model. However, naive approaches to minimizing functions over the set of low-rank matrices
are either prohibitively time consuming (repeated singular value decomposition of the matrix) or
numerically unstable (optimizing a factored representation of the low-rank matrix). We build on
recent advances in optimization over manifolds, and describe an iterative online learning procedure,
consisting of a gradient step, followed by asecond-order retractionback to the manifold. While
the ideal retraction is costly to compute, and so is the projection operator that approximates it, we
describe another retraction that can be computed efficiently. It has run time and memory complexity
of O((n+m)k) for a rank-k matrix of dimensionm× n, when using an online procedure with
rank-one gradients. We use this algorithm, LORETA, to learn a matrix-form similarity measure
over pairs of documents represented as high dimensional vectors. LORETA improves the mean
average precision over a passive-aggressive approach in a factorized model, and also improves over
a full model trained on pre-selected features using the samememory requirements. We further
adapt LORETA to learn positive semi-definite low-rank matrices, providing an online algorithm
for low-rank metric learning. LORETA also shows consistent improvement over standard weakly
supervised methods in a large (1600 classes and 1 million images, usingImageNet) multi-label
image classification task.
Keywords: low rank, Riemannian manifolds, metric learning, retractions, multitask learning,
online learning

1. Introduction

Many learning problems involve models represented in matrix form. These include metric learning,
collaborative filtering, and multi-task learning where all tasks operate overthe same set of features.
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†. Also at Google Research, 1600 Amphitheatre Parkway, Mountain ViewCA, 94043.
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In many of these tasks, a natural way to regularize the model is to limit the rank of the corresponding
matrix. In metric learning, a low-rank constraint allows to learn a low dimensional representation
of the data in a discriminative way. In multi-task problems, low-rank constraintsprovide a way to
tie together different tasks. In all cases, low-rank matrices can be represented in a factorized form
that dramatically reduces the memory and run-time complexity of learning and inference with that
model. Low-rank matrix models could therefore scale to handle substantially many more features
and classes than models with full rank dense matrices.

Unfortunately, the rank constraint is non-convex, and in the general case, minimizing a convex
function subject to a rank constraint is NP-hard (Natarajan, 1995).1 As a result of these issues, two
main approaches have been commonly used to address the problem of learning under a low-rank
constraint. Sometimes, a matrixW ∈ Rn×m of rankk is represented as a product of two low dimen-
sion matricesW = ABT ,A∈ Rn×k,B∈ Rm×k and simple gradient descent techniques are applied to
each of the product terms separately (Bai et al., 2009). Second, projected gradient algorithms can
be applied by repeatedly taking a gradient step and projecting back to the manifold of low-rank
matrices. Unfortunately, computing the projection to that manifold becomes prohibitively costly for
large matrices and cannot be computed after every gradient step.

Work in the field has focused mostly on two realms. First, learning low-rank positive semi-
definite (PSD) models (as opposed to general low-rank models), as in the works of Kulis et al.
(2009) and Meyer et al. (2011). Second, approximating a noisy matrix ofobservations by a low-
rank matrix, as in the work of Negahban and Wainwright (2010). This taskis commonly addressed
in the field of recommender systems. Importantly, the current paper does not address the problem
of low-rank approximation to a given data matrix, but rather addresses the problem of learning a
low-rank parametric modelin the context of ranking and classification.

In this paper we propose new algorithms for online learning on the manifold oflow-rank matri-
ces. It is based on an operation calledretraction, which is an operator that maps from a vector space
that is tangent to the manifold, into the manifold (Do Carmo, 1992; Absil et al., 2008). Retrac-
tions include the projection operator as a special case, but also include other operators that can be
computed substantially more efficiently. We use second order retractions to develop LORETA —an
online algorithm for learning low-rank matrices. LORETA has a memory and run time complexity of
O((n+m)k) per update when the gradients have rank one. We show below that the case of rank-one
gradients is relevant to numerous online learning problems.

We test LORETA in two different domains and learning tasks. First, we learn a bilinear similarity
measure among pairs of text documents, where the number of features (text terms) representing each
document could become very large. LORETA performed better than other techniques that operate
on a factorized model, and also improves retrieval precision by 33% as compared with training a
full rank model over pre-selected most informative features, using comparable memory footprint.
Second, we applied LORETA to image multi-label ranking, a problem in which the number of classes
could grow to millions. LORETA significantly improved over full rank models, using a fraction of
the memory required. These two experiments suggest that low-rank optimization could become
very useful for learning in high-dimensional problems.

1. Some special cases are solvable (notably, PCA), relying mainly on singular value decomposition (Fazel et al., 2005)
and semi-definite programming techniques. For SDP of rankk≥ 2 it is not known whether this problem is NP-hard.
For k = 1 it is equivalent to the MAX-CUT problem (Briët et al., 2010). Both SDP and SVD scale poorly to large
scale tasks.
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This paper is organized as follows. We start with an introduction to optimization on manifolds,
describing the notion of retractions. We then derive our low-rank online learning algorithm in three
variants: one which learns a general low-rank matrix, one which learns alow-rank PSD matrix, and
one which concentrates most of the learning in a reduced dimensional space. Finally we test our
algorithms in two applications: learning similarity of text documents, and multi-label ranking on a
set of one million images.

This paper extends a shorter version published in Advances in Neural Information Systems
(Shalit et al., 2010), by adding a new PSD version of the algorithm, much larger-scale and wider
experiments, giving a full mathematical discussion and proofs, and addingthorough complexity
analysis.

2. Optimization on Riemannian Manifolds

The field of numerical optimization on smooth manifolds has advanced significantly in the past
few years. For a recent exposition on this subject see Absil et al. (2008). We start with a short
introduction to embedded manifolds, which are the focus of this paper.

An embedded manifoldis a smooth subset of an ambient spaceRn. For instance, the set
{x : ||x||2 = 1,x ∈ Rn}, the unit sphere, is ann−1 dimensional manifold embedded inn-dimensional
spaceRn. As another example, theorthogonal group On, which comprises of the set of orthogo-
nal n× n matrices, is ann(n−1)

2 dimensional manifold embedded inRn×n. Here we focus on the
manifold of low-rank matrices, namely, the set ofn×m matrices of rankk wherek < m,n. It
is an(n+m)k− k2 dimensional manifold embedded inRn×m, which we denoteM n,m

k , or plainly
M . Embedded manifolds inherit many properties from the ambient space, a fact which simplifies
their analysis. For example, the natural Riemannian metric for embedded manifolds is simply the
Euclidean metric restricted to the manifold.

Motivated by online learning, we focus here on developing a stochastic gradient descent proce-
dure to minimize a loss functionL over the manifold of low-rank matricesM n,m

k ,

min
W

L(W) s.t. W ∈M n,m
k .

To illustrate the challenge in this problem, consider a simple stochastic gradient descent algorithm
(Figure 1). At every stept of the algorithm, a gradient step updateWt − ∇̃L(Wt) takes the model
outside of the manifoldM and has to be mapped back onto the manifold. The most common
mapping operation is theprojectionoperation, which, given a pointWt− ∇̃L(Wt) outside the man-
ifold, would find the closest point inM . Unfortunately, the projection operation is very expensive
to compute for the manifold of low-rank matrices, since it basically involves a singular value de-
composition. Here we describe a wider class of operations calledretractions, that serve a similar
purpose: they find a point on the manifold that is in the direction of the gradient. To explain how re-
tractions are computed, we first describe the notion of atangent spaceand theRiemannian gradient
of a function on a manifold.

2.1 Riemannian Gradient and the Tangent Space

Each pointW in an embedded manifoldM has a tangent space associated with it, denotedTWM ,
as shown in Figure 2 (for a formal definition of the tangent space, see Appendix A). The tangent
space is a vector space of the same dimension as the manifold that can be identified in a natural way
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Figure 1: Projection onto the manifold is just a particular case of a retraction.Retractions are
defined as operators that approximate the geodesic gradient flow on the manifold.

with a linear subspace of the ambient space. It is usually simple to compute the linear projectionPW

of any point in the ambient space onto the tangent spaceTWM .

Given a manifoldM and a differentiable functionL :M →R, theRiemannian gradient∇L(W)
of L onM at a pointW is a vector in the tangent spaceTWM . A very useful property of embedded
manifolds is the following: given a differentiable functionf defined on the ambient space (and thus
on the manifold), the Riemannian gradient off at pointW is simply the linear projectionPW of the
Euclidean gradient off onto the tangent spaceTWM .

Thus, if we denote the Euclidean gradient ofL in Rn×m by ∇̃L , we have∇L(W) =PW(∇̃L). An
important consequence follows in case the manifold represents the set of points obeying a certain
constraint. In this case the Riemannian gradient off is equivalent to the Euclidean gradient off
minus the component which is normal to the constraint. Indeed this normal component is exactly
the component which is irrelevant when performing constrained optimization.

The Riemannian gradient allows us to computeWt+ 1
2 =Wt−ηt∇L(W), for a given iterate point

Wt and step sizeηt . We now examine howWt+ 1
2 can be mapped back onto the manifold.

2.2 Retractions

Intuitively, retractionscapture the notion of "going along a straight line" on the manifold. The math-
ematically ideal retraction is called theexponential mapping(Do Carmo, 1992, Chapter 3): it maps
the tangent vectorξ ∈ TWM to a point along a geodesic curve which goes throughW in the direc-
tion of ξ Figure 1. Unfortunately, for many manifolds (including the low-rank manifoldconsidered
here) calculating the geodesic curve is computationally expensive (Vandereycken et al., 2009). A
major insight from the field of Riemannian manifold optimization is that one can use retractions
which merely approximate the exponential mapping. Using such retractions maintains the conver-
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gence properties obtained with the exponential mapping, but is much cheaper computationally for a
suitable choice of mapping.

Definition 1 Given a point W in an embedded manifoldM , a retraction is any function RW :
TWM →M which satisfies the following two conditions (Absil et al., 2008, Chapter 4):

1. Centering: RW(0) =W.

2. Local rigidity: The curveγ : (−ε,ε)→M defined byγξ(τ) = RW(τξ) satisfies
γ̇ξ(0) = ξ, whereγ̇ is the derivative ofγ by τ.

It can be shown that any such retraction approximates the exponential mapping to a first or-
der (Absil et al., 2008).Second-order retractions, which approximate the exponential mapping to
second order aroundW, have to satisfy in addition the following stricter condition:

PW

(
dRW(τξ)

dτ2 |τ=0

)
= 0,

for all ξ ∈ TWM , wherePW is thelinear projection from the ambient space onto the tangent space
TWM . When viewed intrinsically, the curveRW(τξ) defined by a second-order retraction has zero
acceleration at pointW, namely, its second order derivatives are all normal to the manifold. The best
known example of a second-order retraction onto embedded manifolds is theprojection operation
(Absil and Malick, 2010), which maps a pointX to the pointY ∈M which is closest to it in the
Frobenius norm. That is, the projection ofX ontoM is simply:

Pro jM (X) = argmin
Y∈M

‖X−Y‖Fro

Importantly, such projections are viewed here as one type of a second order approximation to the
exponential mapping, which can be replaced by any other second-order retractions, when computing
the projection is too costly (see Figure 1).

Given the tangent space and a retraction, we now define a Riemannian gradient descent proce-
dure for the lossL at pointWt ∈M . Conceptually, the procedure has three steps (Figure 2):

1. Step 1: Ambient gradient: Obtain the Euclidean gradient∇̃L(Wt) in the ambient space.

2. Step 2: Riemannian gradient:Linearly project the ambient gradient onto the tangent space
TWM . Computeξt = PWt (∇̃L(Wt)).

3. Step 3: Retraction: Retract the Riemannian gradientξt back to the manifold:Wt+1 =
RWt (ξt).

With a proper choice of step size, this procedure can be proved to have local convergence for
any retraction (Absil et al., 2008). In practice, the algorithm merges thesethree steps for efficiency,
as discussed in the next section.
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Figure 2: A three step procedure for computing a retracted gradient at point Wt . Step 1: standard
(Euclidean) gradient step. Step 2: linearly project ambient gradient ontotangent space
TWM in order to get the Riemannian gradientξt . Step 3: retract the Riemannian gradient
ξt back to the manifold.

3. Online Learning on the Low-rank Manifold

Based on the retractions described above, we now present an online algorithm for learning low-rank
matrices, by performing stochastic gradient descent on the manifold of low-rank matrices. We name
the algorithm LORETA (for a LOw rank RETraction Algorithm). At every iteration the algorithm
suffers some loss, and performs a Riemannian gradient step followed by aretraction to the manifold
M

n,m
k . Section 3.1 discusses general online updates. Section 3.2 discusses thevery common case

where the online updates induce a gradient of rankr = 1.

Algorithm 1 : Online algorithm for learning in the manifold of low-rank matrices

Input: Initial low-rank model matrixW0∈M n,m
k . Examples(x0,x1, . . .). Loss functionL . Gradient

descent step sizes(η0,η1, . . .).
Output: Final low-rank model matrixW f inal ∈M n,m

k .

repeat:
Get examplext

Calculate the stochastic loss gradient:∇̃L(Wt ;xt)

Linearly project onto the tangent space:ξt = PWt (∇̃L(Wt ;xt))
Retract back to the manifold:Wt+1 = RWt (−ηtξt)

until stopping condition is satisfied
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In what follows, lowercase Greek letters likeξ denote an abstract tangent vector, and uppercase
Roman letters likeA denote concrete matrix representations as kept in memory (takingn×m float
numbers to store). We intermix the two notations, as inξ = AZ, when the meaning is clear from the
context. The set ofn×k matrices of rankk is denotedRn×k

∗ .

3.1 The General-Rank LORETA Algorithm

In online learning we are repeatedly given a rank-r gradient matrixZ = ∇̃LW, and want to compute
a step onM n,m

k in the direction ofZ. As a first step we find its linear projection onto the tangent
spaceẐ = PW(Z).

We start with a lemma that gives a representation of the tangent spaceTWM (Figure 2), ex-
tending the constructions given by Vandereycken and Vandewalle (2010) to the general manifold of
low-rank matrices.

Lemma 2 Let W∈M n,m
k have a (non-unique) factorization W= ABT , where A∈Rn×k

∗ , B∈Rm×k
∗ .

Let A⊥ ∈Rn×(n−k) and B⊥ ∈Rm×(m−k) be the orthogonal complements of A and B respectively, such
that AT

⊥A= 0, BT
⊥B= 0, AT

⊥A⊥ = In−k, BT
⊥B⊥ = Im−k. The tangent space toM n,m

k at W is:

TWM =

{[
A A⊥

][M NT
1

N2 0

][
BT

BT
⊥

]
: M ∈ Rk×k,N1 ∈ R(m−k)×k,N2 ∈ R(n−k)×k

}
.

Proof The proof is given in Appendix A.

We note that the assumption thatA andB are both of full column rank is tantamount to assuming
that the modelW is exactly of rankk, and no less. Letξ ∈ TWM be a tangent vector toW = ABT .
From the characterization above it follows thatξ can be decomposed in a unique manner into three
orthogonal components:ξ = ξAB+ξAB⊥+ξA⊥B, where:

ξAB = AMBT , ξAB⊥ = ANT
1 BT
⊥, ξA⊥B = A⊥N2BT . (1)

It is easy to verify that each pair is orthogonal, following from the relationsAT
⊥A= 0, BT

⊥B= 0.
We wish to find the three matricesM, N1 andN2 associated witĥZ = PW(Z), such thatẐ =

AMBT +ANT
1 BT
⊥+A⊥N2BT . We can find each of the matricesM, N1 andN2 separately, because

each belongs to a space orthogonal to the other two. Thus we solve the following three problems:

argmin
M∈Rk×k

‖Z−AMBT‖2Fro,

argmin
N1∈R(m−k)×k

‖Z−ANT
1 BT
⊥‖2Fro,

argmin
N2∈R(n−k)×k

‖Z−A⊥N2BT‖2Fro .

To find the minimum of each of these three equations, we compute the derivatives and set them
to zero. The solutions involve the pseudoinverses ofA andB. SinceA andB are of full column rank,
their pseudoinverses areA† = (ATA)−1AT , B† = (BTB)−1BT .
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M = (ATA)−1ATZB(BTB)−1 = A†ZB†T
, (2)

N1 = BT
⊥ZTA(ATA)−1 = BT

⊥ZTA†,

N2 = AT
⊥ZB(BTB)−1 = AT

⊥ZB†T
.

The matrixAA† is the matrix projecting onto the column space ofA, and similarly forB. We
will denote these matrices byPA, PB, etc. For the matrices projecting ontoA⊥ andB⊥’s columns
we actually havePA⊥ = A⊥AT

⊥ because the columns ofA⊥ are orthogonal, and likewise forPB⊥ .
Substituting the expressions inEquation(2) into expressions of the components of the Riemannian
gradient vector inEquation(1), we obtain:

ξAB = PAZPB, ξAB⊥ = PAZPB⊥ , ξA⊥B = PA⊥ZPB.

We can now define the retraction. The following theorem presents the retraction we will apply.

Theorem 3 Let W∈M n,m
k , W = ABT , and W† = B†TA†. Letξ ∈ TWM

n,m
k ,

ξ = ξAB+ξAB⊥+ξA⊥B, as in Equation(1), and let:

V1 =W+
1
2

ξAB+ξA⊥B− 1
8

ξABW†ξAB− 1
2

ξA⊥BW†ξAB ,

V2 =W+
1
2

ξAB+ξAB⊥− 1
8

ξABW†ξAB− 1
2

ξABW†ξAB⊥ .

The mapping
RW(ξ) =V1W

†V2

is a second order retraction from a neighborhoodΘW ⊂ TWM
n,m
k toM n,m

k .

Proof The proof is given in Appendix B.

A more succinct representation of this retraction is the following:

Lemma 4 The retraction RW(ξ) can be presented as:

RW(ξ) =
[
A

(
Ik+

1
2

M− 1
8

M2
)
+A⊥N2

(
Ik−

1
2

M

)]
·

[
B

(
Ik+

1
2

MT − 1
8

(
MT)2

)
+B⊥N1

(
Ik−

1
2

MT
)]T

.

Proof The proof is given in Appendix C.

As a result from Lemma 4, we can calculate the retraction as the product of two low-rank factors:
the first is ann×k matrix, the second ak×mmatrix. Given a gradient̃∇L(x) in the ambient space,
we can calculate the matricesM, N1 and N2 which allow us to represent its projection onto the
tangent space, and furthermore allow us to calculate the retraction. We nowhave all the ingredients
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Algorithm 2 : Naive Riemannian stochastic gradient descent

Input: Matrices A ∈ Rn×k
∗ , B ∈ Rm×k

∗ s.t. W = ABT . Gradient matrixG ∈ Rn×m s.t.
G = −η∇̃L(W) ∈ Rn×m, where ∇̃L(W) is the gradient in the ambient space andη > 0 is
the step size.

Output: MatricesZ1 ∈ Rn×k
∗ , Z2 ∈ Rm×k

∗ such thatZ1ZT
2 = RW(−η∇L(W)).

Compute: matrix dimension
A† = (ATA)−1AT , B† = (BTB)−1BT k×n, k×m
A⊥, B⊥= orthogonal complements ofA,B n× (n−k), m× (m−k)
M = A†GB†T k×k
N1 = BT

⊥GTA†T (m−k)×k
N2 = AT

⊥GB†T (n−k)×k
Z1 = A

(
Ik+ 1

2M− 1
8M2

)
+A⊥N2

(
Ik− 1

2M
)

n×k
Z2 = B

(
Ik+ 1

2MT − 1
8(M

T)2
)
+B⊥N1

(
Ik− 1

2MT
)

m×k

necessary for a Riemannian stochastic gradient descent algorithm. The procedure is outlined in
Algorithm 2.

Algorithm 2 explicitly computes and stores the orthogonal complement matricesA⊥ andB⊥,
which in the low rank casek≪ m,n, have sizeO(mn), the same as the full sizedW. To improve
the memory complexity, we use the fact that the matricesA⊥ and B⊥ always operate with their
transpose. SinceA⊥ andB⊥ have orthogonal columns, the matrixA⊥AT

⊥ is actually the projection
matrix that we denoted earlier byPA⊥ , and likewise forB⊥. Because of orthogonal complementarity,
these projection matrices are equal toIn−PA andIm−PB respectively. Thus we can writeA⊥N2 =(
I −AA†

)
ZB†T

, and a similar identity forB⊥N1.
Consider now the case where the gradient matrix is of rank-r and is available in a factorized

form Z = G1GT
2 , with G1 ∈ Rn×r , G2 ∈ Rm×r . Using the factorized gradient we can reformulate the

algorithm to keep in memory only matrices of size at most max(n,m)×k or max(n,m)× r. Optimiz-
ing the order of matrix operations so that the number of operations is minimized gives Algorithm
3. The runtime complexity of Algorithm 3 is readily computed based on matrix multiplications
complexity,2 and isO

(
(n+m)(k+ r)2

)
.

3.2 LORETA With Rank-one Gradients

In many learning problems, the gradient matrix∇̃L(W) required for a gradient step update has a
rank of one. This is the case for example, when the matrix modelW acts as a bilinear form on two
vectors,p andq, and the loss is a piecewise linear function ofpTWq (as in Grangier and Bengio,
2008; Chechik et al., 2010; Weinberger and Saul, 2009; Shalev-Shwartz et al., 2004 and Section 7.1
below). In that case, the gradient is the rank-one outer product matrixpqT . As another example,
consider the case of multitask learning, where the matrix modelW operates on a vector inputp, and
the loss is the squared loss‖Wp−q‖2 between the multiple predictionsWp and the true labelsq.
The gradient of this loss is(Wp−q)pT , which is again a rank-one matrix. We now show how to

2. We assume throughout this paper the use of ordinary (schoolbook)matrix multiplication.
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Algorithm 3 : L ORETA -r - General-rank Riemannian stochastic gradient descent

Input: Matrices A ∈ Rn×k
∗ , B ∈ Rm×k

∗ s.t. W = ABT . Matrices G1 ∈ Rn×r , G2 ∈ Rm×r s.t.
G1GT

2 = −η∇̃L(W) ∈ Rn×m, where∇̃L(W) is the gradient in the ambient space andη > 0 is the
step size.

Output: MatricesZ1 ∈ Rn×k
∗ , Z2 ∈ Rm×k

∗ such thatZ1ZT
2 = RW(−η∇L(W)).

Compute: matrix dimension runtime complexity
A† = (ATA)−1AT , B† = (BTB)−1BT k×n, k×m O((n+m)k2)
a1 = A† ·G1, b1 = B† ·G2 k× r, k× r O((n+m)kr)
a2 = A·a1 n× r O(nkr)
Q= b1

T ·a1 r× r O(kr2)

a3 =−1
2a2+

3
8a2 ·Q+G1− 1

2G1 ·Q n× r O(nr2)
Z1 = A+a3 ·b1

T n×k O(nkr)
b2 =

(
GT

2 B
)
·B† r×m O(mkr)

b3 =−1
2b2+

3
8Q·b2+GT

2 − 1
2Q·GT

2 r×m O(mr2)
ZT

2 = BT +a1 ·b3 k×m O(mkr)

reduce the complexity of each iteration to be linear in the model rankk when the rank of the gradient
matrix isr = 1.

Algorithm 4 : L ORETA -1 - Rank-one Riemannian stochastic gradient descent

Input: MatricesA∈ Rn×k
∗ , B∈ Rm×k

∗ s.t. W = ABT . MatricesA† andB†, the pseudo-inverses ofA
andB respectively. Vectorsp ∈ Rn×1, q ∈ Rm×1 s.t. pqT = −η∇̃L(W) ∈ Rn×m, where∇̃L(W) is
the gradient in the ambient space andη > 0 is the step size.

Output: MatricesZ1 ∈ Rn×k
∗ , Z2 ∈ Rm×k

∗ s.t. Z1ZT
2 = RW(−η∇L(W)). MatricesZ†

1 andZ†
2, the

pseudo-inverses ofZ1 andZ2 respectively.

Compute: matrix dimension runtime complexity
a1 = A† ·p,b1 = B† ·q k×1 O((n+m)k)
a2 = A·a1 n×1 O(nk)
s= b1

T ·a1 1×1 O(k)
a3 = a2

(
−1

2 +
3
8s
)
+p(1− 1

2s) n×1 O(n)
Z1 = A+a3 ·b1

T n×k O(nk)
b2 =

(
qTB

)
·B† 1×m O(mk)

b3 = b2
(
−1

2 +
3
8s
)
+qT(1− 1

2s) 1×m O(m)
ZT

2 = BT +a1 ·b3 k×m O(mk)
Z†

1 = rank_one_pseudoinverse_update(A,A†,a3,b1) k×n O(nk)
Z†

2 = rank_one_pseudoinverse_update(B,B†,b3,a1) k×m O(mk)

Given rank-one gradients, the most computationally demanding step in Algorithm 3 is the com-
putation of the pseudo-inverse of the matricesA andB, takingO(nk2) andO(mk2) operations. All
other operations areO(max(n,m) · k) at most. To speed up calculations we use the fact that for
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r = 1 the outputsZ1 andZ2 become rank-one updates of the input matricesA andB. This enables
us to keep the pseudo-inversesA† andB† from the previous round, and perform a rank-one update
to them, following a procedure developed by Meyer (1973). The full procedure is included in Ap-
pendix D. This procedure is similar to the better known Sherman-Morrison formula for the inverse
of a rank-one perturbed matrix, and its computational complexity for ann× k matrix isO(nk) op-
erations. Using that procedure, we derive our final algorithm, LORETA-1, the rank-one Riemannian
stochastic gradient descent. Its overall time and space complexity are bothO((n+m)k) per gradient
step. It can be seen that the LORETA-1 algorithm uses only basic matrix operations, with the most
expensive ones being low-rank matrix-vector multiplication and low-rank matrix-matrix addition.
The memory requirement of LORETA-1 is about 4nk (assumingm= n), since it receives four in-
put matrices of sizenk (A,B,A†,B†) and assuming it can compute the four outputs (Z1,Z2,Z

†
1,Z

†
2),

in-place while destroying previously computed terms.

4. Online Learning of Low-rank Positive Semidefinite Matrices

In this section we adapt the derivation above to the special case of positive semidefinite (PSD)
matrices. PSD matrices are of special interest because they encode a trueEuclidean metric. Ann-by-
nPSD matrixW of rank-k can be factored asW=YYT , withY∈Rn×k. Thus, the bilinear formxTWz
is equal to(Yx)T(Yz), which is a Euclidean inner product in the space spanned byY’s columns.
These properties have led to an extensive use of PSD matrix models in metric and similarity learning,
see, for example, Xing et al. (2002), Goldberger et al. (2005), Globerson and Roweis (2006), Bar-
Hillel et al. (2006) and Jain et al. (2008). The set ofn-by-n PSD matrices of rank-k forms a manifold
of dimensionnk− k(k−1)

2 , embedded in the Euclidean spaceRn×n (Vandereycken et al., 2009). We
denote this manifold byS+(k,n).

We now give a characterization of the tangent space of this manifold, due toVandereycken and
Vandewalle (2010).

Lemma 5 Let W∈ S+(k,n) have a (non-unique) factorization W= YYT , where Y∈ Rn×k
∗ . Let

Y⊥ ∈ Rn×(n−k) be the orthogonal complement of Y such that YT
⊥Y = 0, YT

⊥Y⊥ = In−k. The tangent
space toS+(k,n) at W is:

TWS+(k,n) =

{[
Y Y⊥

][S NT

N 0

][
YT

YT
⊥

]
: S∈ Rk×k,N ∈ R(n−k)×k,S= ST

}
.

Proof See Vandereycken and Vandewalle (2010), Proposition 5.2.

Let ξ∈TWS+(k,n) be a tangent vector toW=YYT . As shown by Vandereycken and Vandewalle
(2010),ξ can be decomposed into two orthogonal components,ξ = ξS+ξP. Given a rank-r gradient
matrixZ, and using the projection matricesPY andPY⊥ they show that:

ξS= PY
Z+ZT

2
PY,

ξP = PY⊥
Z+ZT

2
PY +PY

Z+ZT

2
PY⊥ .

Using this characterization of the tangent vector when given an ambient gradientZ, one can
define a retraction analogous to that defined in Section 3. This retraction is referred to asR(2)

W in
Vandereycken and Vandewalle (2010).
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Theorem 6 Let W∈ S+(k,n), W = YYT , and W† be its pseudo-inverse. Letξ ∈ TWS+(k,n), ξ =
ξS+ξP, as described above, and let

V =W+
1
2

ξS+ξP− 1
8

ξSW†ξS− 1
2

ξPW†ξS.

The mapping RPSD
W (ξ) =VW†V is a second order retraction from a neighborhood

ΘW ⊂ TWS+(k,n) to S+(k,n).

Proof See Vandereycken and Vandewalle (2010), Proposition 5.10.

Algorithm 5 : L ORETA -1-PSD- Rank-one Riemannian PSD stochastic gradient descent

Input: A matrixY ∈Rn×k
∗ , s.t.W =YYT . The matrixY†, the pseudoinverse ofY. Vectorsp∈Rn×1,

q ∈ Rn×1 s.t. pqT = −η∇̃L(W) ∈ Rn×m, where∇̃L(W) is the gradient in the ambient space and
η > 0 is the step size.

Output: Matrix Z ∈ Rn×k
∗ , s.t.ZZT = RPSD

W (−η∇L(W)). Matrix Z†, the pseudo-inverse ofZ.

Compute: matrix dimension runtime
complexity

h1 =Y†p k×1 O(nk)
h2 =Y†q k×1 O(nk)
n1 = h1

Th1 1×1 O(k)
n2 = h2

Th2 1×1 O(k)
ĥ1 =Yh1 n×1 O(nk)
ĥ2 =Yh2 n×1 O(nk)
s= h1

Th2 1×1 O(k)
l1 = (−1

4 +
3
32s)ĥ1+(1

2− 1
8s)p+ 3

32n1ĥ2− 1
8n1q n×1 O(n)

l2 = (−1
4 +

3
32s)ĥ2+(1

2− 1
8s)q+ 3

32n2ĥ1− 1
8n2p n×1 O(n)

P1 = l1h2
T n×k O(nk)

P2 = l2h1
T n×k O(nk)

Z =Y+P1+P2 n×k O(nk)
Z†

temp= rank_one_pseudoinverse_update(Y,Y†, l1,h2) k×n O(nk)
Z† = rank_one_pseudoinverse_update(Y+P1,Z

†
temp, l2,h1) k×n O(nk)

Following the derivation of algorithms 2-4, and after some rearrangement, we obtain a PSD
version of the LORETA-1 algorithm. This PSD version is given in Algorithm (5). The algorithm
is very similar to LORETA-1 , but instead of learning a general rank-k matrix it learns a positive
semidefinite rank-k matrix. The computational complexity and memory complexity of a gradient
step for this algorithm isO(nk), namely, it is linear in the reduced number of model parameters.

5. Manifold Identification

Until now, we formalized the problem of learning a low-rank matrix based on afactorization
W = AB. At test time, computing the bilinear score using the model can be even faster when
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the data is sparse. For instance, given two vectorsx1 andx2 with c1 andc2 non-zero values, com-
puting the bilinear formxT

1 ABTx2 requiresO(c1k+k+kc2) = O((c1+c2)k) operations, and can be
significantly faster than the dense case. However, at training time, the LORETA-1 algorithm still has
a complexity ofO((m+n)k) for each iteration even when the data is sparse.

The current section describes an attempt to adapt LORETA-1 such that it treats sparse data more
efficiently. The empirical evaluation of this adaptation showed mixed results, but we include the
derivation for completeness. The main idea is to separate the low-rank projection into two steps.
First, a projection to a low dimensional spaceAx that can be computed efficiently whenx is sparse.
Then, learning a second matrix, whose role is to tune the representation in thek-dimensional space.

To explain the idea, we focus on the case of learning a low-rank model which parametrizes
a similarity function. The model isW = ABT , A ∈ Rn×k, B ∈ Rn×k. The similarity between two
vectorsp,q ∈ Rn is then given by

Sim(p,q) = pTWq = (ATp)T · (BTq). (3)

This similarity measure can be viewed as the cosine similarity inRk between the projected vectors
BTq andATp. We now introduce another similarity model which operates directly in the projected
space. Formally, we haveM ∈ Rk×k, and the similarity model is

Sim(p,q) = (ATp)TM(BTq) = pTAMBTq. (4)

Clearly, since the model in Equation (4) involves only linear matrix multiplications, itsdescrip-
tive power is equivalent to that of the model Equation (3). However, it has the potential to be
learned faster. To speed the training we can iterate between learning the outer projections A,B us-
ing LORETA , and learning the inner low-dimensional similarity modelM using standard methods
operating in the low-dimensional space. Specifically, the idea is to executes update steps ofM for
every update step ofA,B (Algorithm 6). Afters update steps toM, it is decomposed using SVD to
obtainM =USVT , and these factors are used to update the outer projections usingA← AUsqrt(S),
B← BVsqrt(S).

Consider the computational complexity: Given two sparse vectorsx1, x2 with c1 andc2 non-zero
values respectively, projecting them usingA andB to the low dimensional space takesO(k(c1+c2)),
and an update step of M takesO(k2). DecomposingM using SVD takesO(k3), so the overall
complexity fors updates isO

(
k ·

(
s(k+c1+c2)+k2

))
. Whens≥ k the cost of decomposition is

amortized across manyM updates and does not increase the overall complexity. The update ofA, B
takesO(k(n+m)) as before. This approach is related to the idea of manifold identification (Oberlin
and Wright, 2007), where the learning ofA, B "identifies" a manifold of rankk and the inner steps
operate to tune the representation within that subspace.

This iterative procedure could be a significant speed up compared to the original O((m+n)k).
Unfortunately, when we tested this algorithm in a similarity learning task (as in Section 7.1), its
performance was not as good as that of LORETA-1. The main reason was numerical instability:
The matrixM typically collapsed to match few directions inA, and decomposing it has amplified
the sameA directions. This approach awaits deeper investigation which is outside the scope of the
current paper.

6. Related Work

A recent summary of many advances in the field of optimization on manifolds is given by Absil
et al. (2008). Advances in this field have lately been applied to matrix completion(Keshavan et al.,
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Algorithm 6 : Manifold identification meta-algorithm

Input: Initial model matricesA ∈ Rn×k
∗ , B ∈ Rm×k

∗ s.t. W = ABT . MatricesA† and B†, the
pseudo-inverses ofA andB respectively. Loss functionL .
Output: MatricesA∈ Rn×k

∗ , B∈ Rm×k
∗ s.t.W = ABT .

Parameters: η1: LORETA step size .η2: low-dimensional similarity learning step size.s: number
of low-dimensional learning steps per round

repeat:
[g1,g2] = ∇L(ABT)
[A,B,A†,B†] = LORETA

(
A,B,A†,B†,g1,g2,η1

)

initialize M = Ik
for i=1:s

[g1,g2] = ∇L(AMBT)
M = f ull − rank−metric− learning

(
M,ATg1,BTg2,η2

)

endfor
[U,S,V] = svd(M)
A= A·U ·sqrt(S)
B= B·V ·sqrt(S)

until stopping condition is satisfied

2010), tensor-rank estimation (Eldén and Savas, 2009; Ishteva et al., 2011) and sparse PCA (Journée
et al., 2010b).

Broadly speaking, there are two kinds of manifolds used in optimization. The first areembedded
manifolds, manifolds that form a subset of Euclidean space, and are the ones we employ in this work.
The second kind arequotient manifolds, which are formed by defining an equivalence relation on
a Euclidean space, and endowing the resulting equivalence classes with an appropriate Riemannian
metric. For example, the equivalence relation onRn defined byx∼ y ⇐⇒ ∃λ > 0, x= λy, yields a
quotient space called thereal projective spacewhen given a proper Riemannian metric.

More specific to the field of low-rank matrix manifolds, work has been done on the general
problem of optimization with low-rank positive semi-definite (PSD) matrices. Thelatest and most
relevant is the work of Meyer et al. (2011). In this work, Meyer and colleagues develop a framework
for Riemannian stochastic gradient descent on the manifold of PSD matrices,and apply it to the
problem of kernel learning and the learning of Mahalanobis distances. Their main technical tool is
that of quotient manifolds mentioned above, as opposed to the embedded manifold we use in this
work. Another paper which uses a quotient manifold representation is thatof Journée et al. (2010a),
which introduces a method for optimizing over low-rank PSD matrices.

In their 2010 paper (Vandereycken and Vandewalle, 2010), Vandereycken et al. introduced a
retraction for PSD matrices in the context of modeling systems of partial differential equations. We
build on this work in order to construct our methods of learning general and PSD low-rank matrices.

In general, the problem of minimizing a convex function over the set of low-rank matrices was
addressed by several authors, including Fazel (2002). Recht et al. (2010) and more recently Jain
et al. (2011) also consider the same problem, with additional affine constraints, and its connection
to recent advances in compressed sensing. The main tools used in these papers are the trace norm
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(sum of singular values) and semi-definite programming. See also Fazel etal. (2005) for a short
introduction to these methods.

More closely related to the current paper are the papers by Kulis et al. (2009) and Meka et al.
(2008). Kulis et al. (2009) deal with learning low-rank PSD matrices, anduse the rank-preserving
log-det divergence and clever factorization and optimization in order to derive an update rule with
runtime complexity ofO(nk2) for ann×n matrix of rankk. Meka et al. (2008) use online learning
in order to find a minimal rank square matrix under approximate affine constraints. The algorithm
does not directly allow a factorized representation, and depends on an "oracle" component, which
typically requires to compute an SVD.

Multi-class ranking with a large number of features was studied by Bai et al.(2009), and in the
context of factored representations, by Weston et al. (2011) (WSABIE). WSABIE combines pro-
jected gradient updates with a novel sampling scheme which is designed to minimizea ranking loss
named WARP. WARP is shown to outperform simpler triplet sampling approaches. Since WARP
yields rank-1 gradients, it can easily be adapted for Riemannian SGD, butwe leave experiments
with such sampling schemes to future work.

7. Experiments

We tested LORETA in two learning tasks: learning a similarity measure between pairs of text doc-
uments using the 20-newsgroups data collected by Lang (1995), and learning to rank image label
annotations based on a multi-label annotated set, using theImageNetdata set (Deng et al., 2009).
Matlab code for LORETA-1 is available online athttp://chechiklab.biu.ac.il/research/LORETA.

7.1 Learning Similarity on the 20 Newsgroups Data Set

In our first set of experiments, we looked at the problem of learning a similarity measure between
pairs of text documents. Similarity learning is a well studied problem, closely related to metric
learning (see Yang 2007 for a review). It has numerous applications in information retrieval such as
query by example, and finding related content on the web.

One approach to learn pairwise relations is to measure the similarity of two documentsp,q∈Rn

using a bilinear form parametrized by a modelW ∈ Rn×n:

SW(p,q) = pTWq.

Such models can be learned online (Chechik et al., 2010) and were shownto achieve high precision.
Sometimes the matrixW is required to be symmetric and positive definite, which means it actually
encodes a metric, also known as a Mahalanobis distance. Unfortunately, since the number of param-
eters grows asn2, storing the matrixW in memory is only feasible for limited feature dimensionality.
To handle larger vocabularies, like those containing all textual terms foundin a corpus, a common
approach is to pre-select a subset of the features and train a model over the low dimensional data.
However, such preprocessing may remove crucial signals in the data even if features are selected in
a discriminative way.

To overcome this difficulty, we used LORETA-1 and LORETA-1-PSD to learn a rank-k parametriza-
tion of the modelW. This model can be factorized asW = ABT , whereA,B∈ Rn×k for the general
case, or asW = AAT for the PSD case. In each of our experiments, we selected a subset ofn fea-
tures, and trained a rankk model. We varied the number of featuresn and the rank of the matrixk
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so as to use a fixed amount of memory. For example, we used a rank-10 model with 50K features,
and a rank-50 model with 10K features.

7.1.1 SIMILARITY LEARNING WITH LORETA-1

We use an online procedure similar to that in Grangier and Bengio (2008) and Chechik et al. (2010).
At each round, three instances are sampled: a query documentq∈Rn, and two documentsp+, p− ∈
Rn such thatp+ is known to be more similar toq thanp−. We wish that the model assigns a higher
similarity score to the pair(q,p+) than the pair(q,p−), and hence use the online ranking hinge loss
defined aslW(q,p+,p−) = [1−SW(q,p+)+SW(q,p−)]+, where[z]+ = max(z,0).

We initialized the model to be a truncated identity matrix, with only the firstk ones along the
diagonal. This corresponds in our case to choosing thek most informative terms as the initial data
projection.

7.1.2 DATA PREPROCESSING ANDFEATURE SELECTION

We used the 20 newsgroups data set (people.csail.mit.edu/jrennie/20Newsgroups), containing 20
classes with approximately 1000 documents each. We removed stop words but did not apply stem-
ming. The document terms form a vocabulary of 50,000 terms, and we selected a subset of these
features that conveyed high information about the identity of the class (over the training set) using
the infogaincriterion (Yang and Pedersen, 1997). This is a discriminative criterion,which measures
the number of bits gained for category prediction by knowing the presenceor absence of a term in a
document. The selected features were normalized usingtf-idf, and then represented each document
as a bag of words. Two documents were considered similar if they shared the same class label, out
of the possible 20 labels.

7.1.3 EXPERIMENTAL PROCEDURE ANDEVALUATION PROTOCOL

The 20 newsgroups site proposes a split of the data into train and test sets.We repeated splitting 5
times based on the sizes of the proposed splits (a train / test ratio of 65% / 35%). We evaluated the
learned similarity measures using a ranking criterion. We view every document q in the test set as a
query, and rank the remaining test documentsp by their similarity scoresqTWp. We then compute
the precision (fraction of positives) at the topr ranked documents. We then average the precision
over all positionsr such that there exists a positive example in the topr. This final measure is called
mean average precision, and is commonly used in the information retrieval community (Manning
et al., 2008, Chapter 8).

7.1.4 COMPARISONS

We compared LORETA with the following approaches.

1. Naive gradient descent(GD): similar to Bai et al. (2009). The model is represented as a
product of two matricesW = ABT . Stochastic gradient descent steps are computed over the
factorsA andB, for the same loss used by LORETA lW(q,p+,p−). The GD steps are:

Anew= A−ηq(p−−p+)
TB,

Bnew= B−η(p−−p+)qTA.

We found this approach to be very unstable, and thus its results are not presented.
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2. Naive PSD gradient descent: similar to the method above, except that now the model is con-
strained to be PSD. The model is represented as a productW = AAT . Stochastic gradient de-
scent steps are computed over the factorA for the same loss used by LORETA : lW(q,p+,p−).
As shown by Meyer et al. (2011), this is in fact equivalent to Riemannian stochastic GD in the
manifold of PSD matrices when this manifold is endowed with a certain metric the authors
call theflat metric.

The GD step is:

Anew= A−η
(
q(p−−p+)

T +(p−−p+)qT)A.

The step sizeη was chosen by cross validation. This approach was more stable in the PSD
case than in the general case, probably because the invariant space here is only the group
of orthogonal matrices (which are well-conditioned), as opposed to the group of invertible
matrices which might be ill-conditioned.

3. Iterative Passive-Aggressive (PA): since we found the above general GD procedure(1) to be
very unstable, we experimented with a related online algorithm from the family ofpassive-
aggressive algorithms (Crammer et al., 2006). We iteratively optimize overA given a fixedB
and vice versa. The optimization is a tradeoff between minimizing the losslW, and limiting
how much the models change at each iteration. The steps sizes for updatingA andB are
computed to be:

ηA = min

(
lW(q,p+,p−)

‖q‖2 · ‖BT(p+−p−)‖2
,C

)
,

ηB = min

(
lW(q,p+,p−)

‖(p+−p−)‖2 · ‖ATq‖2 ,C
)
.

C is a predefined parameter controlling the maximum magnitude of the step size, chosen by
cross-validation. This procedure is numerically more stable because of thenormalization by
the norms of the matrices multiplied by the gradient factors.

4. Full rank similarity learning models. We compared with two full rank online metric learn-
ing methods, LEGO (Jain et al., 2008) and OASIS (Chechik et al., 2010). Both algorithms
learn a full (non-factorized) model, and were run withn = 1000, in order to be consistent
with the memory constraint of LORETA-1. We have also compared with both full-rank mod-
els using rank 2000, that is, 4 times the memory constraint. We have not compared with batch
approaches such as Kulis et al. (2009), since they are not expected toscale to very large data
sets such as those our work is ultimately aiming towards.

In addition, we have experimented with the method for learning PSD matrices using a polar
geometry characterization of the quotient manifold, due to Meyer et al. (2011). This method’s
runtime complexity isO((n+m)k2), and we have found that its performance was not in line with
the methods described above.

7.1.5 RESULTS

Figure 3c shows the mean average precision obtained with all the above methods. LORETA out-
performs the other approaches across all ranks. LORETA-PSD achieves slightly higher precision
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than LORETA. The reason may be that similarity was defined based on two samples belongingto
a common class, and this relation is symmetric and transitive, two relations which are respected
by PSD matrices but not by general similarity matrices. Moreover, LORETA-PSD learned faster
along the training iterations when compared with LORETA - see Figure 3a for a comparison of the
learning curves. Interestingly, for both LORETA algorithms learning a low-rank model of rank 30,
using the best 16660 features, was significantly more precise than learning a much fuller model of
rank 100 and 5000 features, or a model using the full 50000 word vocabulary but with rank 10 . The
intuition is that LORETA can be viewed as adaptively learning a linear projection of the data into
low dimensional space, which is tailored to the pairwise similarity task.

7.2 Image Multilabel Ranking

Our second set of experiments tackled the problem of learning to rank labels for images taken from
a large number of classes(L = 1660) with multiple labels per image.

In our approach, we learn a linear classifier overn features for each labelc∈ C = {1, . . . ,L},
and stack all models together to a single matrixW ∈ RL×n. At test time, given an imagep ∈ Rn,
the productWp provides scores for every label for that imagep. Given ground truth labeling, a
good model would rank the true labels higher than the false ones. Each rowof the matrix model can
be thought of as a sub-model for the corresponding label. Imposing a low-rank constraint on the
model implies that these sub-models are linear combinations of a smaller number oflatent models.
Alternatively, we can view learning a factored rank-k modelW = ABT as learning a projection and
classifier in the projected space concurrently. The matrixBT projects the data onto ak dimensional
space, and the matrixA consists ofL classifiers operating in the low-dimensional space. The data
we used for the experiment had∼1500 labels, but the full ImageNet data set currently has∼15000
labels, and is growing.

7.2.1 ONLINE LEARNING OF LABEL RANKINGS WITH LORETA-1

At each iteration, an imagep is sampled, and using the current modelW the scores for all its labels
are computed,Wp. These scores are compared with the ground truth labelingy = {y1, . . . ,yr} ⊂ C .
We wish for all the scores of the true labels to be higher than the scores forthe other labels by
a margin of 1. Thus, the learner suffers a multilabel multiclass hinge loss as follows. Let ȳ =
argmaxs/∈y(Wp)s, be the negative label which obtained the highest score, where(Wp)s is thesth

component of the score vectorWp.
The loss is thenL(W,p,y) = ∑r

i=1 [(Wp)ȳ− (Wp)yi +1]+, which is the sum of the margins
between the top-ranked false label and all the positive labels which violatedthe margin of one from
it. We used the subgradientG of this loss for LORETA: for the set of indicesi1, i2, . . . id ⊂ y which
incurred a non zero hinge loss, thei j row of G is p, and for the row ¯y G is−d ·p. The matrixG is
rank one, unless no loss was suffered in which case it is 0.

The non-convex and stochastic nature of the learning procedure has lead us to try several initial
conditions:

• Zero matrix : in this initialization we begin with a low-rank matrix composed entirely of
zeros. This matrix is not included in the low-rank manifoldM n,m

k , since its rank is less than
k. We therefore perform a simple pre-training session in which we add up subgradients until
a matrix of rankk is obtained. In practice we added the first 2k subgradients (each such
subgradient being of rank one), and then performed an SVD to obtain thebest rank-k model.
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Figure 3: (a) Mean average precision (mAP) over 20 newsgroups testset as traced along LORETA

learning for various ranks. Curve values are averages over 5 train-test splits. (b) Com-
parison of the learning curves of LORETA and LORETA-PSD. LORETA-PSD learns faster
than LORETA across all ranks (shown are results for ranks 10, 40 and 100). (c)mAP of
different models with varying rank. For each rank, a different numberof features was
selected using an information gain criterion, such that the total memory requirement is
kept fixed (number of features× rank is constant). 50000 features were used for rank
= 10. LEGO and OASIS were trained with the same memory (using 1000 features and
rank=1000), as well as with 4 times the same memory (rank=2000). Error bars denote
the standard error of the mean over 5 train-test splits.

We chose 2k because we wanted to ensure that the matrix we obtain has rank greater or equal
to k.
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(a) ImageNet 50K (b) ImageNet 1M
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Figure 4: ImageNet data. Mean average precision (mAP) as a function ofthe rankk. Curves are
means over five train-test splits. Error bars denote the standard error of the mean. Note
the different scale of the left and right figure. All hyper parameters were selected using
cross validation. Three different initializations were used: the zero matrix,a zero padded
k×k identity matrix, and a product of two i.i.d. Gaussian matrices. See Section 7.2.1 for
details.

• Zero-padded identity: we begin with a matrix composed of thek× k identity matrixIk on
the top left corner, padded with zeros so as to form anL×n matrix. This is guaranteed to be
of rankk. The choice of the location of the identity matrix block is arbitrary.

• Independent Gaussian: we sample independently the entries of the two factor matricesA∈
Rn×k, BRm×k from a standard normal distribution. This model is thus initialized as a product
of two random Gaussian matrices.

7.2.2 DATA SET AND PREPROCESSING

We used data from the ImageNet 2010 Challenge (www.imagenet.org/challenges/LSVRC/2010/)
containing images labeled with respect to the WordNet hierarchy. Each imagewas manually labeled
with a single class label (for a total of 1000 classes). We added labels foreach image, using classes
along the path to the root of the hierarchy (adding 676 classes in total). We discarded ancestor labels
covering more than 10% of the images, leaving 1660 labels (5.2 labels per imageon average). We
used ImageNet’s bag of words representation, based on vector quantizing SIFT features with a
vocabulary of 1000 words, followed bytf-idf normalization.

7.2.3 EXPERIMENTAL PROCEDURE ANDEVALUATION PROTOCOL

We trained on two data sets. A medium scale one of 50000 images, and a large data set consisting
of 908210 images. We tested on 20000 images for the medium scale, and 252284 images for the
large scale. The quality of the learned label ranking was evaluated using themean average precision
(mAP) criterion mentioned in 7.1.3 above (Manning et al., 2008, Chapter 8).
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ImageNet 1M Precision vs. Time
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Figure 5: (a) Mean average precision (mAP) as function of single CPU processing time in seconds
for different algorithms and model ranks, presented on a log-scale. Matrix Perceptron
(black squares) and Group Multi-Class Perceptron (purple crosses)are both full rank
(rank=1000), and their curves are reproduced on all six panels forcomparison. For each
rank and algorithm (LORETA and PA), we used the best performing initialization scheme.
(b) mAP of the best performing model for different algorithms and time points.Error
bars represent standard deviation across 5 train-test splits.
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7.2.4 COMPARISONS

We compared the performance of LORETA on this task with three other approaches:

1. PA - Iterative Passive-Aggressive: same as described in Section 7.1.4 above for the 20
Newsgroups experiment.

2. Matrix Perceptron : a full rank stochastic subgradient descent. The model is initialized as a
zero matrix of size 1660× 1000, and in each round the loss subgradient is subtracted from it.
After a sufficient number of rounds, the model is typically full rank and dense.

3. Group Multi-Class Perceptron: a mixed (2,1) norm online mirror descent algorithm (Kakade
et al., 2010). This algorithm encourages a group-sparsity pattern within the learned matrix
model, thus presenting an alternative form of regularization when compared with low-rank
models.

LORETA and PA were run using a range of model ranks. For all three methods, thestep size (or
the C parameter for PA) was chosen by 5-fold cross validation on a validation set.

7.2.5 RESULTS

Figure 4 plots the mAP precision of LORETA and PA for different model ranks, while showing on
the right the mAP of the full rank 1000 Matrix Perceptron and(2,1) norm algorithms. LORETA

significantly improves over all other methods across all ranks. However,we note that LORETA,
being a non-convex algorithm, does depend significantly on the method of initialization, with the
zero-padded identity matrix being the best initialization for lower rank models, and the zero matrix
the best initialization for higher rank models (rank≥ 150).

In Figure 5 we show the accuracy as a function of CPU tim on a single CPU for the different
algorithms and model ranks. We ran Matlab R2011a on an Intel Xeon 2.27 GHz machine, and
used Matlab’s-singlethread flag to control multithreading. The higher-rank LORETA models
outperform all others both in the short time scale (∼ 1000 sec.) and the long time scale (∼ 100,000
sec.). For some of the higher-rank models there is evident overtraining atsome point, but this
overtraining could be avoided by adopting an early-stopping procedure.

8. Discussion

We presented LORETA, an algorithm which learns a low-rank matrix based on stochastic Rie-
mannian gradient descent and efficient retraction to the manifold of low-rank matrices. LORETA

achieves superior precision in a task of learning similarity in high dimensional feature spaces, and
in multi-label annotation, where it scales well with the number of classes. A PSDvariant of LORETA

can be used efficiently for low-rank metric learning.
There are many ways to tie together different classifiers in a multi-class setting. We have seen

here that a low-rank assumption coupled with a Riemannian SGD procedure outperformed the (2,1)
mixed norm. Other approaches leverage the hierarchical structure inherent in many of these tasks.
For example, Deng et al. (2011) use the label hierarchy of ImageNet to compute a similarity measure
between images.

For similarity learning, the approach we take in this paper uses a weak supervision based on
ranking similar pairs: one only knows that the pair(q,p+) is more similar than the pair(q,p−). In
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some cases, a stronger supervision signal is available, like the classes ofeach objects are known. In
these cases, Deng et al. (2011) have shown how to use class identities to construct good features by
training an SVM classifier on each class and using its scaled output as a feature. They show that
such features can lead to very good performance, with the added advantage that the features can be
learned in parallel. The weak supervision approach that we take here aimsto handle the case, which
is particularly common in large scale data sets collected through web users’ activity, where weaker
supervision is much easier to collect.

In this paper, we used simple sampling schemes for both the similarity learning andmultiple-
labelling experiments. More elaborate sampling techniques such as those proposed by Weston et al.
(2011), which focus on “hard negatives”, may yield significant performance improvements. As
these approaches typically involve rank-one gradients when implemented asonline learning algo-
rithms, they are well suited for being used in conjunction with LORETA, and this will be the subject
of future work.

LORETA yields a factorized representation of the low-rank matrix. For similarity learning, these
factors project to a low-dimensional space where similarity is evaluated efficiently. For classifica-
tion, it can be viewed as learning two matrix components: one that projects the high dimensional
data into a low dimension, and a second that learns to classify in the low dimension. In both
approaches, the low-dimensional space is useful for extracting the relevant structure from the high-
dimensional data, and for exploring the relations between large numbers ofclasses.
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Appendix A. Proof of Lemma 2

We formally define the tangent space of a manifold at a point on the manifold, and then describe an
auxiliary parametrization of the tangent space to the manifoldM

n,m
k at a pointW ∈M n,m

k .

Definition 7 The tangent space TWM to a manifoldM ⊂ Rn at a point W∈M is the linear space
spanned by all the tangent vectors at 0 to smooth curvesγ : R→M such thatγ(0) = W. That is,
the set of tangents inRn to smooth curves within the manifold which pass through the point W.

In order to characterize the tangent space ofM
n,m
k , we look into the properties of smooth curves

γ, where for eacht, γ(t) ∈M n,m
k .

For any such curve, because of the rankk assumption, we may assume that for allt ∈ R, there
exist (non-unique) matricesA(t) ∈ Rn×k

∗ , B(t) ∈ Rm×k
∗ , such thatγ(t) = A(t)B(t)T . We now wish to

find the tangent vectors to these curves. By the product rule we have:

γ̇(0) = A(0)Ḃ(0)T + Ȧ(0)B(0)T .

451

Scalable Streaming Learning Of Dyadic Relationships 66



SHALIT , WEINSHALL AND CHECHIK

SinceW = γ(0) = A(0)B(0)T = ABT we have forW = ABT :

TWM
n,m
k =

{
AXT +YBT |X ∈ Rm×k,Y ∈ Rn×k

}
. (5)

This is because any choice of matricesX, Y such thatX = Ḃ, Y = Ȧ will give us some tangent vector,
and for any tangent vector there exist such matrices. The space aboveis clearly a linear space. Being
a tangent space to a manifold, it has the same dimension as the manifold:(n+m)k−k2.

Recall the definition of the tangent space given in Lemma 1:

TWM
n,m
k =

{[
A A⊥

][M NT
1

N2 0

][
BT

BT
⊥

]
: M ∈ Rk×k,N1 ∈ R(m−k)×k,N2 ∈ R(n−k)×k

}
. (6)

To prove Lemma 2, it is easy to verify by counting that the dimension of the space as defined
in Equation (6) above is(n+m)k− k2. Using the notation above, we can see that by takingX =
MBT +N1BT

⊥ andY = A⊥N2, the space defined in Equation (6) is included inTWM
n,m
k as defined in

Equation (5). Since it is a linear subspace of equal dimension, both spaces must be equal�

Appendix B. Proof of Theorem 3

We state the theorem again here.

Theorem 8 Let W∈M n,m
k , W = ABT , and W† = B†TA†. Letξ ∈ TWM

n,m
k , ξ = ξAB+ξAB⊥+ξA⊥B,

as in 1, and let:

V1 =W+
1
2

ξAB+ξA⊥B− 1
8

ξABW†ξAB− 1
2

ξA⊥BW†ξAB ,

V2 =W+
1
2

ξAB+ξAB⊥− 1
8

ξABW†ξAB− 1
2

ξABW†ξAB⊥ .

The mapping
RW(ξ) =V1W

†V2 (7)

is a second order retraction from a neighborhoodΘW ⊂ TWM
n,m
k toM n,m

k .

Proof To prove that Equation (7) defines a retraction, we first show thatV1W†V2 is a rank-k matrix.
Note that there exist matricesZ1 ∈ Rn×k andZ2 ∈ Rm×k such thatV1 = Z1BT and ,V2 = AZT

2 . A
sufficient condition for the matricesZ1 andZ2 to be of full rank is that the matrixM is of limited
norm. Thus, for all tangent vectors lying in some neighborhoodΘW ⊂ TWM

n,m
k of 0 ∈ TWM

n,m
k ,

the above relation is indeed a retraction to the manifold. In practice this is nevera problem, as the
set of matrices not of full rank is of zero measure, and in practice we have found these matrices to
always be of full rank. Thus,RW(ξ) =V1W†V2 = Z1BTB(BTB)−1(ATA)−1ATAZT

2 = Z1ZT
2 , which,

given thatZ1 andZ2 are of full column rank, is exactly a rank-k, n×mmatrix.
Next we show thatRW(ξ) is a retraction, and of second order. It is obvious thatRW(0) = W,

since the projection of the zero vector is zero, and thusξAB, ξAB⊥ andξA⊥B are all zero.
ExpandingV1W†V2 up to second order terms inξ, many terms cancel and we end up with:

RW(ξ) =W+ξAB+ξAB⊥+ξA⊥B+ξA⊥BW†ξAB⊥+O(‖ξ‖3)
=W+ξ+ξA⊥BW†ξAB⊥+O(‖ξ‖3).
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Local first order rigidity is immediately apparent. If we expand the only second order term,
ξA⊥BW†ξAB⊥ , we see that it equalsA⊥N2NT

1 BT
⊥. We claim this term is orthogonal to the tangent

spaceTWM
n,m
k . If we take, using the characterization in Lemma 2, an arbitrary tangent vector

AM̃BT +AÑT
1 BT
⊥+A⊥Ñ2BT in TWM

n,m
k , we can calculate the inner product:

〈(
A⊥N2NT

1 BT
⊥
)
,
(
AM̃BT +AÑT

1 BT
⊥+A⊥Ñ2BT)〉=

tr
(
B⊥N1NT

2 AT
⊥AM̃BT +B⊥N1NT

2 AT
⊥AÑT

1 BT
⊥+B⊥N1NT

2 AT
⊥A⊥Ñ2BT)=

tr
(
B⊥N1NT

2 AT
⊥A⊥Ñ2BT)=

tr
(
BTB⊥N1NT

2 AT
⊥A⊥Ñ2

)
= 0

with the equalities stemming from the fact thatAT
⊥A= 0, BT

⊥B= 0, and from standard trace identi-
ties. Thus, the second order term cancels out if we project the second derivative of the curve defined
by the retraction, as required by the second-order condition

PW

(
dRW(τξ)

dτ2 |τ=0

)
= 0 ∀ξ ∈ TWM .

We see that the second order term is contained in the normal space. This concludes the proof
that the retraction is a second order retraction.

Appendix C. Proof of Lemma 4

Let us see how can we calculate the needed terms explicitly. When evaluating the expression
V1W†V2, we can use the algebraic relations:WW† = PA andW†W = PB. From this we can conclude
that: WW†ξAB = ξAB, ξABW†W = ξAB, ξA⊥BW†W = ξA⊥B andWW†ξAB⊥ = ξAB⊥ . These relations,
along with many terms that cancel out, lead to the following expression:

RW(ξ) =V1W
†V2 =

W+ξAB+ξAB⊥+ξA⊥B− 1
8

ξABW†ξABW†ξAB− 3
8

ξABW†ξABW†ξAB⊥

− 3
8

ξA⊥BW†ξABW†ξAB+ξA⊥BW†ξAB⊥−ξA⊥BW†ξABW†ξAB⊥

+
1
16

ξABW†ξABW†ξABW†ξAB⊥+
1
16

ξA⊥BW†ξABW†ξABW†ξAB

+
1
64

ξABW†ξABW†ξABW†ξAB+
1
4

ξA⊥BW†ξABW†ξABξAB⊥ .

We now substitute the matricesM, N1 andN2 into the above relation. Most terms cancel out.
For example, we have the identityξABW†ξAB = AM2BT , ξABW†ξABW†ξAB = AM3BT and so forth.
We obtain the following relation:

RW(ξ) = ABT +AMBT +ANT
1 BT
⊥+A⊥N2BT − 1

8
AM3BT

− 3
8

AM2NT
1 BT
⊥−

3
8

A⊥N2M2BT +A⊥N2NT
1 BT
⊥−A⊥N2MNT

1 BT
⊥

+
1
16

AM3NT
1 BT
⊥+

1
16

A⊥N2M3BT +
1
64

AM4BT +
1
4

A⊥N2M2NT
1 BT
⊥.
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Collecting terms by the leftmost and rightmost factors, we obtain:

RW(ξ) = A

(
Ik+M− 1

8
M3+

1
64

M4
)

BT

+A

(
Ik−

3
8

M2+
1
16

M3
)

NT
1 BT
⊥

+A⊥N2

(
Ik−

3
8

M2+
1
16

M3
)

BT

+A⊥N2

(
Ik−M+

1
4

M2
)

NT
1 BT
⊥ .

Finally, treating the first and fourth lines as a polynomial expression inM, and taking its poly-
nomial square root, we can split the above sum into the product of ann× k matrix and ak×m
matrix:

RW(ξ) =
[
A

(
Ik+

1
2

M− 1
8

M2
)
+A⊥N2

(
Ik−

1
2

M

)]
·

[
B

(
Ik+

1
2

MT − 1
8

(
MT)2

)
+B⊥N1

(
Ik−

1
2

MT
)]T

.

Appendix D. Rank One Pseudoinverse Update Rule

For completeness we develop below the procedure for updating the pseudoinverse of a rank-1 per-
turbed matrix (Meyer, 1973), following the derivation of Petersen and Pedersen (2008). We wish
to find a matrixG such that for a given matrixA along with its pseudo-inverseA†, and vectors of
appropriate dimensionc andd, we have:

(
A+cdT)†

= A†+G.

We have used the fact thatA has a full column rank to simplify slightly the algorithm of Petersen
and Pedersen (2008).
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Algorithm 7 : Rank one pseudo-inverse update

Input: MatricesA,A† ∈ Rn×k
∗ , such thatA† is the pseudo-inverse ofA, vectorsc∈ Rn×1, d ∈ Rk×1

Output: Matrix Z† ∈ Rk×n
∗ , such thatZ† is the pseudo-inverse ofA+cdT .

Compute: matrix dimension
v= A†c k×1
β = 1+dTv 1×1
n= A†Td n×1
n̂= A†n k×1
w= c−Av n×1
if β 6= 0 AND ‖w‖ 6= 0

G= 1
β n̂wT k×n

s= β
‖w‖2‖n‖2+β2 1×1

t = ‖w‖2
β n̂+v k×1

Ĝ= s· t
(
‖n‖2

β w+n
)T

k×n

G= G− Ĝ k×n
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G=−A† n
‖n‖2 k×1

G= GnT k×1
Ĝ= v wT

‖w‖2 k×n

G= G− Ĝ k×n
elseifβ 6= 0 AND ‖w‖= 0

G=− 1
βvnT k×n
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v̂= 1

‖v‖2 v
(
vTA†

)
k×n

n̂= 1
‖n‖2

(
A†n

)
nT k×n

G= vTA†n
‖v‖2‖n‖2 vnT − v̂− n̂ k×n

endif
Z† = A†+G
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2.3 Learning a functional representation of neural ISH im-
ages
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ABSTRACT

Motivation: High-spatial resolution imaging datasets of mammalian

brains have recently become available in unprecedented amounts.

Images now reveal highly complex patterns of gene expression

varying on multiple scales. The challenge in analyzing these images

is both in extracting the patterns that are most relevant functionally

and in providing a meaningful representation that allows neuroscien-

tists to interpret the extracted patterns.

Results: Here, we present FuncISH—a method to learn functional

representations of neural in situ hybridization (ISH) images. We repre-

sent images using a histogram of local descriptors in several scales,

and we use this representation to learn detectors of functional (GO)

categories for every image. As a result, each image is represented

as a point in a low-dimensional space whose axes correspond to

meaningful functional annotations. The resulting representations

define similarities between ISH images that can be easily explained

by functional categories. We applied our method to the genomic set of

mouse neural ISH images available at the Allen Brain Atlas, finding that

most neural biological processes can be inferred from spatial expres-

sion patterns with high accuracy. Using functional representations, we

predict several gene interaction properties, such as protein–protein

interactions and cell-type specificity, more accurately than competing

methods based on global correlations. We used FuncISH to identify

similar expression patterns of GABAergic neuronal markers that were

not previously identified and to infer new gene function based on

image–image similarities.

Contact: noalis@gmail.com

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

In recent years, high-resolution expression data measured in

mammalian brains became available in quantities and qualities
never witnessed before (Henry and Hohmann, 2012; Lein et al.,

2007; Ng et al., 2009), calling for new ways to analyze neural
gene expression images. Most existing methods for bio-imaging

analysis were developed to handle data with different character-
istics, like Drosophila embryos (Frise et al., 2010; Peng et al.,

2007; Pruteanu-Malinici et al., 2011) or cellular imagery
(Coelho et al., 2010; Peng et al., 2010). The mammalian brain,

composed of billions of neurons and glia, is organized in highly
complex anatomical structures and poses new challenges for

analysis. Current approaches for analyzing brain images are
based on smooth non-linear transformations to a reference

atlas (Davis and Eddy, 2009; Hawrylycz et al., 2011) and may

be insensitive to fine local patterns like those emerging from the

layered structure of the cerebellum or the spatial distribution

of cortical interneurons.
Another challenge for automatic analysis of biological images

lies in providing human interpretable analysis. Most machine-

vision approaches are developed for tasks in analysis of natural

images, like object recognition. In such tasks, humans can under-

stand the scene effortlessly and infer complex relations between

objects easily. In bio-imaging, however, the goal of image ana-

lysis is often to reveal features and structures that are hardly seen

even by experts. It is, therefore, important that an image analysis

approach provides meaningful interpretation to any patterns or

structures that it detects.
Here, we develop a method to learn functional representations

of expression images by using predefined functional ontologies.

This approach has two main advantages, accuracy and interpret-

ability, and it builds on a growing body of work in object

recognition in natural images, showing how images can be rep-

resented using the activations of a large set of detectors (Deng

et al., 2011; Li et al., 2010a, b; Malisiewicz, 2012; Malisiewicz

et al., 2011; Torresani et al., 2010). For object recognition, the

detectors may include common objects, like a detector for

the presence of a chair, a mug or a door. Here, we show how

to adapt this idea to represent gene expression images, by train-

ing a large set of detectors, each corresponding to a known func-

tional category, like axon guidance or glutamatergic receptors.

Once this representation is trained, every gene is represented as

a point in a low-dimensional space whose axes correspond to

functional meaningful categories.

We describe in Section 2.2 how to learn functional represen-

tations in a discriminative way and demonstrate the effectiveness

of the approach on in situ hybridization (ISH) gene expression

images of the adult mouse brain collected by the Allen Institute

for Brain Science (Lein et al., 2007). ISH image analysis has been

used in the past to infer gene biological functions from spatial

co-expression in non-neural tissues (Frise et al., 2010). However,

inferring functions based on gene expression patterns in the brain

is believed to be hard, as several studies found very low variabil-

ity between transcriptomic patterns of different brain regions,

sometimes even lower than between-subject variability for the

same area (Khaitovich et al., 2004, 2005). Neural expression

patterns are usually studied using methods that average

expression values over a brain region, and this averaging removes

fine-resolution spatial information that may differentiate

between brain regions. Here, we analyze high-resolution ISH

images at several scales, taking into account subtle, even cellular

resolution, information for functional inference.
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We find that gene function can indeed be inferred from neural

ISH images, particularly in biological processes that are related

to neural activities. Our approach detects related genes with

better accuracy based on the similarity of their functional repre-

sentations. Furthermore, these similarities can be explained and

interpreted using semantic terms.

2 METHODS

2.1 The data

We used whole-brain, expression-masked images of gene expression

measured using ISH, publicly available at the Allen Brain Atlas (www.

brain-map.org, also see Supplementary Material). Expression was

measured for the entire mouse genome. For each gene, a different adult

mouse brain was sliced into 100 -mm thick slices, mRNA abundance was

measured and the slice was imaged. The database holds image series

for420K transcripts. Most genes have one corresponding image series,

containing �25 imaged brain slices. Some genes were imaged more than

once and have several associated image series. In our analysis, we used the

most medial slice for each image series, yielding a typical image size of

8 K� 16 K pixels. In all, 4823 of the available 21 174 images showed no

expression in the brain and were ignored in subsequent analysis, leaving

16 351 images representing 15 612 genes. We also tested our approach on

a larger image set constructed by taking three images for each gene: the

medial slice, and lateral slices at 30% and 50% of brain size (from one

hemisphere). The results with this three-image set were mixed, and all

results reported later in the text are for the one-slice dataset

(Supplementary Material). Figure 1 shows examples of images, demon-

strating the complexity of neural expression patterns across brain regions

and multiple scales. The images analyzed in our study were in gray scale

but are shown here as color-coded by expression intensity for better

visualization.

2.2 A functional representation of images

We present a method to identify similarities between neural ISH images

and to explain these similarities in functional terms.

Our method consists of a visual phase, where we transform the raw pixel

images into a robust visual representation, and a semantic phase, where we

transform that visual representation using a set of 2081 gene-function de-

tectors. The output of these detectors comprises a higher-order semantic

representation of the images in a gene-functional space (Fig. 2). Similar

two-phase systems have recently been proposed and applied successfully

for tasks, such as cross-domain image similarity and object detection in

natural images (Deng et al., 2011; Li et al., 2010a, b; Malisiewicz, 2012;

Malisiewicz et al., 2011; Torresani et al., 2010).

Fig. 2. Illustration of the image processing pipeline. (A) Original image in pixel grayscale indicating level of gene expression. (B) Local SIFT descriptors

are extracted from image at 4 resolutions. (C) Descriptors from all 16351 images are clustered into 500 representative ‘visual words’ for each resolution

level using k-Means. (D) Each image is represented as a histogram counting the occurrences of visual words. (E) L2-regularized logistic regression

classifiers are applied for 2081 GO categories. (F) The final 2081 dimensional image representation

Fig. 1. The raw data. ISH image for the gene Tuba1 shown (A) at different scales and (B) in three different regions
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For the first, visual, phase, we first represent each image as a collection

of local descriptors using SIFT features (Lowe, 2004). This step aims to

address the problem that ISH brain images of the same gene vary signifi-

cantly in shape and size when measured in different brains (Kirsch et al.,

2012). SIFT features are histograms of oriented gradients on a small grid.

The resulting image-patch SIFT descriptor is invariant to small rotation

and illumination (but not to scale), making imaged-slices from different

brains more comparable. We computed SIFT descriptors of dimension

128 extracted on a dense grid spanning the full image (Bosch et al., 2006,

2007; Csurka and Dance, 2004), at four spatial resolutions. In ISH

images, different information lies in different descriptor sizes, and we

wish that the representation captures spatial patterns both at the level

of single cells, micro-circuitry and at the coarser level of distribution of

expression across brain layers. To capture information at multiple scales,

we used the VLFeat implementation of SIFT (Vedaldi and Fulkerson,

2010), where scale-invariance is not incorporated automatically.

Specifically, each image is represented as a collection of �1 M SIFT

descriptors, computed by down sampling each image at a factor of 1,

2, 4 and 8. As the descriptors were extracted from high-resolution images,

which are mostly dark, many descriptors were completely dark and were

discarded.

Next, to achieve a compact non-linear representation of each image,

we aggregate the descriptors from all images for a given resolution level

and cluster them to form a dictionary of distinct ‘visual words’ per each

resolution level. We used the original Lloyd optimization for k-Means

with L2 distance, initializing the centroids by randomly sampling data

points. The clustering procedure was repeated multiple times (n¼ 3), and

the solution with the lowest energy was used. We tested four different

dictionary sizes (k¼ 100, 200, 500 and 1000), all yielding similar results

(Supplementary Material), and we report later in the text results for

k¼ 500, which obtained slightly higher accuracies. Next, we construct a

standard ‘bag-of-words’20,21 description of each image. As a result of this

process, each image is described by four concatenated 500-dimensional

vectors counting how many times each ‘visual word’ appeared in it at a

given resolution level. We also added a count of the number of zero

descriptors per resolution level, ending up with a 2004-dimensional

vector describing each image. Using this approach, similar spatial infor-

mation from different brain regions is preserved, as opposed to using

global correlation-based approaches.

We then turn to the second, ‘semantic’, phase, and represent each

image by a set of functional descriptors. Given a set of predefined

Gene Ontology (GO) annotations of each gene, we train one separate

classifier for each known biological annotation category, using the SIFT

bag-of-words representation as an input vector. Specifically, here, we

trained a set of 2081 L2-regularized logistic regression classifiers [using

LIBLINEAR (Fan et al., 2008)] corresponding to biological-processes

GO classes that have 15–500 annotated genes (Supplementary

Material). We trained the classifiers using two layers of 5-fold cross-

validation, performed as follows: the full set of 16 351 gene images was

split into five non-overlapping equal sets (without controlling for the

number of positives in each split), training the classifiers on four of

them and testing performance on the fifth unseen test set of images.

This procedure was repeated five times, each time with a different set

acting as the test set. All accuracy and other results later in the text are

reported for a held-out test set that was not used during training.

To tune the logistic regression regularization hyperparameter, we used

a second layer of cross-validation. We repeated the splitting procedure

within each of the five training sets, splitting each of them again into five

subsets of images, using four for training and the fifth as a validation set.

The regularization hyperparameter was selected from the values (0.001,

0.01, 0.1, 1, 10 and 100). At the end of this process, each gene is then

represented as a vector of ‘activations’, corresponding to the likelihood

that the gene belongs to one functional category, such as ‘forebrain

development’ or ‘regulation of fatty acid transport’.

The representation described earlier in the text removes important

information about global location in the brain. We, therefore, also

tested an approach using spatial pyramids (Lazebnik et al., 2006),

where descriptor histograms are computed separately for different parts

of the image. Unfortunately, this approach results in feature vectors

whose dimensionality was too high for the current dataset and yielded

poor classification results (Supplementary Material).

2.3 Similarity between functional profiles

We use two gene–gene similarity measures in this work, taking each gene

as a vector of functional category activations. The first, flat-sim, is simply

the linear correlation of two functional category activation vectors. The

second, GO-sim, takes into account the known directed acyclic graph

(DAG) structure among the functional categories of the GO annotation.

Formally, the flat-sim score between a pair of L2-normalized feature

vectors a ¼ ða1 . . . amÞ and b ¼ ðb1 . . . bmÞ is given by their dot product

flat-sim a, bð Þ ¼
Pm

i¼1 ai � bi. This additive similarity measure allows as-

sessing the contribution of each individual feature to the overall similarity

score, by setting the contribution of the feature i (corresponding to GO

category i) to ai � bi. Thus, for each pair of similar images, we can sort the

GO categories by order of their contribution to the similarity, providing a

semantic interpretation of the correlation.

However, flat-sim does not take into account that the activation of

some functional categories can be far more informative than others. For

example, two genes that share a specific function like ‘negative regulation

of systemic arterial blood pressure’ are much more likely to be functionally

similar than a pair of genes sharing a more general category like ‘metab-

olism’. We address this issue by adapting a functional similarity measure

between gene products developed by (Schlicker et al., 2006), which we

refer to as GO-sim. GO-sim is designed to give high similarity scores to

gene pairs that share many specific and similar functional categories. We

treat our model’s functional activations as binary annotations (using a

threshold of 0.5) and calculate GO-sim as follows.

For each GO category i, we calculate its information content (IC) as

ICðiÞ ¼ �log10
#genes in i

total # of genes, which measures the specificity of each

category. For each pair of categories i and j, we consider the set

of their common ancestors ancði, jÞ and define simrel i, jð Þ ¼

max
k2ancði, jÞ

2IC kð Þ
IC ið ÞþIC jð Þ ð1� 10�IC kð ÞÞ. The measure simrel is symmetric, bounded

between 0 and 1, and attains larger values for pairs of categories that are

both specific and close to each other in the GO graph.

In our method, each gene is annotated with multiple categories.

Naı̈vely, we could calculate the mean simrel measure between all pairs

of categories, but calculating this mean could give weight to many irrele-

vant categories and be sensitive to the addition of extra annotations to a

gene. Instead, we use a more robust method to measure similarity

between two sets of function annotations, developed by (Schlicker

et al., 2006). This method relies on the most similar gene pairs, instead

of all the pairs. For two binary activation vectors a ¼ ða1 . . . amÞ,

b ¼ b1 . . . bmð Þ define a matrix Sij ¼ simrel i, jð Þaibj. Then we define

sima!b ¼
1
m

Pm
i¼1ðmax

j¼1...m
SijÞ that measures for each annotation of a its

most similar annotation in b and averages across all of a ‘s annotations.

We similarly define simb!a with the roles of a and b switched, and use it

to define GO-sim¼ maxðsima!b, simb!a). To assess the contribution of

individual gene functional annotations to the GO-simmeasure, we look at

the category pairs (i,j) corresponding to the highest values of Sij. Each

such pair also has its ‘most informative common ancestor’ MICA i, jð Þ ¼

argmax
k2ancði, jÞ

2IC kð Þ
IC ið ÞþIC jð Þ ð1� 10�IC kð ÞÞ. These ancestor functional categories give

a succinct interpretation of the similarity between genes a and b.

Computing GO-sim for n¼ 16 351 genes, each with m functional

annotations, is computationally burdensome, requiring O(n2m2)
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operations. In this study, we, therefore, use only 164 brain-related cate-

gories of the 2081 functional categories for calculating GO-sim.

3 RESULTS

We start with evaluating the quality of the low-dimensional

semantic representation that we learned in two aspects: the
classification accuracy for individual semantic terms and the

precision of our gene–gene similarity measure compared with
a spatial correlation-based method. We then take a closer look
at discriminative spatial patterns, mapping them back onto raw

images. Finally, we use the geometry of the low-dimensional
semantic space to infer new gene functions via gene similarities

and their interpretations.

3.1 Predicting functional annotations using brain

ISH images

We applied FuncISH to 16 K ISH images of 15 K genes, and we

mapped each image to a vector corresponding to 2000 GO cate-
gories as functional features. We used the area under the ROC
curve (AUC) as a measure of classification accuracy. All evalu-

ationswere performed on a separate held-out test set.We find that
37% of the GO categories tested yielded a test set AUC value that

was significantly above random (permutation test, P50.05). This
was encouraging, as the variability of expression between brain
regions was previously shown to be very low (Khaitovich et al.,

2004, 2005). This suggests that fine spatial resolution in neural
tissues can reveal highly meaningful expression patterns.

Which functional categories can be best predicted by ISH
images? Table 1 lists the top 15 GO categories that achieved
the best test-set AUC classification scores. Interestingly, these

include mostly biosynthesis/metabolism processes and neural
processes. To further test whether neural categories achieve

higher classification values based on neural expression patterns,
Figure 3 compares the AUC scores of 164 categories related to
the nervous system with the AUC scores of the remaining cate-

gories. As expected, neural GO categories receive significantly
higher AUCs (Wilcoxon, P510�38), with 69% of categories

yielding significantly above random AUC values.
These AUC values suggest that when a gene is represented as a

feature vector of classifiers activations, many of the features

carry a meaningful signal. The axes of the new low-dimensional
representation correspond to functional properties of each gene,

linking functions of the genes to the geometry of the space in
which they are embedded.

3.2 Comparison with Neuroblast, the ABA

image-correlation tool

How well does FuncISH compare with other methods suggested

for finding similarity between these images? We compared
our results with NeuroBlast, a method to detect image–image
similarities available on the ABA website (Hawrylycz et al.,

2011). This method uses a non-linear mapping of the images to
a reference anatomical atlas to apply voxel–voxel correlation

between the images.
To evaluate the quality of the similarity measure, we used

three sets of pairwise relations as evidence of gene related-

ness: (i) markers of known cell types (Cahoy et al., 2008), such

as astrocytes or oligodendrocytes; (ii) occurrence in the same

KEGG pathway (Kanehisa, 2002); and (iii) a set of known pro-

tein–protein interactions taken from IntAct (Kerrien et al., 2012).

For each of the 16 531 genes, we ranked the 100 most similar

genes according to four different similarity measures:

(i) FuncISH GO-sim, (ii) FuncISH flat-sim, (iii) cosine similarity

between the SIFT bag-of-words representations (Fig. 2D) and

(iv) the ABA NeuroBlast tool. For each of the pairwise relations

(cell-type markers, KEGG pathway and PPIs), we plot the mean

fraction of relations retrieved at the top-K most similar genes

(precision-at-k), a standard method in information retrieval

(Manning and Raghavan, 2009). Figure 4 shows that for all

three validation labels, FuncISH GO-sim provides superior

precision for the top 10 ranked similar genes. The superior

precision of GO-sim over flat-sim is presumably because

Fig. 3. AUC scores for GO categories related to the nervous system

(dashed, red) and the remaining categories (solid, blue). AUC scores

are significantly higher for neural categories (Wilcoxon test, p510�38).

The red and blue ticks indicate the median of each set

Table 1. The GO categories classified with highest test-set AUC values

GO ID GO category name No. of

genes

AUC

GO:0060311 Negative regulation of elastin catabolic process 17 1

GO:0042759 Long-chain fatty acid biosynthetic process 23 0.98

GO:0009449 �-Aminobutyric acid biosynthetic process 20 0.96

GO:0009448 �-Aminobutyric acid metabolic process 23 0.96

GO:0032348 Negative reg. of aldosterone biosynthetic process 21 0.94

GO:2000065 Negative regulation of cortisol biosynthetic process 21 0.94

GO:0043206 Fibril organization 23 0.94

GO:0031947 Negative reg. of glucocorticoid biosynthetic process 22 0.94

GO:0042136 Neurotransmitter biosynthetic process 23 0.94

GO:0022010 Central nervous system myelination 29 0.89

GO:0008038 Neuron recognition 20 0.87

GO:0042220 Response to cocaine 30 0.87

GO:0050919 Negative chemotaxis 16 0.86

GO:0042274 Ribosomal small subunit biogenesis 15 0.86

GO:0016486 Peptide hormone processing 17 0.85
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GO-sim weighs categories more correctly and also possibly be-
cause GO-sim was limited to brain-related categories that tend to

be more accurately predicted (Fig. 3). On the other hand, we see
that NeuroBlast outperforms flat-sim in most cases.

3.3 Identifying and explaining similarities between

GABAergic neuron markers

We now turn to a deeper look into the similarity predictions.
Interestingly, the highest classification scores were achieved for

the neural-related categories GABA biosynthetic process and
GABA metabolic process (shown in Table 1), implying that our

algorithm can identify spatial patterns of GABAergic neurons.
A prominent member of the GABAergic neuron marker family

is parvalbumin B (Pvalb), which encodes for a calcium-binding
protein. We examined the genes that are most similar to Pvalb,

and we found that another GABAergic neuronal marker and a

calcium-binding protein, calbindin D28K (Calb1), is at the top 15
most similar gene lists for all associated image series. Pvalb and

Calb1 belong to a family of cellular Ca2þ buffers in GABAergic
interneurons. The third member in this family is calretinin

(Calb2). Looking at the similarity rank of Calb1 and Calb2,
Calb2 ranks at the top 2 percentile (of 16 351 images in the data-

set) at 16 of 17 cases. Similarities between these three genes were
not identified by NeuroBlast. This may be because NeuroBlast

uses spatial correlation measures that produce results heavily
reliant on the spatial location of expression, whereas FuncISH

can identify patterns that can appear in different regions of the
brain. A major benefit of representing genes in the functional

embedding space is that similarities between genes can be ‘ex-
plained’ in functional terms. Calb1, Pvalb and Calb2 are all

involved in regulation of synaptic plasticity (Schwaller, 2012).

When looking at the semantic interpretations explaining the
similarities between the genes, 6 of the top 10 GO

categories are indeed directly related to synaptic plasticity, such
as ‘synaptic transmission’, ‘regulation of synaptic plasticity’ and

‘learning’.

3.4 Finding important spatial patterns in different scales

using SIFT ‘visual words’

A major advantage of representing ISH images with SIFT

descriptors is the ability to point directly to spatial patterns in

these complex images. Although their name suggest differently,

SIFT descriptors at several scales capture different types of pat-

terns. Figure 5 shows three visual words for each of the four

scales, selected as the visual words that contributed most to clas-

sification. Scale invariance is often assumed when analyzing nat-

ural images, as objects are photographed at varying distances.

ISH images, however, contain distinctive information in the dif-

ferent scales. As Figure 5 demonstrates, the four sizes of visual

words correspond to grids capturing different neural entities. The

smallest descriptors cover an actual area of 36� 36mm2 and cap-

ture fine-scaled information, such as cell shapes and cell densi-

ties; the medium-size discriminative descriptors of 72� 72mm2

tend to trace thinner cell layers; larger descriptor sizes of

144� 144mm2 and 288� 288mm2 can cover large and intricate

patterns of a mixture of cells and cell types in a tissue.

Interestingly, the four visual words with the highest contribution

to classification were the words counting the zero descriptors in

each scale. This means that the highest information content lies

in ‘least informative’ descriptors, and that overall expression

levels (‘sparseness’ of expression) are important factors in func-

tional prediction of genes based on their spatial expression. Our

method presents a new representation of ISH imagery as SIFT

descriptors, and using multiple scales allows revealing the multi-

resolution nature of the images.
Which scale carries the most meaningful signal for functional

prediction? Figure 5E shows the mean absolute value of visual

words weights in every scale for all GO categories, showing that

all scales contribute significantly to the scores, with the medium

contributing most.
Figure 5A–D shows descriptors that contributed to classifica-

tion of all the categories. Furthermore, each GO category has its

own visual words that are important to its classification, and

looking into their details reveals spatial properties that are

unique to specific biological processes.
As an interesting example of this effect, we considered the

gene adducin � (Add2). Add2 is annotated to several GO cate-

gories, including ‘positive regulation of protein binding’ and

‘actin filament bundle assembly’. Figure 6 overlays the top

weighted visual words of the two categories over the Add2

ISH image. It is easy to see that the descriptors important for

classification of ‘actin filament bundle assembly’ are much smal-

ler than those important for classification of the more general

Fig. 4. Precision at top-K for similarity defined by (A) cell type marker (B) KEGG pathways (C) protein–protein interaction. Precision was measured

using functional representations (FuncISH, purple lines for GO-sim, orange for flat-sim), SIFT (red) and NeuroBlast (blue)

i40

N.Liscovitch et al.

 by guest on D
ecem

ber 3, 2014
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

Scalable Streaming Learning Of Dyadic Relationships 79



category ‘positive regulation of protein binding’ (t-test,

P510�17). This implies that small-scaled features, such as spe-

cific cell shapes, are important to identify genes related to actin

filament bundle assembly processes. Actin assemblies are im-

portant for the navigation of neural growth cones, by re-orient-

ing growth cones away from inhibitory cues (Challacombe

et al., 1996). Representing the images with histograms of ori-

ented gradients could capture tiny differences in cell shapes that

are in the process of synapse formation, a developmental pro-
cess occurring continuously throughout adulthood (Vidal-Sanz

et al., 1987).

3.4 Inferring new gene functions via explainable

similarities

We now demonstrate how the semantic representation learned
by FuncISH can be used to propose new gene functional anno-
tations. Consider as an example the gene synaptopodin 2

(Synpo2) that is known to bind actin, but otherwise has little
known associated information. FuncISH can be used to propose

functional annotations for synpo2 by looking at the genes that
are similar to Synpo2 and considering both the GO functions
that contribute to this similarity and the spatial pattern of

expression.
First, we find that Synpo2 is similar to two other genes

Npepps and Rasa4, but for different reasons (the list of top
five semantic explanations for these similarities is shown in
Table 2). Npepps is an aminopeptidase that is active specifically

in the brain (Hui, 2007), and the similarity between Synpo2 and
Npepps is explained by processes related to protein processing,

such as ubiquitination and protein proteolysis. At the same time,
Rasa4 is a GTPase-activating protein that suppresses the Ras/
mitogen-activated protein kinase pathway in response to Ca2þ

(Vigil et al., 2010), and the similarity between Synpo2 and Rasa4
is explained by high-level neural processes, such as axon guid-
ance or synaptic transmission.

Interestingly, Synpo2 and Rasa4 are expressed in different
brain regions: looking at their spatial expression patterns reveals

that Synpo2 is expressed exclusively in the thalamus, whereas
Rasa4 is expressed in olfactory areas. Therefore, their similarity
is not in their global expression patterns across regions, but

rather in local spatial patterns. This could reflect expression in

Fig. 5. Representing ISH images with visual words. (A, B, C, D) The three visual words with highest absolute weight (averaged over all categories) at

each scale. The SIFT descriptors (red grid) are plotted on top of each panel. The histogram of oriented gradients used in the SIFT descriptor is plotted in

the center of each element of the grid,as a set of red lines, where the length of the line correspond to the magnitude of the gradient in its direction.

(E) Mean absolute weight for the four scales of visual words calculated over classifiers for all categories

Fig. 6. The visual words important in classifying Add2 GO categories are

overlaid on the Add2 ISH image. Larger descriptors are needed for the

classification of ‘regulation of protein binding’ (A), while the discrimina-

tive visual words for ‘actin filament bundle assembly’ (B) are much smal-

ler, capturing properties such as cell shapes. The descriptors are color-

coded by their importance in classification, highest importance is in

bright yellow
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similar cell types or tissues that exhibit similar spatial distribution

at different brain regions. Npepps is more ubiquitously expressed
in the brain, and it is located in the thalamic area where synpo2 is

expressed. The co-location of Synpo2 and Npepps suggests they

could be participating in similar biological processes in these

areas, possibly in protein-modification processes as suggested
by the list of top explanations for the similarity.

4 SUMMARY

We present FuncISH—a method to learn functional representa-

tions of neural ISH images, yielding an interpretable measure
of similarity between complex images that are difficult to ana-

lyze and interpret. Using FuncISH, we successfully infer �700

functional annotations from neural ISH images, and we use

them to detect gene–gene similarities. This approach reveals
similarities that are not captured by previous global correl-

ation-based methods, but it also ignores important global

location information. Combining local and global patterns

of expression is, therefore, an important topic for further
research, as well as the use of more sophisticated non-linear clas-

sifiers, such as kernel-SVM, for creating better representations.

Importantly, FuncISH provides semantic interpretations for

similarity, enabling the inference of new gene functions from
spatial co-expression.
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Supplementary material 
 
Using expression-masked images 
Images in the Allen dataset are provided in two formats: the raw imagery, and images that 
were processed as previously described1 to remove the background, yielding expression-
masked images. The analysis was applied to the masked images. This is a big advantage 
when examining expression patterns, as noise effects coming from cytoarchitecture and 
underlying brain structures is reduced. Examples of a pair of images are given below in Fig 
S1. 

  

 
 

Figure S1: Regular (a) and expression-masked (b) examples of ISH images as 
provided by the Allen Brain Atlas, for the gene Tuba1. While the expression masked 
images are presented in color, the color images are in fact derived from gray-scale 
images, which we have used in this work. 

   

Robustness of bag-of-words representations 
 
In order to validate the stability of the bag-of-words gene representations, we 
measured the similarities between pairs of representations of images that are of the 
same gene but from different image series, and the similarities between the 
representations of different genes.  
 
Similarity is much higher for representations of the same gene (Wilcoxon difference 
of medians test, p<10-200). The similarity values are shown in figure S2. This implies 
that representations of the same gene, derived from different image series are 
indeed stable and are representative of the gene.     
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Figure S2: The similarity in the representation of same-gene pairs (blue) and 
different-gene pairs (red). Each curve shows the histogram of similarity values. 
Same-gene image series have highly similar representations.  
 

Choosing the dictionary size 

In order to choose the size of the visual word dictionary, we performed analysis  with 
four dictionary sizes: 100, 200, 500 and 1000. Figure S3 shows mean test-set AUC 
values obtained using the different dictionary sizes. Mean AUC across categories is 
insensitive to the size of the dictionary (K). To check how stable the representations 
are between the different K's, we measured the Pearson correlation between AUC 
values of the 2081 GO categories using the different dictionary sizes. Correlation 
values are very high and are shown in table R1. The lowest correlation value is 0.846, 
between K=100 and K=1000, and is still highly significant (P<10-100). Correspondence 
between AUC values for the 2081 GO categories obtained using the two dictionary 
sizes are shown in figure S4, showing indeed a high linear correspondence.     

 

 
Figure S3: Mean test-AUC values for dictionary size K=100, 200, 500, 1000. Error 
bars indicate standard error of mean across five folds in cross-validation data. 
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Dictionary size 
(K) 

100 200 500 1000 

100 1 0.896 0.861 0.846 

200 0.896 1 0.896 0.883 

500 0.861 0.896 1 0.917 

1000 0.846 0.883 0.917 1 

 
Table S1: Pearson's rho correlation values between AUC results for 2081 categories,  
compared across the 4 different dictionary sizes. Correlations are high (the lowest is 
0.846 between K=100 and K=1000)  

 

 
Figure S4: Mean test-set AUCs for dictionary size K=100 versus K=1000. This pair of 
dictionary sizes is the least correlated among all dictionary size pairs. It can be seen 
that even in this case, the correlation is high and indicative of a stable 
representation. 
 

 

Choice of GO category size: 
 
We chose GO categories with a number of annotations ranging from 15 to 500 
genes. We set the lower limit to 15 in order to provide enough positive examples for 
testing the classifiers across five cross-validation partitions. The higher limit is set to 
500 to preclude the resulting semantic explanations from being very general (we use 
more specific categories such as "regulation of long-term neuronal synaptic 
plasticity" or "glutamate receptor signaling pathway" and avoid general categories 
such as "transport" or "biological regulation"). 

 
To make sure that this choice of categories did not cause a bias in the classification 
results, we checked the relation between category size and test-set AUC scores. No 
significant relation between the size of the GO category and the resulting AUC values 
(Figure S5). 
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Figure S5: Mean AUC (averaged over test-splits) for the GO categories vs. GO 
category size (number of genes in the category). There's no significant relation 
between classification success of a category and the number of genes annotated to 
it.  
 

Using several slices from each image series 

In order to take into fuller account the 3D structure of the brain, we repeated the full 
set of our experiments while including two additional sagittal sections. The three 
sections used were taken from one hemisphere, capturing the medial section and 
also the 30% and 50% marks on the medial-lateral axis. An example of three such 
slices is shown in Figure S6. 
 
 

 
 

Figure S6: Each image series was represented with three slices, the most medial (a), 

and the 30% (b) and 50% (c) marks on the medial-lateral axis. 

 
The results of the experiments using multiple slices were inconclusive. In some 
measures of performance, such as the correlation of our funcISH scores with known 
PPI interactions, adding more slices has improved the correlations. In others, such as 
correlations with cell types and pathways, the performance measures did not 
improve and even deteriorated slightly. The reasons for this inconsistency could be 
that the location of the non-medial slices is more variable, due to variation across 

Scalable Streaming Learning Of Dyadic Relationships 86



brains. We note that in the main paper we report the results using a single medial 
slice. 
 

Applying a spatial pyramid kernel to the images 

A major goal of brain-image analysis is to develop a representation that captures 
both low level texture and gross-anatomy structure. While the visual bag-of-words 
representation we have used in our work removes global structures, a main 
advantage is the ability to find small-scaled spatial patterns that are location-
independent in the brain. 
 
To combine local patterns with global structures in the same representation, we 
tested a representation of the data using spatial pyramid kernels2. In this approach, 
every image is split into 4 and 16 rectangles and the bag of words method is applied 
to each rectangle separately (Figure S7). The resulting feature vector is a 
concatenation of the 1+4+16 = 21 dictionaries. This approach has been shown to be 
highly successful in machine vision tasks3,4. The down side of this approach is that it 
inflates the feature dimensionality significantly, and requires reducing the dictionary 
size. In our experiments, we tested a dictionary size 100, which provides similar 
accuracies as the dictionary size of 500 used in the rest of the analysis (as shown 
above). 
 
 

 
 

Figure S7: A spatial pyramid approach to extracting dense SIFT features. Features 
were extracted in the full image (a) and the image divided into four parts (b) and 16 
parts (c).  

 
The spatial pyramid approach yielded an overall mean AUC of 0.6231, which is 
slightly and insignificantly lower than the mean AUC obtained without the pyramidal 
kernel, 0.6322. We conclude that the increase in feature dimensionality hurts more 
than the gain obtained by describing different brain regions separately. 

 
These results illustrate the challenging tradeoff when computing both local and 
global features. An alternative approach could be based on data-dependent 
segmentation of images into anatomic structures (like the thalamus, cortex or 
cerebellum) followed by coding each structure separately. Such segmentation is a 
topic for a separate research.  
 

1. Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse 
brain. Nature 445, 168–76 (2007). 
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Abstract

Optimizing over the set of orthogonal matrices
is a central component in problems like sparse-
PCA or tensor decomposition. Unfortunately,
such optimization is hard since simple operations
on orthogonal matrices easily break orthogonal-
ity, and correcting orthogonality usually costs a
large amount of computation.

Here we propose a framework for optimiz-
ing orthogonal matrices, that is the parallel of
coordinate-descent in Euclidean spaces. It is
based onGivens-rotations, a fast-to-compute op-
eration that affects a small number of entries in
the learned matrix, and preserves orthogonality.

We show two applications of this approach: an al-
gorithm for tensor decompositions used in learn-
ing mixture models, and an algorithm for sparse-
PCA. We study the parameter regime where a
Givens rotation approach converges faster and
achieves a superior model on a genome-wide
brain-wide mRNA expression dataset.

1. Introduction

Optimization over orthogonal matrices – matrices whose
rows and columns form an orthonormal basis ofRd – is
central to many machine learning optimization problems.
Prominent examples includePrincipal Component Analy-
sis(PCA),Sparse PCA, andIndependent Component Anal-
ysis (ICA). In addition, many new applications of tensor or-
thogonal decompositions were introduced recently, includ-
ing Gaussian Mixture Models, Multi-view Models and La-
tent Dirichlet Allocation (e.g.,Anandkumar et al.(2012a);
Hsu & Kakade(2013)).

Proceedings of the31 st International Conference on Machine
Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

A major challenge when optimizing over the set of orthog-
onal matrices is that simple updates such as matrix addi-
tion usually break orthonormality. Correcting by orthonor-
malizing a matrixV ∈ Rd×d is typically a costly pro-
cedure: even a change to a single element of the matrix,
may requireO(d3) operations in the general case for re-
orthogonalization.

In this paper, we present a new approach for optimization
over the manifold of orthogonal matrices, that is based on
a series of sparse and efficient-to-compute updates that op-
eratewithin the set of orthonormal matrices, thus saving
the need for costly orthonormalization. The approach can
be seen as the equivalent of coordinate descent in the mani-
fold of orthonormal matrices. Coordinate descent methods
are particularly relevant for problems that are too big to fit
in memory, for problems where one might be satisfied with
a partial answer, or in problems where not all the data is
available at one time (Richt́arik & Takáč, 2012).

We start by showing that the orthogonal-matrix equivalent
of a single coordinate update is applying a singleGivens
rotation to the matrix. In section3 we prove that for a
differentiable objective the procedure converges to a local
optimum under minimal conditions, and prove anO(1/T )
convergence rate for the norm of the gradient. Sections4
and5 describe two applications: (1) sparse PCA, including
a variant for streaming data; (2) a new method for orthogo-
nal tensor decomposition. We study how the performance
of the method depends on the problems hyperparameters
using synthetic data, and demonstrate that it achieves supe-
rior accuracy on an application of sparse-PCA for analyz-
ing gene expression data.

2. Coordinate descent on the orthogonal
matrix manifold

Coordinate descent (CD) is an efficient alternative to gra-
dient descent when the cost of computing and applying a
gradient step at a single coordinate is small relative to com-
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puting the full gradient. In these cases, convergence can be
achieved with a smaller number of computing operations,
although using a larger number of (faster) steps.

Applying coordinate descent to optimize a function in-
volves choosing a coordinate basis, usually the standard
basis. Then calculating a directional derivative in the di-
rection of one of the coordinates. And finally, updating the
iterate in the direction of the chosen coordinate. To gener-
alize CD to operate over the set of orthogonal matrices, we
need to generalize these ideas of directional derivatives and
updating the orthogonal matrix in a “straight direction”.

In the remaining of this section, we introduce the set of
orthogonal matrices,Od, as a Riemannian manifold. We
then show that applying coordinate descent to the Rieman-
nian gradient amounts to multiplying by Givens rotations.
Throughout this section and the next, the objective function
is assumed to be a differentiable functionf : Od → R.

2.1. The orthogonal manifold and Riemannian gradient

The orthogonal matrix manifoldOd is the set ofd×d matri-
cesU such thatUUT = UTU = Id. It is a d(d+1)

2 dimen-
sional smooth manifold, and is an embedded submanifold
of the Euclidean spaceRd×d (Absil et al., 2009).

Each pointU ∈ Od has a tangent space associated with it,
a d(d−1)

2 dimensional vector space, that we will use below
in order to capture the notion of ’direction’ on the man-
ifold. The tangent space is denotedTUOd, and defined
by TUOd = {Z ∈ Rd×d, Z = UΩ : Ω = −ΩT } =
USkew(d), whereSkew(d) is the set of skew-symmetric
d× d matrices.

2.1.1. GEODESIC DIRECTIONS

The natural generalization of straight lines to the manifold
context aregeodesic curves. A geodesic curve is locally
the shortest curve between two points on the manifold, or
equivalently, a curve with no acceleration tangent to the
manifold (Absil et al., 2009). For a pointU ∈ Od and a
“direction” UΩ ∈ TUOd there exists a single geodesic line
that passes throughU in directionΩ. Fortunately, while
computing a geodesic curve in the general case might be
hard, computing it forOd has a closed form expression:
γ : (−1, 1) → Od, γ(θ) = UExpm(θΩ), whereγ(θ) with
θ ∈ (−1, 1) is the parameterization of the curve, and Expm
is the matrix exponential function.

In the special case where the operatorExpm(Ω) is applied
to a skew-symmetric matrixΩ, it mapsΩ into an orthogo-
nal matrix1. As a result,γ(θ) = UExpm(θΩ) is also an
orthogonal matrix for allθ.

1Because Expm(Ω)Expm(Ω)T = Expm(Ω)Expm(ΩT ) =
Expm(Ω)Expm(−Ω) = I

2.1.2. THE DIRECTIONAL DERIVATIVE

In analogy to the Euclidean case, the Riemannian direc-
tional derivative off in the direction of a vectorUΩ ∈
TUOd is defined as the derivative of a single variable
function which involves looking atf along a single curve
(Absil et al., 2009):

∇Ωf(U) ≡ d
dθ

f(γ(θ))
∣∣∣
θ=0

=
d
dθ

f(UExpm(θΩ))
∣∣∣
θ=0

.

(1)
Note that∇Ωf(U) is a scalar. The definition means that the
directional derivative isf ′ with f restricted to the geodesic
curve going throughU in the directionUΩ.

2.1.3. THE DIRECTIONAL UPDATE

Since the Riemannian equivalent of walking in a straight
line is walking along the geodesic curve, taking a step of
sizeη > 0 from a pointU ∈ Od in directionUΩ ∈ TUOd

amounts to:
Unext = UExpm(ηΩ) , (2)

We also have to define the orthogonal basis forSkew(d).
Here we use{eieTj − eje

T
i : 1 ≤ i < j ≤ d}. We denote

each basis vector asHij = eie
T
j − eje

T
i , 1 ≤ i < j ≤ d.

2.2. Givens rotations as coordinate descent

Coordinate descent is a popular method of optimization in
Euclidean spaces. It can be more efficient than computing
full gradient steps when it is possible to (1) compute effi-
ciently the coordinate directional derivative, and (2) apply
the update efficiently. We will now show that in the case of
the orthogonal manifold, applying the update (step 2) can
be achieved efficiently. The cost of computing the coordi-
nate derivative (step 1) depends on the specific nature of the
objective functionf , and we we show below several cases
where that can be achieved efficiently.

Let Hij be a coordinate direction, let∇Hij
f(U) be the

corresponding directional derivative, and choose step size
η > 0. A straightforward calculation based on Eq.2
shows that the updateUnext = UExpm(−ηHij) obeys

Expm(−ηHij) =



1 · · · 0 · · · 0 · · · 0
...

.. .
...

...
...

0 · · · cos(η) · · · −sin(η) · · · 0
...

...
. . .

...
...

0 · · · sin(η) · · · cos(η) · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1
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This matrix is known as a Givens rotation
(Golub & Van Loan, 2012) and is denotedG(i, j,−η). It
hascos(η) at the(i, i) and (j, j) entries, and±sin(η) at
the (j, i) and (i, j) entries. It is a simple and sparse or-
thogonal matrix. For a dense matrixA ∈ Rd×d, the linear
operationA 7→ AG(i, j, η) rotates theith andjth columns
of A by an angleη in the plane they span. Computing
this operation costs6d multiplications and additions. As
a result, computing Givens rotations successively for all
d(d−1)

2 coordinatesHij takesO(d3) operations, the same
order as ordinary matrix multiplication. Therefore the
relation between the cost of a single Givens relative to a
full gradient update is the same as the relation between
the cost of a single coordinate update and a full update
is in Euclidean space. We note that any determinant-1
orthogonal matrix can be decomposed into at mostd(d−1)

2
Givens rotations.

2.3. The Givens rotation coordinate descent algorithm

Based on the definition of Givens rotation, a natural algo-
rithm for optimizing over orthogonal matrices is to perform
a sequence of rotations, where each rotation is equivalent to
a coordinate-step in CD.

To fully specify the algorithm we need two more ingredi-
ents: (1) Selecting a schedule for going over the coordi-
nates and (2) Selecting a step size. For scheduling, we
chose here to use a random order of coordinates, following
many recent coordinate descent papers (Richt́arik & Takáč,
2012; Nesterov, 2012; Patrascu & Necoara, 2013).

For choosing the step sizeη we use exact minimization,
since we found that for the problems we aim to solve, using
exact minimization was usually the same order of complex-
ity as performing approximate minimization (like using an
Armijo step ruleBertsekas(1999); Absil et al.(2009)).

Based on these two decisions, Algorithm (1) is a random
coordinate minimization technique.

Algorithm 1 Riemannian coordinate minimization onOd

Input: Differentiable objective functionf , initial matrix
U0 ∈ Od

t = 0
while not convergeddo

1. Sample uniformly at random a pair(i(t), j(t)) such
that1 ≤ i(t) < j(t) ≤ d.
2. θt+1 = argmin

θ
f (Ut ·G(i, j, θ)).

3. Ut+1 = Ut ·G(i, j, θt+1).
4. t = t+ 1.

end while
Output: Ufinal.

3. Convergence rate for Givens coordinate
minimization

In this section, we show that under the assumption that
the objective functionf is differentiable Algorithm 1 con-
verges to critical point of the functionf , and the only stable
convergence points are local minima. We further show that
the expectation w.r.t. the random choice of coordinates of
the squaredl2-norm of the Riemannian gradient converges
to 0 with a rate ofO( 1

T ) whereT is the number of itera-
tions. The proofs, including some auxiliary lemmas, are
provided in the supplemental material. Overall we pro-
vide the same convergence guarantees as provided in stan-
dard non-convex optimization (e.g.,Nemirovski (1999);
Bertsekas(1999)).

Definition 1. Riemannian gradient
The Riemannian gradient∇f(U) of f at point U ∈
Od is the matrixUΩ, where Ω ∈ Skew(d), Ωji =
−Ωij = ∇ijf(U), 1 ≤ i < j ≤ d is defined to be
the directional derivative as given in Eq.1, andΩii =
0. The norm of the Riemannian gradient||∇f(U)||2 =
Tr(∇f(U)∇f(U)T ) = ||Ω||2fro.

Definition 2. A point U∗ ∈ Od is asymptotically stable
with respect to Algorithm (1) if it has a neighborhoodV of
U∗ such that all sequences generated by Algorithm (1) with
starting pointU0 ∈ V converge toU∗.

Theorem 1. Convergence to local optimum
(a) The sequence of iteratesUt of Algorithm (1) satisfies:
limt→∞ ||∇f(Ut)|| = 0. This means that the accumula-
tion points of the sequence{Ut}∞t=1 are critical points of
f .
(b) Assume the critical points off are isolated. LetU∗ be
a critical point of f . ThenU∗ is a local minimum off if
and only if it is asymptotically stable with regard to the se-
quence generated by Algorithm (1).

Definition 3. For an iterationt of Algorithm (1), and a set
of indices(i(t), j(t)), we define the auxiliary single vari-
able functiongijt :

gijt (θ) = f (Ut ·G(i, j, θ)) , (3)

Note thatgijt are differentiable and periodic with a period
of 2π. SinceOd is compact andf is differentiable there
exists a single Lipschitz constantL(f) > 0 for all gijt .

Theorem 2. Rate of convergence
Letf be a continuous function withL-Lipschitz directional
derivatives2. Let Ut be the sequence generated by Al-
gorithm 1. For the sequence of Riemannian gradients
∇f(Ut) ∈ TUt

Od we have:

max
0≤t≤T

E
[
||∇f(Ut)||22

]
≤ L · d2 (f(U0)− fmin)

T + 1
. (4)

2BecauseOd is compact, any functionf with a continuous
second-derivative will obey this condition.
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The proof is a Riemannian version of the proof for the rate
of convergence of Euclidean random coordinate descent for
non-convex functions (Patrascu & Necoara, 2013) and is
provided as supplemental material.

4. Sparse PCA
Principal component analysis (PCA) is a basic dimen-
sionality reducing technique used throughout the sciences.
Given a data setA ∈ Rd×n of n observations ind di-
mensions, the principal components are a set of orthogo-
nal vectorsz1, z2, . . . , zm ∈ Rd, such that the variance∑m

i=1 z
T
i AA

T zi is maximized. The data is then repre-
sented in a new coordinate system̂A = ZTA where
Z = [z1, z2, . . . , zm] ∈ Rd×m.

One drawback of ordinary PCA is lack of interpretabil-
ity. In the original dataA, each dimension usually has
an understandable meaning, such as the level of expres-
sion of a certain gene. The dimensions ofÂ however are
typically linear combinations of all gene expression lev-
els, and as such are much more difficult to interpret. A
common approach to the problem of findinginterpretable
principal components is Sparse PCA (Zou et al., 2006;
Jourńee et al., 2010; d’Aspremont et al., 2007; Zhang et al.,
2012; Zhang & Ghaoui, 2012). SPCA aims to find vec-
tors zi as in PCA, but which are also sparse. In the gene-
expression example, the non-zero components ofzi might
correspond to a few genes that explain well the structure of
the dataA.

One of the most popular approaches for solving the prob-
lem of finding sparse principal components is the work
by Jourńee et al.(2010). In their paper, they formalize
the problem as finding the optimum of the following con-
strained optimization problem to find the sparse basis vec-
torsZ:

argmax
U∈Rn×m,Z∈Rd×m

Tr(ZTAU)− γ
∑

ij

|Zij | (5)

s.t. UTU = Im,
d∑

i=1

Z2
ij = 1 ∀j = 1 . . .m .

Jourńee et al. provide an algorithm to solve Eq.5 that has
two parts: The first and more time consuming part finds
an optimalU , from which optimalZ is then found. We
focus here on the problem of finding the matrixU . Note
that whenm = n, the constraintUTU = Im implies that
U is an orthogonal matrix.

We use a second formulation of the optimization problem,
also given by Jourńee et al. in section 2.5.1 of their paper:

argmax
U∈Rn×m

m∑

j=1

d∑

i=1

[|(A · U)ij | − γ]2+

s.t. UTU = Im,

wheren is the number of samples,d is the input dimension-
ality andm is the number of PCA components computed.
This objective is once-differentiable and the objective ma-
trix U grows with the number of samplesn.

4.1. Givens rotation algorithm for the full casem = n

If we choose the number of principal componentsm to be
equal to the number of samplesn we can apply Algorithm
((1)) directly to solve the optimization problem of Eq.6.
Explicitly, at each roundt, for choice of coordinates(i, j)
and a matrixUt ∈ Od, the resulting coordinate minimiza-
tion problem is:

argmin
θ

−
m∑

j=1

d∑

i=1

[|(AUtG(i, j, θ))ij | − γ]2+ =

argmin
θ

−
d∑

k=1

[|cos(θ)(AUt)ki + sin(θ)(AUt)kj | − γ]2++

[| − sin(θ)(AUt)ki + cos(θ)(AUt)kj | − γ]2+
(6)

Algorithm 2 Riemannian coordinate minimization for
sparse PCA

Input: Data matrixA ∈ Rd×n, initial matrix U0 ∈ On,
sparsity parameterγ ≥ 0
t = 0
AU = A · U0 .
while not convergeddo

1. Sample uniformly at random a pair(i(t), j(t)) such
that1 ≤ i(t) < j(t) ≤ n.
2. θt+1 = argmax

θ∑d
k=1([|cos(θ)(AU)ki(t) + sin(θ)(AU)kj(t)| − γ]2+

+[| − sin(θ)(AU)ki(t) + cos(θ)(AU)kj(t)| − γ]2+).
3.AU = AU ·G(i(t), j(t)), θt+1).
4. t = t+ 1.

end while
5. Z = solveForZ(AU, γ) // Algorithm 6 of

Jourńee et al.(2010).
Output: Z ∈ Rd×n

See Algorithm (2) for the full procedure. In practice, there
is no need to store the matricesUt in memory, and one
can work directly with the matrixAUt. Evaluating the ex-
pression in Eq.6 for a givenθ requiresO(d) operations,
whered is the dimension of the data. We found in practice
that optimizing Eq.6 required an order of 5-10 evaluations.
Overall each iteration of Algorithm (2) requiresO(d) oper-
ations.

4.2. Givens rotation algorithm for the casem < n

The major drawback of Algorithm (2) is that it requires the
number of principal componentsm to be equal to the num-
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ber of samplesn. This kind of “full dimensional sparse
PCA” may not be necessary when researchers are interested
to obtain a small number of components. We therefore de-
velop a streaming version of Algorithm (2). For a small
given m, we treat the data as if onlym samples exist at
any time, giving an intermediate modelAU ∈ Rd×m. Af-
ter a few rounds of optimizing over this subset of samples,
we use a heuristic to drop one of the previous samples and
incorporate a new sample. This gives us a streaming ver-
sion of the algorithm because in every phase we need only
m samples of the data in memory. The full details of the
algorithm are given in the supplemental material.

4.3. Experiments

Sparse PCA attempts to trade-off two variables: the frac-
tion of data variance that is explained by the model’s com-
ponents, and the level of sparsity of the components. In our
experiment, we monitor a third important parameter, the
number of floating point operations (FLOPS) performed
to achieve a certain solution. To compute the number of
FLOPS we counted the number of additions and multipli-
cations computed on each iteration. This does not include
pointer arithmetic.

We first examined Algorithm2 for the case wherem =
n. We used the prostate cancer gene expression data by
Singh et al.(2002). This dataset consists of the gene ex-
pression levels for 52 tumor and 50 normal samples over
12,600 genes, resulting in a12, 600× 102 data matrix.

We compared the performance of our approach with that of
theGeneralized Power Methodof Jourńee et al.(2010). We
focus on this method for comparisons because both meth-
ods optimize the same objective function, which allows to
characterize the relative strengths and weaknesses of the
two approaches.

As can be seen in Figure1, the Givens coordinate mini-
mization method finds a sparser solution with better ex-
plained variance, and does so faster than the generalized
power method.

We tested the streaming version of the coordinate descent
algorithm for sparse PCA (Algorithm 5, supp. material)
on a recent large gene expression data set collected from of
six human brains (Hawrylycz et al., 2012). Overall, each of
the 20K human genes was measured at 3702 different brain
locations, and this data can be used to study the spatial pat-
terns of mRNA expression across the human brain. We
again compared the performance of our approach with that
of theGeneralized Power Methodof Jourńee et al.(2010).

We split the data into 5 train/test partitions, with each train
set including 2962 examples and each test set including 740
examples. We evaluated the amount of variance explained
by the model on the test set. We use the adjusted vari-
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(a) explained variance (b) number of non-zeros

Figure 1.(a) The explained variance as function of FLOPS of the
coordinate minimization method from Algorithm2 and of the gen-
eralized power method byJourńee et al.(2010), on a prostate can-
cer gene expression dataset. (b) The number of non-zeros in the
sparse PCA matrix as function of FLOPS of the coordinate mini-
mization method from Algorithm2 and of the generalized power
method byJourńee et al.(2010), on a prostate cancer gene expres-
sion dataset. The size of the sparse PCA matrix is12, 600× 102.

ance procedure suggested in this case byZou et al.(2006),
which takes into account the fact that the sparse principal
components are not orthogonal.

For the Generalized Power Method we use the greedyl1
version ofJourńee et al.(2010), with the parameterµ set
to 1. We found the greedy version to be more stable and
to be able to produce sparse solutions when the number of
components wasm > 1. We used values ofγ ranging from
0.01 to 0.2, and two stopping conditions: “convergence”,
where the algorithm was run until its objective converged
within a relative tolerance level of10−4, and “early stop”
where we stopped the algorithm after 14% of the iterations
required for convergence. For our algorithm we used the
same range ofγ values, and an early-stop condition where
the algorithm was stopped after using 14% of the samples.

Figure2 demonstrates the tradeoff between floating point
operations and explained variance for SPCA with 3, 5 and
10 components and with 3 sparsity levels: 5%, 10% and
20%. Using low dimensions is often useful for visual ex-
ploration of the data. Each dot represents one instance of
the algorithm, run with a certain value ofγ and stopping cri-
terion. To avoid clutter we only show instances which per-
formed best in terms of explained variance or few FLOPS.

When strong sparsity is required (5% or 10% sparsity),
the Givens-rotation coordinate descent algorithm finds so-
lutions faster (blue rectangles are more to the left in Figure
2), and these solutions are similar or better in terms of ex-
plained variance. For low-dimensional less sparse solutions
(20% sparsity) we find that the generalized power method
finds comparable or better solutions using the same compu-
tational cost, but only when the number of components is
small, as seen in Figure2.c,f,i.
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Figure 2.The tradeoff between explained variance and computational cost for 3, 5 and 10-component sparse PCA models applied to
human gene expression data. The models are constrained for maximumsparsity of 5% (a), (d) & (g), 10% (b), (e) & (h) and 20% (c), (f)
& (i). Red pluses indicate the Generalized Power method (Jourńee et al., 2010); blue squares represent the Givens coordinate procedure.
See Subsection4.3for experimental conditions. Explained variance was adjusted followingZou et al.(2006).

5. Orthogonal tensor decomposition
Recently it has been shown that many classic ma-
chine learning problem such as Gaussian Mixture Mod-
els and Latent Dirichlet Allocation can be solved effi-
ciently by using 3rd order moments (Anandkumar et al.,
2012a; Hsu & Kakade, 2013; Anandkumar et al., 2012b;c;
Chaganty & Liang, 2013). These methods ultimately rely
on finding an orthogonal decomposition of 3-way tensors
T ∈ Rd×d×d, and reconstructing the solution from this de-
composition. Here we show that the problem of finding an
orthogonal decomposition for a tensorT ∈ Rd×d×d can
be naturally cast as an optimization problem over the or-
thogonal matrix manifold. We apply Algorithm1 to this
problem, and compare its performance on a task of find-
ing a Gaussian Mixture Model with a state-of-the-art tensor
decomposition method, the robust Tensor Power Method
(Anandkumar et al., 2012a). We find that the Givens coor-
dinate method consistently finds better solutions when the
number of mixture components is large.

5.1. Orthogonal tensor decomposition
The problem of tensor decomposition is very hard in gen-
eral (Kolda & Bader, 2009). However, a certain class of
tensors known asorthogonally decomposabletensors are
easier to decompose, as has been discussed recently by
Anandkumar et al.(2012a); Hsu & Kakade(2013) and oth-
ers. Here we introduce the problem of orthogonal tensor
decomposition, and provide a new characterization of the
solutions to the decomposition problem as extrema of an
optimization problem on the orthogonal matrix manifold.

The resulting algorithm is similar to one recently proposed
by Ishteva et al.(2013). However, we aim for full diago-
nalization, while they focus on finding a good low-rank ap-
proximation. This results in different objective functions:
ours involves third-order polynomials onOd, while Ishteva
et al.’s results in sixth-order polynomials on the low-rank
compact Stiefel manifold. Diagonalizing the tensorT is
attainable in our case thanks to the strong assumption that
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it is orthogonally decomposable. Nonetheless, both meth-
ods are extensions of Jacobi’s eigenvalue algorithm to the
tensor case, in different setups.

We start with preliminary notations and definitions. We fo-
cus here on symmetric tensorsT ∈ Rd×d×d. A third-order
tensor is symmetric if its values are identical for any per-
mutationσ of the indices: withTi1i2i3 = Tiσ(1)iσ(2)iσ(3)

.

We also view a tensorT as a trilinear map.
T : Rd × Rd × Rd → R: T (v1, v2, v3) =∑d

a,b,c=1 Tabcv1av2bv3c.

Finally, we also use the three-form tensor product of a
vector u ∈ Rd with itself: u ⊗ u ⊗ u ∈ Rd×d×d,
(u ⊗ u ⊗ u)abc = ua · ub · uc. Such a tensor is called a
rank-onetensor.

Definition 4. A symmetric tensorT is orthogonally decom-
posable if there exists an orthonormal setv1, . . . vd ∈ Rd,
and positive scalarsλ1, . . . λd > 0 such that:

T =

d∑

i=1

λi(vi ⊗ vi ⊗ vi). (7)

Unlike matrices, most symmetric tensors are not or-
thogonally decomposable. However, as shown by
Anandkumar et al. (2012a); Hsu & Kakade (2013);
Anandkumar et al.(2013), several problems of interest,
notably Gaussian Mixture Models and Latent Dirichlet
Allocation do give rise to third-order moments which are
orthogonally decomposable in the limit of infinite data.

The goal of orthogonal tensor decomposition is, given an
orthogonally decomposable tensorT , to find the orthogonal
vector setv1, . . . vd ∈ Rd and the scalarsλ1, . . . λd > 0.

We now show that finding an orthogonal decomposition can
be stated as an optimization problem overOd:

Theorem 3. LetT ∈ Rd×d×d have an orthogonal decom-
position as in Definition4, and consider the optimization
problem

max
U∈Od

f(U) =

d∑

i=1

T (ui, ui, ui), (8)

whereU = [u1 u2 . . . ud]. The stable stationary points of
the problem are exactly orthogonal matricesU such that
ui = vπ(i) for a permutationπ on [d]. The maximum value

they attain is
∑d

i=1 λi.

The proof is given in the supplemental material.

5.2. Coordinate minimization algorithm for orthogonal
tensor decomposition

We now adapt Algorithm1 for solving the problem of or-
thogonal tensor decomposition of a tensorT , by maximiz-
ing the objective function8, f(U) =

∑d
i=1 T (ui, ui, ui).

For this we need to calculate the form of the function
gijt (θ) = f (U ·G(i, j, θ)). We have:

gijt (θ) = f (U ·G(i, j, θ)) =

d∑

k 6=i,j

T (uk, uk, uk) + T (ũi, ũi, ũi) + T (ũj , ũj , ũj) .

where we used̃ui = cos(θ)ui + sin(θ)uj and ũj =
cos(θ)uj − sin(θ)ui.

Denote byT̃ the tensor such that:̃Tijk = T (ui, uj , uk).
We will abuse notation and denotẽT = T (U,U,U). The
tensorT̃ is the three-way multiplication ofT by the ma-
trix U . This is the lifting of the matrix operatioñM =
M(U,U) = UMUT to the tensor domain.

Collecting terms, using the symmetry ofT and some basic
trigonometric identities, we then have:

gijt (θ) =cos3(θ)
(
T̃iii + T̃jjj − 3T̃ijj − 3T̃jii

)
(9)

+sin3(θ)
(
T̃iii − T̃jjj − 3T̃ijj + 3T̃jii

)

+cos(θ)
(
3T̃ijj + 3T̃jii

)

+sin(θ)
(
3T̃ijj − 3T̃jii

)
.

In each step of the algorithm, we maximizegijt (θ) over
−π ≤ θ < π. The scalar functiongijt has at most 3 max-
ima that can be obtained in closed form solution, and thus
can be maximized in constant time.

Algorithm 3 Riemannian coordinate maximization for or-
thogonal tensor decomposition

Input: Symmetric tensorT ∈ Rd×d×d.
Initialize t = 0, T̃ 0 = T , U0 = Id.
while not convergeddo

1. Sample uniformly at random a pair(i(t), j(t)) such
that1 ≤ i(t) < j(t) ≤ d.
2. ObtainT̃ t

iii, T̃
t
jjj , T̃

t
ijj , T̃

t
jii.

3. θt = argmax
θ

gijt (θ), wheregijt is defined as in9.

4. T̃ t+1 = T̃ t (G(i, j, θt), G(i, j, θt), G(i, j, θt)).
// Three way multiplication of̃T t by G(i, j, θt).
5. Ut+1 = UtG(i, j, θt).
6. t = t+ 1.

end while
Output: Ufinal.

The most computationally intensive part of Algorithm3 is
line 4. Multiplying a tensor by the Givens rotationG(i, j, θ)
only affects tensor entries on thei-th andj-th slice. This
requiresO(d2) operations per iteration. In Section D of the
supplemental material we provide a different version of this
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(a) 10,000 samples (b) 200,000 samples

Figure 3.Clustering performance in terms of normalized MI
of the Givens algorithm vs. the tensor power method of
Anandkumar et al.(2012a). Clustering by fitting a GMM from
samples drawn from a 20-component GMM with varying dimen-
sion, using 3rd order moments. Reconstruction is performed from
(a) 10K and (b) 200K samples. Blue line with triangles marks the
Givens coordinate method. Red line with circles marks the tensor
power method, and the black line is the optimal performance if all
GMM parameters are known.

algorithm which does not require calculating the tensorT .
Instead, it operates directly on the data points, calculating
cross products on demand. This version of the algorithm
has complexity per step ofO(#samples) instead.

5.3. Experiments

Hsu & Kakade(2013) andAnandkumar et al.(2012a) have
recently shown how fitting a Gaussian Mixture Model
(GMM) with common spherical covariance can be reduced
to orthogonally decomposing a third moment tensor. We
evaluate the Givens coordinate minimization algorithm us-
ing this problem. We compare with a state of the art tensor
decomposition method, the robust tensor power method, as
given inAnandkumar et al.(2012a).
We generated GMMs with the following parameters: num-
ber of dimensions in{10, 20, 50, 100, 200}, number of
samples in{10K, 30K, 50K, 100K, 200K}. We used 20
components, each with a spherical variance of 2. The
centers were sampled from a Gaussian distribution with
an inverse-Wishart distributed covariance matrix. Given
the samples, we constructed the 3rd order moment, de-
composed it, and reconstructed the model following the
procedure inAnandkumar et al.(2012a). We then clus-
tered the samples according to the reconstructed model,
and measured thenormalized mutual information(NMI)
(Manning et al., 2008) between the learned clustering and
the true clusters.

Figure 3 compares the performance of the two methods
with the optimal NMI across dimensions. The coordi-
nate minimization method outperforms the tensor power
method for the large sample size (200K), whereas for small
sample size (10K) the tensor power method performs bet-
ter for the intermediate dimensions. In Figure4 we see the
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Figure 4.Same task as Figure3, but for fixed dimensiond = 100
and varying number of samples.

performance of both algorithms across all sample sizes for
dimension= 100. We see that the coordinate minimization
method again performs better for larger sample sizes. We
observed this phenomenon for 50 components as well, and
for mixture models with larger variance.

6. Conclusion

We described a framework to efficiently optimize differen-
tiable functions over the manifold of orthogonal matrices.
The approach is based on Givens rotations, which we show
can be viewed as the parallel of coordinate updates in Eu-
clidean spaces. We prove the procedure’s convergence to
a local optimum. Using this framework, we developed al-
gorithms for two unsupervised learning problems: Finding
sparse principal components; and learning a Gaussian mix-
ture model through orthogonal tensor decomposition. Our
method poses an alternative to the tensor power method for
orthogonal tensor decompositions. Our alternative extends
the way the Jacobi eigenvalue algorithm is an alternative to
the matrix power method for matrix decompositions.

We expect that the proposed framework can be further ex-
tended to other problems requiring learning over orthogo-
nal matrices including ICA. Moreover, coordinate descent
approaches have some inherent advantages and are some-
times better amenable to parallelization. Developing dis-
tributed Givens-rotation algorithms would be an interesting
future research direction.
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A. Proofs of theorems of Section 3

Below we use a slightly modified definition of Algorithm
1. The difference lies only in the sampling procedure, and
is essentially a technical difference to ensure that each co-
ordinate step indeed improves the objective or lies at an op-
timum, so that the proofs could be stated more succinctly.

Algorithm 4 Riemannian coordinate minimization onOd,
sampling variant
Input: Differentiable objective functionf , initial matrix

U0 ∈ Od

t = 0
while not convergeddo

1. Sample coordinate pairs(i(t), j(t)) such that1 ≤
i(t) < j(t) ≤ d uniformly at random without replace-
ment, until the objective function can improve
2. Ut+1 = argmin

θ
f (Ut ·G(i, j, θ)).

3. t = t+ 1.
end while

Definition 1. A point U∗ ∈ Od is asymptotically stable
with respect to Algorithm4 if it has a neighborhoodV of
U∗ such that all sequences generated by Algorithm4 with
starting pointU0 ∈ V converge toU∗.

Theorem 1. Convergence to local optimum
(a) The sequence of iteratesUt of Algorithm 4 satisfies:
limt→∞ ||∇f(Ut)|| = 0. This means that the accumula-
tion points of the sequence{Ut}∞t=1 are critical points off .
(b) Assume the critical points off are isolated. LetU∗ be
a critical point off . ThenU∗ is a local minimum off
if and only if it is asymptotically stable with regard to the
sequence generated by Algorithm4.

Proof. (a) Algorithm 4 is obtained by taking a step in
each iterationt in the direction of the tangent vectorZt,
such that for the coordinates(i(t), j(t)) we have(Zt)ij =

−(∇f(Ut))ij , (Zt)ji = −(∇f(Ut))ji , and(Zt)kl = 0 for
all other coordinates(k, l).

The sequence of tangent vectorsZt ∈ TUt
Od is easily seen

to be gradient related:lim sup k → ∞〈∇f(Ut), Zt〉 < 0
1. This follows fromZt being equal to exactly two coordi-
nates of∇f(Ut), with all other coordinates being 0.

Using the optimal step size as we do assures at least as
large an increasef(Ut) − f(Ut+1) as using the Armijo
step size rule (Armijo, 1966; Bertsekas, 1999). Using the
fact that the manifoldOd is compact, we obtain by the-
orem 4.3.1 and corollary 4.3.2 ofAbsil et al. (2009) that
limt→∞ ||∇f(Ut)|| = 0

(b) Since Algorithm4 produces a monotonically decreas-
ing sequencef(Ut), and since the manifoldOd is compact,
we are in the conditions of Theorems 4.4.1 and 4.4.2 of
Absil et al.(2009). These imply that the only critical points
which are local minima are asymptotically stable.

We now provide a rate of convergence proof. This proof
is a Riemannian version of the proof for the rate of con-
vergence of Euclidean random coordinate descent for non-
convex functions given byPatrascu & Necoara(2013).

Definition 2. For an iterationt of Algorithm4, and a set of
indices(i(t), j(t)), we define the auxiliary single variable
functiongijt :

gijt (θ) = f (Ut ·G(i, j, θ)) , (1)

Note thatgijt are differentiable and periodic with a period
of 2π. SinceOd is compact andf is differentiable there
exists a single Lipschitz constantL(f) > 0 for all gijt .

1To obtain a rigorous proof we slightly complicated the sam-
pling procedure in line 1 of Algorithm 1, such that coordinates
with 0 gradient are not resampled until a non-zero gradient is sam-
pled.
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Theorem 2. Rate of convergence
Let f be a continuous function withL-Lipschitz direc-
tional derivatives2. Let Ut be the sequence generated by
Algorithm 4. For the sequence of Riemannian gradients
∇f(Ut) ∈ TUt

Od we have:

max
0≤t≤T

E
[
||∇f(Ut)||22

]
≤ L · d2 (f(U0)− fmin)

T + 1
. (2)

Lemma 1. Let g : R → R be a periodic differentiable
function, with period2π, and L−Lipschitz derivativeg′.
Then there for allθ ∈ [−π π]: g(θ) ≤ g(0)+θg′(0)+ L

2 θ
2.

Proof. We have for allθ,
|g′(θ) − g′(0)| ≤ L|θ|. We now have:g(θ) − g(0) −
θg′(0) =

∫ θ

0
g′(τ) − g′(0)dτ ≤

∫ θ

0
|g′(τ) − g′(0)|dτ ≤∫ θ

0
L|τ |dτ = L

2 θ
2.

Corollary 1. Let g = gt+1
i(t+1)j(t+1). Under the conditions

of Algorithm4, we have:
f(Ut)− f(Ut+1) ≥ 1

2L∇ijf(Ut)
2 for the same constantL

defined in1.

Proof. By the definition of g we have f(Ut+1) =
min
θ

g(θ), and we also haveg(0) = f(Ut). Finally, by

Eq. 1 of the main paper we have∇ijf(Ut) = g′(0). From
Lemma1, we haveg(θ) − g(0) ≤ θg′(0) + L

2 θ
2. Mini-

mizing the right-hand side with respect toθ, we see that
min
θ

{g(0)−g(θ)} ≥ 1
2L (g

′(0))2. Substitutingf(Ut+1) =

min
θ

g(θ) ,f(Ut) = g(0), and 1
2L∇ijf(Ut) = g′(0) com-

pletes the result.

Proof of Theorem 2.By Corollary 1, we havef(Ut) −
f(Ut+1) ≥ 1

2L∇ijf(Ut)
2. Recall that±∇ijf(Ut) is the

(i, j) and(j, i) entry of∇f(Ut). If we take the expectation
of both sides with respect to a uniform random choice of
indicesi, j such that1 ≤ i < j ≤ d, we have:

E [f(Ut)− f(Ut+1)] ≥
1

L · d2) ||∇f(Ut)||2, (3)

Summing the left-hand side gives a telescopic sum which
can be bounded byf(U0) − min

U∈Od

f(U) = f(U0) − fmin.

Summing the right-hand side and using this bound, we ob-
tain

T∑

t=0

E
[
||∇f(Ut)||22

]
≤ L · d2(f(U0)− fmin) (4)

This means that min
0≤t≤T

E
[
||∇f(Ut)||22

]
≤

L·d2(f(U0)−fmin)
T+1 .

2BecauseOd is compact, any functionf with a continuous
second-derivative will obey this condition.

B. Proofs of theorems of Section 5

Definition 4. A tensorT is orthogonally decomposableif
there exists an orthonormal set of vectorsv1, . . . vd ∈ Rd,
and positive scalarsλ1, . . . λd > 0 such that:

T =

d∑

i=1

λi(vi ⊗ vi ⊗ vi). (5)

Theorem 3. Let T ∈ Rd×d×d have an orthogonal decom-
position as in Definition 4, and consider the optimization
problem

max
U∈Od

f(U) =

d∑

i=1

T (ui, ui, ui), (6)

whereU = [u1 u2 . . . ud]. The stable stationary points of
the problem are exactly orthogonal matricesU such that
ui = vπ(i) for a permutationπ on [d]. The maximum value

they attain is
∑d

i=1 λi.

Proof. For a tensorT ′ denote vec(T ′) ∈ Rd3

the
vectorization ofT ′ using some fixed order of indices.
Set T̂ (U) =

∑d
i=1(ui ⊗ ui ⊗ ui), with T̂ (U)abc =∑d

i=1 uiauibuic. The sum of trilinear forms in Eq.6 is
equivalent to the inner product inRd3

betweenT̂ (U) and
T :

∑d
i=1 T (ui, ui, ui) =

∑d
i=1

∑
abc Tabcuiauibuic =

∑
abc Tabc

(∑d
i=1 uiauibuic

)
=

∑
abc TabcT̂ (U)abc =

vec(T ) · vec(T̂ (U)). Consider the following two facts:
(1) T̂ (U)abc ≤ 1 ∀a, b, c = 1 . . . d: since the vectors
ui are orthogonal, all their componentsuia ≤ 1. Thus
T̂ (U)abc =

∑d
i=1 uiauibuic ≤ ∑d

i=1 uiauib =≤ 1, where
the last inequality is because the sum is the inner product
of two rows of an orthogonal matrix.
(2) ||vec(T̂ (U))||22 = d. This is easily checked by forming
out the sum of squares explicitly, using the orthonormality
of the rows and columns of the matrixU .
Assume without loss of generality thatV = Id. This is
because we may replace the termsT (ui, ui, ui) in the ob-
jective withT (V Tui, V

Tui, V
Tui), and because the man-

ifold V TOd is identical toOd. Thus we have thatT is a
diagonal tensor, withTaaa = λa > 0, a = 1 . . . d. Con-
sidering facts (1) and (2) above, we have the following in-
equality:

max
U∈Od

d∑

i=1

T (ui, ui, ui) = max
U∈Od

vec(T̂ (U)) · T ≤ (7)

max
T̂

vec(T̂ ) · T s.t. ||vec(T̂ )||∞ ≤ 1 ∧ ||vec(T̂ )||22 = d.

(8)

T is diagonal by assumption, with exactlyd non-zero en-
tries. Thus the maximum of (5) is attained if and only if
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Algorithm 5 Riemannian coordinate minimization for
streaming sparse PCA

Input: Data streamai ∈ Rd, number of sparse principal
componentsm, initial matrixU0 ∈ Om, sparsity param-
eterγ ≥ 0, number of inner iterationsL.
AU = [a1a2 . . . am] · U0 . //AU is of sized×m
while not stoppeddo

for t = 1 . . . L do
1. Sample uniformly at random a pair(i(t), j(t))
such that1 ≤ i(t) < j(t) ≤ m.
2. θt+1 = argmax

θ∑d
k=1([|cos(θ)(AU)ki(t)+sin(θ)(AU)kj(t)|−γ]2+

+[| − sin(θ)(AU)ki(t) + cos(θ)(AU)kj(t)| − γ]2+).
3.AU = AU ·G(i(t), j(t)), θt+1).

end for
4. imin = argmin

i=1...m
||(AU):,i||2.

5. Sample new data pointanew.
6. (AU):,imin

= anew.
end while
Z = solveForZ(AU, γ) // Algorithm 6 of

Jourńee et al.(2010).
Output: Z ∈ Rd×m

T̂aaa = 1, a = 1 . . . d, and all other entries of̂T are0. The
value at the maximum is then

∑d
i=1 λi.

The diagonal ones tensor̂T can be decomposed into∑d
i=1 ei ⊗ ei ⊗ ei. Interestingly, in the tensor case, un-

like in the matrix case, the decomposition of orthogonal
tensors isuniqueupto permutation of the factors (Kruskal,
1977; Kolda & Bader, 2009). Thus, the only solutions
which attain the maximum of7 are those whereui = eπ(i),
i = 1, . . . d.

C. Algorithm for streaming sparse PCA

Following are the details for the streaming sparse PCA ver-
sion of our algorithm used in the experiments of section
4. The algorithm itself is brought in Algorithm5. The
algorithm starts with running the original coordinate mini-
mization procedure on the firstm samples. It then chooses
the column with the leastl2 and replaces it with a new data
sample, and then re-optimizes on the new set of samples.
There is no need for it to converge in the inner iterations,
and in practice we found that orderm steps after each new
sample are enough for good results.

D. Alternate version of orthogonal tensor
decomposition algorithm - lazy tensor
evaluation

Algorithm 3 in the main text is “Riemannian coordinate
maximization for orthogonal tensor decomposition”. The
version presented there assumes that the fulld× d× d ten-
sorT is given as input to the algorithm. Typically in the
applications we consider here, this tensor is formed as a
third order moment from a given dataset. LetA ∈ Rd×n

be the data matrix, consisting ofn observation withd di-
mensions. In the simplest case we will have thatTijk =∑n

l=1 AilAjlAkl. More complex cases (for example when
applying the method to fit an LDA model) still require sim-
ple vector operations which costO(n) computations to ob-
tain each valueTijk.

We can therefore adopt a lazy computation model, and re-
frain from constructing the entire moment tensorT in ad-
vance. Instead we may calculate the entriesTijk only on
demand, and on each step apply the Givens rotation to the
data matrixinstead of the tensor. This requiresO(n) oper-
ations, as we will be rotating thei andj dimensions (rows)
of the data matrixA. See Algorithm6 below.

Overall the computational cost of each step of this version
of the algorithm isO(n) wheren is the number of data sam-
ples. This is compared toO(d2) operations for the version
presented in the main text, whered is typically not the orig-
inal data dimension, but the number of latent variables such
as latent topics in LDA or mixture components in a GMM.
SeeAnandkumar et al.(2012) for more details.

Algorithm 6 Riemannian coordinate maximization for or-
thogonal tensor decomposition with lazy tensor evaluation

Input: Data matrixA ∈ Rd×n. ProcedureS(A) for ob-
taining single tensor entries fromA with computational
costO(n).
Initialize t = 0, Ã0 = A, U0 = Id.
while not convergeddo

1. Sample uniformly at random a pair(i(t), j(t)) such
that1 ≤ i(t) < j(t) ≤ d.
2. ObtainTiii, Tjjj , Tijj , Tjii from Ãt by S(Ãt).
3. θt = argmax

θ
gijt (θ), wheregijt is defined as in Eq.

9 of the main text.
4. Ãt+1 = G(i, j, θt)

T Ãt.
5. Ut+1 = UtG(i, j, θt).
6. t = t+ 1.

end while
Output: Ufinal.
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Jourńee, Michel, Nesterov, Yurii, Richtárik, Peter, and
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Chapter 3

Discussion

3.1 Summary of contributions of this thesis

In this thesis we presented methods for learning dyadic relationships, focusing on methods for
large-scale and high-dimensional data. We first presented OASIS, a fast and effective streaming
similarity learning algorithm, which at the time of publication achieved state-of-the-art results on
the task of ranking images by similarity. OASIS is based on sparse updates to a full-rank matrix,
and scales well with many samples. However, OASIS suffered from two potential drawbacks.
First is that OASIS memory and computation complexity scales quadratically with the problem
dimension. The second drawback is that there is no efficient way to enforce a positive semi-definite
constraint on the matrix model learned by OASIS, hampering the ability to turn OASIS into a
true metric, or deriving a proper embedding from it.

In Chapter 2.2 we introduced LORETA, a streaming algorithm for learning low-rank matrices.
LORETA is a Riemannian stochastic gradient descent algorithm. Using the manifold structure
allows for memory and computational efficiency, scaling linearly with the problem dimensionality
and with the model rank. Furthermore, optimizing within the low-rank manifold is a key factor in
avoiding the numerical instability often associated with learning low-rank models. This instability
is especially problematic in the streaming setting because of its noisy nature. We applied LORETA
both to similarity learning problems and to the task of learning a multi-label model for images. It
has also been used by Lim and Lanckriet (2014) for ranking songs by similarity.

In Chapter 2.3 we took on a challenge presented by scientific applications of similarity learning.
When similarity learning is applied to image or song retrieval, the main goal is to mimic human
perceptions of similarity. On the other hand, in scientific applications such as brain imaging and
genetics, scientists are interested in gaining insight about questions such as why two brain scans
or two genes are similar. We tackled this challenge in the field of gene expression images of the
brain. Our approach is easily generalized to other domains where rich knowledge-bases exist, such
as proteomics or MRI scans.

In order to learn interpretable similarity models we first mapped the brain gene expression
images into a high-dimensional semantic representation. We did this by learning multiple classifiers
which mapped the gene expression images into semantically meaningful categories, taken from the
Gene Ontology. The categories themselves have a directed acyclic graph structure relating general
and specific categories. We then used the semantic meaning of the categories and the structure
between the categories to obtain an interpretable similarity measure. Our method can explain why
two gene expression images are similar by using semantic categories from the Gene Ontology, as
well as distinguish between different types of similarities based on those same categories.

Finally, in Chapter 2.4 we took on the challenge of scaling up the learning of orthogonal ma-
trices. We were motivated by the new applications of orthogonal matrices in tensor decomposition
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for method-of-moments estimations of latent variable models (Anandkumar et al., 2012a,b; Hsu
and Kakade, 2013; Anandkumar et al., 2014), as well as by applications to sparse PCA and in-
dependent component analysis. We used the manifold structure of the orthogonal matrix group
to define the Riemannian equivalent of Euclidean coordinates. The equivalent turns out to be
simple, sparse orthogonal matrices called Givens rotations, which are rotation matrices that fix an
(n− 2)-dimensional space and perform a rotation on the remaining 2-dimensional subspace. Any
n× n orthogonal matrix can be decomposed into a product of n(n−1)

2 Givens rotations. We prove
that successively applying Givens rotations to an orthogonal matrix is exactly the Riemannian
equivalent of Euclidean coordinate updates. Thus our algorithm enjoys the same advantages of
scalability, parallelization and speed of Euclidean coordinate methods (Nesterov, 2012; Richtárik
and Takáč, 2014), while preserving the orthogonal structure at all steps. We showed that while
our method is not faster compared with the state-of-the-art method for orthogonal tensor decom-
position, our method is significantly more robust to noise. For sparse PCA, we showed our method
is both faster and achieves better solutions for this highly non-convex problem.

In the future work section below we discuss some interesting questions that turned up during
our work on learning orthogonal matrices, as well as some future applications.

3.2 Future work

To conclude this thesis we look into several possible future directions stemming from the work
presented herein.

Hidden convexity on the orthogonal matrix manifold

When applying the Givens orthogonal coordinate descent algorithm presented in Chapter 2.4 to
tensor decomposition, we noticed an intriguing phenomenon: the iterates seemed to consistently
have a linear convergence rate to an optimal solution, as shown for example in Figure 3.1. This
occurred in a wide variety of experimental conditions with both real and synthetic data, while our
theoretical guarantees only provided for local optima, with a sublinear convergence rate.
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Figure 3.1: Convergence of the Riemannian coordinate descent algorithm presented in Chapter
2.4. Shown is the convergence of the 100 dimension model presented in Figure 3.b. of Chapter 2.4,
where a Gaussian Mixture Model is fit using the the third order moment (following Anandkumar
et al. (2012a)). A linear convergence rate is observed.

.

A recent paper by Belkin et al. (2014) gives a very interesting perspective which might explain
this phenomenon. In the terms of Riemannian optimization, Belkin et al. introduce a quotient
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structure on the orthogonal matrix manifold. They use the fact that in many cases, orthogonal
matrix models are invariant to permutation and change of sign - this is for example the case in
eigendecompositions. Thus, Belkin et al. “quotient out” this invariance. They then present a
class of functions that are convex on that quotient structure, a class which includes the objective
function for orthogonal tensor decomposition. The algorithm Belkin et al. employ is a form of
Riemannian gradient descent. They show linear and super-linear convergence results to global
optima. A natural question is how can the orthogonal coordinate methods presented in Chapter
2.4 be adapted to the quotient structure Belkin et al. propose, and how can the strong convergence
theory be applied to orthogonal coordinate updates with Givens rotations.

Learning orthogonal matrices for matrix completion

Matrix completion (MC) is a well known problem in machine learning and data analysis (Candès
and Recht, 2009; Candès and Tao, 2010; Keshavan et al., 2010). The problem is as follows:
Assume there exists an approximately low-rank matrix R ∈ Rn×m, which we can only observe
a small subset of its entries. The goal of MC is to reconstruct the matrix R from the subset of
observed entries. A major motivation and application for MC is its importance in collaborative
filtering for recommender systems, where the goal is recommending new items to a user based on
the preferences of other users.

The usual formulation of the collaborative filtering approach to recommendation systems, is
having input consisting of a set of triplets (i, j, r). This triplet indicates that user i has a preference
r regarding item j. The preference r is a numeric value such as a rating from 1 to 5, or a binary
value such a click or its absence. The task is to predict what will be user i’s preference for an item
j′, for which she has not given a preference indication. The assumption is that such prediction
is possible by using the preferences of other users who have in turn given feedback on item j′, as
well as other items. A standard mathematical formulation of the MC problem is as follows (Koren
et al., 2009; Jain et al., 2013). Assume there are n users and m items, and a sparsely observed
ratings matrix R ∈ Rn×m as above. Denote by Ω the set of pairs (i, j) for which feedback exists.
Denote by PΩ the matrix projecting onto this set, such that [PΩ(X)]ij = Xij if (i, j) ∈ Ω, and
[PΩ(X)]ij = 0 otherwise. The goal is to find a low-rank factorization of R into a “user” matrix
A ∈ Rn×k and an “item” matrix B ∈ Rm×k, that has low mean squared error:

min
A,B
‖PΩ(R)− PΩ(ABT )‖2F = min

A,B

m∑
j=1

∑
i|(i,j)∈Ω

(AT
i Bj −Rij)2. (3.1)

If one fixes the factor A in Eq. 3.1 above, then solving for B is a straightforward least-squares
problem, and likewise if B is fixed and we are solving for A. Solving these two least-squares
problems alternately until convergence is one of the standard algorithms for solving the matrix
completion problem (Koren et al., 2009; Jain et al., 2013; Hardt, 2013). It is straightforward to
show (Jain et al., 2013; Hardt, 2013) that in fact one can use an n× k orthogonal matrix U such
that U spans the column space of A, instead of A itself.

Given such a matrix U ∈ Rn×k spanning the column space of the user matrix A, the least
square solution for each row Bj ∈ Rk of B has a closed form. Let s(j) ⊂ [1 . . . n] denote the subset
of users that have given a rating to the item j. Let Us(j) ∈ R|s(j)|×k be the submatrix of the rows
of U corresponding to those users. For simplicity we will assume that Us(j) is of rank-k, though
this may be relaxed. Let rj ∈ R|s(j)| denote the ratings given by these |s(j)| users to the item j.
Then we have:

Bj =
(
UT

s(j)Us(j)

)−1
UT

s(j)rj . (3.2)
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Substituting 3.2 into the objective 3.1 we obtain the following optimization problem:

min
U∈Rn×k

m∑
j=1
‖Us(j)

(
UT

s(j)Us(j)

)−1
UT

s(j)rj − rj‖22 (3.3)

s.t. UTU = Ik

Posing the problem of matrix completion as an optimization problem over orthogonal matrices
lets one use efficient optimization tools such as Givens rotations and Householder reflections to find
the optimal matrix subspace. This is further motivated by recent breakthroughs in the theoretical
analysis of alternating minimization presented in the works of Jain et al. (2013), Hardt (2013)
and Hardt and Wootters (2014). These papers all show that under certain conditions, alternating
least-squares leads to an optimal solution of the MC problem while being computationally efficient.
Interestingly, they all measure convergence in terms of the principal angles between the model and
the optimal subspace. Thus this line of work is essentially about analyzing the properties of
the orthogonal matrices spanning the “user” and “item” matrices. Therefore we believe that an
interesting avenue for future research is understanding how minimizing Eq. 3.3 by means of Givens
rotations or Householder reflections behaves both in terms of the principal angle to the optimal
solution and in terms of computational complexity.

Efficient block-coordinate optimization for positive definite matrices

Our work on Givens rotations in Chapter 2.4 presented a way to perform low-complexity updates
to a matrix while conserving a non-trivial global constraint - orthogonality. We are currently
looking into a conceptually similar problem regarding positive definite (PD) matrices. As we have
previously seen, PD matrices are useful as models for metric or similarity learning. Therefore, we
wish to find a way to perform efficient block-coordinate updates to a PD matrix while conserving
the PD constraint. Our motivation is the fact that the most common method of enforcing the
PD constraint is computationally expensive - a full eigendecomposition. In Chapter 2.2 we dealt
with this challenge in the case of low-rank positive semidefinite matrices by using the Riemannian
manifold structure of the low-rank PD set. A drawback of the low-rank Riemannian manifold
algorithm is its lack of convexity, making theoretical analysis very difficult.

A promising approach is learning a full-rank PD matrix while performing updates to a single
column and row of the matrix in such a way that the PD constraint is automatically maintained.
This has the added advantage of maintaining a PD model all along the optimization process, which
is useful in the streaming setting.

The way we maintain the PD property is by using the Schur complement (Zhang, 2006) of the
matrix model: Let A be an n× n PD matrix, and suppose without loss of generality that we wish
to update the n-th column and n-th row of A (note that in order to maintain symmetry we must

update both). Partition A as:
[
B vT

v s

]
where B is the (n− 1)× (n− 1) upper-left block, v is an

n−1 dimensional column vector, and s is a scalar. Our block-coordinate update involves updating
v and s while keeping B fixed. By the Schur complement condition, the matrix A is PD if and
only if the block B is PD and s− vTB−1v > 0. Since A is PD, we immediately have that B is PD
as well, leaving us with a single quadratic constraint on v and s:

s− vTB−1v > 0. (3.4)

Given an objective function f we minimize f as a function of v ∈ Rn−1 and s ∈ R under the convex
constraint 3.4. The minimization can be either exact or approximate, depending on the nature of
the objective f . Note that the constraint 3.4 involves the inverse of the (n − 1) × (n − 1) block



Scalable Streaming Learning Of Dyadic Relationships 107

B. This can be obtained efficiently by maintaining the inverse of A and performing a Sherman-
Morrison-Woodbury matrix inverse update.

As is normally the case for coordinate optimization (Richtárik and Takáč, 2014; Nesterov, 2012),
performing the update efficiently requires that f decomposes over the block we are using (a single
row and column). Luckily, this is the case for a wide range of objectives, including those normally
used for similarity learning such as the triplet loss we used for OASIS, and the loss function of the
popular metric learning method LMNN (Weinberger et al., 2005; Weinberger and Saul, 2009).

Preliminary results indicate that the block-coordinate updates work at least as well as compa-
rable metric and similarity learning methods. It does so while maintaining a PD model all along
the optimization path, without resorting to an eigendecomposition.

New applications for interpretable similarity learning

The work presented in Chapter 2.3 of this thesis was focused on a specific application: Assisting
scientists in understanding and exploring the complex relations between genes, their expression
patterns in the brain, and their biological functions.

However, we believe that the ideas in Chapter 2.3 can be generalized to other domains and can
be improved upon. One very interesting application is in the field of medical imaging such as MRI
and X-ray scans. While there are quite a few attempts of applying similarity and metric learning
to bioimaging (e.g. Godil et al., 2008; Shedden et al., 2009; Wei et al., 2009; Wernick et al., 2010;
Chi et al., 2013), none have looked into the challenge of explaining the similarity predicted by the
model. We believe that identifying similar scans while providing semantic interpretations is key
in encouraging adoption in the medical community, while opening up new avenues for improving
the model and its interaction with human experts. In addition, an interpretable similarity tool
could be valuable in the training of health-care workers, as well as for the patients themselves. A
relevant knowledge base for this application is the text and diagnoses given by doctors to these
scans. These can be used as labels and featured as semantic interpretation that the model learns,
similar to the role the Gene Ontology categories played in our work on gene expression images.
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 תקציר

בין שני תחומים בעלי מימד גבוה.  ל למידת מיפוינסובות עמודרניות המכונה ה-בעיות למידתרבות מ

קוראים  ו. אנזהל זהלמשל, למידת מיפוי בין תמונות למילים, או למידה של אילו מסמכים דומים 

ו אנו מתמקדים בלמידת יחסים דיאדיים המקודדים בצורת תזה זב .יחסים דיאדייםלמיפויים אלה 

, מטריצה הממפה בין ייצוג של תמונה לבין ייצוג סמנטי, או מטריצה הפועלת לדוגמהמטריצה. 

 לינארית המקודדת דימיון בין מסמכים.כתבנית בי

עלי נתונים גדולים וב אתגר של למידת יחסים דיאדיים עבור מאגריב מתמקדיםבאופן ספציפי, אנו 

הלן: ראשית, השיטות שיוצגו ל שני סטים של כלים על מנת לפתח אתב עושים שימושמימד גבוה. אנו 

מבנה היריעה הרימני של  ,תמשים במבנה הגאומטרי והאלגברי העשיר של מטריצות. בכלל זהמשאנו 

קבוצת המטריצות נמוכות הדרגה, פירוקים של מטריצות אורתוגונליות, ותכונות של מטריצות 

בכל עת אשר אלגוריתמים אלה ם באלגוריתמים של מידע זורם. מתרכזי ובנוסף, אנ ות חיובית.רמוגד

. , מתוך כלל מאגר המידעמאפייניםדגימות או מת של קבוצה מצומצ-גישה לתתהינם בעלי 

אשר לא ניתן לטעון  אלגוריתמים של מידע זורם הינם המפתח להתמודדות עם מאגרי נתונים ענקיים

 זמין או מעובד. ניבוי מהיר עוד בטרם כלל מאגר המידע , ובנוסף מאפשריםRAMלזיכרון 

-זו מבוססת על ארבעה מאמרים. הראשון עוסק בבעיה של למידת מידת דימיון בין דוגמאות רבתזה 

 ,דים בתכנון אלגוריתם מהירמתמקאנו  אחזור תמונות. של ת דלילות, עם יישומים בתחוםמימדיו

 משפיעים על ביצועיו. וחיוביותיה סימטראילוצי  כיצדהמותאם למאגרי נתונים גדולים, וחוקרים 

ומטריצות דרגה -ורם ללמידת מטריצות נמוכותזהמאמר השני מציג שני אלגוריתמים של מידע 

ון ומודלים של תיוג מרובה דרגה מוגדרות חיובית. אנו משתמשים בו ללמידת מודלים של דימי-נמוכות

הן מהירות  ומציגיםתוויות. האלגוריתמים מבוססים על צעדי גרדיאנט סטוכסטיים במרחב רימני, 

קמור של אילוץ הדרגה הנמוכה. המאמר השלישי עוסק באתגר של -לאוהן יציבות למרות האופי ה

במונחים שלו  את הפלט יכול להסבירמכונה -למידתאלגוריתם האם  – ניתנים לפירושהלמידת יחסים 

הצורך להבין מאגר נתונים ן מ באהאדם? המוטיבציה לעבודה זו -שיהיו מובנים והגיוניים עבור בן

בתמונות  עכבר.גנים במח ה 02,222טוי של יבהרמת  ייצגות ברזולוציה גבוהה אתהמ ,גדול של תמונות

שני  רבת פנים.פעילות גומלין  קיימתת שונות, ובין הגנים עצמם לואסקבתבניות מורכבות  קיימות

ניתוח. השיטה שאנו מציגים משתמשת לגורמים אלה תורמים להפיכת מאגר נתונים זה לקשה להבנה ו

אודות גנים ותפקודם הביולוגי. שיטתנו  המכילים מידעעשירים נאסף ממאגרי ידע שבידע סמנטי 

ולבסוף, המאמר  את מאגר הנתונים. יותר עמיקהמבצורה אמצעים לחקור ולהבין  מעניקה למדענים

יות. ענייננו בבעייה זו התעורר של מטריצות אורתוגונלהרביעי עוסק בבעיה הכללית של למידה יעילה 

של עבור שערוך מודלים  ,וגונליות בפירוק טנזוריםות יישומים חדשים של מטריצות אורתבעקב

אנו מציגים שיטה חדשה לעדכון קואורדינטות רימני,  באמצעות שיטת המומנטים.משתנים חבויים 

(. Givens Rotations" )סיבובי גיבנס"בשם  דלילותפשוטות ו תואורתוגונליסת על מטריצות המבוס

יותר של בעית פירוק  שיטתנו מביאה לפתרונות טוביםבהשוואה לשיטה המובילה כיום, אנו מראים כי 

 מובילה בבעיית ה לשיטהאר בהשווביאה לפתרונות טובים יותנזורים. כמו כן שיטתנו מהירה ומהט

sparse PCA . 

  כיווני מחקר עתידיים הנובעים מהעבודה המוצגת כאן. מספרב דניםאנו  ,לסיום
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