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Abstract
This thesis presents research in the field of distance learning. Distance functions are extensively used in various

application domains and also serve as an important building block in many types of algorithms. Despite their

abundance, until recently only canonical distance functions such as the Euclidean distance have been used, or

alternatively various application specific distance functions have been suggested, which in most cases were hand-

designed to incorporate domain specific knowledge. In the last several years there has been a growing body of work

on algorithms for learning distance functions. A considerable amount of different distance learning algorithms

have been suggested, most of which aim at learning a restricted form of distance functions called Mahalanobis

metrics.

In this thesis I will present three novel distance learning algorithms:

1. Relevant Component Analysis (RCA) - An algorithm for learning a Mahalanobis metric using positive

equivalence constraints.

2. DistBoost - A boosting based algorithm which can learn highly non-linear distance functions using equiva-

lence constraints.

3. KernelBoost - A variant of the DistBoost algorithm which learns Kernel functions, which can be used in any

kernel-based classifier.

I will then describe their applications to various data domains, which include clustering, image-retrieval, com-

putational immunology, auditory data analysis and kernel-based classification. In all of these application domains,

significant improvement is made when using a learned distance function instead of a standard off-the-shelf distance

function. These results demonstrate the importance of this growing research field.

The first two chapters of this work present a general introduction to the field of distance functions, and distance

function learning, with some additional background on semi-supervised learning:

Chapter 1 - Introduction: In Chapter 1 we provide a general introduction to distance functions, and some rea-

sons why the distance learning problem is an important and interesting learning scenario. We then provide

a detailed overview of canonical and hand-designed distance functions. The algorithms presented in this

thesis are all from the field of semi-supervised learning. We therefore present a short introduction to the

field of semi-supervised learning, with a specific focus on learning using equivalence constraints, which is
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the learning setup that is common to many distance learning algorithms, including the ones presented in this

thesis.

Chapter 2 - Algorithms for Learning Distance Functions: Chapter 2 provides a detailed overview of current

research on distance learning. It suggests a taxonomy of distance learning algorithms covering several sub-

categories, and describes various distance learning algorithms in each of these subcategories. Additionally,

it provides a detailed description of the three distance learning algorithms which are the focus of this thesis.

The remaining chapters present the various publications in which these algorithms have been presented and their

use in various application domains. More specifically:

Chapter 3 - The Relevant Component Analysis Algorithm: Chapter 3 presents the Relevant Component Anal-

ysis (RCA) algorithm, which is an algorithm for learning a Mahalanobis distance metric using positive

equivalence constraints. The paper discusses several theoretical justifications for the RCA algorithm which

show that it is the optimal Mahalanobis metric under several interesting criteria including information max-

imization and maximum likelihood. The algorithm is shown to provide performance boosts when used in a

data clustering task.

Chapter 4 - The DistBoost algorithm: Chapter 4 presents the DistBoost algorithm, which is an algorithm for

learning highly non-linear distance functions using equivalence constraints. The algorithm is a semi-

supervised boosting algorithm which is based on boosting hypothesis in the product-space (the space of

all pairs of points). The algorithm is evaluated for two important applications: clustering and image re-

trieval, and is shown to improve performance when compared to linear distance learning algorithms such as

RCA.

Chapter 5 - The KernelBoost algorithm: When given a small sample, we show that classification with SVM can

be considerably enhanced by using a kernel function learned from the training data prior to discrimination.

This kernel is also shown to enhance retrieval based on data similarity. We describe KernelBoost - a boosting

algorithm which computes a kernel function as a combination of ’weak’ space partitions. The kernel learn-

ing method naturally incorporates domain knowledge in the form of unlabeled data (i.e. in semi-supervised

or transductive settings), and also in the form of labeled samples from relevant related problems (i.e. in

a learning-to-learn scenario). The latter goal is accomplished by learning a single kernel function for all
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classes. We show comparative evaluations of our method on datasets from the UCI repository. We demon-

strate performance enhancement on two challenging tasks: digit classification with kernel SVM, and facial

image retrieval based on image similarity as measured by the learnt kernel.

Chapter 6 - Predicting Protein-peptide Binding by Learning Distance Functions: Chapter 6 presents an ap-

plication of distance learning in the field of computational immunology. In the immune system, the recog-

nition of pathogen peptides begins when they bind to cell membrane Major Histocompatibility Complexes

(MHCs). Developing computational methods for predicting protein-peptide binding is important for vac-

cine design and treatment of diseases like cancer. In this work we propose a novel approach for predicting

binding affinity which is based on learning a peptide-peptide distance function. In order to learn these

peptide-peptide distance functions, we formalize the problem as a semi-supervised distance learning prob-

lem with partial information in the form of equivalence constraints. Specifically we propose to use DistBoost

which is a semi-supervised distance learning algorithm. We compare our method to various state-of-the-art

binding prediction algorithms on MHC class I and MHC class II datasets. In almost all cases, our method

outperforms all of its competitors. One of the major advantages of our novel approach is that it can also learn

an affinity function over proteins for which only small amounts of labeled peptides exist. In these cases,

DistBoost’s performance gain, when compared to other computational methods, is even more pronounced.

Chapter 7 - Analyzing Auditory Neurons by Learning Distance Functions Chapter 7 presents another appli-

cation of distance learning in the field of neuronal data analysis. More specifically, we present a novel

approach to the characterization of complex sensory neurons. One of the main goals of characterizing

sensory neurons is to characterize dimensions in stimulus space to which the neurons are highly sensitive

(causing large gradients in the neural responses) or alternatively dimensions in stimulus space to which the

neuronal responses are invariant (defining iso-response manifolds). We formulate this problem as that of

learning a geometry on stimulus space that is compatible with the neural responses: the distance between

stimuli should be large when the responses they evoke are very different, and small when the responses they

evoke are similar. Here we show how to successfully train such distance functions using a rather limited

amount of information. The data consisted of the responses of neurons in primary auditory cortex (A1) of

anesthetized cats to 32 stimuli derived from natural sounds. For each neuron, a subset of all pairs of stimuli

was selected such that the responses of the two stimuli in a pair were either very similar or very dissimilar.

The distance function was trained to fit these constraints. The resulting distance functions generalized to
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predict the distances between the responses of a test stimulus and the trained stimuli.

Chapter 8 - Epilogue - in this short chapter we provide a brief discussion of the work presented and identify

some directions for future research.
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Chapter 1

Introduction

Machine Learning is the study of methods for programming computers to learn. This area of research is focused on

algorithms which evolve through experience. In the classical scenario a learning algorithm undergoes a learning

stage, which makes use of a training set and is then evaluated on a test set - novel data which were not presented

during the learning stage. In the last three decades, considerable advances have been made in the field of Machine

learning both in terms of theory and applications. Machine learning algorithms have been successfully applied

and used in various application domains varying from text analysis, data mining, computer vision, computational

biology, computational neuroscience and many more.

Most of the research in machine learning has focused on supervised learning. In this setting, the algorithm is

provided with a training set which consists of a set of labeled examples {xi, yi}N
i=1, where xi ∈ X denotes the

input objects (or datapoints) and yi ∈ Y denotes the output value associated with xi. This training set is used to

learn a function f : X → Y whose output can be either continuous (regression), or can predict the label of the

input object (classification). The key challenge for a supervised learning algorithm is its capability to generalize -

i.e. to learn a function which works well over any valid input object x ∈ X after seeing a (usually) small number

of training samples (input-output pairs).

A somewhat less explored area in Machine learning is unsupervised learning. The task in this setting is to

analyze a set of input objects {xi}N
i=1 for which no class labels yi are provided. This area includes a wide variety

of different learning tasks such as data clustering, feature extraction, visualization, density estimation, anomaly

detection, information retrieval etc. (Dietterich, 2003). Can anything of value be learned from unlabeled examples?

The answer depends critically on the assumptions one is willing to make about the data. If, for example, we assume

that our data originate from a set of known underlying probability distributions, there are unsupervised algorithms
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which can estimate the parameters of these unknown distributions (Duda and Hart, 1973). In the early 70s, Duda

and Hart (1973) put forward three reasons why unsupervised learning is worth exploring: (1) Cost of labelling -

Collecting large amounts of labeled data is costly and time consuming. It can therefore be highly beneficial to train

a classifier on a small amount of labeled samples and then use large amounts of unlabeled data to “tune up” the

learned classifier. (2) Data drifts - In many applications the input characteristics slowly change over time. Tracking

these changes in an unsupervised manner can help improve performance. (3) Exploratory data analysis - When

working with novel datasets it may be valuable to gain insights into their structure and nature, using unsupervised

methods, to choose the correct form of the classifier that will later be trained in a supervised manner.

In recent years, there has been increasing interest in the field of semi-supervised learning which lies in between

supervised and unsupervised learning. In this scenario we are provided with large amounts of unlabeled training

data, and some limited amount of side-information. This side-information may be of various forms: it may

consist of partial labels - labels over small amounts of data, or equivalence constraints - information over pairs

of datapoints which are known to belong or not to belong to the same class. Interestingly, the two compelling

rationales for this field of research are the ones suggested by Duda and Hart ( (1) and (2) above) as motivations

for unsupervised learning. In this setting it is usually (and sometimes implicitly) assumed that while the amount

of side-information is not sufficient to apply classical supervised learning methods, this side- information can be

used to obtain classifiers which yield better results compared to those that would be obtained without using this

side-information.

1.1 Thesis Outline

The research presented in this thesis focuses on the problem of distance function learning. After a detailed

introduction of the field of distance learning presented in Chapter 1, I will then provide a review of various distance

learning algorithms in Chapter 2, including a detailed description of three novel distance learning algorithms which

are the main contribution of this thesis. More specifically I will present the following algorithms:

1. Relevant Component Analysis (RCA) - An algorithm for learning a Mahalanobis metric using positive

equivalence constraints.

2. DistBoost - A boosting based algorithm which can learn highly non-linear distance functions using equiva-

lence constraints.
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3. KernelBoost - A variant of the DistBoost algorithm which learns Kernel functions, which can be used in any

kernel-based classifier.

These algorithms will be described and analyzed in detail in Chapter 2. In the remaining chapters I will pro-

ceed to show various applications of these algorithms in a wide variety of application domains, including image

retrieval, data clustering, classification, protein-peptide binding prediction and also the analysis of neuronal data

recorded from the auditory pathway. The empirical results presented will make a strong case for the applicability

and importance of this somewhat new area of research.

In what follows I provide an introduction to the field of distance functions, beginning with some formal defi-

nitions and then moving on to a review of various canonical distance functions, hand-designed distance functions

and most importantly learned distance functions. Since the important common ground for the distance learning

algorithms to be presented here is that they all come from the field of semi-supervised learning, a short review of

this area will also be presented in Section 1.3

1.1.1 Notations

Throughout this thesis I will use the following notations: vectors will be represented as lowercase letters x

and may also be indexed xi. The j-th component of a vector xi will be denoted by xij . Sets are represented

by calligraphic uppercase letters X , Y . A distance function will be denoted by the uppercase letter D and a

similarity function will be denoted by the uppercase letter S. The symbols R and R
d denote the set of reals, and

the d-dimensional real vector space respectively. Further, R+ denotes the set of non-negative real numbers. For

xi, xj ∈ R
d, ‖xi‖ denotes the L2 norm, and 〈xi, xj〉, denotes the inner product. Unless otherwise mentioned, log

will represent the natural logarithm.

1.2 Learning Distance Functions

The research presented in this work focuses on the problem of learning distance functions. We therefore begin

with a formal definition of a distance function and discuss its relation to a distance metric and a similarity function

(Section 1.2.1). We will then discuss several important motivations for learning distance functions in Section 1.2.3.

While learning distance functions is a somewhat new area of research, much work has been done both using

canonical distance functions, and using hand-designed distance functions in various application domains. A short

review of such distance functions will be presented in Sections 1.2.4-1.2.6. The problem of learning distance
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functions is also closely related to the problem of data representation and feature selection, and these relations

will be discussed in Section 1.2.7. In Section 1.2.8 we discuss the relation between distance learning and multi

class classification. A detailed description of the algorithms included in this thesis will be presented in Chapter 2.

The remaining chapters present the publications included in this thesis as listed in page viii, in which various

applications of these distance learning algorithms are presented.

1.2.1 Distance Functions, Distance Metrics, and Similarity Functions

A distance function is a function defined over pairs of datapoints. Given a pair of datapoints, the function

produces a real (and possibly bounded) value, which measures the distance between the pair of points. Intuitively

speaking, points that are similar to one another are assigned smaller values than points which are far from one

another. More formally, a distance function is a function D : X ×X → R which assigns a real valued number for

any pair of points from the input space xi, xj ∈ X .

A special form of distance functions are also known as distance metrics. A distance metric D is a distance

function which maps pairs of points xi, xj into the nonnegative reals - D : X ×X → R+ and obeys the following

three properties:

1. Isolation (also known as ’Identity of indiscernibles’) - D(xi, xj) = 0 iff xi = xj .

2. Symmetry - D(xi, xj) = D(xj , xi).

3. Triangular Inequality - D(xi, xj) + D(xj , xk) ≥ D(xi, xk).

A general distance function will not necessarily obey all of these properties. For example, if we allow D(xi, xj) =

0 for xi �= xj , we end up with a Pseudo-metric. In all other cases (i.e. if we omit symmetry, or the triangular

inequality) we use the general term distance function.

An Ultrametric is a distance metric which satisfies a strengthened version of the triangular inequality. In a

Euclidean coordinate system, this is equivalent to requiring that the triangles of pairwise distances between every

three points will be isosceles triangles with the unequal length no longer than the length of the two equal sides

(Hastie et al., 2001) - i.e. for any three points xi, xj , xk ∈ X

D(xi, xj) ≤ max{D(xi, xk), D(xj , xk)}

A concept which is closely related to the a distance function is a similarity function. A similarity function is

a function defined over pairs of points which measures the similarity (or resemblance) of the two points. It is
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however easy to see that a similarity function is inversely related to a distance function - if a pair of points are

very similar to one another, we would expect the distance between them to be small. Therefore, there are several

intuitive ways of transforming a similarity function into a distance function and vice-versa. One commonly used

example is the following:

D(xi, xj) = e−S(xi,xj)

where D(xi, xj) is a distance function and S(xi, xj) is a similarity function. If we assume that the similarity

function is bounded in the range of [0, 1] another widely used transformation is:

D(xi, xj) = 1 − S(xi, xj)

Therefore, while we will mostly use the term distance function, it should be clear that algorithms which learn

distance functions are also used for learning similarity functions.

One important and widely used type of similarity functions are kernel functions. A kernel k : X × X → R is a

function that for any xi, xj ∈ X satisfies:

k(xi, xj) = 〈φ(xi), φ(xj)〉

where φ : x → φ(x) ∈ F is a mapping from X to an inner product feature space F . For example, one widely

used kernel function is the polynomial kernel of degree 2 given by:

k(xixj) = 〈xi, xj〉2

which corresponds to the feature map:

φ(x) = (xil · xim)n
l,m=1 ∈ F = R

n2

A kernel function k can be used to define a Gram matrix (also known as a kernel matrix). Given a set of vectors

S = {x1, . . . xl} ∈ X the Gram matrix is defined as the l × l matrix G whose entries Gij = 〈φ(xi), φ(xj)〉 =

k(xi, xj). The Gram matrix is in essence a similarity matrix of the set of vectors S. It also has several other

appealing properties: it is symmetric and positive semi-definite. In fact it can be shown that any positive semi-

definite symmetric matrix corresponds to some kernel function k (Shawe-Taylor and Cristianini, 2004).
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1.2.2 Non-Metric distance functions

While distance metrics and kernels are widely used by various powerful algorithms, they work well only in

cases where their axioms hold. However, in some cases, the ’natural’ distances between objects do not conform

to these strict axioms. For example Jacobs et al. (2000) have shown that distance functions which are robust

to outliers and irrelevant aspects in the matching of pairs of input objects are not metric, as they tend to violate

the triangular inequality. Examples of such distance functions are common in machine vision, in which many

times images are compared using part-based comparisons, and also in similarity judgments provided by humans.

Human similarity judgments have been extensively studied by Tversky (1977), who showed that they often violate

both the symmetry and triangular inequality metric properties. In other contexts, it is sometimes the ’Identity of

indiscernibles’ that is violated. For example Mahamud and Hebert (2003b) has shown that the optimal distance

function for nearest-neighbor classification violates this property. An additional example is given by Bar-hillel

and Weinshall (2003) who analyzed the family of binary distance functions, which also violate this property.

Finally, a large number of hand-designed distance functions have been suggested in various application domains,

as discussed below in Section 1.2.6. In almost all of these cases, these distance functions are far from being metric.

Various works have suggested formulations of more general non-metric similarity functions. Lin (1998) derived

a definition of similarity that is based on information theory, for discrete valued vectors. The similarity measure

can be learned from event frequencies and has been shown to work well in the context of document retrieval (Aslam

and Frost, 2003). A different formulation was suggested by Kemp et al. (2005), in which similarity judgements

are inferences about generative processes and that the similarity of two objects is defined using the likelihood

that they were generated by the same underlying generative process. Bar-Hillel and Weinshall (2006) suggest

another information theoretic definition which is similar to the one suggested by Kemp et al. (2005), and different

from the one considered by Lin (1998). Bar-Hillel and Weinshall (2006) suggest an efficient similarity learning

algorithm which can be used for continuous valued vectors. Balcan and Blum (2006) have recently suggested a

novel formulation of similarity which provides an alternative to the widely used family of kernel functions. The

authors suggest sufficient conditions for a similarity function that will allow one to learn well, which does not

require reference to implicit spaces and does not require the function to be positive semi-definite (PSD).
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1.2.3 Why are distance functions important?

While the idea of explicitly learning a distance function is rather new, distance functions have been widely used

in various application domains and for various computational tasks. This is primarily due to the abundance of algo-

rithms which are distance based - i.e. algorithms whose only input requirement is the pairwise distances between

the input datapoints. Despite this somewhat straightforward motivation, I believe that there are several additional

important reasons why learning a distance function is an interesting and important computational challenge. Let

me now present and discuss these motivations:

• Distance-based algorithms - Many different supervised and unsupervised learning algorithms make use of

the distances between the training datapoints. Examples include graph-based clustering methods such as

average linkage (Duda and Hart, 1973), normalized-cut (Shi and Malik, 2000), nearest neighbor classifiers

(Fukunaga, 1990) and kernel-based classifiers such as support vector machines (SVMs) (Vapnik, 1998). It is

widely known that the performance of all of these algorithms is strongly dependent on the distance function

used. This is not surprising since in all of these algorithms, the only required input are the distances (or

similarities) between datapoints, and the datapoints themselves are not used directly at any stage of the

algorithm. An example of this intricate connection will be provided in Chapter 4, publication [B], where we

will show that the performance of various hierarchical graph-based algorithms (such as the average linkage

algorithm), critically relies on the quality of the distance function used.

• The curse of dimensionality - The curse of dimensionality (Bellman, 1961) refers to the exponential growth

of hypervolume as a function of the dimensionality. This is a problem that many learning algorithms suffer

from. The importance of choosing the right distance function becomes even more critical when we consider

high-dimensional data such as images. It has been recently shown that the quality of the distance function

may be strongly affected by the sparsity of the data (Katayama and Satoh, 2001). Moreover, Beyer et al.

(1999) and Aggarwal et al. (2001) have shown that for high-dimensional data when standard Lp-norms are

used (such as the L2 norm which is equivalent to the squared Euclidean distance), the distances between all

pairs of points are very similar to one another.

• Learning to Learn - One of the major current differences between humans and machines in the field of

learning is humans’ stunning ability to learn new tasks based on previously acquired experience in related

tasks. Unlike machines, humans are extremely good at learning new tasks which are similar (or related) to
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tasks which they have previously encountered. Moreover, people are able to learn these new tasks with very

limited amount of training, sometimes even using a single example. This impressive ability to generalize

from previously related tasks to a novel task is called ’Learning to Learn’ (Thrun and Pratt, 1998) and is

also known as Inductive transfer (Caruana, 1997), Interclass transfer (Fink et al., 2006) and ’Learning with

point sets’ (Minka and Picard, 1997). This field of research has attracted increased attention in recent years

from the computational community both in terms of theory (Thrun, 1996; Baxter, 1997; Ben-David and

Schuller, 2003) as well as applications (Ferencz et al., 2005; Fink, 2004; Hertz et al., 2006). Various ideas

on what knowledge can be transferred between related tasks, and how such knowledge can be transferred

have been discussed in the literature, and have resulted in such notions as learning priors (Baxter, 1995),

feature selection, and learning distance functions (Caruana, 1996; Thrun, 1996; Hertz et al., 2006).

A good example of how distance functions can be used for interclass transfer can be seen when considering

a facial image retrieval system. Suppose that our task is to build a facial image retrieval system in which the

user provides a query image and the system retrieves a set of images which are the most similar from a given

database of facial images. The retrieval system is powered by some similarity function which is used for

measuring the similarity between pairs of images. Faces are in general semi-rigid objects, in which one can

easily identify a set of features or parts which are consistent across all faces. These shared features can be

exploited for sharing information across different faces. If we train a distance learning algorithm over a set

of training images of several subjects, we can use this distance function to measure the distances between

novel images of these subjects (which is considered the classical ’test stage’ of any learning algorithm), but

we can also use it to measure the distances of faces of new subjects which were not presented during the

training stage (see Chapter 5 for a detailed empirical study of such an application on a benchmark dataset

of facial images).

• Capturing relations between datapoints - In the classical learning scenario, we attempt to learn some func-

tion f over an input space X , from a given training sample S = {(x1, y1), (x2, y2), . . . (xN , yN )} where

yi = f(xi). Distance functions are functions over pairs of points - they provide information about the

similarity of pairs of points. Essentially, a distance function captures relations between the input datapoints

themselves, and not an input-output relation between the datapoints and their associated label (which can

also be continuous). However, in some cases capturing the relations between datapoints can provide infor-

mation which cannot be easily extracted from directly estimating input-output relations.
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An example of such a case can be seen in clustering. Suppose that our input-output function essentially

clusters the input data into a set of well separated clusters, each with an associated label. One interesting

property of such a function is that we can obtain an identical set of clusters from a large family of other

related functions. The commonality of all of these functions is that they capture the same pairwise relations

between the input datapoints - i.e. if points xi and xj were assigned to the same cluster by f1 they will also

be assigned to the same (but possibly different) cluster by f2. Capturing the relatedness of these functions

can be easily obtained by directly learning these pairwise relations. Therefore, we may be able to capture

non-intuitive relations between various input-output functions by characterizing the pairwise relations that

they induce on the input objects. One interesting example of such an approach will be presented in Chapter 7

in which we show how such a formulation can be used to characterize auditory neurons using a set of natural

bird chirp stimuli.

• An alternative to feature selection - Learning a distance function is closely related to both feature selection

and data representation. In fact, as discussed in more detail in Section 1.2.7 these tasks are somewhat

interchangeable and therefore learning a distance function can be viewed as an alternative approach to these

two important tasks.

Despite the abundance of distance-based learning algorithms, and the additional motivations presented above,

until recently the distance functions which were traditionally used were various standard off-the-shelf distance

metrics such as the Euclidean distance, Mahalanobis distance, or various context dependant distance measures

which were constructed by hand. Recently however, various authors have explored the idea of developing methods

for learning the distance function using a training data which is either labeled or is augmented with some form of

side-information. This research topic has received growing attention in recent years and many different distance

learning algorithms have been developed and used successfully in various application domains. However, before

we focus on these distance learning algorithms, let us provide a brief introduction to a number of well known

distance functions which have been widely used in various application domains and algorithms.

1.2.4 Canonical Distance Functions

Let us now turn to a brief overview of several canonical distance (and similarity) measures:

• Euclidean Distance - Perhaps the most well known and widely used distance function (which is also a
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metric) is the Euclidean distance defined by

DEuclidean(xi, xj) =
√

(xi − xj)2 =

√√√√ d∑
k=1

(xik − xjk)2 (1.1)

The Euclidean distance is also known as the L2 distance (or the squared L2 norm).

• Mahalanobis Distance - This distance measure, originally proposed by P.C. Mahalanobis (Mahalanobis,

1936) in the statistics community, is based on correlations between different features within a feature vector.

The Mahalanobis distance is a generalization of the Euclidean distance which also takes into account the

correlations of the dataset and is scale-invariant. In its original form it measures the distance of any two

vectors, based on the assumption that they originate from the same underlying distribution. Formally, given

a distribution p which has a covariance matrix Σ, the Mahalanobis distance between two vectors xi, xj is

given by:

DMahalanobis(xi, xj) =
√

(xi − xj)T Σ−1(xi − xj) =

√√√√ d∑
k=1

d∑
l=1

xikΣ−1
lk xjl (1.2)

Note that if the covariance matrix Σ is the identity matrix, then the Mahalanobis distance becomes the

Euclidean distance. If we restrict the covariance matrix to be diagonal, we now have what is called a nor-

malized Euclidean distance. While in its original form the Mahalanobis distance assumes that the datapoints

originate from a probability distribution with a covariance matrix Σ, it can be shown that the distance is well

defined for any positive semi-definite (PSD) matrix A. We will therefore denote a general Mahalanobis ma-

trix by the symbol A. We will describe several algorithms for learning a Mahalanobis metric in Chapter 2.

• Manhattan (or City-Block) Distance, L1 distance - This distance, originally proposed by Minkowsky is

defined by

DManhattan(xi, xj) =
d∑

k=1

|xik − xjk| (1.3)

The distance measures the shortest distance (in “city blocks”) that one would be required to walk between

the two points xi and xj if a city is laid out in square blocks. More formally, it is the sum of the lengths of

the projections of the line segments between the points onto the coordinate axes of the coordinate system.

• Chebychev distance (or chessboard distance) - The Chebychev distance between two points is the maxi-

mum distance between the points in any single dimension:

DChebychev(xi, xj) = max
k

|xik − xjk| (1.4)
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This distance measure is a special case of the L∞ norm. It may be appropriate if the difference between

points is reflected more by differences in individual dimensions rather than all the dimensions considered

together.

• Minkowski distance - The Minkowski distance is a generalization of several other canonical distances and

is also known as the Lp norm distance. Note that unlike the previous distance metrics, this metric has a free

parameter p which must be defined. The distance is given by

DMinkowski(xi, xj) = p

√√√√ d∑
k=1

|xik − xjk|p (1.5)

When p = 1 this yields the Manhattan distance. When p = 2 we obtain the Euclidean distance and finally

when p = ∞ we obtain the Chebychev distance. However, we can also pick different values for p. In

general, as the value of p increases the metric tends towards a Chebychev result. Therefore by increasing

p, one can assign greater numerical value to the largest distance (in terms of elements in the two vectors in

question).

• Hamming Distance - The Hamming distance originally introduced by Richard Hamming in the field of

information theory (Hamming, 1950) is a distance measure between two strings of equal length, which is

defined as the number of positions for which the corresponding symbols are different. Put differently, it

measures the number of “errors” that transformed one string into the other. More formally it is given by:

DHamming(xi, xj) =
d∑

k=1

1(xi �= xj) (1.6)

where 1{·} is the indicator function (1{True} = 1,1{False} = 0).

It can be easily shown that for a fixed length n the Hamming distance is a metric on the vector space of

all words of that length. Additionally the Hamming distance of binary strings xik ∈ 0, 1 is equivalent to

the Manhattan distance between the two points in a d-dimensional hypercube, where d is the length of the

words.

• Correlation Distance (or Pearson correlation distance) - The correlation distance measures the similarity

in shape of two feature vectors. More formally it is the dot product of the Z-scores of the two vectors. xi, xj

given by

DCorrelation(xi, xj) = 1 − 〈Z(xi), Z(xj)〉
N

= 1 −
∑d

k=1 Z(xik)Z(xjk)
N

(1.7)
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where Z(xik) = (xik − µk)/σk, µ is the empirical mean of the data, and σ is the standard deviation. The

term 〈Z(xi), Z(xj)〉/N is sometimes referred to as the Correlation similarity.

• The Jaccard Similarity Coefficient (or Index) - The Jaccard index is a statistic for computing the similarity

and diversity of sample sets. It is defined as the size of the intersection divided by the size of the union of

the sample sets. More formally, given two sample sets A and B the Jaccard similarity coefficient is given

by:

SJaccard(A, B) =
|A ∩ B|
|A ∪ B| (1.8)

This similarity measure has been widely used in areas such as text classification, where one natural way of

representing a document is as a “bag of words”, which is simply the set of all words within the document

(sometimes omitting frequently used words).

A closely related measure is the Jaccard distance, which is obtained by subtracting the size of the intersec-

tion of the sets by the size of the union and dividing the result by the size of the union:

DJaccard(A, B) =
|A ∪ B| − |A ∩ B|

|A ∪ B| = 1 − SJaccard(A, B) (1.9)

• Cosine Similarity - The Cosine similarity is a similarity which is widely used for clustering directional

data - data, that deals only with the direction of unit vectors, i.e. which only measures the relative direction

between pairs of vectors. More formally it is given by

SCosine(xi, xj) =
〈xi, xj〉

‖xi‖ · ‖xj‖ =
d∑

k=1

xik · xjk√∑d
k=1 x2

ik ·
√∑d

k=1 x2
jk

(1.10)

It has been shown that the Cosine similarity measure is the natural distortion measure for prototype-based

clustering under the assumption that the data were generated by a mixture of von-Mises Fisher distributions

(Banerjee et al., 2003). This similarity measure has been widely used in information retrieval applications

including text analysis (Aggarwal, 2003), bioinformatics and collaborative filtering (Banerjee et al., 2003).

It has also been shown by Banerjee et al. (2003) that the Pearson correlation is a form of cosine similarity.

The Weighted (or Parametrized) Cosine similarity is a generalization of the Cosine similarity in which a

positive-definite matrix A is used:

DWeightedCosine(xi, xj) =
xiAxj

‖xi‖A · ‖xj‖A
(1.11)

where ‖x‖A is the weighted L2 norm: ‖x‖A =
√

xT Ax.
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Let us now review another family of distance measures, which are defined over pairs of probability distribution

functions.

1.2.5 Distances between distributions

Many different approaches have been suggested for measuring the distance between a pair of probability distri-

butions p and q. This is an important problem, which has been extensively studied in many application domains

such as information theory, image retrieval etc. For purposes of simplicity let us focus on the case of discrete

probability distributions. Furthermore, we will represent each probability function using an empirical histogram

H .

A histogram H = {hi}k
i=1 is a mapping from a set of d-dimensional integer vectors to the set of non-negative

reals. These d-dimensional integer vectors typically represent bins (or their centers) in a fixed partitioning of

the relevant region of the underlying feature space, and the associated reals are a measure of the mass of the

distribution that falls into the corresponding bin. For example, in a grey-level histogram of an image, d is equal to

one, the set of possible grey values is split into k intervals, and hi is the number of pixels in an image that have a

grey value in the interval indexed by i (a scalar in this case) (Rubner et al., 2000).

We now review several important examples of such distance measures. In the following, H1 and H2 denote

histograms and h1
i denotes the i’th bin in histogram H1.

• χ2 statistic - The Chi-Square statistic (Schervish, 1995) measures how unlikely it is that one distribution

was drawn from the population represented by the other distribution. More formally it is given by:

Dχ2(H1, H2) =
∑

i

(hi − mi)2

mi
(1.12)

where mi = h1
i +h2

i
2 . This is a widely used distance measure in the statistics community and has also been

widely used for the analysis of neuronal data (Bar-Yosef and Nelken, 2006).

• Kullback-Leibiler Divergence - The Kullback-Leibiler divergence (Cover and Thomas, 1991) is defined

by:

DKL(H1, H2) =
∑

i

h1
i log

h1
i

h2
i

(1.13)

This divergence, which originated in information theory, measures how inefficient on average it would be

to code one histogram using the other histogram as the code-book. This divergence is non-symmetric and
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also sensitive to the histogram binning. One way to overcome these possible shortcomings is to use the

empirically derived Jefferey divergence (also known as the symmetric KL-divergence) given by:

DSymmetric−KL(H1, H2) =
∑

i

(
h1

i log
h1

i

mi
+ h2

i log
h2

i

mi

)
(1.14)

where mi = h1
i +h2

i
2 .

• Earth Mover’s Distance (EMD) - This distance measure, originally used by Peleg et al. (1989) and Rubner

et al. (2000) for measuring distance between images, is based on the minimal cost that must be paid to

transform one distribution into the other. Unlike the KL divergence or the χ2 distance it is a distance measure

which also compares non-corresponding bins within the histogram. If we define the ground distance between

a pair of bins i ∈ H1 and j ∈ H2 to be dij and by fij the flow between bins i and j the EMD distance is

given by:

DEMD(H1, H2) =

∑
i

∑
j dijfij∑

i sumjfij
(1.15)

Intuitively, given two distributions, one can be seen as a mass of earth properly spread in space, the other

as a collection of holes in that same space. The EMD measures the least amount of work needed to fill

the holes with earth. Here, a unit of work corresponds to transporting a unit of earth by a unit of ground

distance. Computing the EMD is based on a solution to the well-known transportation problem (Rubner

et al., 2000).

Despite the extensive use of these (and various other) canonical distance functions in various application do-

mains, in the last three decades, considerable efforts have been invested in hand designing application specific

distance functions which incorporate some form of domain knowledge into the distance computation. Let us now

review several well known hand-designed application specific distance functions.

1.2.6 Application specific Distance Functions

According to Aggarwal (2003), the process of designing application specific distance functions has intrigued

researchers for over three decades. While there are several well known distance functions for datapoints that are

represented in some vector space R
N , there are many application domains in which the data instances are various

objects which cannot be readily represented by a feature vector in some vector space. Classical examples are

images, biological sequences, and text documents.
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Consider for example the problem of measuring the distance (or similarity) between a pair of images. Each

image is represented by a matrix where the value in position (i, j) denotes the gray-scale (or color) value of the

(i, j)’th pixel. If we assume that a pair of images I1 and I2 are of equal size, then we can readily transform each

image into a vector by a simple concatenation of its rows. However, this can be easily shown to be a fairly bad

representation of the image since it is very sensitive to small changes in the image. If for example we are given

two images of the same object in which in one image the object has been slightly moved to the right (or left), the

location of object pixels within this vector representation will be very different. This would cause any canonical

distance measure (e.g. the Euclidean distance) to define a ’large’ distance between the vectors representing these

two images of the same object. Similar effects will also occur if we allow the object to be slightly rotated, or

scaled.

In these structured domains, where the objects which we would like to classify (or cluster etc.) cannot be

naturally represented by some feature vector, considerable work has focused on the following approaches: (1)

Finding good feature representations, and (2) Hand-designing various distance measures which can measure the

distances between such objects. The intricate relationship between these two approaches will be further discussed

in Section 1.2.7, but before doing this, let us focus on these hand-designed distance functions.

The basic idea of a hand-designed distance measure is to tailor a distance measure which incorporates some

form of domain knowledge. It should be made clear that almost all of these functions are heuristic in that they are

“optimized” manually, and in many cases focus on specific characteristics of the data which were hand-picked.

Their “claim-to-fame” is therefore usually based on empirical evaluations and comparisons. Despite the heuristic

nature of most of these distance functions, it should be noted that in some applications, these hand-designed dis-

tance functions demonstrate state-of-the art performance. One well known example is the Shape-Context Matching

distance proposed by Belongie et al. (2002) (see details below) which when used with a 1-Nearest Neighbor clas-

sifier on the MNIST (LeCun et al., 1998) dataset has been shown to outperform all other classification methods,

most of which include a training phase which makes use of 60000 datapoints.

Let us now describe several prototypical examples of such hand-designed distance functions for various appli-

cation domains:

• Shape-context matching - Shape context matching is a similarity measure between shapes which is used

to measure the similarity of pairs of images (Belongie et al., 2002). This similarity measurement makes use

of various image processing and computer vision techniques which can be used automatically without the
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need of any form of feedback, or learning stage. The basic idea is to use hand-defined image features which

are called shape-context features. The shape context of a reference point captures the distribution of the

remaining points relative to it, and therefore offers some form of global characteristic of the image (hence

the use of the term “context”). After extracting these features from a pair of images, the method then finds

the correspondences between the feature points on the two shapes, and then uses these correspondences to

estimate a global transform which best aligns the two shapes. The dissimilarity (or distance) between the

two shapes is computed as the sum of matching errors between the corresponding points, together with an

additional term that measures the magnitude of the aligning transform.

Computing this distance on a pair of images is a computationally costly process, which can take up to several

seconds, depending on the number of sample points used to select the features and the size of the images.

This is therefore one classical example of a complex highly specific distance measure which is compu-

tationally intense, but generates impressive empirical results on various image retrieval and classification

applications (Belongie et al., 2002; Zhang and Malik, 2003; Berg et al., 2005).

• Chamfer distance - The Chamfer distance is another shape matching algorithm which is used for shape-

based object detection and recognition. At the core of this distance measure is a distance transform. Chamfer

distance transformations rely on the assumption that it is possible to deduce the value of the distance at a

pixel from the value of the distance at its neighbors. In order to compute the distance transform on an image,

the image is first transformed into a feature image, which is done using some feature extraction method over

the image such as edge detection. The feature image is then transformed into a distance image using the

distance transform. Several distance transforms have been suggested and analyzed. Fundamentally they are

all based on measuring the minimal distance of every “on” pixel to the closest “off” pixel given a binary

image. For example the d4 distance transform measures this distance based solely on the 4 close neighbors

of a given pixel. Matching is then done by aligning a pair of distance images to one another, or by attempting

to align a model (or template) with a single distance image.

• Edit-distance (also known as the Levenshtein Distance) - The edit distance was originally defined by

Levenshtein (1965) as a method for measuring the similarity of pairs of strings. The basic idea is to find a

sequence of edit operations which transform one string into the other, at a minimal cost. The elementary

operations are substitution, deletion and insertion of string symbols. This distance can also be considered

a generalization of the Hamming distance, which is defined only on strings of equal length and only con-
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siders substitution edits. The edit-distance is usually computed by a bottom-up approach using dynamic

programming. Various variants of the basic algorithm have been suggested, which in general refine the cost

of various edit operations. A domain in which many of these improvements have been considered is in

algorithms for aligning biological sequences such as proteins.

• Alignment scores for biological sequences - Aligning pairs and sets of biological sequences such as pro-

teins, genes, etc, is a problem for which various algorithms have been proposed (Durbin et al., 1998). This

is a fundamental problem in computational biology, and serves as a building block for many other com-

putational tasks which have been addressed. Alignment algorithms are in most cases specific variants of

the basic edit-distance method, which make use of domain knowledge to provide refined definitions of the

cost of various edit operations. These models are all based on evolutionary models which attempt to mimic

the natural (and slow) process of biological evolution. When a protein is manufactured in a cell, it will

sometimes undergo various mutations - which can basically consist of a substitution of one amino-acid

by another, or omitting or inserting a single amino acid (or a sequence of such amino-acids). Since some

amino-acids have similar chemical and electrical properties, we can define a different substitution cost for

each pair of amino acids which is based on their pairwise similarity. Intuitively, substituting an amino-acid

for a similar amino-acid would result in a lower cost than replacing it with a very dissimilar amino-acid.

• Cophenetic distance - the cophenetic distance is used for measuring the distances between clusters gener-

ated by a hierarchical clustering algorithm. Given a dendrogram D of N points the cophenetic distance (or

dissimilarity) between points xi and xj is the inter-group distance of the cluster Ck in which points xi and

xj are first joined together in the dendrogram. This is a very restrictive distance measure to begin with, since

only N − 1 values within the entire N(N − 1)/2 values are distinct. Moreover, the cophenetic distances

obey the ultrametric inequality (Hastie et al., 2001), i.e. for any three points xi, xj , xk we have:

Dcophonetic(xi, xj) ≤ max{Dcophenetic(xi, xk), Dcophenetic(xj , xk)} (1.16)

This distance is typically used to measure the quality of the dendrogram provided by some clustering algo-

rithm. This is done by measuring the cophenetic correlation coefficient which is the correlation between the

pairwise distances used by the clustering algorithm and the corresponding cophenetic distances.

• String Kernels - String kernels are sequence similarity measures which have been widely used in text clas-

sification. These kernels are an excellent example of how one may define a similarity (or distance) measure
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over objects which cannot be naturally represented by feature vectors. Representing a text document in order

to classify documents is a hard problem for which various solutions have been proposed. Among these are

the Bag of Words model and a mapping of each document into a high-dimensional binary vector in which

each entry represents the presence or absence of a feature (usually simply a word, excluding specific ’stop

words’), (Salton et al., 1975).

String kernels take a somewhat different approach: each document is represented as a “string” which is

simply a sequence of symbols from a given (and finite) alphabet. The main idea of string kernels is to

compare documents not by words, but by the substrings they contain (Lodhi et al., 2002). These substrings

do not need to be contiguous, but they receive different weighting according to the degree of contiguity. For

example: the substring “c-a-r” is present both in the word “card” and “custard” but with different weightings.

The main advantage of this approach is that it can detect words with different suffixes or prefixes: the words

“microcomputers”, “computers” and “computer-based” all share common substrings. Several string kernels

have also been suggested for measuring the similarities of biological sequences. Examples are the spectrum

kernel (Leslie et al., 2002) and the mismatch kernel (Leslie et al., 2003).

• Measuring distances between silhouettes - Gdalyahu and Weinshall (1999) suggested an algorithm for

classifying silhouettes based on measuring the similarity between pairs of silhouettes. Each image of a

silhouette is first represented using a set of contours (or line segments) which are segmented using the

K-means algorithm. These provide a syntactic representation of the image. The algorithm then identifies

points of high curvature which are used as feature points to represent each contour. A global alignment

procedure is then used, which is based on an edit-distance, which is specifically tailored for the vision do-

main: substitution is interpreted as matching two shape primitives and the substitution cost is defined by the

distance between the matched primitives. Additional operations are added which include a gap insertion and

the merging of primitives. Moreover, the distance between the line segments is hand-defined and depends

on the scale and orientation of the segments. This similarity is based on the (plausible) assumption that

an object may be pictured at different scales and rotations. Making use of this domain-specific knowledge

enables the definition of a similarity measure which is based on a flexible matching algorithm. This flexible

matching algorithm can match curves which are only weakly similar to one another.

• Kernels for measuring the similarity between images - Measuring the similarity between a pair of im-

ages is a hard problem which has been recently addressed by several authors (Grauman and Darrell, 2005;
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Wallraven et al., 2003; Lyu, 2005; Kondor and Jebara, 2003; Wolf and Shashua, 2003; Moreno et al., 2003;

Shashua and Hazan, 2005). Many image representations consist of unordered sets of features or parts, where

the sets may be of varying cardinality. For example, an image may be represented by a set of local features

which are detected using some interest point operator (see for example (Lowe, 2004)). An object may be

represented by a set of patches which correspond to various object parts (Bar-Hillel et al., 2005c,a). The

major challenge of using these representations is that most machine learning algorithms are designed to

operate on fixed-length input vectors, and not on a set of unordered features. A classical way to address this

problem is to compute pairwise correspondences over these feature sets (see for example the Shape-Context

Matching method described above). Another way to address this challenge is to define a kernel over these

unordered feature sets which can measure the similarity of these sets. By defining such a kernel, we can

then use any kernel-based classifier over this kernel without the explicit need to solve the correspondence

problem between these unordered sets of features. For example Grauman and Darrell (2005) proposed a

pyramid match kernel - which measures the similarity of a pair of unordered sets of features by mapping

each feature set into a multi-resolution histogram and then compares these histograms using a weighted

histogram intersection computation. They show how this distance measure can be successfully used on a

challenging object recognition task.

1.2.7 The relation to data representation, feature selection and feature weighting

Many classification and clustering algorithms operate over a dataset S in which each datapoint is represented by

some feature vector. In most cases these vectors are assumed to be ordered, i.e. each dimension within the vector is

assumed to represent some measurement or a specific feature (e.g. color, size) of the input instance. Finding a good

representation of the input data is known as the data representation problem. This problem has been extensively

studied over the last several decades, and numerous representation schemes have been suggested for various input

domains. For example, if we want to represent an image of some object, we can represent the image using a vector

of its pixels, use some dimensionality reduction method such as Principal Component Analysis (PCA) over the

original pixel vectors, represent the image using a color (or grayscale) histogram, or represent the image using a

set of wavelet coefficients. These are a few of the numerous vector representations which have been suggested

and explored for images. It should be clear that for each different input domain, different representations can be

defined, with varying degrees of complexity and incorporation of domain knowledge.
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The reason the representation problem has received enormous attention is that by improving the representation

of the data, one can significantly enhance the performance of the clustering (or classification) algorithm over which

it is applied. In fact, finding the optimal (or ideal) representation can eliminate the need for further clustering or

classification the data, since such an ideal representation would map each input instance into its cluster or class

label. Suppose for example that our task is to classify a set of input images into two categories - ’facial images’

and ’non-facial images’. If we had a good representation of these facial images - i.e. one that would represent

facial images in a very different way than non-facial images , the classification task would become very easy, and a

very simple classifier such as a linear separator would easily provide perfect classification performance. However,

if our representation mapped facial images and non-facial images very similarly, the classification task would

become much harder, and in order to obtain good performance we would probably need to use more sophisticated

classifiers to solve the problem 1.

In general the success of many learning algorithms is often strongly dependent on various assumptions which

they make about the data representation - i.e. about the feature space in which the input data objects are repre-

sented: Classes are assumed to be convex, or at least continuous, and at least some of the features are expected to

be relevant for predicting the class label of the input instances. However, in most cases, the data representations

used in various application domains are far from ideal, and some of these assumptions do not hold. Put differently,

in most cases, the data representation is rather ’weak’ and is usually based on some standard off-the-shelf domain

specific features.

One way to improve such ’weak’ representations is to apply some pre-processing transformation F to the input

datapoints. The transformation attempts to map the datapoints into a feature space in which the data are ’better’

represented. In many cases, this pre-processing transformation can also be used to reduce the dimensionality of

the input space, by selecting ’relevant’ dimensions, or by eliminating ’non-relevant’ dimensions. This problem

is also known as the feature selection problem, for which various algorithms have been suggested (see Langley

(1994) for a review of traditional methods and Guyon et al. (2006) for a more recent summary).

The representation problem is closely related to the distance learning problem. Since, as noted above in Sec-

tion 1.2.3 many algorithms are distance based (i.e. they only require as input the distances between datapoints),

selecting a ’better’ distance function will improve the performance of these algorithms. In other words, there is

an analogy here - finding a better distance function for a distance based algorithm is just like finding a better

1This is one of the main motivations for kernel-based classifiers which attempt to map the original datapoints into some high-

dimensional (possibly infinite) feature space, in which the data would hopefully become linearly separable.
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representation for a feature-based algorithm.

However, in some cases, the connections between data representation and distance functions can be made more

explicit. Consider for example distance-based clustering algorithms such as linkage algorithms. It is well known

that the performance of these algorithms depends to a great extent on the quality of the distance function used.

Therefore, one way to improve the performance of these algorithms is to improve the quality of the distance

function used to compute their input distance matrix. However, note that if we had an ideal representation of our

data (i.e. one that would map every datapoint into a set of well separated feature vectors, each of which would

represent a single class within our data), any simple (and non-trivial) distance function we chose would provide

perfect clustering results.

Another more formal example of the connection between distance functions and data representation can be seen

when considering the relation of the Mahalanobis distance metric to linear transformations. Since a Mahalanobis

distance matrix A is a symmetric P.S.D matrix, it can be decomposed using singular value decomposition (SVD)

as follows:

A = UΣUT = (UΣ− 1
2 )(Σ− 1

2 UT ) = BT B (1.17)

where U is an orthonormal matrix (UUT = I) where each column is an eigen-vector of the matrix A, and Σ is a

diagonal matrix which holds the singular values of the matrix A (that are equal to the squared eigen-values of the

matrix), and B = A
1
2 .

It can therefore clearly be seen that using the Mahalanobis distance metric defined by A is equivalent to applying

a linear transformation of the data using the matrix B and then measuring the Euclidean distance between the

transformed datapoints:

xT Ax = xT (BT B)x = (xT BT )(Bx) = (Bx)T (Bx) (1.18)

Therefore, finding an optimal Mahalanobis metric A is equivalent to finding an optimal linear transformation B

and then using the Euclidean distance metric over the transformed space.

When the Mahalanobis metric considered is of low rank, it is equivalent to a linear projection of the data.

Linear projections have been widely used in various application domains. One well known supervised algorithm

for learning a linear projection of the data is Linear Discriminant Analysis (LDA, also known as FLD), which

was originally suggested by Fisher (1936). Learning LDA from equivalence constraints has been suggested by

Bar-Hillel et al. (2003) and Bie et al. (2003a) and also by Bar-Hillel and Weinshall (2006) (see chapter 2 for more

details).
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However, in the case of a general distance function D there is no principled way to find the (possibly non-

linear) transformation which can be used to represent the data in some feature space where the Euclidean distance

between the data points would provide the same pairwise distances. One possible approach to this problem, which

has been explored in the literature, is based on embedding. The classical problem of embedding is to take a set

of datapoints for which pairwise distances are provided, and to embed them into some low-dimensional Euclidean

space, in which the pairwise Euclidean distances between the datapoints would be minimally distorted. Several

algorithms have been suggested for this problem, including Local Linear Embedding (LLE) (Roweis and Saul,

2000), Isomap (Tenenbaum et al., 2000) and BoostMap (Athitsos et al., 2004).

Distance learning algorithms are a principled way for going in the opposite direction - they are provided with

a set of datapoints that lie in some vectorial feature space, and with some additional side-information on the

distances (or more commonly relations) between some pairs of datapoints, and attempt to learn a distance function

in which the distances between pairs of datapoints will reflect the side information provided. Learning distance

functions can therefore be seen as an alternative to finding a good representation of the data, using some standard

representation of the data and some additional side-information. Therefore, distance learning can also be seen as

an alternative approach to feature selection, or to finding a strong data representation.

The problem of learning distance functions is also closely related to the problem of feature weighting. In this

setting, each data object is represented using a set of features (or a feature vector), and the objective is to learn

a set of weights over these input features. The distances between a pair of objects are defined as the weighted

sum of their corresponding feature vectors. In most cases, feature weighting methods are used in the context of

K-Nearest-Neighbor (KNN) classifiers (see (Wettschereck et al., 1997) for a review). Feature weighting can be

seen as a generalization of feature selection. More importantly, it can be seen as a special case of distance function

learning, in which a diagonal Mahalanobis metric is learnt. Therefore recent works in this area are sometimes

described as “feature selection” algorithms (e.g. the Simba algorithm suggested by Gilad-Bachrach et al. (2004)),

and sometimes described as “distance-learning” algorithms (see for example (Schultz and Joachim, 2003; Xing

et al., 2002)).

1.2.8 The relation to multiclass Learning

In Multiclass learning (or classification) we are required to learn a function over an input space X which

takes a discrete set of values Y = {0, 1, 2, . . . M − 1} where M is the number of classes in our data. At first
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glance, multiclass learning appears to be a straightforward generalization of binary classification (in which our

function can only take two values {0, 1}. However, while there has been a considerable amount of theoretical and

algorithmic work done on binary classification, the problem of multiclass learning is less well understood. Most

available algorithms are usually tailored for binary classification, for example SVM’s (Vapnik, 1998) and Boosting

(Schapire et al., 1997). Several recipes have been suggested which make it possible to combine binary classifiers

in order to produce a multiclass classifier, such as a ’winner-takes-all’ approach (Dietterich and Bakiri, 1995) and

the use of error correcting output codes (Dietterich and Bakiri, 1995; Har-Peled et al., 2002). Other approaches

have been based on generative models, e.g. a Gaussian mixture model, which strongly depend on the assumption

that the data distribution is known in advance.

The multiclass classification problem is closely related to the problem of data partitioning in which we attempt

to learn a partitioning of the data into M discrete sets. In fact data partitioning is simply unsupervised multiclass

learning. This observation can provide an alternative approach to multiclass classification, based on defining an

equivalent binary classification problem which turns out to be a special form of distance function. Specifically

if the original problem is to learn a multiclass classifier over some input data space X , we can pose a binary

classification problem over the product space X × X in which each pair is assigned a value of 1 if the two points

originate from the same class, and a value of 0 if they originate from different classes. This binary function is in

fact a binary distance function - i.e. it is a distance function which only assigns a value of 0 or 1 for every pair of

points.

Intuitively, if we can learn an ideal distance function which assigns a value of 1 to every pair of points that

originate from the same class, and 0 to every pair of points that originate from different classes, this function also

provides an optimal multi-class classifier of our data. However, the question still remains as to how these problems

are related when a non-optimal solution is obtained.

Bar-hillel and Weinshall (2003) provided a formal analysis of the relation between these two concepts. Specif-

ically, they analyzed the relation between the family of binary distance functions (i.e. distance functions whose

output is constrained to be 0 or 1) and multi-class classification. They showed that the solutions to these two

problems are related, in the sense that finding a good solution to the binary distance learning problem entails the

existence of a good solution to the multi-class problem, and vice-versa. More formally they showed that for any

solution of the binary product space with error epr there exists a solution of the multiclass problem with error eo
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such that

epr

eo
< eo <

√
2Mepr (1.19)

They further showed that under mild assumptions, a stronger version of the right side inequality exists, which

shows that these two types of errors are linearly related to one another:

eo <
epr

K
(1.20)

where K is the frequency of the smallest class.

They also showed that the sample complexity of these two problems is similar, by comparing the VC-dimension

SV C of the binary distance learning problem to the Natarajan-dimension SN of the multi-class problem. More

specifically they showed that

SN

f1(M)
− 1 ≤ SV C ≤ f2(M)SN (1.21)

where f1(M) is O(M2) and f2(M) is O(logM).

They then concluded by suggesting an algorithm for learning a multi-class classifier by solving the equivalent

binary distance learning problem. The algorithm suggests a way in which a product-space hypothesis (or distance

function) can be greedily used to define a partition of the data, which in turn is equivalent to a multiclass classifier.

The relation between distance function learning and multiclass classification shows that in essence, distance

function learning can be viewed as another way of addressing the problem of multiclass classification as well

as the problem of data clustering. However, in many cases, being able to pose the same question in different

formulations can lead to very different solutions, and can sometimes help to identify intuitive ways of solving a

problem which in its original formulation was harder to approach. Distance function learning can certainly be

seen as such a case, and as some of the works presented in this thesis show, it can be used to obtain significant

performance improvement in various machine learning applications which have been extensively studied.

1.3 Semi-Supervised Learning

Semi-supervised learning is a topic which has attracted great interest in recent years (see (Zhu, 2005) for a

detailed review). In this scenario, we are provided with an unlabeled dataset {xi}N
i=1 and with some additional

side- information. The two most common types of side-information considered in the literature are partial-labels,

and equivalence constraints. In the following sections we will provide a detailed account of these two approaches
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and describe some related work which has taken place in these two sub-areas. Before doing so, let us focus on

why semi-supervised learning is a promising field of research.

As noted above, the main motivation for semi-supervised learning lies in the fact that labelling data may be

both costly and time-consuming, while obtaining unlabeled data is usually cheap and fast. The main underlying

assumption is that since unsupervised learning algorithms can only help discover the underlying inherent prop-

erties of the data, augmenting the unlabeled data with some form of side-information can enable the use of more

powerful supervised learning algorithms, and may therefore hopefully lead to improved performance. However,

Cozman et al. (2003) have shown that this is not always the case, and that if wrong assumptions are made re-

garding the model used to describe the data, adding unlabeled data can actually degrade the performance of a

classifier, when compared to its performance when trained using only labeled data 2. Several different families

of semi-supervised learning algorithms have been described in the literature and have been successfully used in

various application domains. These are briefly described below.

1.3.1 Semi-supervised learning using partial labels

Semi-supervised learning using partial labels is the scenario in which the additional side -information provided

to the algorithm apart from a set of N unlabeled datapoints XU = {x1 · · ·xN} is an additional (usually) small

number L of input datapoints for which labels are provided XL = {xN+1 · · ·xN+l}. This scenario is well suited

for applications in which obtaining unlabeled data is cheap, while labelling each data point may be expensive and

time-consuming. Examples of such cases are the problem of predicting the three-dimensional structure of proteins.

Despite the fact that roughly a million proteins have been sequenced, we only know the structure of about 30, 000

of them.

A closely related scenario is transductive learning , in which we augment a set of labeled training data with a

set of unlabeled points. It is clear that the only real difference between transductive learning and semi-supervised

learning then becomes the amount of labeled data which is provided to the algorithm. An additional (and some-

times not merely technical) difference between the two is that transductive learning algorithms usually require that

the test data be provided at training time, a requirement which cannot always be satisfied.

Algorithms which have been developed in this area are usually adaptations of well-known supervised learning

algorithms, which have been augmented to make use of the set of unlabeled points XU . Here are several examples

2Note that this comparison is valid only for semi-supervised algorithms which make use of partial labels, and not necessarily those

which use equivalence constraints.
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of such algorithms:

1. Semi-Supervised EM - Both Miller and Uyar (1997) and Nigam et al. (1998) have suggested enhancements

of the EM algorithm for a Gaussian Mixture Model (GMM) which incorporates labelled data. The algorithm

uses the labeled data by defining an objective function which has the standard unsupervised log-likelihood

term for the unlabeled datapoints and an additional term for the labeled data which directly represents

posterior probabilities. A different formulation in which the labeled data are used to seed the clusters used

as initial conditions was suggested by Basu et al. (2002).

2. Semi-supervised K-means - Demiriz et al. (1999) suggested an augmentation of the K-means algorithm

which is based on defining an objective function that combines cluster purity and cluster compactness,

where the purity term is evaluated using the set of labeled points.

3. Semi-Supervised EM of a Hidden Markov Random Field - Lange et al. (2005) proposed an approach that

incorporates labeled and unlabeled data within an HMRF-like model, while a mean field approximation

method for posterior inference is used in the E-step of the algorithm. A similar formulation was suggested

by Basu et al. (2004).

4. Semi-supervised Graph-Cuts - Boykov et al. (1999) and Blum and Chawla (2001) suggested an augmenta-

tion of graph-cut algorithms which minimizes the cost of a cut in the graph using a set of labeled points.

An extension of the normalized-cut (Shi and Malik, 2000) was suggested both by Yu and Shi (2001) and

Joachims (2003). Another related formulation was suggested in (Zhu et al., 2003; Zhou et al., 2003) in

which a quadratic cost function is minimized. An extension of the typical-cut algorithm (Gdalyahu et al.,

2001) was suggested by Getz et al. (2005). In this work instead of searching for a single cut which may not

be robust to noise, a number of cuts are considered.

5. Partially labeled random walks - Szummer and Jaakkola (2002) suggests how a small number of labeled

points can be used to augment a set of unlabeled points in a Markov random walk over a weighted graph

which is constructed using a given distance metric D. Given a partially labeled dataset X = {XL∪XU}, the

conditional probabilities that the random process started from point xi given that it ended in point xj after t

time steps is used to define an N -dimensional representation of each datapoint, where N is the number of

datapoints. This representation is then used to estimate the posterior probability of a label for each datapoint.
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The labeled points are used to learn the parameters of the prior distribution over the class labels for each

given point which is required for estimating the posterior probabilities.

1.3.2 Semi-supervised learning using equivalence constraints

In this second sub-area of semi-supervised learning the side-information provided to the algorithm is a set of

equivalence constraints. Equivalence constraints are relations between pairs of data points that indicate whether

the points belong to the same category or not. We term a constraint ’positive’ when the points are known to be

from the same class, and ’negative’ otherwise.

Equivalence constraints carry less information than explicit labels on the original datapoints. This can be seen

by observing that a set of labeled points can be easily used to extract a set of equivalence constraints: any pair of

points that belong to the same label form a positive constraint, while any pair of points that belong to different

labels form a negative equivalence constraint. Note however that the opposite is not true - equivalence constraints

cannot usually be transformed into labels, since this requires that the entire set of pairwise constraints be provided,

a requirement which is usually far from being fulfilled.

1.3.2.1 Obtaining Equivalence Constraints

In contrast to explicit labels that are usually provided by a human instructor, in some scenarios, equivalence

constraints may be extracted with minimal effort or even automatically. Two examples of such scenarios are

described below:

1. Temporal continuity - In this scenario, we consider cases where the data are inherently sequential and

can be modeled by a Markovian process. In these cases we can automatically obtain positive equivalence

constraints by considering a set of samples which are temporally close to one another. In some cases, we

can also use this scenario to obtain negative constraints. Examples are:

(a) Movie segmentation: The objective of a movie segmentation task is to find all the frames in which the

same actor appears (Boreczky and Rowe, 1996). Due to the continuous nature of most movies, faces

extracted from successive frames in roughly the same location can be assumed to come from the same

person, and thus provide a set of positive equivalence constraints3. Yan et al. (2004) have presented

an interesting application of video object classification using this approach.

3This is true as long as there is no scene change, which can be robustly detected (Boreczky and Rowe, 1996)
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(b) Image Surveillance: In surveillance applications (Shental et al., 2002) we automatically obtain small

sequences of images that are known to contain the same intruder, and therefore define a set of positive

equivalence constraints. Alternatively, when two people simultaneously walk in front of two distinct

cameras, the corresponding images are known to contain different people, thus providing negative

equivalence constraints.

(c) Speaker segmentation and Recognition: In the task of speaker segmentation and recognition, the con-

versation between several speakers needs to be segmented and clustered according to speaker identity.

Here, it may be possible to automatically identify small segments of speech which are likely to contain

data points from a single butunknown speaker.

2. Generalized Relevance Feedback - Anonymous users of a retrieval system can be asked to help annotate

the data by providing information about small portions of the data that they see 4. We can use these user

annotations to define equivalence constraints. Examples are:

(a) Image Retrieval: We can ask the users of an image retrieval engine to annotate the set of images re-

trieved as an answer to their query (Bar-Hillel et al., 2005b). Thus, each of these cooperative users will

provide a collection of small sets of images which belong to the same category. Moreover, different

sets provided by the same user are known to belong to different categories. Note however that we can-

not use the explicit labels provided by the different users because we cannot assume that the subjective

labels of each user are consistent with one another: A certain user may label a set of images as “F-16”

images, and another (less ’wanna be pilot’) user may label another set of F-16 images as “Airplane”

images.

(b) Facial image recognition: Suppose we are provided with a large database of facial images, which we

would like to use to train a facial recognition engine. Due to its vast size, the database cannot be

labeled by a small number of human teachers. In order to obtain some form of partial information in a

relatively short amount of time, we can take the following approach: We arbitrarily divide the database

into P parts (where P is very large), which are then given to P teachers to annotate. The labels

provided by the different teachers may be inconsistent: because images of the same person appear in

more than one part of the database, they are likely to be given different names. Coordinating the labels

4This scenario is also known as the ’distributed learning scenario’.
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of the different teachers is almost as daunting as labelling the original data set. However, equivalence

constraints can be easily extracted, since points which were given the same tag by a certain teacher are

known to originate from the same class.

(c) Text Classification (the ”Yahoo!” problem): In this scenario we are provided with very large corpora

of text documents (papers, newsgroup articles, web pages etc.) and asked to group them into classes,

or into a hierarchy in which related documents will be grouped together. The purpose of creating such

a taxonomy would be to allow these corpora to be browsed and accessed efficiently. It may also be the

case that there is no clear cut definition of how to create such a taxonomy, despite the fact that some

general criteria are provided. Cohn et al. (2003) who were the first to address this scenario, suggested

the following iterative solution:

i. Cluster the documents using some unsupervised clustering algorithm.

ii. Browse the resulting clusters and provide some user feedback on which clusters you like and

which you don’t like. This does not have to be done for all clusters. More specifically feedback

can be in one of the following forms:

• Identify a document which does not belong to the cluster in which it was placed.

• Move a document from one cluster to another.

• Identify a pair of documents which do/do not belong together.

(d) Recluster the documents after allowing the clustering algorithm to modify the distance metric, in a

way which would satisfy the constraints provided by the user.

(e) Repeat this process until results are satisfactory.

The underlying motivation here (as noted in (Cohn et al., 2003)) is that “it is easier to criticize than to

construct” 5.

1.3.2.2 Learning from Equivalence Constraints

Recently, a growing number of papers have suggested learning algorithms which make use of side -information

in the form of equivalence constraints. Both positive (‘a is similar to b’) and negative (‘a is dissimilar from b’)

5To the best of my knowledge this is the first paper which presented the semi-supervised learning scenario of using side-information

in the form of equivalence constraints. Interestingly, this paper, which was clearly ahead of its time, was not accepted for publication and

only appears as a tech report.
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equivalence constraints were considered. Most of these works have focused on two specific learning scenarios:

1. Semi-supervised clustering - Several authors have suggested how to adapt classical clustering algorithms

of various types in order to make use of additional side-information in the form of equivalence constraints.

More specifically constraints were introduced into the following algorithms:

(a) Semi-supervised Clustering with User Feedback - Cohn et al. (2003) were actually the first to suggest

a semi-supervised technique which is trained using equivalence constraints. The suggested method is

an EM algorithm in which the distances between datapoints are based on a weighted Jensen-Shannon

divergence. Equivalence constraints are used to learn the weights using gradient descent.

(b) Constrained Complete-Linkage - Klein et al. (2002) introduced equivalence constraints into the complete-

linkage algorithm by a simple modification of the similarity matrix provided as input to the algorithm:

The similarity between all pairs of points which are positively constrained is set to ∞, thus ensuring

that they will be merged into a single cluster before any other pairs of points. Similarly, the similarity

value between any pair of points which are negatively constrained is set to −∞, which ensures that

they will be merged only at the final merge steps of the algorithm.

(c) Constrained K-means (COP K-means, MPCK-means) - Wagstaff et al. (2001) suggested a heuristic

for incorporating both types of equivalence constraints into the K-means algorithm. Constraints are

incorporated as follows: for each datapoint the algorithm attempts to assign the point to the closest

cluster to it such that its assignment does not violate any of the constraints to which it belongs. If such

a cluster cannot be found (i.e. assigning the point to any of the clusters will violate some pairwise

constraint) the algorithm fails. It can be easily shown that only incorporating negative constraints may

cause the algorithm to fail. Moreover, as the number of negative constraints increases, the probability

of failure increases dramatically. A more principled approach was suggested by Bilenko et al. (2004)

(see below).

(d) Constrained EM - Shental et al. (2004b) introduced equivalence constraints into the Expectation-

Maximization (EM) algorithm of a Gaussian Mixture-Model (GMM). The algorithm makes use of

clear probabilistic semantics, and therefore introduces constraints in a principled way, which over-

comes many of the drawbacks of previous heuristic approaches. Equivalence constraints are introduced

by modifying the Expectation step of the EM algorithm: instead of considering (summing) over all of
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the possible assignments of datapoints to clusters (partitions), the algorithm only considers partitions

which do not violate the constraints. When positive constraints are introduced, this turns out to be a

simple modification which leads to closed-form update rules. However, when negative constraints are

introduced, the problem becomes computationally hard, and in most cases an approximation scheme

is used. A more detailed description of the algorithm will be provided in Chapter 2, in the context of

the DistBoost algorithm.

(e) Spectral Clustering - Kamvar et al. (2003) introduced pairwise constraints into spectral clustering by

modifying the similarity matrix in a similar way to that suggested in (Klein et al., 2002). This work

is also closely related to the work of Yu and Shi (2001). An alternative formulation was presented by

Bie et al. (2003b) who incorporated a separate label constraint matrix into the objective function of a

spectral clustering algorithm such as the normalized-cut (Shi and Malik, 2000).

(f) Correlation Clustering - Motivated by the connection between spectral clustering and graph-cut algo-

rithms, Bansal et al. (2002) have suggested a general graph-based algorithm which attempts to incor-

porate both positive and negative constraints. In this formulation a graph is formed in which datapoints

are represented by vertices and the constraints correspond to edge labels between the vertices.

2. Learning distance functions - Since a distance function is a function defined over pairs of points, equiva-

lence constraints are in fact the natural form of supervision in this context. This may be seen by observing

that equivalence constraints are binary labels in the product space X × X - i.e. the space of all pairs of

points. This can be done by labeling pairs of points which are negatively constrained by −1, and labeling

points which are positively constrained by 1. Therefore it is not surprising that the most of the works done

on learning distance functions have suggested algorithms which learn distance functions using equivalence

constraints.

Most of the work done on learning distance functions using equivalence constraints has focused on learning

a Mahalanobis metrics. More recently several authors have suggested algorithms for learning non-linear

distance functions. A detailed description of distance learning algorithms will be provided in Chapter 2.

Several authors have also presented hybrid approaches which combine semi-supervised clustering and distance

function learning. The work of Cohn et al. (2003) was perhaps the first to take this approach. More recently,

Bilenko et al. (2004) suggested the MPCK-Means algorithm, which is an adaptation of the K-means algorithm
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that integrates a metric learning step in each clustering iteration. More specifically, constraints are utilized both

for cluster initialization and for learning a cluster specific Mahalanobis weight matrix Ah. A more general frame-

work was suggested by Basu et al. (2004) that presents and EM algorithm over a Hidden Markov Random Field

(HMRF), which incorporates both positive and negative equivalence constraints. Using this formulation the algo-

rithm can be used with various distortion measures, all of which are Bregman divergences.

1.3.2.3 Types of equivalence constraints

Equivalence constraints considered in this work are treated as hard constraints in the sense that it is assumed

that there is no noise in the constraints provided. Recently Law et al. (2004, 2005) and Lu and Leen (2005) have

suggested two different formalisms which introduce soft constraints into clustering algorithms. In these works,

constraints are assumed to be probabilistic, where the probability of each constraint denotes our belief in its truth.

It is important to note that these soft constraints cannot be naturally obtained in real-life scenarios, and are in

general harder to incorporate.

An additional form of side-information which has been recently considered is relative comparisons. This form

of side-information which is even weaker than equivalence constraints, consists of triplets of the form ’A is more

similar to B than to C’. Relative comparisons can be naturally extracted from labels, and in some cases also from

a set of positive and negative equivalence constraints. This form of side-information has been used for distance

learning mainly in various retrieval contexts (Athitsos et al., 2004; Rosales and Fung, 2006; Schultz and Joachim,

2003), in which they are a natural form of supervision, since the main objective is to rank objects in the ’correct’

order.

32



Chapter 2

Algorithms for Learning Distance Functions

As noted in the Introduction, for many years only canonical distance functions or hand-designed distance functions

were used. Recently, a growing body of work has addressed the problem of learning distance functions. This

somewhat new area of research has its roots in works on supervised learning of distance functions for nearest-

neighbor classification (Short and Fukunaga, 1981; Hastie and Tibshirani, 1996).

There are several ways to categorize distance learning algorithms. In this thesis, I suggest roughly splitting the

distance learning family into the following four sub-categories:

1. Nearest-Neighbor distance learning algorithms - These algorithms are designed to improve nearest-

neighbor classification by learning the local neighborhood structure of the data. The learnt distance function

is then used to retrieve nearest neighbors. These algorithms have been motivated by various application

domains such as information retrieval and more specifically image retrieval and document retrieval.

2. Mahalanobis metric learning algorithms - Research on learning Mahalanobis metrics is by far the most

advanced, and numerous algorithms have been suggested for this task. These metrics are rather simple and

easy to interpret and can also in some cases be easily kernelized - i.e. they can be used over any valid kernel.

3. Non-linear distance learning algorithms - This category includes algorithms that go beyond Mahalanobis

metric learning, in an attempt to model the non-linearity of the distances between input datapoints. De-

spite the fact that empirically these algorithms have shown performance which in most cases is superior

to Mahalanobis distance learning algorithms, only a few non-linear distance learning algorithms currently

exist.

4. Kernel learning algorithms - These algorithms aim at learning the kernel used to measure the similarity
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between datapoints in kernel-based classifiers directly from the data, instead of simply using a standard

off-the-shelf kernel such as an RBF kernel.

Algorithms for learning distance functions can also be characterized by the side-information that they use in

order to learn the distance function: Algorithms for learning nearest-neighbor classifiers and kernels are usually

trained using labeled data, while most Mahalanobis metric learning algorithms and non-linear learning algorithms

are trained using equivalence constraints. In the following sections, we will review each of these families of

distance learning algorithms in more detail.

2.1 Nearest-Neighbor Distance learning algorithms

K-Nearest-Neighbor (KNN ) classifiers have been popularly and successfully used in various application do-

mains. There are several properties that make KNN classifiers appealing. To begin with they are conceptually

simple, and do not require any learning stage. Additionally, they can be used when very few examples are present

(i.e. when provided with a small sample), and also have been shown to work well even for moderate values of K.

But perhaps the most attractive property of these classifiers is that they only rely on the local neighborhood of each

datapoint in order to classify it. This means that for a KNN classifier to perform well, only the distances between

each point and its local neighborhood need be ’good’. Due to this ’locality’ property, KNN classifiers can also be

successfully used when the classes are non-convex, or even in cases where each class is represented using a set of

distinct clusters.

Another set of appealing properties of KNN classifiers is the asymptotic theoretical guarantees that can be

shown for these classifiers: it can be shown that for any separable metric space, 1 as the training set size grows

to infinity, for every ε there is an nε (which is dependent on the specific sequence of training datapoints) such

that for all n > nε the distance between any point in the training sample and its nearest neighbor is less than ε.

Additionally Cover and Hart (1967) showed that the generalization error of the one-nearest-neighbor classifier is

bounded above by twice the error obtained by the optimal Bayes classifier.

Clearly since KNN classifiers rely on the distances between each point and its neighbors, improving the distance

function used for selecting the nearest neighbors can significantly improve the classifier’s performance. Short

and Fukunaga (1981) were the first to consider distance learning in the context of KNN classification. They

characterized the optimal metric for NN classification in terms of the local class densities and their gradients.

1a metric space X is separable if it has a countable dense subset.
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They then provided an algorithm which learns a local distance function which can be estimated separately for each

datapoint. Another influential method for adapting a local metric was proposed by Hastie and Tibshirani (1996)

who suggested a local LDA algorithm. More recently, Domeniconi and Gunopulos (2001) suggested a local

metric which is computed using an SVM, in which the maximum margin boundary found by the SVM is used to

determine the most discriminant direction over the query’s neighborhood. Vincent and Bengio (2002) suggested

a method for computing distances from local-dependant hyperplanes. Several distance learning algorithms which

are aimed at improving KNN classifiers that are based on learning a Mahalanobis metric have been put forward

(Lowe, 1995; Grauman and Darrell, 2005; Globerson and Roweis, 2005; Weinberger et al., 2006; Zhang et al.,

2003; Shalev-Shwartz et al., 2004) and we therefore defer their description to Section 2.2.

2.2 Mahalanobis Metric Learning Algorithms

To date, most distance learning algorithms proposed in the literature suggest various formulations of learning a

Mahalanobis metric. This is probably due to several important properties of Mahalanobis metrics - their positive

semi-definiteness and their relation to linear transformations and feature weighting (as discussed in Sec. 1.2.7).

Due to these properties, and the simplicity of this distance metric, a large and growing corpus of work in the last

few years has addressed the problem of learning Mahalanobis metrics. As noted above, some of these algorithms

use side-information in the form of labeled data, and others make use of equivalence constraints. In what follows

we provide a brief review of the various techniques which have been suggested for learning Mahalanobis metrics.

Lowe (1995) was perhaps one of the first to suggest a diagonal Mahalanobis distance learning algorithm in the

context of kernel learning. He defines the probability of a given label for each point by computing the normalized

average distance of the first K-neighbors of that point, where the distance assigned to each neighbor is determined

by a Gaussian kernel centered around the point. The distances used to compute the Gaussian probabilities are a

diagonal Mahalanobis metric, i.e. they are parametrized by weight vector W which weights the different input

dimensions, which is learned during training. Another somewhat more general formulation was presented by

Aggarwal (2003) who suggests learning a weighted Minkowsky distance (or Lp norm), of which the Mahalanobis

distance is a special case. A simple gradient descent algorithm is presented. Aggarwal (2003) also considers a

parametric Cosine model.

Xing et al. (2002) were one of the first to suggest a method for learning a full Mahalanobis metric. Their method

attempts to find a Mahalanobis metric in which the distances between pairs of positively constrained points is as
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small as possible, and the distances between negatively constrained pairs are larger than some constant factor. They

then suggest an iterative gradient ascent algorithm for optimizing their suggested criterion. However, in order to

ensure positive semi-definiteness, their method requires projection of the Mahalanobis matrix into the PSD cone,

in every iteration. All in all, the suggested algorithm’s complexity is O(d6) where d is the dimensionality of the

data2. Another disadvantage of their method is that it can only work on pairs of positively constrained points, and

does not explicitly exploit the transitivity property of positive equivalence constraints.

Bilenko et al. (2004) suggested an algorithm which combines Mahalanobis metric learning with semi-supervised

clustering. Their algorithm can learn a separate Mahalanobis metric for each of the clusters, which in effect pro-

vides a generalized version of the K-means algorithm, very similar to an EM algorithm for a Gaussian Mixture

Model. Their suggested algorithm also varies the weight of each constraint with respect to the distance between

the constrained points under the Mahalanobis metric. The rationale is that violating a positive constraint between

distant points is worse than violating a positive constraint between points that are close to one another, since the

former would require a more aggressive modification of the current distance metric.

Shalev-Shwartz et al. (2004) suggest a Pseudo Metric Online Learning algorithm (POLA) for learning a Ma-

halanobis metric, which makes use of pairs of positively and negatively constrained points. Unlike most other

distance learning algorithms, POLA can be trained in an online fashion, where at each time step a pair of points

is received and the algorithm predicts whether they are similar to each other or not, by measuring the distance

between them using the current metric, and determining if it is smaller or larger than a threshold parameter, which

is also learned. Following feedback, the algorithm updates the metric and the threshold parameter, in an attempt

to correct classification errors. Similar to Xing et al. (2002), in order to ensure that the computed distance metric

is PSD, a projection operation is required after each update step. Additionally since the PSD matrix that is learned

is a linear combination of rank-one matrices defined by vectors in the span of the input instances, the paper also

suggests a kernelized version of the algorithm. By showing that the PSD matrices learned are norm bounded,

Shalev-Shwartz et al. (2004) also provide an online error bound for the algorithm.

Goldberger et al. (2004) suggest the Neighborhood Component Analysis Algorithm (NCA), which derives its

motivation from Nearest-Neighbor classifiers. The algorithm directly maximizes a leave-one-out KNN score on

the training set. The papers suggests a cost function which is based on maximizing the expected number of points

which are correctly classified under stochastic (soft) nearest-neighbor assignments. The stochastic soft assign-

2As noted by Bie et al. (2003a) the paper attempts to address this issue by considering a gradient descent algorithm instead of the

standard Newton algorithms, but this may sometimes lead to convergence problems, when the dimensionality of the data is high.
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ments are defined using a softmax over the Mahalanobis distances between each pair of points. The algorithms

can also be used for dimensionality reduction and low rank projections by restricting the dimensions of the learnt

matrix. The objective function, which is non-convex, is optimized using gradient descent.

Globerson and Roweis (2005) present the Maximally Collapsing Metric Learning algorithm (MCML). The

algorithm attempts to find a Mahalanobis metric in which each class would be mapped (or collapsed) into a single

location in feature space, which would differ for each class. This is an ideal approximation of the equivalence

relation the algorithm makes use of. This scenario is approximated using the same stochastic selection rule of

the NCA algorithm (Goldberger et al., 2004). However, unlike NCA, the optimization objective is convex and

therefore has a single and unique solution. In order to find a metric which approximates the ideal metric, the

algorithm tries to minimize the KL-divergence between the ideal bi-level distribution which maps all points from

the same class into a single point, infinitely far from points in different classes and the distribution that is defined

by the learned metric.

Weinberger et al. (2006) suggest the Large Margin Nearest Neighbor algorithm (LMNN), which learns a Ma-

halanobis metric based on large-margin intuitions. More specifically, the algorithm attempts to ensure that the

K-nearest neighbors of each data point always belong to the same class, while examples from different classes

are separated by a large margin. Unlike previous approaches that attempt to minimize the pairwise distances be-

tween all points within the same class, their method only focuses on the K-near neighbors of each data point. The

problem is formulated as a semi-definite program, in which the objective function is similar to the classical SVM

objective function and has two competing terms: the first term penalizes large distances between each input point

and its neighbors, and the second term penalizes small distances between each input point and all other points that

do not originate from the same label.

Zhang et al. (2003) propose a parametric distance learning algorithm which uses labeled data. The algorithm is

based on defining a similarity measure over pairs of points in the input space, in which the within- class similarity

is always greater than the between- class similarity. This similarity measure is then approximated by a regression

model which embeds the original input points in a Euclidean low dimensional space. The regression parameters

are estimated using the iterative majorization algorithm.

Bie et al. (2003a) - Suggest an approximation of Linear Discriminant Analysis (LDA) which makes use of pos-

itive equivalence constraints. They suggest using a parametrized version of the data label matrix, which explicitly

realizes the equivalence constraints provided. They then derive a cost function which is equivalent to the LDA cost
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function, but can be written in terms of this parametrization. They then suggest maximizing the expected value of

this cost function with respect to the parameters in their parametrization. Note, however, that the RCA algorithm

presented in Section 2.2.1 is also closely related to LDA, and more specifically in (Bar-Hillel et al., 2005b) we

suggest a simple derivation of LDA which can be learned solely using positive equivalence constraints.

2.2.1 The Relevant Component Analysis (RCA) Algorithm

The Relevant Component Analysis Algorithm (RCA) was one of the first algorithms for Mahalanobis metric

learning that was suggested and analyzed. The original motivations that led to the development of the algorithm

were from the field of computer vision. As noted in the Introduction, in several classical computer vision appli-

cations such as image retrieval and video surveillance, equivalence constraints can be obtained automatically or

with a minimal amount of supervision (Shental et al., 2002). In Chapter 3 (publication [A]), we present several

theoretical justifications for the algorithm. We show that RCA is the closed form solution of several interesting

optimization problems whose computation is no more complex than a single matrix inversion. We also provide a

detailed analytical and empirical comparison between RCA and the Mahalanobis metric algorithm suggested by

Xing et al. (2002). We now turn to a detailed description of the algorithm.

RCA is a method that seeks to identify and down-scale global unwanted variability within the data. The method

changes the feature space used for data representation by a global linear transformation which assigns large weights

to “relevant dimensions” and low weights to “irrelevant dimensions” (Tenenbaum and Freeman, 2000, see). These

“relevant dimensions” are estimated using chunklets; that is, small subsets of points that are known to belong to the

same although unknown class. A chunklet is formed by applying a transitive closure over a set of pairs of points

which are positively constrained. For example, if points x1 and x2 are related by a positive constraint, and x2 and

x3 are also related by a positive constraint, then a chunklet {x1, x2, x3} is formed. The algorithm is presented

below as Algorithm 1.

The RCA transformation is intended to reduce clutter, so that in the new feature space, the inherent structure

of the data can be more easily unravelled (see illustrations in Figure 2.1 (a)-(f)). This is obtained by estimating

the within class covariance of the data cov(X|Z) where X and Z describe the data points and their labels re-

spectively. The estimation is based on positive equivalence constraints only, and does not use any explicit label

information. In high dimensional data, the estimated matrix can be used for semi-supervised dimensionality re-

duction. After estimating the within class covariance matrix cov(X|Z), the dataset is whitened with respect to
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Algorithm 1 The RCA algorithm

Given a data set X = {xi}N
i=1 and n chunklets Cj = {xji}nj

i=1 j = 1 . . . n, do

1. Compute the within chunklet covariance matrix (Figure 2.1 (d)).

Ĉ =
1
N

n∑
j=1

nj∑
i=1

(xji − mj)(xji − mj)t (2.1)

where mj denotes the mean of the j’th chunklet.

2. If needed, apply dimensionality reduction to the data using Ĉ as described in Algorithm 2 (see Sec-

tion 2.2.1.2).

3. Compute the whitening transformation associated with Ĉ: W = Ĉ− 1
2 (Figure 2.1 (e)), and apply it to

the data points: Xnew = WX (Figure 2.1 (f)), where X refers to the data points after dimensionality

reduction when applicable. Alternatively, use the inverse of Ĉ in the Mahalanobis distance: d(x1, x2) =

(x1 − x2)tĈ−1(x1 − x2).

the estimated within class covariance matrix. The whitening transformation W (in Step 3 of Algorithm 1) assigns

lower weights to directions of large variability, since this variability is mainly due to within class changes and is

therefore “irrelevant” to the task of classification.

Step 2 of the RCA algorithm applies dimensionality reduction to the data if needed. In high dimensional spaces

dimensionality reduction is almost always essential for the success of the algorithm, because the whitening trans-

formation essentially rescales the variability in all directions so as to equalize them. Consequently, dimensions

with small total variability cause instability and, in the zero limit, singularity. Section 2.2.1.2 describes this issue

in more detail.

2.2.1.1 Theoretical justification of the RCA algorithm

While the RCA algorithm can be intuitively understood as an algorithm which seeks to reduce the effect of un-

wanted variability within the data, it can also be theoretically justified from three different perspectives, as shown

in (Bar-Hillel et al., 2003) and in (Bar-Hillel et al., 2005b). Let us now examine these theoretical justifications in

more detail.
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(a) (b) (c)

(d) (e) (f)

Figure 2.1. An illustrative example of the RCA algorithm applied to synthetic Gaussian data. (a) The fully labelled data set with

3 classes. (b) Same data unlabelled; clearly the class structure is less evident. (c) The set of chunklets that are provided to the

RCA algorithm (points that share the same color and marker type form a chunklet). (d) The centered chunklets, and their empirical

covariance. (e) The whitening transformation applied to the chunklets. (f) The original data after applying the RCA transformation.

RCA from an information theoretic perspective RCA can be shown to be derived from an information theo-

retic criterion. Following Linsker (1989), an information theoretic criterion states that an optimal transformation

f of the input X into its new representation f(X ), should seek to maximize the mutual information I(X , f(X ))

under suitable constraints. It can be shown that RCA is the solution to the following constrained optimization

problem

max
f∈F

I(X , f(X )) s.t.
1
p

p∑
j=1

nj∑
i=1

||yji − m̂y
j ||2 ≤ K

where F are invertible linear transformations, {yji}p , nj

j=1,i=1 denote the set of points in p chunklets after the trans-

formation, m̂y
j denotes the mean of the points in chunklet j after the transformation, and K denotes some constant

threshold.

Under Gaussian assumptions, the optimization problem stated above can be rewritten as:

max
A

log|A| s.t.
1
N

p∑
j=1

nj∑
i=1

||yji − m̂y
j ||22 ≤ K (2.2)
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As shown in Chapter 3, the solution to this problem is identical to the Mahalanobis matrix computed by RCA up

to a global scale factor. When dimensionality reduction is also required, the solution of this problem becomes

Fisher’s Linear Discriminant (FLD) followed by the whitening of the chunklet covariance matrix in the reduced

space (see Bar-Hillel et al. (2005b) Appendix A).

RCA and the minimization of inner chunklet distances RCA can also be shown to be a result of another

constrained optimization problem, which tries to minimize the inner class distances.

min
A

1
p

k∑
j=1

nj∑
i=1

||xji − m̂j ||2A s.t. |A| ≥ 1 (2.3)

This optimization problem can be interpreted as follows: we seek a Mahalanobis distance A, which minimizes the

sum of all inner chunklet squared distances. The constraint |A| ≥ 1 prevents the trivial solution of “shrinking” the

entire space.

RCA and Maximum Likelihood It can also be shown that when the data consist of several normally distributed

classes sharing the same covariance matrix, RCA can be interpreted as the maximum-likelihood (ML) estimator of

the within-class covariance matrix. If we assume chunklets are sampled i.i.d. and that points within each chunklet

are also sampled i.i.d., the likelihood of the chunklet distribution can be written as:

n∏
j=1

nj∏
i=1

1

(2π)
D
2 |Σ| 12

exp (− 1
2
(xji−mj)

tΣ−1(xji−mj)) (2.4)

If we take the log of Equation. 2.4, neglecting constant terms and denoting A = Σ−1, we obtain:

n∑
j=1

nj∑
i=1

||xji − mj ||2A − N log |A| (2.5)

where N is the total number of points in the chunklets. Maximizing the log-likelihood is equivalent to minimiz-

ing (2.5), whose minimum is obtained when A equals the RCA Mahalanobis matrix (2.1). Under these assump-

tions, we also provide a bound over the variance of this estimator, showing that it is at most twice the variance of

the ML estimator obtained using labeled data.

2.2.1.2 Dimensionality reduction and the Constrained Fisher Linear Discriminant Algorithm (cFLD)

As noted above, RCA may include dimensionality reduction, which is some cases may be essential to its per-

formance. We now address this issue in detail. We begin by presenting a detailed version of the dimensionality
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reduction step of the RCA algorithm (Step 2), which is presented in Algorithm 2. We then provide an analysis

which formally shows when dimensionality reduction is required by analyzing the within-class covariance ma-

trix before and after applying RCA. Finally, we describe the constrained Fisher Linear Discriminant Algorithm

(cFLD), which is also used in the dimensionality reduction step of the RCA algorithm.

Algorithm 2 Dimensionality reduction: Step 2 of RCA
Denote by D the original data dimensionality. Given a set of chunklets {Cj}n

j=1 do

1. Compute the rank of the estimated within chunklet covariance matrix R =
∑n

j=1(|Cj | − 1), where |Cj |
denotes the size of the j’th chunklet.

2. If (D > R), apply PCA to reduce the data dimensionality to αR, where 0 < α < 1 (to ensure that cFLD

provides stable results).

3. Compute the total covariance matrix estimate St, and estimate the within class covariance matrix using

Sw = Ĉ from (2.1). Solve (2.7), and use the resulting A to achieve the target data dimensionality.

As shown in Chapter 3 the optimal dimensionality reduction often starts with Principal Component Analysis

(PCA). PCA may appear contradictory to RCA, since it eliminates principal dimensions with small variability,

while RCA emphasizes principal dimensions with small variability. One should note, however, that the principal

dimensions are computed in different spaces. The dimensions eliminated by PCA have small variability in the

original data space (corresponding to Cov(X)), while the dimensions emphasized by RCA have low variability in

a space where each point is translated according to the centroid of its own chunklet (corresponding to Cov(X|Z)).

As a result, the method ideally emphasizes those dimensions with large total variance, but small within -class

variance.

Why is dimensionality reduction required? Step 3 of the RCA algorithm decreases the weight of principal

directions along which the within- class covariance matrix is relatively high, and increases the weight of directions

along which it is low. This intuition can be made precise in the following sense:

Denote by {λi}D
i=1 the eigenvalues of the within- class covariance matrix, and consider the squared distance

between two points from the same class ||x1 − x2||2. We can diagonalize the within-class covariance matrix

using an orthonormal transformation which does not change the distance. Therefore, let us assume without loss of

generality that the covariance matrix is diagonal.
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Before whitening, the average squared distance is E[||x1−x2||2] = 2
∑D

j=1 λj and the average squared distance

in direction i is E[(xi
1 − xi

2)
2] = 2λi. After whitening these values become 2D and 2, respectively. Let us define

the weight of dimension i, W (i) ∈ [0, 1], as

W (i) =
E[(xi

1 − xi
2)

2]
E[||x1 − x2||2]

Now the ratio between the weight of each dimension before and after whitening is given by

Wbefore(i)
Wafter(i)

=
λi

1
D

∑D
j=1 λj

(2.6)

In Equation (2.6) we observe that the weight of each principal dimension increases if its initial within-class

variance was lower than the average, and vice versa. When there is high irrelevant noise along several dimensions,

the algorithm will indeed scale down noise dimensions. However, when the irrelevant noise is scattered among

many dimensions with low amplitude in each of them, whitening will amplify these noisy dimensions, which is

potentially harmful. Therefore, when the data are initially embedded in a high dimensional space, the optional

dimensionality reduction in RCA (Step 2) becomes mandatory.

The cFLD algorithm As stated above, and shown in Chapter 3, FLD is the dimensionality reduction technique

which maximizes the mutual information under Gaussian assumptions, and is therefore part of the RCA algorithm

when dimensionality reduction is desired. Traditionally FLD is computed from a fully labelled training data

set, and the method therefore falls within supervised learning. We can extend FLD, using the same information

theoretic criterion, to the case of partial supervision in the form of equivalence constraints. Specifically, denote by

St and Sw the estimators of the total covariance and the within -class covariance respectively. FLD maximizes the

following determinant ratio

max
A∈MK×D

AStA
t

ASwAt
(2.7)

by solving a generalized eigenvector problem. The row vectors of the optimal matrix A are the first K eigenvectors

of S−1
w St. In our case the optimization problem is of the same form as in (2.7), with the within chunklet covariance

matrix from (2.1) playing the role of Sw. We compute the projection matrix using SVD in the usual way, and term

this FLD variant cFLD.

To understand the intuition behind cFLD, note that both PCA and cFLD remove dimensions with small total

variance, and hence reduce the risk of RCA amplifying irrelevant dimensions with small variance. However,

43



unsupervised PCA may remove dimensions that are important for the discrimination between classes, if their total

variability is low. Intuitively, better dimensionality reduction can be obtained by comparing the total covariance

matrix (used by PCA) to the within- class covariance matrix (used by RCA), and this is exactly what the partially

supervised cFLD tries to accomplish in (2.7).

The cFLD dimensionality reduction can only be used if the rank of the within chunklet covariance matrix is

higher than the dimensionality of the initial data space. If this condition does not hold, we use PCA to reduce the

original data dimensionality as needed.

2.2.1.3 Extensions of RCA

Recently several works have suggested various augmentations of the RCA algorithm. Specifically Wu et al.

(2004) suggest the Self-enhanced Relevant Component Analysis Algorithm (SERCA). SERCA employs a boosting

procedure in product-space, which makes use of both positive and negative equivalence constraints, and unlabeled

data. The algorithm uses a boosting process similar to the one used by the DistBoost algorithm (Hertz et al.,

2004a) (See Section 2.3.1). As in (Hertz et al., 2004a), the weak learner is a constrained Gaussian Mixture model

(Shental et al., 2004b), and boosting weights are also updated for the unlabeled points. The boosting process is

then used to build new candidate sets for the positive constraints - that is, after the boosting process, a new set

of positive constraints is obtained, and this set is then used to perform RCA in the original space, based on the

augmented set of chunklets. The paper compares the performance of RCA with SERCA, and improvements are

shown on two datasets from the UCI repository.

More recently, two authors have suggested a kernelized version of the RCA algorithm (Tsang et al., 2005; Wolf,

2006). More specifically, Tsang et al. (2005) show how the chunklet covariance matrix can be computed using

inner products between the data matrix and a binary matrix which encapsulates chunklet information. They then

use the Woodbury formula to compute the inverse of this matrix. Their experimental comparisons, over a set of

UCI datasets, the SCOP protein family dataset and on the USPS digit dataset show that in many cases kernel

RCA outperforms RCA. Wolf (2006) proposes a different kernelized version, which is motivated by quantum

mechanics.
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2.3 Non-Linear Distance Function Learning Algorithms

As noted above, most of the research on distance learning has focused on learning a Mahalanobis metric.

However, several papers have also suggested non-linear methods for distance learning, which are the focus of this

section. Most of the research in this area was motivated by, or specifically designed for various image retrieval

applications. There are two main reasons for this somewhat surprising connection. To begin with, unlike various

other data domains in which the input data can be naturally represented by some predefined feature vectors, there

is no such natural representation for images. Additionally, while in most application domains, the number of

features which exist are usually small (< 100), images are usually represented using thousands of features. For

these reasons, most of the work on learning distance functions in the context of image retrieval and classification

has focused on non-metric distance functions, which are usually also highly non-linear. Another issue which also

naturally arises in image applications is inter-class transfer, i.e. the ability to transfer knowledge between related

tasks. One classic example is facial retrieval and verification, in which several works have considered inter-class

transfer 3.

Phillips (1999) suggested a facial image representation formulated in difference space, which explicitly captures

the dissimilarities between two facial images. An SVM binary classifier is trained to discriminate dissimilarities

between images of the same individual vs. dissimilarities between images of different people. The decision

boundary of the SVM is reinterpreted to produce a similarity metric between facial images. Each facial image is

represented using PCA coefficients, after aligning all of the facial images in the dataset.

Mahamud and Hebert (2003b,a) presented a non-linear distance measure for object discrimination, which can

be shown to be optimal under a nearest neighbor framework. The authors suggest a distance function which

minimizes the mis-classification risk of the one-nearest-neighbor classifier, which is shown to be the probability

that a pair of input points originate from different classes. This distance function is modeled using a linear logistic

model that combines a set of elementary distance functions which operate in feature spaces such as color, texture

and local shape properties. The distance function proposed does not satisfy the self-similarity property, but does

satisfy the triangular inequality, and can also be shown to be optimal when compared to any metric distance

measure (in the limit where the training set size grows to infinity), and also is tightly bounded from below by the

3Despite all of the above said, several Mahalanobis metric algorithms were also tested in visual recognition tasks. Among these are

RCA, POLA and various others. However in these cases simple vectorial representations of the images were used. Fink et al. (2006)

suggested the use of POLA for transferring knowledge between related classification tasks.
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Bayes optimal classifier. Finding the optimal linear combination is a convex problem, and for purposes of speedup,

it is optimized in a greedy stepwise manner. They present results on a database of everyday objects with varying

backgrounds (Mahamud and Hebert, 2003b) and also on a face recognition task on the FERET dataset.

Athitsos et al. (2004) suggest an approach similar to the one presented by Mahamud and Hebert (2003b). More

specifically, they present the BoostMap algorithm, which is a boosting process over the product space used to

greedily combine a set of 1-dimensional embeddings into a multidimensional embedding. The boosting process

is optimized using relative comparison triplets. The algorithm is designed to efficiently approximate a pre-defined

similarity measure that is computationally intensive for purposes of speeding up retrieval performance.

In the context of face verification, Chopra et al. (2005) suggest a discriminative non-linear similarity learning

algorithm, which is trained using equivalence constraints. Their method attempts to map the input patterns into

a target space in which the L1 norm approximates the “semantic” distance in the input space. The algorithms

minimizes a discriminative loss function that penalizes small distances between negatively constrained pairs of

points, and large distances between positively constrained pairs of points. Optimization is done using a convo-

lutional network designed to be robust to geometric distortions. The metric is parametrized by pairs of identical

convolutional neural nets. Their method can be applied on datasets where the number of categories is very large

and not known in advance.

Chang and Yeung (2004, 2005b) proposed the Locally Linear Metric Adaptation algorithm (LLMA), which is

a non-linear metric learning algorithm that is trained using positive equivalence constraints. LLMA attempts to

transform the original datapoints into a new space in which similar points are closer to one another. However, in

order to preserve the topological relationships between points, they apply the transformation not only to the similar

point pairs, but also to other close points, in a varying manner which is dependent on their distance with respect

to the constrained points. LLMA applies a linear transformation to each local neighborhood, but a different linear

transformation is applied to different local neighborhoods, thus resulting in global non-linearity. A kernel based

version of the algorithm was presented in (Chang and Yeung, 2005a). Results were presented on semi-supervised

clustering (Chang and Yeung, 2004) and on image retrieval (Chang and Yeung, 2005b).

More recently Bar-Hillel and Weinshall (2006) presented the Gaussian Coding Similarity algorithm (GCS). The

algorithm outputs a non-metric distance function which is learned from a set of positive equivalence constraints.

The similarity of a pair of points is defined using information-theoretic principles. More specifically, it is defined

as the gain in coding length which can be obtained when shifting from encoding each point independently to
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jointly encoding the pair of points. Under simple Gaussian assumptions, the formulation provides a non-linear

metric which is efficient and simple to learn. GCS can be viewed as a likelihood ratio test, and can be shown to be

a variant of the FLD algorithm. Bar-Hillel and Weinshall (2006) also showed that under rather simple sampling

assumptions of equivalence constraints, GCS converges to the RCA algorithm. The GCS method is a relatively

simple and efficient technique, requiring only the estimation and inverse of two covariance matrices. It was used to

improve graph-based clustering results on UCI datasets and the MNIST digit dataset and also for image retrieval

on a facial image database and on a database of animal images.

2.3.1 The DistBoost Algorithm

The DistBoost algorithm is a distance function algorithm which can learn highly non-linear distance functions.

The algorithm, originally presented in Hertz et al. (2004a,b), has been successfully applied in various application

domains including image retrieval (Hertz et al., 2004b), data clustering (Hertz et al., 2004a), in computational

immunology (Yanover and Hertz, 2005; Hertz and Yanover, 2006a,b) and also in the analysis of neuronal data

(Weiner et al., 2005). This wide variety of applications demonstrate not only that many different problems can

be formulated as distance learning problems, but also that in many of these applications the distances between

the data instances are highly non-linear and cannot be successfully modeled using the simpler linear model of a

Mahalanobis metric. We now turn to a detailed description of the algorithm and its various components.

Recall that a distance function D is a function which maps every pair of points into some positive real number.

The key observation that led to the development of the DistBoost algorithm is that we can learn such a distance

function by posing a related binary classification problem over the product space X × X , and solving it using

margin-based classification techniques. The binary problem is the problem of distinguishing between pairs of

points that belong to the same class and pairs of points that belong to different classes4. Moreover, note that

equivalence constraints can be formally regarded as binary labels on points in X × X : If we label pairs of points

from the same class by 0 and pairs of points belonging to different classes by 1, we can interpret the classifier’s

margin as the required distance function.

Having reduced distance learning to binary classification with margins, we can now attempt to solve this prob-

lem using standard powerful margin-based classifiers. The DistBoost algorithm is a non-linear distance learning

4Note that this problem is closely related to the multi class classification problem: if we can correctly generate a binary partition of the

data in product space, we implicitly define a multi-class classifier in the original vector space X . The relations between the learnability of

these two problems is discussed in Bar-hillel and Weinshall (2003) and in Section 1.2.8.
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algorithm which is powered by a margin-based binary classifier. Before introducing the algorithm in detail, we

briefly note that prior to suggesting this algorithm, we also explored various other adaptations of classical margin-

based binary classifiers for learning distance functions. More specifically, we explored both support vector ma-

chines (SVM’s) and boosting of decision trees (Hertz et al., 2004a). These led us to realize that although the

distance learning problem can be cast as a binary classification in the product space, it has some unique features

which require special treatment:

1. The product space binary function we wish to learn has some unique structure which may lead to ’unnatural’

partitions of the space between the labels. The concept we wish to learn is an indicator of an equivalence

relation over the original space. Thus the properties of transitivity and symmetry of the relation place

geometrical constraints on the binary hypothesis. If for example we represent a product space point as a

concatenation of the two original space points [x, y], then the function should be symmetric with respect

to a ’hyper diagonal’, i.e d([x, y]) = d([y, x]). The transitivity requirement leads to further non-intuitive

constraints. Obviously, traditional families of hypotheses, such as linear separators or decision trees, are not

limited to equivalence relation indicators, and it is not easy to enforce these constraints when such classifiers

are used.

2. In the semi-supervised learning setting, we are provided with N datapoints in X and with a sparse set

of equivalence constraints (or labels in product space) over some pairs of points in our data. We assume

that the number of equivalence constraints provided is much smaller than the total number of equivalence

constraints O(N2), and is of order O(N). We therefore have access to large amounts of unlabeled data, and

hence semi-supervised learning seems like an attractive option. However, classical binary classifiers like

SVM and boosting methods are trained using labeled data alone.

These considerations led us to develop the DistBoost algorithm. DistBoost is a distance learning algorithm

which attempts to address the issues discussed above. The algorithm learns a distance function using a well known

machine learning technique called Boosting (Schapire et al., 1997; Schapire and Singer, 1999). In Boosting, a set

of ”weak” learners are iteratively trained and then linearly combined to produce a ”strong” learner. Specifically,

DistBoost’s weak learner is based on the constrained Expectation Maximization (cEM) algorithm suggested by

Shental et al. (2004a). The cEM algorithm is used to generate a ”weak” distance function. The final (”strong”)

distance function is a weighted sum of a set of such ”weak” distance functions. The algorithm is presented in
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Figure 2.2. An illustration of the DistBoost algorithm. At each boosting round t the weak learner is trained using weighted

input points and some equivalence constraints. In the example above, points 1, 2 and 5, 6 are negatively constrained (belong to

different classes) and points 3, 4 and 4, 7 are positively constrained (belong to the same class). All other pairs of points (e.g. 8, 9

and 1, 4) are unconstrained. The constrained EM algorithm is used to learn a GMM (step (1)). This GMM is then used to generate a

“weak” distance function (step (2)) that assigns a value in [0, 1] to each pair of points. The distance function is assigned a hypothesis

weight (steps (3-4)) which corresponds to its success in satisfying the current weighted constraints. The weights of the equivalence

constraints are updated (steps (5-6)) – increasing the weights of constraints that were unsatisfied by the current weak learner. Finally,

the weights on pairs are translated into weights on data points (step (7)). In the example above, the distance between the negatively

constrained points 1, 2 is small (0.1) and therefore the weight of this constraint is enhanced.

Alg. 3 and illustrated in Fig 2.2. In order to make use of unlabeled data points, DistBoost’s weak learner is trained

in the original space, and is then used to generate a ”weak distance function” on the product space.

The DistBoost algorithm builds distance functions based on the weighted majority vote of a set of original space

soft partitions. The weak learner’s task in this framework is to find plausible partitions of the space that comply

with the given equivalence constraints. In this task, the unlabeled data can be of considerable help, as they can be

used to define a prior on putative ’plausible partitions’. In order to incorporate the unlabeled data into the boosting

process, we augmented the ’Adaboost with confidence intervals’ algorithm presented in (Schapire and Singer,

1999). The details of this augmentation are presented in Section 2.3.1.1. The details of the weak learner we use

are presented in Section 2.3.1.2.

49



Algorithm 3 The DistBoost algorithm.
Input:

Data points: (x1, ..., xn), xk ∈ X

A set of equivalence constraints: (xi1 , xi2 , yi), where yi ∈ {−1, 1}

Unlabeled pairs of points:(xi1 , xi2 , yi = ∗), implicitly defined by all unconstrained pairs of points

• Initialize W 1
i1i2

= 1/(n2) i1, i2 = 1, . . . , n (weights over pairs of points)

wk = 1/n k = 1, . . . , n (weights over data points)

• For t = 1, .., T

1. Fit a constrained GMM (weak learner) on weighted data points in X using the equivalence constraints.

2. Generate a weak hypothesis h̃t : X × X → [−∞,∞] and define a weak distance function as

ht(xi, xj) = 1
2

(
1 − h̃t(xi, xj)

)
∈ [0, 1]

3. Compute rt =
∑

(xi1
,xi2

,yi=±1)

W t
i1i2

yih̃t(xi1 , xi2), only over labeled pairs. Accept the current hypoth-

esis only if rt > 0.

4. Choose the hypothesis weight αt = 1
2 ln(1+rt

1−rt
)

5. Update the weights of all points in X × X as follows:

W t+1
i1i2

=




W t
i1i2

exp(−αtyih̃t(xi1 , xi2)) yi ∈ {−1, 1}
W t

i1i2
exp(−αt) yi = ∗

6. Normalize: W t+1
i1i2

=
W t+1

i1i2
nP

i1,i2=1
W t+1

i1i2

7. Translate the weights from X × X to X : wt+1
k =

∑
j W t+1

kj

Output: A final distance function D(xi, xj) =
∑T

t=1 αtht(xi, xj)
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2.3.1.1 Semi supervised boosting in product space

Our boosting scheme is an extension of the Adaboost algorithm with confidence intervals (Schapire and Singer,

1999) to handle unsupervised data points. As in Adaboost, we use the boosting process to maximize the margins

of the labeled points. The unlabeled points only provide a decaying density prior for the weak learner. Given

a partially labeled dataset {(xi, yi)}N
i=1 where yi ∈ {1,−1, ∗}, the algorithm searches for a hypothesis f(x) =

k∑
i=1

αkh(x) which minimizes the following loss function:

∑
{i|yi=1,−1}

exp(−yih(xi, xj)) (2.8)

Note that this semi-supervised boosting scheme computes the weighted loss only on labeled pairs of points

but updates the weights over all pairs of points. The unlabeled points serve as a prior on the data’s density,

which effectively constrains the parameter space of the weak learner in the first boosting rounds, giving priority

to hypotheses which both comply with the pairwise constraints and with the data’s density. In order to allow the

algorithm to focus on the labeled points as the boosting process advances, the weights of the unlabeled points

decay at a rate which is controlled by a tradeoff parameter λ and by the weight of each boosting round αt (see

Algorithm 3 step 5 ).

In the product space there are O(N2) unlabeled points, which correspond to all the possible pairs of original

points, and the number of weights is therefore O(N2). However, the update rules for the weight of each unlabeled

point are identical, and so all the unlabeled points can share the same weight. Hence the number of updates

effectively required in each round is proportional to the number of labeled pairs alone. If λ ≥ 1, the weight of the

unlabeled pairs is guaranteed to decay at least as fast as the weight of any labeled pair.

Several algorithms which incorporate unlabeled data into the boosting process have been suggested (d’Alche

Buc et al., 2002; Grandvalet et al., 2001). In these algorithms, the incorporation of unlabeled points is achieved

by extending the ’margin’ concept to the unlabeled points. Several margin extensions were suggested, relating the

margin of a hypothesis over an unlabeled point to the certainty of the hypothesis regarding the point’s classification.

The extended margins are then incorporated into the MarginBoost algorithm (Mason et al., 2000). Specifically,

given a partially labeled dataset {(xi, yi)}N
i=1 where yi ∈ {1,−1, ∗}, the algorithm searches for a hypothesis

f(x) =
k∑

i=1
αkh(x) minimizing:

N∑
i=1

exp(−ρf (xi, yi)) =
∑

{i|yi=1,−1}
exp(−ρf (xi, yi)) +

∑
{i|yi=∗}

exp(−ρf (xi))
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where ρf (x, y) = yf(x) for a labeled point and ρf (x) = |f(x)| or ρf (x) = f(x)2 for an unlabeled point. The

minimization argument hence contains a mixture of the supervised loss (which measures the agreement between

the combined hypothesis and the labels) and the unsupervised loss (which measures the certainty of the hypothesis

over the unsupervised data).

Minimizing traditional supervised loss is an intuitive goal, which has well known justifications in terms of

generalization error (Schapire et al., 1997). In contrast, minimizing the unsupervised loss is not clearly a desired

goal, as a hypothesis can be very certain about the classification of unlabeled points even when it classifies them

incorrectly. This problem becomes more acute when the number of unsupervised points is much larger than the

number of supervised points, as is the case in our application. We have empirically tested some variants of these

algorithms and found that minimizing these scores tends to lead to poor generalization performance in our context.

2.3.1.2 DistBoost’s weak learner - the constrained EM algorithm (cEM)

The weak learner in DistBoost is based on the constrained EM algorithm presented by Shental et al. (2004a).

This algorithm learns a mixture of Gaussians over the original data space, using unlabeled data and a set of positive

and negative constraints. Below we briefly review the basic algorithm, and then show how it can be modified to

incorporate weights on sample data points. We also describe how to translate the boosting weights from product

space points to original data points, and how to extract a product space hypothesis from the soft partition found by

the EM algorithm.

A Gaussian mixture model (GMM) is a parametric statistical model which assumes that the data originate from a

weighted sum of several Gaussian sources. More formally, a GMM is given by p(x|Θ) = ΣM
l=1αlp(x|θl), where αl

denotes the weight of each Gaussian, θl its respective parameters, and M denotes the number of Gaussian sources

in the GMM. EM is a widely used method for estimating the parameter set of the model (Θ) using unlabeled

data (Dempster et al., 1977). In the constrained EM algorithm equivalence constraints are introduced into the

’E’ (Expectation) step, such that the expectation is taken only over assignments which comply with the given

constraints (instead of summing over all possible assignments of data points to sources).

Assume we are given a set of unlabeled i.i.d. sampled points X = {xi}N
i=1, and a set of pairwise constraints

over these points Ω. Denote the index pairs of positively constrained points by {(p1
j , p

2
j )}Np

j=1 and the index pairs

of negatively constrained points by {(n1
k, n

2
k)}Nn

k=1. The GMM model contains a set of discrete hidden variables

H , where the Gaussian source of point xi is determined by the hidden variable hi. The constrained EM algorithm
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Figure 2.3. A Markov network representation of the constrained mixture setting. Each observable data node has a discrete hidden

node as its ancestor. Positively constrained nodes have the same hidden node as their ancestor. Negative constraints are expressed

using edges between the hidden nodes of negatively constrained points.Here points 2,3,4 are constrained to be together, and point 1

is constrained to be from a different class.

assumes the following joint distribution of the observables X and the hiddens H:

p(X, H|Θ, Ω) =
1
Z

n
Π

i=1
αhip(xi|θhi)

Np

Π
j=1

δh
p1
j
h

p2
j

Nn

Π
k=1

(1 − δh
n1

k
h

n2
k

) (2.9)

The algorithm seeks to maximize the data likelihood, which is the marginal distribution of (2.9) with respect to H .

The equivalence constraints create complex dependencies between the hidden variables of different data points.

However, the joint distribution can be expressed using a Markov network, as seen in Figure 2.3. In the ’E’ step

of the algorithm the probabilities p(hi|X, Θ, Ω) are computed by applying a standard inference algorithm to the

network. Such inference is feasible if the number of negative constraints is O(N), and the network is sparsely

connected. The model parameters are then updated based on the computed probabilities. The update of the

Gaussian parameters {θl} can be done in closed form, using rules similar to the standard EM update rules. The

update of the cluster weights {αl}M
l=1 is more complicated, since these parameters appear in the normalization

constant Z in (2.9), and the solution is found with a gradient descent procedure. The algorithm finds a local

maximum of the likelihood, but the partition found is not guaranteed to satisfy any specific constraint. However,

since the boosting procedure increases the weights of points which belong to unsatisfied equivalence constraints,

it is highly likely that any constraint will be satisfied in one or more partitions.

Incorporating weights into the cEM algorithm We incorporated weights into the constrained EM algorithm

according to the following semantics. The algorithm is presented with a virtual sample of size Nv. A training point

xi with weight wi appears wiNv times in this sample. All the repeated tokens of the same point are considered to
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be positively constrained, and are therefore assigned to the same source in every evaluation in the ’E’ step. In all

of our experiments we have set Nv to be the actual sample size.

When introduced this way, the incorporation of weights has some non- trivial consequences. The posterior

distribution of the hidden variables, which is computed at the E-step, has a strong dependency on the absolute

weight wiNv of the point. High values (wiNv � 1) tend to sharpen the distribution, so the point is assigned to

a single source with a probability close to 1. Low values (wiNv � 1) have the opposite effect of flattening the

point’s posterior. Because of these effects the parameter Nv, which controls the absolute size of the weights, has

a major impact on the algorithm’s behavior. Its role is similar to the role that 1
T (where T is the temperature), has

in many statistical mechanics models. In all of the experiments with the algorithm (Hertz et al., 2004a,b) we used

the actual sample size as the value of this ’virtual sample size’ parameter.

Translating pair weights in product-space into singleton weights in the original space While the weak

learner accepts a distribution over the original space points, the boosting process described in 2.3.1.1 generates a

distribution over the sample product space in each round. The product space distribution is converted to a distri-

bution over the sample points by simple marginalization. Specifically, denote by wp
ij the weight of pair (i, j); the

weight ws
i of point i is defined to be

ws
i =

∑
j

wp
ij (2.10)

Generating a weak distance function from a GMM The weak learners’ task is to provide a weak distance

function ht(xi, xj) over the product space . Let us denote by MAP (xi) the Maximum A-Posteriori assignment

of point xi and by pMAP (xi) the MAP probability of this point:

pMAP (xi) = max
p

p(hi = m|xi, Θ)

We partition the data into M groups using the MAP assignment of the points and define

h̃t(xi, xj) ≡



+pMAP (xi) · pMAP (xj) if MAP (xi) = MAP (xj)

−pMAP (xi) · pMAP (xj) if MAP (xi) �= MAP (xj)
(2.11)

The weak distance function is given by

ht(xi, xj) =
1
2

(
1 − h̃t(xi, xj)

)
∈ [0, 1] (2.12)

It is easy to see that if the MAP assignment of two points is identical their distance will be in [0, 0.5], and if their

MAP assignment is different their distance will be in [0.5, 1].
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2.4 Kernel Learning algorithms

Kernel based classifiers have been successfully used in various application domains, and have now become part

of the standard toolbox of the machine learning community. The popularity of these classifiers derives from the

fact that by the use of a kernel, one can in effect bypass the problem of feature selection (or data representation) via

the use of some kernel. Each kernel projects the data into some high (and possibly infinite) dimensional space, in

which the data are hopefully well separated. However, by using the so called ’kernel trick’, the high dimensional

representation is only implicit, since only the dot products of the feature mappings are required for training the

classifier. While many standard kernels have been successfully used in the literature, such as the linear kernel,

the polynomial kernel and the RBF kernel, selecting the right kernel is usually application-dependent, and there is

no principled way to select the kernel other than resorting to data driven techniques such as cross-validation. It is

now widely recognized that the performance of any kernel-based classifier strongly depends on the kernel used.

In fact, in some application domains such as computational biology, hand-designed kernels which incorporate

various forms of domain knowledge have been widely used for various applications (Leslie et al., 2002, 2003; Vert

et al., 2005).

Recently there has been a growing body of work on learning the kernel directly from the training data. Most of

the work in this area focuses on learning the kernel matrix (also known as the Gram matrix) and can therefore only

be applied in a transductive learning scenario. A first attempt to address this problem was suggested by Cristianini

et al. (2001) who introduced the concept of kernel alignment, which intuitively measures the similarity between

two given kernels. More formally, given two kernels K1 and K2 the kernel alignment score is given by

Alignment(K1, K2) =
〈K1, K2〉F√〈K1, K1〉F 〈K2, K2〉F

where 〈.〉F denotes the Frobenius product. Cristianini et al. (2001) suggested how this score can be used to

measure the alignment of a given kernel to a training set S = (xi, yi) by measuring the alignment of a given kernel

to the ideal kernel given by Kideal = Y Y ′:

Alignment(K, S) =
〈K, Kideal〉F√〈K, K〉F 〈Kideal, Kideal〉F

This score can then be used to choose a good kernel, by selecting the kernel which has the highest alignment

with the given training data. Cristianini et al. (2001) then considered several algorithms which can learn the

Gram matrix. Several other works have also considered learning the Gram matrix: Crammer et al. (2002) have
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suggested a boosting based formulation of the problem. Lanckriet et al. (2002) have suggested an algorithm

which is based on semi-definite programming, and Bousquet and Herrmann (2002) put forward a gradient descent

approach over generalization bounds. Finally, Zhang et al. (2006) proposed a formulation based on generative

modeling. Learning of kernel functions in the context of learning-to-learn is discussed in Yu et al. (2005).

Based on the idea of kernel alignment (Cristianini et al., 2001), Kwok and Tsang (2003) suggested a kernel

learning algorithm which attempts to learn the ideal kernel using equivalence constraints. The paper proposes a

method for “idealizing” a given kernel K by adding the ideal kernel K∗ to it K̃ = K +γK∗, where the parameter

γ is optimized. They then show how this problem can be formulated as a distance learning problem in which a

Mahalanobis metric is learned that can also be used to provide similarity values over unseen patterns (i.e. in an

inductive setting). The metric learned requires that the distance between pairs of dissimilar points be greater than

a certain margin, which can be shown to increase its alignment. This leads to a quadratic optimization which is

similar to the ν-SVM algorithm, over pairs of points. An additional and similar formulation was suggested by Wu

et al. (2005) which adapts an existing kernel matrix using a set of equivalence constraints. Features are weighted

in the induced feature space by learning a Mahalanobis metric in the induced space.

Another avenue of research on kernel learning has focused on learning combination kernels, which are linear

combinations of a set of predefined kernels where the weight of each kernel is learned. More specifically, Lanckriet

et al. (2002) have suggested a semi-definite programming formulation of the problem, and Zien and Ong (2006)

have presented another formulation in the context of biological sequence kernels.

Some recent works have considered the problems of learning the parameters of a given pre-defined kernel

family that is not based on cross validation (as usually done). For example, Ong et al. (2005) suggest a superkernel

approach, which relies on a statistical estimation of the kernel parameters. Chapelle et al. (2002) suggest a gradient

descent approach over the estimates of the generalization error, which is estimated over hold out data, or uses a

leave-one-out approach.

Another interesting kernel that has been suggested for image retrieval (or more generally for unordered feature

sets) is the pyramid match kernel (Grauman and Darrell, 2005). The kernel maps unordered feature sets into multi-

resolution histograms and then computes a weighted histogram intersection in this histogram feature space. The

kernel can be shown to approximate the similarity measured by the optimal partial matching (correspondences

between sets of unequal cardinality).

Despite the growing number of works on learning kernels, all of the works described above have focused on
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learning the kernel matrix, rather than learning a kernel function which is defined for every pair of points in the

product space. Unlike most other algorithms, the KernelBoost algorithm which will be presented in Sec. 2.4.1

learns kernel functions, and can therefore be used in an inductive learning scenario. As will be demonstrated

in Chapter 5 the algorithm can be successfully applied in a “learning to learn” setting in which knowledge is

transferred between related classification tasks, when using very limited amounts of training data. However, when

considering the more standard learning scenario, when there are large amounts of training data, to date none of the

suggested methods have been shown to provide significant performance boosts as compared to standard off-the-

shelf kernels. Recently, Srebro and Ben-David (2006) have provided a theoretical analysis of the generalization

error of a kernel-based classifier when using a learned kernel which is a linear combination of pre-defined kernels,

or a convex combination of these. Specifically, they show that for a kernel family with a given pseudodimension

dφ the estimation error of a kernel-based classifier with margin γ is given by
√
Õ(dφ + 1/γ2)/n where n denotes

the sample size. Unlike previous bounds in which the relationship between the margin term and kernel-family term

is multiplicative, this recent bound is additive. Srebro and Ben-David (2006) also compute the pseudodimension

of several well known and widely used kernel families.

2.4.1 The KernelBoost Algorithm

The KernelBoost is a variant of the DistBoost algorithm, which learns distance functions that are Mercer kernels.

While the DistBoost algorithm described in Section 2.3.1 has been shown to enhance clustering and retrieval

performance, it has never been used in the context of classification, mainly due to the fact that the learnt distance

function is not a kernel (and is not necessarily metric). Therefore it cannot be used by the large variety of kernel-

based classifiers that have been shown to be highly successful in fully labeled classification scenarios. KernelBoost

alleviates this problem by modifying the weak learner of DistBoost to produce a ’weak’ kernel function. The

’weak’ kernel has an intuitive probabilistic interpretation - the similarity between two points is defined by the

probability that they both belong to the same Gaussian component within the GMM learned by the weak learner.

An additional important advantage of KernelBoost over DistBoost is that it is not restricted to model each class

at each round using a single Gaussian model, therefore removing the assumption that classes are convex. This

restriction is dealt with by using an adaptive label dissolve mechanism, which splits the labeled points from each

class into several local subsets, as described in Sec. 2.4.1.2. An important inherited feature of KernelBoost is that

it is semi-supervised, and can naturally accommodate unlabeled data in the learning process. As our empirical
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results show, the ability to use unlabeled data in the training process proves to be very important when learning

from small samples. Additionally, as our experiments show (Hertz et al., 2006), the algorithm can be trained with

very small amounts of labeled data, and can be used in “learning to learn” scenarios.

Let us denote by {xi}n
i=1 the set of input data points which belong to some vector space X , and by X × X the

“product space” of all pairs of points in X . An equivalence constraint is denoted by (xi1 , xi2 , yi), where yi = 1

if points (xi1 , xi2) belong to the same class (positive constraint) and yi = −1 if these points belong to different

classes (negative constraint). (xi1 , xi2 , ∗) denotes an unlabeled pair.

As in DistBooost, the algorithm makes use of the observation that equivalence constraints on points in X
are binary labels in the product space, X × X . Thus, by posing the problem in product space the problem is

transformed into a classical binary classification problem, for which an optimal classifier should assign +1 to all

pairs of points that come from the same class, and −1 to all pairs of points that come from different classes 5. The

weak learner itself is trained in the original space X , which allows it to make use of unlabeled data points in a

semi-supervised manner. The weak learner is then used to generate a “weak kernel function” on the product space.

The KernelBoost algorithm (described in Algorithm 4) learns a Kernel function of the following form:

K(x1, x2) =
T∑

t=1

αtKt(x1, x2) (2.13)

which is a linear combination of “weak kernel functions” Kt with coefficients αt, which is optimized using the

same semi-supervised Adaboost extension described in Section 2.3.1.1.

2.4.1.1 KernelBoost’s weak learner

As in DistBoost, KernelBoost’s weak learner is based on the constrained Expectation Maximization (cEM)

algorithm (Shental et al., 2004a). The algorithm uses unlabeled data points and a set of equivalence constraints

to find a Gaussian Mixture Model (GMM) that complies with these constraints. The difference between the two

algorithms lies in the way in which the weak learner is used in order to generate a weak distance function. We

therefore now describe this issue in more detail.

Generating a Weak Kernel from a GMM Given the mixture Θt at round t, we construct a ’weak kernel’ which

essentially measures the probability that two points belong to the same Gaussian component. Denoting the hidden

5Also referred to as the ideal kernel (Cristianini et al., 2001).
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Algorithm 4 The KernelBoost algorithm.
Input:

Data points: (x1, ..., xn), xk ∈ X

A set of equivalence constraints: (xi1 , xi2 , yi), where yi ∈ {−1, 1}

Unlabeled pairs of points:(xi1 , xi2 , yi = ∗), implicitly defined by all unconstrained pairs of points

• Initialize W 1
i1i2

= 1/(n2) i1, i2 = 1, . . . , n (weights over pairs of points)

wk = 1/n k = 1, . . . , n (weights over data points)

• For t = 1, .., T

1. Fit a constrained GMM (weak learner) on weighted data points in X using the equivalence constraints.

2. Generate a weak kernel function Kt : X × X → [′,∞] and define a weak hypothesis as

K̃t(xi, xj) = 2Kt(xi, xj) − 1 ∈ [−1, 1]

3. Compute rt =
∑

(xi1
,xi2

,yi=±1)

W t
i1i2

yiK̃t(xi1 , xi2), only over labeled pairs.

Accept the current hypothesis only if rt > 0.

4. Choose the hypothesis weight αt = 1
2 ln(1+rt

1−rt
).

5. Update the weights of all points in X × X as follows:

W t+1
i1i2

=




W t
i1i2

exp(−αtyiK̃t(xi1 , xi2)) yi ∈ {−1, 1}
W t

i1i2
exp(−λ ∗ αt) yi = ∗

where λ is a tradeoff parameter that determines the decay rate of the unlabeled points in the boosting

process.

6. Normalize: W t+1
i1i2

=
W t+1

i1i2
nP

i1,i2=1
W t+1

i1i2

7. Translate the weights from X × X to X : wt+1
k =

∑
j W t+1

kj

Output: A final Kernel function of the form K(xi, xj) =
∑T

t=1 αtKt(xi, xj).
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label of a point according to the mixture by l(x), the kernel is given by

Kt(x1, x2) = p[l(x1) = l(x2)|Θ] =
Mt∑
j=1

p(l(x1) = j|Θ)p(l(x2) = j|Θ) (2.14)

The combined ’strong’ kernel therefore becomes:

K(x1, x2) =
T∑

t=1

Mt∑
k=1

√
αtp[l(x1) = k|Θt] · √αtp[l(x2) = k|Θt] (2.15)

If we think of each element in the sum in Equation (2.15) as a feature in a feature-space of dimension
∑T

t=1 M t,

then the coordinate corresponding to the pair (t, k) holds a feature of the form

Φt,k(x) =
√

αt
πkG(x|µt

k, Σ
t
k)

Mt∑
j=1

πjG(x|µt
j , Σ

t
j)

(2.16)

These features can be interpreted as soft Voronoi cell indicators: a high value for feature Φt,k indicates that the

point lies in cell k of the partition induced by mixture t. These features are rather different from the prototype-like

RBF features. Specifically, their response does not necessarily decay rapidly with the distance from the Gaussian’s

center. Decay only happens in regions where other Gaussians from the same mixture are more likely.

2.4.1.2 The Label Dissolving Mechanism

The weak learner of the KernelBoost algorithm treats all constraints as hard constraints; in particular, since

all positive constraints are always satisfied in the cEM algorithm, its only option is to attempt to place all of the

points from the same label in a single Gaussian at every iteration. This is very problematic for non-convex classes

generated by non-Gaussian distributions (see Figure 2.4, left plot). Therefore, in order to enrich the expressive

power of KernelBoost and to allow it to model classes of these types, the algorithm is augmented by a label-

dissolving mechanism, which relies on the boosting weights. This mechanism splits sets of points with the same

label into several local subsets, which allows the algorithm to model each of these subsets separately, using a

different Gaussian model.

The intuition leading to the proposed mechanism is the following. We would like to model each non-convex

class, using several local Gaussians. The attempt to model a highly non-Gaussian, or non-convex class using

a single Gaussian will fail, and cause some of the pairwise constraints to be unsatisfied. The boosting process

focuses each new weak learner on those harder pairs still inconsistent with the current hypothesis. The adaptive

dissolve mechanism uses these pairwise weights to eliminate edges already consistent with the current hypothesis
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Figure 2.4. Left: A 2-d synthetic example of a non-convex and non-Gaussian dataset. Center: The Gaussians learnt by

KernelBoost-dissolve (presented in Sec. 2.4.1.2). The Ellipses mark 1-std contours. Darker ellipses show Gaussians obtained at

later boosting rounds. Right: The separator induced by the Gaussians for this example. Support vectors are marked by black dots.

from a local neighborhood graph. Classes are therefore split into small local subsets. The dissolve mechanism

proposed is presented below in Algorithm 5.

Algorithm 5 The adaptive label-dissolve mechanism.

Preprocess: For each label l, compute a local neighborhood graph where each labeled datapoint is connected to

all of its mutual neighbors from the first Nmutual neighbors.

For t = 1 . . . T do

For each label l do

1. Define the edge weights on the graph to be the pairwise weights W t
i1,i2

computed by the boosting

process.

2. Threshold edges by removing all edges whose weight is smaller than the average edge weight given

by 1
|l|

∑
(i1,i2)∈l W

t
i1,i2

.

3. Compute the connected components of the graph and use them to define a partition of the labels from

the current class into small and local subsets.

This mechanism has one tunable parameter Nmutual, which determines the pre-computed neighborhood graph

for each of the labels 6. This parameter implicitly affects the number of subsets obtained at each boosting round.

The effect of using this mechanism on a non-linear non-convex dataset can be seen in Figure 2.4 (center and right

plots).

6Neighbors are defined as “mutual” iff i is within the first N neighbors of j and vice-versa.

61





Chapter 3

The RCA algorithm - Learning a Mahalanobis

Metric using Equivalence Relations

This chapter includes the following publications

[A] Aharon Bar-Hillel, Tomer Hertz, Noam Shental and Daphna Weinshall, Learning Distance Func-

tions Using Equivalence Relations in 20th International Conference on Machine Learning (ICML

2003), Washington DC, August 2003.
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Abstract
We address the problem of learning distance
metrics using side-information in the form of
groups of “similar” points. We propose to use
the RCA algorithm, which is a simple and
efficient algorithm for learning a full ranked
Mahalanobis metric (Shental et al., 2002).
We first show that RCA obtains the solu-
tion to an interesting optimization problem,
founded on an information theoretic basis. If
the Mahalanobis matrix is allowed to be sin-
gular, we show that Fisher’s linear discrimi-
nant followed by RCA is the optimal dimen-
sionality reduction algorithm under the same
criterion. We then show how this optimiza-
tion problem is related to the criterion opti-
mized by another recent algorithm for metric
learning (Xing et al., 2002), which uses the
same kind of side information. We empir-
ically demonstrate that learning a distance
metric using the RCA algorithm significantly
improves clustering performance, similarly to
the alternative algorithm. Since the RCA al-
gorithm is much more efficient and cost ef-
fective than the alternative, as it only uses
closed form expressions of the data, it seems
like a preferable choice for the learning of full
rank Mahalanobis distances.

Keywords: Learning from partial knowledge, semi-
supervised learning, feature selection, clustering

1. Introduction

Many learning algorithms use a distance function over
the input space as a principal tool, and their perfor-
mance critically depends on the quality of the metric.
Learning a “good” metric from examples may there-
fore be the key to a successful application of these
algorithms. In many cases choosing the right metric

may be more important than the specific algorithm
which is later used.

Choosing the right metric is especially important in
the unsupervised setting of clustering tasks, for such
clustering algorithms as K-means and graph based
methods. There are also supervised classification tech-
niques which are distance based such as K-Nearest-
Neighbors. Kernel machines use inner-product func-
tions which are closely related to the Euclidean dis-
tance metric. In this wide variety of algorithms the
problem of finding a good metric is equivalent to
the problem of finding a good representation function
f : X → Y , transferring the data X into represen-
tation Y . We will therefore discuss the two problems
interchangeably. Our main goal in this paper is to de-
sign a simple method for learning a metric, in order
to improve the subsequent performance of unsuper-
vised learning techniques. This is accomplished using
side-information in the form of equivalence relations.
Equivalence relations provide us with small groups of
data points that are known to be similar (or dissimi-
lar).

A key observation is that in many unsupervised learn-
ing tasks, such groups of similar points may be ex-
tracted from the data with minimal effort and possi-
bly automatically, without the need for labels. This
occurs when the data originates from a natural se-
quence that can be modeled as a Markovian process.
Consider for example the task of movie segmentation,
where the objective is to find all the frames in which
the same actor appears. Due to the continuous na-
ture of most movies, faces extracted from successive
frames in roughly the same location can be assumed
to come from the same person. This is true as long as
there is no scene change, which can be automatically
and robustly detected (Boreczky & Rowe, 1996). An-
other analogous example is speaker segmentation and
recognition, in which a conversation between several
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speakers needs to be segmented and clustered accord-
ing to the speaker identity. Here, it may be possible to
automatically identify small segments of speech which
are likely to contain data points from a single unknown
speaker.

In this paper we discuss the problem of learning lin-
ear representation functions, or equivalently an opti-
mal Mahalanobis distance between data points, using
equivalence relations. Specifically, we focus here on
the Relevant Component Analysis (RCA) algorithm,
which was first introduced in (Shental et al., 2002);
the algorithm is reviewed in Section 2. In Section 3
we present a new analysis, based on a novel informa-
tion theoretic optimality criterion. RCA is shown to be
an optimal learning procedure in this sense. We show
that Fisher’s linear discriminant function followed by
RCA optimizes the same criterion if dimensionality re-
duction is allowed.

In Section 4 we show that RCA can be presented as
an optimal solution to a problem of minimizing inner
class distances. Viewed this way, RCA can be directly
compared with the approach proposed in (Xing et al.,
2002), which is another recent algorithm for metric
learning with side information. The comparison shows
that the optimality criteria of the two algorithms are
similar, but some arbitrary aspects of the criterion pre-
sented in (Xing et al., 2002) do not exist in RCA. Our
empirical study also shows that the results of the al-
gorithms are comparable: We empirically tested the
RCA algorithm on a number of databases from the
UCI repository, showing significant improvement in
clustering performance which is similar or better than
the improvement reported in (Xing et al., 2002). The
major difference between the two algorithms is com-
putational: RCA is robust and efficient since it only
uses closed-form expressions of the data; the algorithm
described in (Xing et al., 2002), on the other hand,
uses iterative methods which are sensitive to param-
eter tuning and which are very demanding computa-
tionally.

Related work

There has been much work on learning representations
and distance functions in the supervised learning set-
ting, and we can just briefly mention some examples.
(Hastie & Tibshirani, 1996) and (Jaakkola & Haus-
sler, 1998) use labeled data to learn good metrics for
classification. In (Thrun, 1996) a distance function (or
a representation function) is learned for classification
using a “leaning-to-learn” paradigm. In this setting
several related classification tasks are learned using
several labeled data sets, and algorithms are proposed

which learn representations and distance functions in a
way that allows for the transfer of knowledge between
the tasks. In (Tishby et al., 1999) the joint distribu-
tion of two random variables X and Y is assumed to
be known, and the problem is reduced to the learning
of a compact representation of X which bears high rel-
evance to Y . This work, which is further developed in
(Chechik & Tishby, 2002), can be viewed as supervised
representation learning. Information theoretic criteria
for unsupervised learning in neural networks were first
suggested by (Linsker, 1989), and has been used since
in several tasks in the neural network literature, e.g.,
(Bell & Sejnowski, 1995).

In recent years some work has been done using equiva-
lence relations as side information. In (Wagstaff et al.,
2001) equivalence relations were introduced into the
K-means clustering algorithm. Both positive (’a is
similar to b’) and negative (’a is dissimilar from b’)
relations were used. The problem of finding a bet-
ter Mahalanobis metric using equivalence relations was
addressed in (Xing et al., 2002), in conjunction with
the constrained K-means algorithm. We compare this
algorithm to our current work in Section 4, and com-
pare our empirical results with the results of both al-
gorithms in section 6. We have also recently developed
a way to introduce both positive and negative equiv-
alence relations into the EM algorithm for the esti-
mation of a mixture of Gaussian models (Hertz et al.,
2002; Shental et al., 2003).

2. Relevant Component Analysis

Relevant Component Analysis (RCA) is a method that
seeks to identify and down-scale global unwanted vari-
ability within the data. The method changes the fea-
ture space used for data representation, by a global lin-
ear transformation which assigns large weights to “rel-
evant dimensions” and low weights to “irrelevant di-
mensions” (cf. (Tenenbaum & Freeman, 2000)). These
“relevant dimensions” are estimated using chunklets.
We define a chunklet as a subset of points that are
known to belong to the same although unknown class;
chunklets are obtained from equivalence relations by
applying a transitive closure. The RCA transforma-
tion is intended to reduce clutter, so that in the new
feature space, the inherent structure of the data can
be more easily unraveled. The method can be used as
a preprocessing step for the unsupervised clustering of
the data or nearest neighbor classification.

Specifically, RCA does the following (see illustration
in Fig. 1a-f):

1. For each chunklet, subtract the chunklet’s mean
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(a) (b) (c)

(d) (e) (f)

Figure 1. An illustrative example of the RCA algorithm applied to synthetic Gaussian data. (a) The fully labeled data
set with 3 classes. (b) Same data unlabeled; clearly the classes’ structure is less evident. (c) The set of chunklets that are
provided to the RCA algorithm (points that share the same color and marker type form a chunklet). (d) The centered
chunklets, and their empirical covariance. (e) The whitening transformation applied to the chunklets. (f) The original
data after applying the RCA transformation.

from all of the points it contains (Fig. 1d).

2. Compute the covariance matrix of all the centered
data-points in chunklets (Fig. 1d). Assume a total
of p points in k chunklets, where chunklet j con-
sists of points {xji}nj

i=1 and its mean is m̂j . RCA
computes the following matrix:

Ĉ =
1
p

k∑
j=1

nj∑
i=1

(xji − m̂j)(xji − m̂j)t (1)

3. Compute the whitening transformation W =
Ĉ− 1

2 associated with this covariance matrix
(Fig. 1e), and apply it to the original data points:
xnew = Wx (Fig. 1f). Alternatively, use the in-
verse of Ĉ as a Mahalanobis distance.

In effect, the whitening transformation W assigns
lower weight to some directions in the original feature
space; those are the directions in which the data vari-
ability is mainly due to within class variability, and is
therefore “irrelevant” for the task of classification.

3. Information maximization under
chunklet constraints

In this section we suggest an information theoretic for-
mulation for the problem at hand. The problem is

formulated as a constrained search for a good repre-
sentation function . Although it is possible to state
the problem for general families of transformations,
we treat here only the linear case. In section 3.1 we
present and discuss the problem formulation. In 3.2
we show that RCA solves this problem when only lin-
ear invertible transformations are considered. In sec-
tion 3.3 we extend the family of functions considered
to include non-invertible linear transformations, which
leads to dimensionality reduction. We show that when
the data is Gaussian, the solution is given by Fisher’s
linear discriminant followed by RCA.

3.1. An information theoretic perspective

Following (Linsker, 1989), an information theoretic cri-
terion states that when an input X is transformed into
a new representation Y , we should seek to maximize
the mutual information I(X,Y ) between X and Y un-
der suitable constraints. In the general deterministic
case a set X = {xl}n

l=1 of data points in RN is trans-
formed into the set Y = {f(xl)}n

l=1 of points in RM .
We wish to find a function f ∈ F that maximizes
I(X,Y ), where F is the family of allowed transforma-
tion functions (the “hypotheses family”).

In our case we are also given a set of chunklets of
data points from X, {xji}k , nj

j=1,i=1, which the repre-
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sentation function f is required to keep close to each
other. Therefore, we may pose the problem as:

max
f∈F

I(X,Y ) s.t.
1
p

k∑
j=1

nj∑
i=1

||yji − my
j ||2 ≤ K (2)

where my
j denotes the mean of points in chunklet j af-

ter the transformation, P is the total number of points
in chunklets, and K is a constant. The mutual in-
formation here is the differential mutual information
between two continuous variables X and Y , and it de-
pends on their respective densities. One should note
that we can only asses these densities using the pro-
vided sample of data points.

Since in our case f is deterministic, the maximiza-
tion of I(X,Y ) is achieved by maximizing the entropy
H(Y ) alone. To see this, recall that

I(X,Y ) = H(Y ) − H(Y |X)

Since f is deterministic, there is no uncertainty con-
cerning Y when X is known. Thus H(Y |X) has its
lowest possible value at −∞.1 However, as noted in
(Bell & Sejnowski, 1995), H(Y |X) does not depend on
f but on the quantization scale. For every finite quan-
tization of the space this term is a constant. Hence
maximizing with respect to f can be done by consid-
ering only the first term, H(Y ).

It should be noted that H(Y ) can be increased by
simply ’stretching’ the data space (e.g. by choosing
f = λx, where λ > 1 ). Therefore, a constraint that
keeps certain points close together is required in order
to prevent this trivial scaling solution. Also the fam-
ily F of representation functions should be carefully
chosen to avoid trivial solutions.

3.2. RCA from an information theoretic
perspective

We now look at the problem posed for the family F
of invertible linear functions. When f is an invert-
ible function, the connection between the densities of
Y = f(X) and X is expressed by py(y) = px(x)

|J(x)| , where
|J(x)| is the Jacobian of the transformation. Not-
ing that py(y)dy = px(x)dx, we can relate H(Y ) and
H(X) as follows:

H(Y ) = −
∫
y

p(y) log p(y)dy =

1This non-intuitive divergence is a result of the gen-
eralization of information theory to continuous variables;
specifically, it is a result of ignoring the discretization con-
stant in the definition of differential entropy.

−
∫
x

p(x) log
p(x)
|J(x)|dx = H(X) + 〈log |J(x)|〉x

For a linear function Y = AX the Jacobian is constant
and equals |A|, and it is the only term in I(X,Y ) that
depends on the transformation A. Hence problem (2)
becomes

max
A

|A| s.t.
1
p

k∑
j=1

nj∑
i=1

||xji − mj ||2AtA ≤ K (3)

Let B = AtA denote a Mahalanobis distance matrix,
where B is positive definite and log |A| = 1

2 log |B|. (3)
can now be rewritten as

max
B

|B| (4)

s.t.
1
p

k∑
j=1

nj∑
i=1

||xji − mj ||2B ≤ K , B > 0

Writing and solving for the Lagrangian, we get the so-
lution B = K

N Ĉ−1 where Ĉ is the average chunklet
covariance matrix (1) and N is the dimension of the
data space. The solution is identical to the Maha-
lanobis matrix proposed by RCA up to a scale factor.2

Hence RCA is the solution of (4).

3.3. Dimensionality reduction

In this section we analyze the problem posed in Section
3.1 for the case of general linear transformations, i.e.
Y = AX where A ∈ MM×N and M ≤ N . To simplify
the analysis, we assume that X is a multivariate Gaus-
sian. As we saw earlier, maximizing H(Y ) is equivalent
to maximizing I(X,Y ) with respect to f . Since X is
assumed to be Gaussian, Y is also Gaussian and its
entropy is given by

H(Y ) =
d

2
log 2πe +

1
2

log |Σy|
=

d

2
log 2πe +

1
2

log |AΣxAt|

so that (2) becomes

max
A

log |AΣxAt| (5)

s.t.
1
p

k∑
j=1

nj∑
i=1

||xji − mj ||2AtA ≤ K

For a given target dimension M the solution to the
problem is Fisher linear discriminant followed by ap-
plying RCA in the reduced dimensional space. A
sketch of the proof is given in appendix A.

2Such a scale constant is not important in classification
tasks, i.e. when using relative distances.
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4. RCA also minimizes inner class
distances

In order to gain some intuition to the solution provided
by the information maximization criterion formalized
in Eq. (2), let us look at the optimization problem
obtained by reversing the roles of the maximization
term and the constraint term:

min
B

1
p

k∑
j=1

nj∑
i=1

||xji − mj ||2B s.t. |B| ≥ 1 (6)

In (6) a Mahalanobis distance B is sought, which min-
imizes the sum of all inner chunklet squared distances.
Demanding that |B| ≥ 1 amounts to the demand
that minimizing the distances will not be achieved by
“shrinking” the entire space. Using Kuhn-Tucker the-
orem, we can reduce (6) to

min
B

k∑
j=1

nj∑
i=1

||xji − mj ||2B − λ log |B| (7)

s.t. λ ≥ 0, λ log |B| = 0

Differentiating the Lagrangian above shows that the
minimum is given by B = |Ĉ| 1d Ĉ−1, where C is the
average chunklet covariance matrix. Once again, the
solution is identical to the Mahalanobis matrix pro-
posed by RCA up to a scale factor.

It is interesting, in this respect, to compare RCA and
the method proposed recently by (Xing et al., 2002).
They also consider the problem of learning a Maha-
lanobis distance using side information in the form of
pairwise similarities.3 They assume knowledge of a set
S of pairs of points known to be similar, and a set D
of pairs of points known to be dissimilar. Given these
sets, they pose the following optimization problem.

min
B

∑
(x1,x2)∈S

||x1 − x2||2B (8)

s.t.
∑

(x1,x2)∈D

||x1 − x2||B , B ≥ 0

This problem is solved using gradient ascent and iter-
ative projection methods.

To allow a clearer comparison of RCA to Eq. (8), we
can cast (6) as a minimization of inner chunklet pair-
wise distances. For each point xji in chunklet j we
have:

xji − mj = xji − 1
nj

nj∑
k=1

xjk =
1
nj

nj∑
k=1
k �=i

(xji − xjk)

3Chunklets of size > 2 are not considered.

Problem (6) can now be rewritten as

min
B

k∑
j=1

1
n2

j

nj∑
i=1

||
∑
k �=i

(xji − xjk)||2B s.t. |B| ≥ 1 (9)

When only chunklets of size 2 are given (as in the case
studied by Xing et al.), the problem reduces to

min
B

1
2

k∑
j=1

||xj1 − xj2||2B s.t. |B| ≥ 1 (10)

Clearly the minimization terms in problems (10) and
(8) are identical up to a constant (1

2 ). The differ-
ence between the two problems lies in the constraint
term they use. The constraint proposed by Xing et
al. tries to use information concerning pairs of dissim-
ilar points, whereas the constraint in the RCA formu-
lation can be interpreted as a pure scale constraint,
which does not allow the ’volume’ of the Mahalanobis
neighborhood to shrink.

Although the constraint used by Xing et al. appears
to take into consideration further information, closer
look shows that it is somewhat arbitrary. The usage
of squared distance in the minimization term and the
root of square distance for the constraint term is ar-
bitrary and a-symmetric. Most importantly, it should
be noted that in most unsupervised applications dis-
similar pairs are not explicitly available. In this case
(Xing et al., 2002) recommends to take D to be all the
pairs of points that are not in S. This is a problem-
atic choice for two reasons: In most practical scenarios
pairs of points which are not in S are not necessarily
dissimilar. In addition, this definition usually yields a
very large set D, which substantially slows the algo-
rithm’s running time. In contrast, the RCA distance
computation is simple and fast (requiring a single ma-
trix inversion) without any need for an iterative pro-
cedure.

In order to further justify the constraint suggested in
problem (6), we proceed to suggest a probabilistic
interpretation of the RCA algorithm.

5. RCA and Maximum Likelihood

We now analyze the case of data which consists of
several normally distributed classes which share the
same covariance matrix. Under the assumption that
the chunklets are sampled i.i.d and that points within
each chunklet are also sampled i.i.d, the likelihood of
the chunklets’ distribution can be written as:

k∏
j=1

nj∏
i=1

1

(2π)
d
2 |Σ| 12 exp (− 1

2 (xji−mj)
tΣ−1(xji−mj)) (11)
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It is easy to see that the RCA Mahalanobis matrix
Ĉ from (1) maximizes (11) over all possible choices of
Σ−1, and is therefore the Maximum Likelihood esti-
mator in this setting.

In order to gain further insight into the constraint cho-
sen in (6), we take the log of the likelihood equation
(11), drop constant terms and denote B = Σ−1, to
obtain:

Ĉ = arg min
B

k∑
j=1

nj∑
i=1

||xji − mj ||2B − p log |B| (12)

where p denotes the total number of points in all
chunklets. This equation is closely related to the La-
grangian in (7), but here λ (the Lagrange multiplier)
is replaced by the constant p. Hence, under Gaussian
assumptions, the solution of problem (7) has a proba-
bilistic justification.

The effect of chunklet size

Under Gaussian assumptions, we can define an unbi-
ased version of the RCA estimator. Assume for sim-
plicity that there are p constrained data points divided
into n chunklets of size k each. The unbiased RCA es-
timator can be written as follows :

Ĉ(n, k) =
1
n

n∑
i=1

1
k − 1

k∑
j=1

(xj
i − m̂i)(x

j
i − m̂i)t (13)

where xj
i denotes the data point j in the chunklet i, and

m̂i denotes the empirical mean of chunklet i. Ĉ(n, k)
in (13) is the empirical mean of the covariance estima-
tors produced by each chunklet. It can be shown that
the variance of the estimator matrix elements Ĉij is
bounded by

V ar(Ĉij(n, k)) ≤ k

k − 1
V ar(Ĉij(1, nk)) (14)

where Ĉij(1, nk) is the estimator when all the p = nk
points are known to belong to the same class, thus
forming the best estimate possible when given p points.
For proof see (Hertz et al., 2002). The bound shows
that the variance of the RCA estimator using small
chunklets rapidly converges to the variance of this best
estimator.

6. Experimental Results: Application
to clustering

As noted in the introduction, the main goal of our
method is to use side information in the form of equiv-
alence relations to improve the performance of unsu-
pervised learning techniques. In order to test our pro-
posed RCA algorithm and to compare it with the work

presented by Xing et. al, we used six data sets from the
UC Irvine repository which were used in (Xing et al.,
2002). As in (Xing et al., 2002) we are given a set S
of pairwise similarity constraints (or chunklets of size
2).4 We used the following clustering algorithms:

1. K-means using the default Euclidean metric (i.e.
using no side-information).

2. Constrained K-means: K-means subject to points
(xi, xj) ∈ S always being assigned to the same
cluster (Wagstaff et al., 2001).

3. Constrained K-means + Metric proposed by
(Xing et al., 2002): Constrained K-means us-
ing the distance metric proposed in (Xing et al.,
2002), which is learned from S.

4. Constrained K-means + RCA: Constrained K-
means using the RCA distance metric learned
from S.

5. EM: Expectation Maximization of a Gaussian
Mixture model (using no side-information).

6. Constrained EM: EM using side-information in
the form of equivalence constraints (Hertz et al.,
2002; Shental et al., 2003), when using the RCA
distance metric as an initial metric.

Following (Xing et al., 2002) we will use a normal-
ized accuracy score to evaluate the partitions obtained
by the different clustering algorithms presented above.
More formally, in the case of 2-cluster data the accu-
racy measure used can be written as:

∑
i>j

1{1{ci = cj} = 1{ĉi = ĉj}}
0.5m(m − 1)

where 1{}̇ is the indicator function (1{True} =
1), 1{False} = 0), {ĉi}m

i=1 is the cluster to which point
xi is assigned by the clustering algorithm, and ci is
the “correct” or desired assignment. The score above
is equivalent to computing the probability that the al-
gorithm’s assignment ĉ of two randomly drawn points
xi and xj agrees with the “true” assignment c.5

4To allow for a fair comparison with (Xing et al., 2002),
we repeated their exact experimental setup and criteria.

5As noted in (Xing et al., 2002), this score needs nor-
malization when the number of clusters is larger than 2.
The normalization is achieved by sampling the pairs xi

and xj from the same cluster (as determined by ĉ) with
probability 0.5 and from different clusters with probabil-
ity 0.5, so that “matches” and “mismatches” are given the
same weight.
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Figure 2. Clustering accuracy on 6 UCI datasets. In each panel, the six bars on the left correspond to an experiment with
”little” side-information, and the six bars on the right correspond to ”much” side-information. From left to right the six
bars are respectively: (a) K-means over the original feature space (without using any side-information). (b) Constrained
K-means over the original feature space. (c) Constrained K-means over the feature space suggested by (Xing et al., 2002).
(d) Constrained K-means over the feature space created by RCA. (e) EM over the original feature space (without using
any side-information). (f) Constrained EM (Shental et al., 2003) over the feature space created by RCA. Also shown are
N - the number of points, C - the number of classes, d - the dimension of the feature space, and Kc - the mean number
of connected components (see footnote 6). The results were averaged over 20 realizations of side-information.

As in (Xing et al., 2002) we tested our method using
two conditions: (1) using “little” side-information S;
(2) using “much” side-information.6 As in (Xing et al.,
2002) in all of our experiments we used K-means with
multiple restarts.

Fig. 2 shows the results of all algorithms described
above when using the two conditions of “little” and
“much” side-information.

Clearly using RCA as a distance measure significantly
improves the results over the original K-means algo-
rithm. When comparing our results with the results re-
ported in (Xing et al., 2002), we see that RCA achieves
similar results. In this respect it should be noted that
the RCA metric computation is a single step efficient
computation, whereas the method presented in (Xing
et al., 2002) requires gradient descent and iterative
projections.

6S was generated by choosing a random subset of all
pairs of points sharing the same class ci. In the case of little
side-information, the size of the subset was chosen so that
the resulting number of connected components Kc (using
transitive closure over pairs) is roughly 90% of the size of
the original dataset. In case of much side information this
was changed to 70%.

7. Discussion and Concluding remarks

We have presented an algorithm which makes use of
side-information in the form of equivalence relations
to learn a Mahalanobis metric. We have shown that
our method is optimal under several criteria, and also
showed considerable improvement in clustering on sev-
eral standard datasets.

RCA is one of several techniques which we have de-
veloped for using equivalence relations to enhance un-
supervised learning. In a related technique, we in-
troduced the constraints into an EM formulation of
a Gaussian Mixture Model (Hertz et al., 2002; Shen-
tal et al., 2003). This work enhances the power of
RCA in two ways: First, it makes it possible to incor-
porate negative constraints. Second, it allows further
improvement of the RCA metric, as may be seen in
Fig. 2.
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Appendix A: Information
Maximization in the case of non
invertible linear transformation

Here we briefly sketch the proof of the claim made in
Section 3.3. As before, we denote by C the average
covariance matrix of the chunklets. We can rewrite
the constrained expression as:

1
p

k∑
j=1

nj∑
i=1

(xji − mj)tAtA(xji − mj) = tr(AtAC) = tr(AtCA)

Hence the Lagrangian may be written as:

log |AΣxAt| − λ(tr(ACAt) − K)

Differentiating the Lagrangian w.r.t A leads to

ΣxA(AtΣxA)−1 = λCA (15)

Multiplying by At and rearranging we get: I
λ = AtCA.

This equation does not give us information concerning
the subspace to which the optimal A takes us. How-
ever, A whitens the data with respect to the chunklet
covariance C in this subspace, similarly to RCA. From
λ �= 0 it then follows that the inequality constraint is
an equality, which can be used to find λ.

tr(ACAt) = tr(
I

λ
) =

M

λ
= K =⇒ λ =

M

K

=⇒ ACAt =
K

M
I

Now, since in our solution space ACAt = K
M I,

log |ACAt| = M log K
M holds for all points. Hence we

can modify the maximization argument as follows

log |AΣxAt| = log
|AΣxAt|
|ACAt| + M log

K

M

Now the optimization argument has a familiar form.
It is known (Fukunaga, 1990) that maximizing the de-
terminant ratio can be done by projecting the space on
the span of the first M eigenvectors of C−1Σx. Denote
by B the solution matrix for this unconstrained prob-
lem. In order to enforce the constraints we define the
matrix A =

√
K
M Λ−0.5

1 B and we claim that A is the
solution of the constrained problem. Notice that the
value of the maximization argument does not change
when we switch from A to B since A is a product of B
and another full ranked matrix. It can also be shown
that A satisfies the constraints and is thus the solution
of the problem presented in Eq. (5).
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Abstract
The performance of graph based clustering meth-
ods critically depends on the quality of the dis-
tance function used to compute similarities be-
tween pairs of neighboring nodes. In this pa-
per we learn distance functions by training bi-
nary classifiers with margins. The classifiers
are defined over the product space of pairs of
points and are trained to distinguish whether two
points come from the same class or not. The
signed margin is used as the distance value. Our
main contribution is a distance learning method
(DistBoost), which combines boosting hypothe-
ses over the product space with a weak learner
based on partitioning the original feature space.
Each weak hypothesis is a Gaussian mixture
model computed using a semi-supervised con-
strained EM algorithm, which is trained using
both unlabeled and labeled data. We also con-
sider SVM and decision trees boosting as mar-
gin based classifiers in the product space. We
experimentally compare the margin based dis-
tance functions with other existing metric learn-
ing methods, and with existing techniques for the
direct incorporation of constraints into various
clustering algorithms. Clustering performance
is measured on some benchmark databases from
the UCI repository, a sample from the MNIST
database, and a data set of color images of ani-
mals. In most cases theDistBoostalgorithm sig-
nificantly and robustly outperformed its competi-
tors.

1. Introduction

Graph based clustering methods have been widely and suc-
cessfully used in many domains such as computer vision,
bioinformatics and exploratory data analysis. This category
spans a wide range of algorithms, from classical agglomer-

Appearing inProceedings of the21 st International Conference
on Machine Learning, Banff, Canada, 2004. Copyright 2004 by
the authors.

ative methods such asaverage linkage(Duda et al., 2001),
to the recently developed and more sophisticated spectral
methods (Shi & Malik, 2000) and stochastic formulations
(Blatt et al., 1997; Gdalyahu et al., 2001). The initial rep-
resentation in all these methods is a matrix (or graph) of
distances between all pairs of datapoints. The computation
of this distance matrix is considered a “preprocessing” step,
and typically one uses someLp norm on the feature space
(or a related variant).

Despite the important differences between the various
graph-based clustering algorithms, it is widely acknowl-
edged that clustering performance critically depends on the
quality of the distance function used. Often the quality of
the distance function is more important then the specifics
of the clustering algorithm. In this paper we focus on the
question of how to learn a “good” distance function, which
will lead to improved clustering. Our main contribution is
DistBoost- a novel semi-supervised algorithm for learning
distance functions.

We consider a semi-supervised clustering scenario in which
the data is augmented by some sparse side information,
in the form of equivalence constraints. Equivalence con-
straints are relations between pairs of data points, which
indicate whether the points belong to the same category
or not. We term a constraint ’positive’ when the points
are known to be from the same class, and ’negative’ oth-
erwise. Such constraints carryless information than ex-
plicit labels on the original datapoints, since clearly equiv-
alence constraints can be obtained from explicit labels but
not vice versa. More importantly, it has been suggested that
in some cases equivalence constraints are easier to obtain,
especially when the database is very large and contains
a large number of categories without pre-defined names
(Hertz et al., 2003).

In recent years there has been a growing interest in semi su-
pervised clustering scenarios, leading to two different (and
related) lines of research. In the first, the constraints are
incorporated directly into the clustering algorithm, limit-
ing the clustering solutions considered to those that com-
ply with the given constraints. Examples are the con-
strained complete linkage algorithm (Klein et al., 2002),
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constrained K-means (Wagstaff et al., 2001) and a con-
strained EM of a Gaussian mixture (Shental et al., 2003).
The second line of research, to which this work belongs,
uses the constraints to learn an informative distance func-
tion (prior to clustering). Most of the work in this area has
focused on the learning of Mahalanobis distance functions
of the form(x − y)T A(x − y) (Shental et al., 2002; Xing
et al., 2002). In these papers the parametric Mahalanobis
metric was used in combination with some suitable para-
metric clustering algorithm, such as K-means or EM of a
mixture of Gaussians. In contrast, we develop in this paper
a method that learns a non-parametric distance function,
which can be more naturally used in non-parametric graph
based clustering.

More formally, letX denote the original data space, and as-
sume that the data is sampled fromM discrete labels. Our
goal is to learn a distance functionf : X × X → [0, 1].1

Our key observation is that we can learn such a function,
by posing a related binary classification problem over the
product spaceX × X , and solving it using margin based
classification techniques. The binary problem is the prob-
lem of distinguishing between pairs of points that belong to
the same class and pairs of points that belong to different
classes.2 The training data included a set of equivalence
constraints, which can be formally regarded as binary la-
bels on points inX × X . If we label pairs of points from
the same class by0 and pairs of points belonging to differ-
ent classes by1, we can interpret the classifier’s margin as
the required distance function.

Having reduced distance learning to binary classification
with margins, we can now attempt to solve this problem
using standard powerful margin based classifiers. We have
explored both support vector machines (SVM’s) and boost-
ing algorithms. However, experiments with several SVM
variants and decision trees (C4.5) boosting have led us to
recognize that the specific classification problem we are in-
terested in has some unique features which require special
treatment:

1. The product space binary function we wish to learn
has some unique structure which may lead to ’unnat-
ural’ partitions of the space between the labels. The
concept we wish to learn is an indicator of an equiva-
lence relation over the original space. Thus the proper-
ties of transitivity and symmetry of the relation place
geometrical constraints on the binary hypothesis. Ob-
viously, traditional families of hypotheses, such as

1Note that this function is not necessarily a metric, as the tri-
angle inequality may not hold.

2Note that this problem is closely related to the multi class
classification problem: if we can correctly generate a binary parti-
tion of the data in product space, we implicitly define a multi-class
classifier in the original vector spaceX .

linear separators or decision trees, are not limited to
equivalence relation indicators, and it’s not easy to en-
force these constraints when such classifiers are used.

2. In the learning setting we have described above, we
are provided withN datapoints inX and with a sparse
set of equivalence constraints (or labels in product
space) over some pairs of points in our data. We as-
sume that the number of equivalence constraints pro-
vided is much smaller than the total number of equiv-
alence constraintsO(N2), and is of orderO(N). We
therefore have access to large amounts of unlabeled
data, and hence semi-supervised learning seems like
an attractive option. However, classical binary classi-
fiers like SVM and boosting methods are trained using
labeled data only.

These considerations led us to develop theDistBoostalgo-
rithm, which is our main contribution in this paper.Dis-
tBoost is a distance learning algorithm which attempts to
address the issues discussed above. It learns a distance
function which is based on boosting binary classifiers with
a confidence interval in product space, using a weak learner
that learns in theoriginal feature space (and not in product
space). We suggest a boosting scheme that incorporates un-
labeled data points. These unlabeled points provide a den-
sity prior, and their weights rapidly decay during the boost-
ing process. The weak learner we use is based on a con-
strained Expectation Maximization (EM) algorithm, which
computes a Gaussian mixture model, and hence provides
a partition of the original space. The constrained EM pro-
cedure uses unlabeled data and equivalence constraints to
find a Gaussian mixture that complies with them. A weak
product space hypothesis is then formed as the equivalence
relation of the computed partition.

We have experimented withDistBoostand conducted sev-
eral empirical comparisons of interest. The first is a com-
parison ofDistBoostto other margin based distance func-
tions obtained using the more traditional algorithms of
SVM and decision tree boosting. Another comparison
is betweenDistBoostand previously suggested distance
learning algorithms which are based on Mahalanobis met-
ric estimation. Finally, clustering using the distance func-
tion learnt byDistBoost is compared to previously sug-
gested methods of incorporating equivalence constraints di-
rectly into clustering algorithms. During the comparative
assessmentDistBoostwas evaluated with several agglom-
erative clustering algorithms and with different amounts
of equivalence constraints information. We used several
datasets from the UCI repository (Blake & Merz, 1998), A
sample from the MNIST dataset (LeCun et al., 1998), and a
dataset of natural images obtained from a commercial im-
age CD. In most of our experiments theDistBoostmethod
outperformed its competitors.
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2. Boosting original space partitions using
DistBoost

The DistBoostalgorithm builds distance functions based
on the weighted majority vote of a set of original space
soft partitions. The weak learner’s task in this framework
is to find plausible partitions of the space, which comply
with the given equivalence constraints. In this task, the un-
labeled data can be of considerable help, as it allows to
define a prior on what are ’plausible partitions’. In order
to incorporate the unlabeled data into the boosting process,
we augmented the Adaboost with confidence intervals pre-
sented in (Schapire & Singer, 1999). The details of this
augmentation are presented in Section 2.1. The details of
the weak learner we use are presented in Section 2.2.

2.1. Semi supervised boosting in product space

Our boosting scheme is an extension of the Adaboost algo-
rithm with confidence intervals (Schapire & Singer, 1999;
Schapire et al., 1997) to handle unsupervised data points.
As in Adaboost, we use the boosting process to maximize
the margins of the labeled points. The unlabeled points
only provide a decaying density prior for the weak learner.
The algorithm we use is sketched in Fig. 1. Given a par-
tially labeled dataset{(xi, yi)}

N
i=1 whereyi ∈ {1,−1, ∗},

the algorithm searches for a hypothesisf(x) =
k
∑

i=1

αkh(x)

which minimizes the following loss function:
∑

{i|yi=1,−1}

exp(−yif(xi)) (1)

Note that the unlabeled points do not contribute to the min-
imization objective (1). Rather, at each boosting round
they are given to the weak learner and supply it with some
(hopefully useful) information regarding the domain’s den-
sity. The unlabeled points effectively constrain the search
space during the weak learner estimation, giving priority
to hypotheses which both comply with the pairwise con-
straints and with the density information. Since the weak
learner’s task becomes harder in later boosting rounds, the
boosting algorithm slowly reduces the weight of the un-
labeled points given to the weak learner. This is accom-
plished in step 4 of the algorithm (see Fig. 1).

In product space there areO(N2) unlabeled points, which
correspond to all the possible pairs of original points, and
the number of weights is thereforeO(N2). However, the
update rules for the weight of each unlabeled point are
identical, and so all the unlabeled points can share the same
weight. Hence the number of updates we effectively do in
each round is proportional to the number of labeled pairs
only. The weight of the unlabeled pairs is guaranteed to

Algorithm 1 Boosting with unlabeled data

Given(x1, y1), ..., (xn, yn); xi ∈ X , yi ∈ {−1, 1, ∗}
Initialize D1(i) = 1/n i = 1, .., n

For t = 1, .., T

1. Train weak learner using distributionDt

2. Get weak hypothesisht : X → [−1, 1] with rt =
∑n

i=1
Dt(i)ht(i) > 0.

If no such hypothesis can be found, terminate the loop
and setT = t.

3. Chooseαt = 1

2
ln( 1+r

1−r
)

4. Update:

Dt+1(i) =

{

Dt(i) exp(−αtyiht(xi)) yi ∈ {−1, 1}
Dt(i) exp(−αt) yi = ∗

5. Normalize:Dt+1(i) = Dt+1(i)/Zt+1

whereZt+1 =
∑n

i=1
Dt+1(i)

6. Output the final hypothesisf(x) =
∑T

t=1
αtht(x)

decay at least as fast as the weight of any labeled pair. This
immediately follows from the update rule in step 4 of the
algorithm (Fig. 1), as each unlabeled pair is treated as a
labeled pair with maximal margin of 1.

We note in passing that it is possible to incorporate un-
labeled data into the boosting process itself, as has been
suggested in (d’Alche Buc et al., 2002; Grandvalet et al.,
2001). In this work the margin concept was extended to
unlabeled data points. The margin for such a point is a pos-
itive number related to the confidence the hypothesis has
in classifying this point. The algorithm then tries to min-
imize the total (both labeled and unlabeled) margin cost.
The problem with this framework is that a hypothesis can
be very certain about the classification of unlabeled points,
and hence have low margin costs, even when it classifies
these points incorrectly. In the semi supervised clustering
context the total margin cost may be dominated by the mar-
gins of unconstrained point pairs, and hence minimizing it
doesn’t necessarily lead to hypotheses that comply with the
constraints. Indeed, we have empirically tested some vari-
ants of these algorithms and found that they lead to inferior
performance.

2.2. Mixtures of Gaussians as weak hypotheses

The weak learner inDistBoostis based on the constrained
EM algorithm presented by (Shental et al., 2003). This al-
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gorithm learns a mixture of Gaussians over the original data
space, using unlabeled data and a set of positive and neg-
ative constraints. Below we briefly review the basic algo-
rithm, and then show how it can be modified to incorporate
weights on sample data points. We also describe how to
translate the boosting weights from product space points to
original data points, and how to extract a product space hy-
pothesis from the soft partition found by the EM algorithm.

A Gaussian mixture model (GMM) is a parametric statis-
tical model which assumes that the data originates from a
weighted sum of several Gaussian sources. More formally,
a GMM is given byp(x|Θ) = ΣM

l=1
αlp(x|θl), whereαl de-

notes the weight of each Gaussian,θl its respective parame-
ters, andM denotes the number of Gaussian sources in the
GMM. EM is a widely used method for estimating the pa-
rameter set of the model (Θ) using unlabeled data (Demp-
ster et al., 1977). In the constrained EM algorithmequiva-
lence constraintsare introduced into the ’E’ (Expectation)
step, such that the expectation is taken only over assign-
ments which comply with the given constraints (instead of
summing overall possible assignments of data points to
sources).

Assume we are given a set of unlabeled i.i.d. sampled
pointsX = {xi}

N
i=1, and a set of pairwise constraints over

these pointsΩ. Denote the index pairs of positively con-
strained points by{(p1

j , p
2
j )}

Np

j=1
and the index pairs of neg-

atively constrained points by{(n1
k, n2

k)}Nn

k=1
. The GMM

model contains a set of discrete hidden variablesH, where
the Gaussian source of pointxi is determined by the hid-
den variablehi. The constrained EM algorithm assumes
the following joint distribution of the observablesX and
the hiddensH:

p(X,H|Θ,Ω) = (2)

1

Z

n

Π
i=1

αhi
p(xi|θhi

)
Np

Π
j=1

δh
p1

j

h
p2

j

Nn

Π
k=1

(1 − δh
n1

k

h
n2

k

)

The algorithm seeks to maximize the data likelihood,
which is the marginal distribution of (2) with respect toH.

The equivalence constraints create complex dependencies
between the hidden variables of different data points. How-
ever, the joint distribution can be expressed using a Markov
network, as seen in Fig. 1. In the ’E’ step of the algorithm
the probabilitiesp(hi|X,Θ,Ω) are computed by applying
a standard inference algorithm to the network. Such in-
ference is feasible if the number of negative constraints is
O(N), and the network is sparsely connected. The model
parameters are then updated based on the computed proba-
bilities. The update of the Gaussian parameters{θl} can be
done in closed form, using rules similar to the standard EM
update rules. The update of the cluster weights{αl}

M
l=1

is more complicated, since these parameters appear in the
normalization constantZ in (2), and the solution is found

Figure 1.A Markov network representation of the constrained
mixture setting. Each observable data node has a discrete hidden
node as its ancestor. Positively constrained nodes have the same
hidden node as their ancestor. Negative constraints are expressed
using edges between the hidden nodes of negatively constrained
points.Here points 2,3,4 are constrained to be together, and point
1 is constrained to be from a different class.

with a gradient descent procedure. The algorithm finds a
local maximum of the likelihood, but the partition found
is not guaranteed to satisfy any specific constraint. How-
ever, since the boosting procedure increases the weights of
points which belong to unsatisfied equivalence constraints,
it is most likely that any constraint will be satisfied in one
or more partitions.

We have incorporated weights into the constrained EM pro-
cedure according to the following semantics: The algo-
rithm is presented with a virtual sample of sizeNv. A
training pointxi with weight wi appearswiNv times in
this sample. All the repeated tokens of the same point are
considered to be positively constrained, and are therefore
assigned to the same source in every evaluation in the ’E’
step. In all of our experiments we have setNv to be the
actual sample size.

While the weak learner accepts a distribution over the origi-
nal space points, the boosting process described in 2.1 gen-
erates a distribution over the sample product space in each
round. The product space distribution is converted to a dis-
tribution over the sample points by simple marginalization.
Specifically, denote bywp

ij the weight of pair(i, j); the
weightws

i of point i is defined to be

ws
i =

∑

j

wp
ij (3)

In each round, the mixture model computed by the con-
strained EM is used to build a binary function over the
product space and a confidence measure. We first derive
a partition of the data from the Maximum A Posteriori
(MAP) assignment of points. A binary product space hy-
pothesis is then defined by giving the value1 to pairs of
points from the same Gaussian source, and−1 to pairs of
points from different sources. This value determines the
sign of the hypothesis output. This setting further supports
a natural confidence measure - the probability of the pair’s
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MAP assignment which is:

max
i

p(h1 = i|x1,Θ) · max
i

p(h2 = i|x2,Θ)

whereh1, h2 are the hidden variables attached to the two
points. The weak hypothesis output is the signed confi-
dence measure in[−1, 1], and so the weak hypothesis can
be viewed as a weak “distance function”.

3. Learning in the product space using
traditional classifiers

We have tried to solve the distance learning problem over
the product space using two more traditional margin based
classifiers. The first is a support vector machine, that tries
to find a linear separator between the data examples in a
high dimensional feature space. The second is the Ad-
aBoost algorithm, where the weak hypotheses are decision
trees learnt using the C4.5 algorithm. Both algorithms had
to be slightly adapted to the task of product space learning,
and we have empirically tested possible adaptations using
data sets from the UCI repository. Specifically, we had to
deal with the following technical issues:

• Product space representation: A pair of original space
points must be converted into a single point, which
represents this pair in the product space. The simplest
representation is the concatenation of the two points.
Another intuitive representation is the concatenation
of the sum and difference vectors of the two points.
Our empirical tests indicated that while SVM works
better with the first representation, the C4.5 boosting
achieves its best performance with the ’sum and dif-
ference’ representation.

• Enforcing symmetry: If we want to learn a symmet-
ric distance function satisfyingd(x, y) = d(y, x), we
have to explicitly enforce this property. With the first
representation this can be done simply by doubling
the number of training points, introducing each con-
strained pair twice: as the point[x, y] and as the point
[y, x]. In this setting the SVM algorithm finds the
global optimum of a symmetric Lagrangian and the
solution is guaranteed to be symmetric. With the sec-
ond representation we found that modifying the repre-
sentation to be symmetrically invariant gave the best
results. Specifically, we represent a pair of pointsx, y
using the vector[x+y, sign(x1−y1)∗(x−y)], where
x1, y1 are the first coordinates of the points.

• We considered two linear preprocessing transforma-
tions of the original data before creating the product
space points: the whitening transformation, and the
RCA transformation (Bar-Hilel et al., 2003) which
uses positive equivalence constraints. In general we

found that pre-processing with RCA was most benefi-
cial for both the SVM and C4.5 boosting algorithms.

• Parameter tuning: for the SVM we used the polyno-
mial kernel of order 4, and a trade-off constant of 1 be-
tween error and margin. The boosting algorithm was
run for 25-150 rounds (depending on the dataset), and
the decision trees were built with a stopping criterion
of train error smaller than 0.05 in each leaf.

The clustering performance obtained using these two vari-
ants is compared toDistBoostin section 4. The design is-
sues mentioned above were decided based on the perfor-
mance over the UCI datasets, and the settings remained
fixed for the rest of the experiments.

4. Experimental Results

We compared ourDistBoostalgorithm with other tech-
niques for semi-supervised clustering using equivalence
constraints. We used both distance learning techniques,
including our two simpler variants for learning in product
space (SVM and boosting decision trees), and constrained
clustering techniques. We begin by introducing our exper-
imental setup and the evaluated methods. We then present
the results of all these methods on several datasets from the
UCI repository, a subset of the MNIST letter recognition
dataset, and an animal image database.

4.1. Experimental setup

Gathering equivalence constraints: Following (Hertz
et al., 2003), we simulated adistributed learningscenario,
where labels are provided by a number of uncoordinated
independent teachers. Accordingly, we randomly chose
small subsets of data points from the dataset and parti-
tioned each of the subsets into equivalence classes. The
constraints obtained from all the subsets are gathered and
used by the various algorithms.

The size of each subsetk in these experiments was chosen
to be2M , whereM is the number of classes in the data.
In each experiment we usedl subsets, and the amount of
partial information was controlled by theconstraint index
P = k · l; this index measures the amount of points which
participate in at least one constraint. In our experiments
we usedP = 0.5, 1. However, it is important to note that
the number of equivalence constraints thus provided typi-
cally includes only a small subset of all possible pairs of
datapoints, which isO(N2).

Evaluated Methods: we compared the clustering perfor-
mance of the following techniques:

1. Our proposed boosting algorithm (DistBoost).
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2. Mahalanobis distance learning with Relevant Compo-
nent Analysis (RCA) (Bar-Hilel et al., 2003).

3. Mahalanobis distance learning with non-linear opti-
mization (Xing) (Xing et al., 2002).

4. Margin based distance learning using SVM as a prod-
uct space learner (SVM) (described in Section 3).

5. Margin based distance learning using product space
decision trees boosting (DTboost).

6. Constrained EM of a Gaussian Mixture Model (Con-
strained EM) (Shental et al., 2003).

7. Constrained Complete Linkage (Constrained Com-
plete Linkage) (Klein et al., 2002).

8. Constrained K-means (COP K-means) (Wagstaff
et al., 2001).

Methods 1-5 compute a distance function, and they are
evaluated by applying a standard agglomerative clustering
algorithm (Ward) to the distance graph they induce. Meth-
ods 6-8 incorporate equivalence constraints directly into
the clustering process.

All methods were evaluated by clustering the data and mea-
suring theF 1

2

score defined as

F 1

2

=
2P ∗ R

R + P
(4)

where P denotes precision andR denotes recall. For
the distance learning techniques we also showcumulative
neighbor puritycurves.Cumulative neighbor puritymea-
sures the percentage of correct neighbors up to theK-th
neighbor, averaged over all the datapoints. In each exper-
iment we averaged the results over 50 or more different
equivalence constraint realizations. BothDistBoostand the
decision tree boosting algorithms were run for a constant
number of boosting iterationsT = 25, 150 (depending on
the dataset). In each realization all the algorithms were
given the exact same equivalence constraints.

Dimensionality reduction: the constrained LDA algo-
rithm Some of the datasets reside in a high dimensional
space, which must be reduced in order to perform param-
eter estimation from training data. We used two methods
for dimensionality reduction: standard Principal Compo-
nents Analysis (PCA), and a constrained Linear Discrimi-
nant Analysis (LDA) algorithm which is based on equiva-
lence constraints.

Classical LDA (also called FDA, (Fukunaga, 1990)) com-
putes projection directions that minimize the within-class
scatter and maximize the between-class scatter. More for-
mally, given a labeled dataset{xi, yi}

N
i=1 where yi ∈

{0, 1, ..,M − 1} andxi ∈ Rd, LDA is given by thek × d
matrixW that maximizes

J(W ) =
WT StW

WT SwW
(5)

whereSt =
∑N

i=1
(xi − m)(xi − m)T denotes thetotal

scattermatrix (m is the data’s empirical mean) andSw =
∑M−1

j=0

∑

i:yi=j(xi − mj)(xi − mj)
T denotes thewithin-

class scattermatrix (mj is the empirical mean of thej-th
class).

Since in our semi-supervised learning scenario we have ac-
cess to equivalence constraints instead of labels, we can
write down a constrained LDA algorithm. Thus we esti-
mate thewithin class scattermatrix using positive equiva-
lence constraints instead of labels. Specifically, given a set
of positive equivalence constraints, we use transitive clo-
sure over this set to obtain small subsets of points that are
known to belong to the same class. Denote these subsets by
{Cj}

L−1

j=0
, where each subsetCj is composed of a variable

number of data pointsCj = {xj1, xj2, .., xjnj
}. We use

these subsets to estimateSw as follows

Sŵ =

L−1
∑

j=0

Nj
∑

i=1

(xji − mj)(xji − mj)
T (6)

where heremj denotes the mean of subsetCj .

4.2. Results on UCI datasets

We selected several datasets from the UCI data repository
and used the experimental setup above to evaluate the var-
ious methods. Fig. 2 shows clusteringF 1

2

score plots for
several data sets using Ward’s agglomerative clustering al-
gorithm. ClearlyDistBoostachieves significant improve-
ments over Mahalanobis based distance measures and other
product space learning methods. ComparingDistBoostto
methods which incorporate constraints directly, clearly the
only true competitor ofDistBoostis its own weak learner,
the constrained EM algorithm. Still, in the vast majority
of casesDistBoostgives an additional significant improve-
ment over the EM.

4.3. Results on the MNIST letter recognition dataset

We compared all clustering methods on a subset of the
MNIST letter recognition dataset (LeCun et al., 1998). We
randomly selected500 training samples (50 from each of
the 10 classes). The original data dimension was784,
which was projected by standard PCA to the first50 prin-
cipal dimensions. We then further projected the data using
the constrained LDA algorithm to40 dimensions. Cluster-
ing and neighbor purity plots are presented on the left side
of Fig 3. The clustering performance of theDistBoostal-
gorithm is significantly better than the other methods. The
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Figure 2.ClusteringF 1

2

score over 4 data sets from the UCI repository using Ward’s clustering algorithm. Methods shown are: (a)
Euclidean, (b) RCA, (c) constrained EM, (d) SVM, (e) DTboost, (f) DistBoost, (g) Xing, (h) Constrained Complete Linkage, (i) Con-
strained K-means. The results were averaged over 100 realizations ofconstraints, and 1-std error bars are shown. Theconstraint index
P was0.5 in all cases.

cumulative purity curves suggest that this success may be
related to the slower decay of the neighbor purity scores for
DistBoost.

4.4. Results on an Animal image dataset

We created an image database which contained images of
animals taken from a commercial image CD, and tried to
cluster them based on color features. The clustering task in
this case is much harder than in the previous applications.
The database contained 10 classes with total of 565 images.
Fig. 3 shows a few examples of images from the database.

The original images were heavily compressed jpg im-
ages. The images were represented using Color Coherence
Vectors (Pass et al., 1996) (CCV’s). This representation
extends the color histogram representation, by capturing
some crude spatial properties of the color distribution in an
image. Specifically, in a CCV vector each histogram bin is
divided into two bins, representing the number of ’Coher-
ent’ and ’Non-Coherent’ pixels from each color. ’Coher-
ent’ pixels are pixels whose neighborhood contains more
than τ neighbors which have the same color. We repre-
sented the images in HSV color space, quantized the im-
ages to32 ∗ 32 ∗ 32 = 32768 color bins, and computed
the CCV of each image - a64K dimensional vector - using
τ = 25.3

In order to reduce the dimension of our data, we first re-
moved all zero dimensions and then used the first100 PCA
dimensions, followed by Constrained LDA to further re-
duce the dimension of the data tod = 40. The cluster-
ing results and neighbor purity graphs are presented on
the right side of Fig 3.4 The difficulty of the task is well
reflected in the low clustering scores of all the methods.

3The standard distance measure used on CCV features is a
Chi-squared distance (also commonly used to measure distance
between histograms). We also tried to cluster the data using the
Chi-squared distances, and theF 1

2

score obtained was0.44.
4On this dataset the COP k-means algorithm only converged

on25% of its runs.

However,DistBoost still outperforms its competitors, as it
did in all previous examples.

5. Discussion

In this paper, we have describedDistBoost- a novel al-
gorithm which learns distance functions that enhance clus-
tering performance using sparse side information. Our ex-
tensive comparisons showed the advantage of our method
over many competing methods for learning distance func-
tions and for clustering using equivalence constraints. An-
other application which we have not explored here, is near-
est neighbor classification. Nearest neighbor classification
also critically depends on the distance function between
datapoints; our hope is that distance functions learned from
equivalence constraints can also be used for improving
nearest neighbor classification.
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Abstract
Image retrieval critically relies on the distance function used to
compare a query image to images in the database. We suggest
to learn such distance functions by training binary classifiers with
margins, where the classifiers are defined over the product space of
pairs of images. The classifiers are trained to distinguish between
pairs in which the images are from the same class and pairs which
contain images from different classes. The signed margin is used
as a distance function. We explore several variants of this idea,
based on using SVM and Boosting algorithms as product space
classifiers. Our main contribution is a distance learning method
which combines boosting hypotheses over the product space with
a weak learner based on partitioning the original feature space.
The weak learner used is a Gaussian mixture model computed us-
ing a constrained EM algorithm, where the constraints are equiv-
alence constraints on pairs of data points. This approach allows
us to incorporate unlabeled data into the training process. Us-
ing some benchmark databases from the UCI repository, we show
that our margin based methods significantly outperform existing
metric learning methods, which are based on learning a Maha-
lanobis distance. We then show comparative results of image re-
trieval in a distributed learning paradigm, using two databases: a
large database of facial images (YaleB), and a database of natu-
ral images taken from a commercial CD. In both cases our GMM
based boosting method outperforms all other methods, and its gen-
eralization to unseen classes is superior.

1. Introduction
Image retrieval is often done by computing the distance
from a query image to images in the database, followed by
the retrieval of nearest neighbors. The retrieval performance
mainly depends on two related components: the image rep-
resentation, and the distance function used. Given a specific
image representation, the quality of the distance function
used is the main key to a successful system.1. In this paper
we focus on learning ’good’ distance functions, that will
improve the performance of content based image retrieval.
The quality of an image retrieval system also depends on its
ability to adapt to the intentions of the user as in relevance

1A distance function is a function from pairs of datapoints tothe posi-
tive real numbers, usually (but not necessarily) symmetric with respect to
its arguments. We do not require that the triangle inequalityholds, and
thus our distance functions arenotnecessarily metrics.

feedback methods [1]. Learning distance functions can be
useful in this context for training user dependent distance
functions.

Formally, letX denote the original data space, and as-
sume that the data is sampled fromM discrete labels where
M is large and unknown. Our goal is to learn a distance
functionf : X × X → [0, 1]. In order to learn such a func-
tion, we pose a related binary classification problem over
product space, and solve it using margin based classifica-
tion techniques. The binary problem is the problem of dis-
tinguishing between pairs of points that belong to the same
class and pairs of points that belong to different classes.2 If
we label pairs of points from the same class by0 and pairs
of points belonging to different classes by1, we can then
view the classifier’s margin as the required distance func-
tion.

The training data we consider is composed of binary
labels on points inX × X . The labels describe equiva-
lence constraints between datapoints in the original space
X . Equivalence constraints are relations between pairs of
datapoints, which indicate whether the point in the pair be-
long to the same category or not. We term a constraint ’pos-
itive’ when the points are known to be from the same class,
and ’negative’ in the opposite case. Such constraints carry
lessinformation than explicit labels of the original images
in X , since clearly equivalence constraints can be obtained
from M explicit labels on points inX , but not vice versa.
More importantly, we observe that equivalence constraints
are easier to obtain, especially when the image database is
very large and contains a large number of categories without
pre-defined names.

To understand this observation, ask yourself how can
you obtain training data for a large facial images database?
You may ask a single person to label the images, but as the
size of the database grows this quickly becomes impracti-
cal. Another approach is thedistributed learningapproach
[9]: divide the data into small subsets of images and ask a

2Note that this problem is closely related to the multi class classifica-
tion problem: if we can correctly generate a binary partitionof the data in
product space, we implicitly define a multi-class classifier inthe original
vector spaceX .The relations between the learnability of these two prob-
lems is discussed in [4].
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number of people to label each subset. Note that you are
still left with the problem of coordinating the labels pro-
vided by each of the labellers, since these are arbitrary. To
illustrate the arbitrariness of tags, imagine a database con-
taining all existing police facial images. While in one folder
all the pictures of a certain individual may be called ’Insur-
ance Fraud 205’, different pictures of the same individual
in another folder may be called ’Terrorist A’. In this dis-
tributed scenario, full labels are hard to obtain, but ’local’
equivalence information can be easily gathered.3

Learning binary functions with margins over an input
space is a well studied problem in the machine learning
literature. We have explored two popular and powerful
classifiers which incorporate margins: support vector ma-
chines (SVM’s) and boosting algorithms. However, exper-
iments with several SVM variants and Boosting decision
trees (C4.5) have led us to recognize that the specific classi-
fication problem we are interested in has some unique fea-
tures which require special treatment.

1. The product space binary function we wish to learn has
some unique structure which may lead to ’unnatural’
partitions of the space between the labels. The con-
cept we learn is an indicator of an equivalence relation
over the original space. Thus the properties of transi-
tivity and symmetry of the relation place geometrical
constraints on the binary hypothesis. Obviously,
traditional families of hypotheses, such as linear sepa-
rators or decision trees, are not limited to equivalence
relation indicators, and it’s not easy to enforce the con-
straints when such classifiers are used.

2. In the learning setting we have described above, we are
provided withN datapoints inX and with equivalence
constraints (or labels in product space) over some pairs
of points in our data. We assume that the number of
equivalence constraints provided is much smaller than
the total number of equivalence constraintsO(N2).
We therefore have access to large amounts of unlabeled
data, and hence semi-supervised learning seems an at-
tractive option. However, classical SVM and boosting
methods are trained using labeled data only.

These considerations led us to the development of the
DistBoostalgorithm, which is our main contribution in this
paper.DistBoostis a distance learning algorithm which at-
tempts to address all of the issues discussed above. It learns
a distance function which is based on boosting binary clas-
sifiers with a confidence interval in product space, using a

3Inconsistencies which arise due to different definitions ofdistinct cat-
egories by different teachers are more fundamental, and are not addressed
in this paper. Another way to solve the problem of tag arbitrariness is to
use pre-defined category names, like letters or digits. Unfortunately this
is not always possible, especially when the number of categories in the
database is large and the specific categories are unknown apriori.

weak learner that learns in theoriginal feature space (and
not in product space). We suggest a boosting scheme that
incorporates unlabeled data points. These unlabeled points
provide a density prior, and their weights rapidly decay dur-
ing the boosting process. The weak learner we use is based
on a constrained EM algorithm, which computes a Gaussian
mixture model, and hence provides a partition of the orig-
inal space. The constrained EM procedure uses unlabeled
data and equivalence constraints to find a Gaussian mixture
that complies with them. A product space hypothesis is then
formed based on the computed partition.

There has been little work on learning distance functions
in the machine learning literature. Most of this work has
been restricted to learning Mahalanobis distance functions
of the form(x−y)T A(x−y). The use of labels for the com-
putation of the weight matrixA has been discussed in [10];
the computation ofA from equivalence constraints was dis-
cussed in [17, 13]. Yianilos [18] has proposed to fit a gener-
ative Gaussian mixture model to the data, and use the prob-
ability that two points were generated by the same source
as a measure of the distance between them. Schemes for
incorporating unlabeled data into the boosting process were
introduced by Ambroise et. al [5, 19]. We discuss the rela-
tion between these schemes and ourDistBoostalgorithm in
Section 3.

We have experimented with theDistBoostalgorithm as
well as other margin based distance learning algorithms,
and compared them to perviously suggested methods which
are based on Mahalanobis metric learning. We used several
datasets from the UCI repository [15], the yaleB facial im-
age dataset, and a dataset of natural images obtained from
a commercial image CD. The results clearly indicate that
our margin based distance functions provide much better re-
trieval results than all other distance learning methods. Fur-
thermore, on all these datasets theDistBoostmethod outper-
forms all other methods, including our earlier margin based
methods which use state of the art binary classifiers.

2. Learning in the product space using
traditional classifiers

We have tried to solve the distance learning problem over
the product space using two of the most powerful margin
based classifiers. The first is a support vector machine, that
tries to find a linear separator between the data examples
in a high dimensional feature space. The second is the Ad-
aBoost algorithm, where the weak hypotheses are decision
trees learnt using the C4.5 algorithm. Both algorithms had
to be slightly adapted to the task of product space learning,
and we have empirically tested possible adaptations using
data sets from the UCI repository. Specifically, we had to
deal with the following technical issues:

• Product space representation: A pair of original space
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points must be converted into a single which represents
this pair in the product space. The simplest represen-
tation is the concatenation of the two points. Another
intuitive representation is the concatenation of the sum
and difference vectors of the two points. Our empirical
tests indicated that while the SVM works better with
the first representation, the C4.5 boosting achieves its
best performance with the ’sum and difference’ repre-
sentation.

• Enforcing symmetry: If we want to learn a symmet-
ric distance function satisfyingd(x, y) = d(y, x), we
have to explicitly enforce this property. With the first
representation this can be done simply by doubling
the number of training points, introducing each con-
strained pair twice: as the point[x, y] and as the point
[y, x]. In this setting the SVM algorithm finds the
global optimum of a symmetric Lagrangian and the so-
lution is guaranteed to be symmetric. With the second
representation we found that modifying the representa-
tion to be symmetrically invariant gave the best results.
Specifically, we represent a pair of pointsx, y using the
vector[x + y, sign(x1 − y1) ∗ (x − y)], wherex1, y1

are the first coordinates of the points.

• Preprocessing transformation in the original space: We
considered two possible linear transformation of the
data before creating the product space points: the
whitening transformation, and the RCA transforma-
tion [9] which uses positive equivalence constraints. In
general we found that pre-processing with RCA was
most beneficial for both the SVM and C4.5 boosting
algorithms.

• Parameter tuning: for the SVM we used the polyno-
mial kernel of order 4, and a trade-off constant of 1 be-
tween error and margin. The boosting algorithm was
run for 50 rounds, and the decision trees were built
with a stopping criterion of train error smaller than
0.05 in each leaf.

These design issues were decided based on the performance
over the UCI datasets, and all settings remained fixed for all
further experiments.

3. Boosting original space partitions
using DistBoost

OurDistBoostalgorithm builds distance functions based on
the weighted majority vote of a set of original space soft
partitions. The weak learner’s task in this framework is to
find plausible partitions of the space, which comply with the
given equivalence constraints. In this task, unlabeled data
can be of considerable help, as it allows to define a prior on
what are ’plausible partitions’. In order to incorporate the

unlabeled data into the boosting process, we augmented an
existing boosting version. The details of this augmentation
are presented in Section 3.1. The details of our weak learner
are presented in Section 3.2.

3.1. Semi supervised boosting in product space
Our boosting scheme is an extension of the Adaboost al-
gorithm with confidence intervals [11] to handle unsuper-
vised data points. As in Adaboost, we use the boosting pro-
cess to maximize the margins of the labeled points. The
unlabeled points only provide a decaying density prior for
the weak learner. The algorithm we use is sketched in
Fig. 1. Given a partially labeled dataset{(xi, yi)}

N
i=1 where

yi ∈ {1,−1, ∗}, the algorithm searches for a hypothesis

f(x) =
k
∑

i=1

αkh(x) which minimizes the following loss

function:
∑

{i|yi=1,−1}

exp(−yif(xi)) (1)

Algorithm 1 Boosting with unlabeled data

Given(x1, y1), ..., (xn, yn); xi ∈ X , yi ∈ {−1, 1, ∗}
Initialize D1(i) = 1/n i = 1, .., n

For t = 1, .., T

1. Train weak learner using distributionDt

2. Get weak hypothesisht : X → [−1, 1] with
rt =

∑n

i=1
Dt(i)ht(i) > 0.

If no such hypothesis can be found, terminate the loop
and setT = t.

3. Chooseαt = 1

2
ln( 1+r

1−r
)

4. Update:

Dt+1(i) =

{

Dt(i) exp(−αtyiht(xi)) yi ∈ {−1, 1}
Dt(i) exp(−αt) yi = ∗

5. Normalize:Dt+1(i) = Dt+1(i)/Zt+1

whereZt+1 =
∑n

i=1
Dt+1(i)

6. Output the final hypothesisf(x) =
∑T

t=1
αtht(x)

Note that the unlabeled points do not contribute to the
minimization objective of the product space boosting in (1).
Rather, at each boosting round they are given to the weak
learner and supply it with some (hopefully useful) informa-
tion regarding the domain density. The unlabeled points ef-
fectively constrain the search space during the weak learner
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estimation, giving priority to hypotheses which both com-
ply with the pairwise constraints and with the density in-
formation. Since the weak learner’s task becomes harder
in later boosting rounds, the boosting algorithm slowly re-
duces the weight of the unlabeled points given to the weak
learner. This is accomplished in step 4 of the algorithm (see
Fig. 1).

In product space there areO(N2) unlabeled points,
which correspond to all the possible pairs of original points,
and the number of weights is thereforeO(N2). However,
the update rules for the weight of each unlabeled point are
identical, and so all the unlabeled points can share the same
weight. Hence the number of updates we effectively do in
each round is proportional to the number of labeled pairs
only. The weight of the unlabeled pairs is guaranteed to de-
cay at least as fast as the weight of any labeled pair. This
immediately follows from the update rule in step 4 of the
algorithm (Fig. 1), as each unlabeled pair is treated as a la-
beled pair with maximal margin of 1.

We note in passing that it is possible to incorporate un-
labeled data into the boosting process itself, as has been
suggested in [5, 19]. Their idea was to extend the margin
concept to unlabeled data points. The algorithm then tries to
minimize the total (both labeled and unlabeled) margin cost.
The problem with this framework is that a hypothesis can
be very certain about the classification of unlabeled points,
and hence have large margins, even when it classifies these
points incorrectly. Indeed, we have empirically tested some
variants of these algorithms and found poor generalization
performance in our context.

3.2. Mixtures of Gaussians as product space
weak hypotheses

The weak learner inDistBoostis based on the constrained
EM algorithm presented in [9]. This algorithm learns a mix-
ture of Gaussians over the original data space, using unla-
beled data and a set of positive and negative constraints. In
this section we briefly review the basic algorithm, and then
show how it can be extended to incorporate weights on sam-
ple data points. We describe how to translate the boosting
weights from product space points to original data points,
and how to generate a product space hypothesis from the
soft partition found by the EM algorithm.

A Gaussian mixture model (GMM) is a parametric sta-
tistical model which assumes that the data originates from a
weighted sum of several Gaussian sources. More formally,
a GMM is given byp(x|Θ) = ΣM

l=1
αlp(x|θl), whereαl de-

notes the weight of each Gaussian,θl its respective parame-
ters, andM denotes the number of Gaussian sources in the
GMM. EM is a widely used method for estimating the pa-
rameter set of the model (Θ) using unlabeled data [6]. In
the constrained EM algorithmequivalence constraintsare
introduced into the ’E’ (Expectation) step, such that the ex-

pectation is taken only over assignments which comply with
the given constraints (instead of summing overall possible
assignments of data points to sources).

Assume we are given a set of unlabeled i.i.d. sampled
pointsX = {xi}

N
i=1, and a set of pairwise constraints over

these pointsΩ. Denote the index pairs of positively con-
strained points by{(p1

j , p
2
j )}

Np

j=1
and the index pairs of neg-

atively constrained points by{(n1
k, n2

k)}Nn

k=1
. The GMM

model contains a set of discrete hidden variablesH, where
the Gaussian source of pointxi is determined by the hid-
den variablehi. The constrained EM algorithm assumes
the following joint distribution of the observablesX and
the hiddensH:

p(X,H|Θ,Ω) = (2)

1

Z

n

Π
i=1

αhi
p(xi|θhi

)
Np

Π
j=1

δh
p1

j

h
p2

j

Nn

Π
k=1

(1 − δh
n1

j

h
n2

j

)

The algorithm seeks to maximize the data likelihood, which
is the marginal distribution of (2) with respect toH.

The equivalence constraints create complex dependen-
cies between the hidden variables of different data points.
However, the joint distribution can be expressed using a
Markov network, as seen in Fig. 1. In the ’E’ step of
the algorithm the probabilitiesp(hi|X,Θ,Ω) are computed
by applying a standard inference algorithm to the network.
Such an inference is feasible if the number of negative con-
straints isO(N), and the network is sparsely connected.
The model parameters are then updated based on the com-
puted probabilities. The update of the Gaussian parame-
ters {θl} can be done in closed form, using rules similar
to the standard EM update rules. The update of the cluster
weights{αl}

M
l=1

is more complicated, since these param-
eters appear in the normalization constantZ in (2), and it
requires a gradient descent procedure. The algorithm finds
a local maximum of the likelihood, but the partition found
is not guaranteed to satisfy any specific constraint. How-
ever, since the boosting procedure increases the weights of
points which belong to unsatisfied equivalence constraints,
it is most likely that any constraint will be satisfied in some
partitions.

We have incorporated weights into the constrained EM
procedure according to the following semantics: The algo-
rithm is presented with a virtual sample of sizeNv. A train-
ing pointxi with weightwi appearswiNv times in this sam-
ple. All the repeated tokens of the same point are consid-
ered to be positively constrained, and are therefore assigned
to the same source in every evaluation in the ’E’ step. In all
of our experiments we have setNv to be the actual sample
size.

While the weak learner accepts a distribution over origi-
nal space points, the boosting process described in 3.1 gen-
erates a distribution over the sample product space in each
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Figure 1:A Markov network representation of the constrained mixture
setting. Each observable data node has a discrete hidden node as a father.
Positively constrained nodes have the same hidden node as father. Neg-
ative constraints are expressed using edges between the hidden nodes of
negatively constrained points.Here points 2,3,4 are knownto be together,
and point 1 is known to be from a different class.

round. The product space distribution is converted to a dis-
tribution over the sample points by simple summation. De-
noting bywp

ij the weight of pair(i, j), the weightws
i of

point i is defined to be

ws
i =

∑

j

wp
ij (3)

In each round, the mixture model computed by the con-
strained EM is used to build a binary function over the prod-
uct space and a confidence measure. We first derive a par-
tition of the data from the Maximum A Posteriori (MAP)
assignment of points. A binary product space hypothesis is
then defined by giving the value1 to pairs of points from
the same Gaussian source, and−1 to pairs of points from
different sources. This value determines the sign of the hy-
pothesis output.

This setting further supports a natural confidence mea-
sure - the probability of the pair’s MAP assignment which
is:

max
i

p(h1 = i|x1,Θ) · max
i

p(h2 = i|x2,Θ)

whereh1, h2 are the hidden variables attached to the two
points. The weak hypothesis output is the signed confi-
dence measure in[−1, 1], and so the weak hypothesis can
be viewed as a ’weak distance function’.

4. Learning distance functions: com-
parative results

In this section we compare ourDistBoostalgorithm with
other distance learning techniques, including our two other
proposed methods for learning in product space (SVM and
boosting decision trees). We begin by introducing our ex-
perimental setup. We then show results on several datasets
from the UCI repository, which serve as benchmark to eval-
uate the different distance learning methods.

4.1. Experimental setup
Gathering equivalence constraints: we simulated adis-
tributed learningscenario [9], where labels are provided by

a number of uncoordinated independent teachers. Accord-
ingly, we randomly chose small subsets of data points from
the dataset and partitioned each of the subsets into equiva-
lence classes.

The size of each subsetk in these experiments was cho-
sen to be2M , whereM is the number of classes in the data.
In each experiment we usedl subsets, and the amount of
partial information was controlled by theconstraint index
P = k · l; this index measures the amount of points which
participate in at least one constraint. In our experiments we
usedP = 0.3, 0.5. However, it is important to note that
the number of equivalence constraints thus provided typi-
cally includes only a small subset of all possible pairs of
datapoints, which isO(N2).4

Evaluated Methods: we compared the performance of
the following distance learning methods:

• Our proposedDistBoostalgorithm.

• Mahalanobis distance learning with Relevant Compo-
nent Analysis (RCA) [3].

• Mahalanobis distance learning with non-linear opti-
mization [17].

• SVM for direct discrimination in product space.

• Boosting decision trees in product space.

In order to set a lower bound on performance, we also com-
pared with the whitened Mahalanobis distance, where the
weight matrixA is taken to be the data’s global covariance
matrix.

We present our results using ROC curves andcumula-
tive neighbor puritygraphs. Cumulative neighbor purity
measures the percentage of correct neighbors up to theKth
neighbor, averaged over all the queries. In each experi-
ment we averaged the results over 50 different equivalence
constraint realizations. BothDistBoostand the decision
tree boosting algorithms were run for a constant number of
boosting iterationsT = 50. In each realization all the algo-
rithms were given the exact same equivalence constraints.

4.2. Results on UCI datasets
We selected several standard datasets from the UCI data
repository and used the experimental setup above to evalu-
ate our proposed methods. The cumulative purity was com-
puted using all the points in the data as queries.

Fig. 2 shows neighbor purity plots for each of these data
sets. As can be readily seen,DistBoostachieves significant
improvements over Mahalanobis based distance measures,

4It can be readily shown that by wisely selectingO(NM) equivalence
constraints, one can label the entire dataset. This followsfrom the transi-
tive nature of positive equivalence constraints.
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Figure 2:Cumulative neighbor purity plots over 6 data sets from the UCIrepository. The UCI results were averaged over 50 realizations of constraints,
and 1-std error bars are shown. The percentage of data in constraints was50% in all cases.

and also outperforms all other product space learning meth-
ods (except SVM in the ’balance’ dataset).

5. Experiments on image retrieval
We ran experiments on two image retrieval tasks: facial im-
age retrieval using the YaleB dataset, and color based image
retrieval using pictures from a commercial image CD. The
evaluated methods are described in Section 4.1.

In our experiments we randomly selected from each
dataset a subset of images, to be the retrieval database,
and this subset was used as the training set. We then fol-
lowed the same experimental setup of distributed learning
(described in Section 4.1) for the generation of equiva-
lence constraints, and trained all methods on the selected
data. Retrieval performance was measured using test im-
ages which were not presented during training.

5.1 Facial image retrieval - YaleB

As an image retrieval example with known ground-truth
and a clear definition of categories, we used a subset of
the YaleB facial image database [7]. The dataset contains
a total of 1920 images, including 64 frontal pose images
of 30 different subjects. In this database the variability be-
tween images of the same person is mainly due to differ-
ent lighting conditions. We automatically centered all the
images using optical flow. Images were then converted to
vectors, and each image was represented using its first 60
PCA coefficients. From each class, we used 22 images
(a third) as a data base training set, and 42 images were
used as test queries. In order to check different types of

generalization,we used a slightly modified policy for con-
straint sampling. specifically, constraints were drawn from
20 out of the30 classes in the dataset, and in the constrained
classesp was set to1 ( which means that all the training
points in these classes were divided between uncoordinated
labellers). When testing the learnt distance functions mea-
surements were done separately for test images from the
first 20 classes and for the last10. Notice that in this sce-
nario images from the 10 unconstrained classes were not
helpful in any way to the traditional algorithms, but they
were used byDistBoostas unlabeled data. On the left in
Fig. 3 we present the ROC curves of the different methods
on test data from the constrained classes. We can see that
the margin based distance functions give very good results,
indicating an adaptation of the distance function to these
classes. On the right we present the ROC curves when the
queries are from unconstrained classes. It can be seen that
the performance of SVM and C4.5Boost severely degrades,
indicating strong overfit behavior. TheDistBoost, on the
other hand, degrades gracefully and is still better then the
other alternatives.

5.2 Color based image retrieval

We created a picture database which contained images from
16 animal classes taken from a commercial image CD. The
retrieval task in this case is much harder then in the facial
retrieval application. We used70% of the data from each
class as our dataset (training data), and the remaining30%
as our test data. We experimented with two scenarios vary-
ing in their difficulty level. In the first scenario we used 10
classes with a total of 405 images. In the second scenario
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Figure 3: ROC curves of different methods on the YaleB facial image database. Left: retrieval performance on classes on which constraints we are
provided. Right: retrieval performance on classes on which no constraints were provided. Results were averaged over 80 realizations

Figure 4:Typical retrieval results on the Animal image database. Each row presents a query image and its first 5 nearest neighbors comparing DistBoost
and normalizedL1 CCV distance (baseline measure). Results appear in pairs of rows: Top row: DistBoost results, Bottom row: normalizedL1 CCV
distance. Results are best seen in color.

the database contained 16 classes with 565 images, and 600
’clutter’ images from unrelated classes were added to the
data base. The clutter included non-animal categories, such
as ’landscapes’ and ’buildings’.

The original images were heavily compressed jpg im-
ages. The images were represented using Color Coherence
Vectors [2] (CCV’s). This representation extend the color

histogram, by capturing some crude spatial properties of the
color distribution in an image. Specifically, in a CC vector
each histogram bin is divided into two bins, representing
the number of ’Coherent’ and ’Non-Coherent’ pixels from
each color. ’Coherent’ pixels are pixels whose neighbor-
hood contains more thanτ neighbors which have the same
color. Following [2] we represented the images in HSV
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Figure 5:Neighbor purity results on color animal database. Left: results when on a database of 10 classes, 405 images and no clutter.Right: results with
16 classes, 565 images and 600 clutter images. The clutter was added to the database after the training stage. Results were averaged over 50 realizations

color space quantized the images to4 ∗ 2 ∗ 4 = 32 color
bins, and computed the CCV of each image - a64 dimen-
sional vector - usingτ = 25.

Fig. 5 shows neighbor purity plots of all different dis-
tance learning methods. As our baseline measure, we
used the normalizedL1 distance measure suggested in
[2]. Clearly theDistBoostalgorithm and our product space
SVM methods outperformed all other distance learning
methods. The C4.5Boost performs less well, and it suffers
from a relatively high degradation in performance when the
task becomes harder. Retrieval results are presented in Fig4
for our proposedDistBoostalgorithm (Top row) and for the
baseline normalizedL1 distance over CCV’s (bottom row).
As can be seen our algorithm seems to group images which
do not appear trivially similar in CCV space.
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Abstract
When given a small sample, we show that classi-
fication with SVM can be considerably enhanced
by using a kernel function learned from the train-
ing data prior to discrimination. This kernel is
also shown to enhance retrieval based on data
similarity. Specifically, we describe KernelBoost
- a boosting algorithm which computes a kernel
function as a combination of ’weak’ space parti-
tions. The kernel learning method naturally in-
corporates domain knowledge in the form of un-
labeled data (i.e. in a semi-supervised or trans-
ductive settings), and also in the form of labeled
samples from relevant related problems (i.e. in a
learning-to-learn scenario). The latter goal is ac-
complished by learning a single kernel function
for all classes. We show comparative evaluations
of our method on datasets from the UCI repos-
itory. We demonstrate performance enhance-
ment on two challenging tasks: digit classifica-
tion with kernel SVM, and facial image retrieval
based on image similarity as measured by the
learnt kernel.

1. Introduction

Learning from small samples is an important problem,
where machine learning tools can in general provide very
few guarantees. This problem has received considerable
attention recently in the context of object recognition and
classification (see for example (Li et al., 2004)). Successful
generalization from a very small number of training sam-
ples often requires the introduction of a certain ’hypotheses
space bias’ (Baxter, 1997) using additional available infor-
mation. One such source of information may be unlabeled
data, leading to semi-supervised or transductive learning
(Chapelle et al., 2006). Another possible source of infor-
mation is to use labeled samples from related problems, and

Appearing in Proceedings of the 23 rd International Conference
on Machine Learning, Pittsburgh, PA, 2006. Copyright 2006 by
the author(s)/owner(s).

try to achieve “inter-class transfer”, also known as “learn-
ing to learn”. “Learning to learn” may be expected when
there is some shared within-class structure between vari-
ous classes. The idea is to learn from very small samples
by making use of information provided from other related
classes, for which sufficient amounts of labeled data are
present. There are a number of different methods which
have been previously suggested for exploiting the shared
structure between related classes (Thrun & Pratt, 1998).
These include the selection of priors (Baxter, 1997), hier-
archical modeling, and learning transformations between
class instances (Sali & Ullman, 1998; Ferencz et al., 2005;
Miller et al., 2000).

In this paper, we suggest to learn distance functions, and
show that such functions can provide a plausible alter-
native for transferring inter-class structure. In particular,
we describe KernelBoost - an algorithm that learns non-
parametric kernel functions. These kernels can then be
used for classification with kernel SVM. They can also be
used directly for retrieval based on similarity (as measured
by the kernel). The algorithm is semi-supervised and can
naturally handle unlabeled data. The direct input of the
algorithm is actually equivalence constraints - relations de-
fined on pairs of data points that indicate whether the pair
belongs to the same class or not. When provided with la-
beled data, such constraints may be automatically extracted
from the labels.

The learning algorithm we suggest is based on boosting.
In each round, the weak learner computes a Gaussian Mix-
ture Model (GMM) of the data using some of the equiva-
lence constraints and weights on the labeled and unlabeled
data points. The mixture is optimized using EM to find
a partition which complies with the data density, as well
as with the equivalence constraints provided. A ’weak ker-
nel’ hypothesis, defined over pairs of points, is then formed
based on the probability that the two points originate from
the same cluster in the learnt model. The boosting process
accumulates a weighted linear combination of such ’weak
kernels’, which define the final kernel. Note that this fi-
nal kernel is a function, defined for any pair of data points.
Details are presented in Sec. 2.
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We test our proposed algorithm both on classification and
retrieval tasks. We first tested the algorithm without using
any additional domain knowledge on several UCI datasets
(see Sec. 3). We then present results on the task of classify-
ing digit images, and on facial image retrieval using addi-
tional domain knowledge (see Sec. 4). Both tasks were se-
lected because there are good reasons to expect some form
of “inter-class-transfer” between the different classes (dig-
its or faces). In the classification tasks, the kernel function
is used in a standard ’soft margin’ SVM algorithm. Multi-
class problems are addressed using the ’all-pairs’ Error-
Correcting Output Codes (ECOC) technique (Dietterich &
Bakiri, 1995), in which the full set of binary classifiers over
pairs are combined to form an m-class classifier. In order
to try and make use of the relatedness of these binary clas-
sification problems, a single kernel function is trained on
the entire m-class training set. This single kernel function
is used (up to truncation as described in Sec. 2.4), by all of
the pairwise binary classifiers trained.

In an image retrieval task, the system is presented with a
query image and is required to return the images in the
database that are most similar to the query image. Per-
formance therefore relies on the quality of the similarity
function used to retrieve images. The similarity measure
can be hand-defined, or learnt using a set of labeled train-
ing images. Ultimately a good similarity function could
be trained on a set of labeled images from a small set of
classes, and could then be used to measure similarity be-
tween images from novel classes. In general, this is a very
challenging and currently unsolved problem. However, as
we show, on the more specific task of facial image retrieval,
our proposed algorithm learns a similarity function which
also generalizes well to faces of subjects who were not pre-
sented during training at all.

1.1. Related Work

There is a growing literature on the learning of distance
functions and kernels, two problems that are typically
treated quite differently. For example, learning a Maha-
lanobis metric from equivalence constraints is discussed
in (Xing et al., 2002; Bar-Hillel et al., 2005), while Dist-
Boost (Hertz et al., 2004) uses boosting to learn generative
distance functions which are not necessarily metric. The
question of how to learn a new kernel from a set of exist-
ing kernels and a training set of labeled data is discussed in
a number of recent papers, for example, (Cristianini et al.,
2002; Zhang et al., 2006; Lanckriet et al., 2002; Crammer
et al., 2002; Ong et al., 2005). Finally, learning of kernel
functions in the context of learning-to-learn is discussed in
(Yu et al., 2005).

We note however, that most of these kernel learning meth-
ods learn a kernel matrix (rather than a function), and there-

fore typically use the transductive framework which makes
it possible to learn a kernel matrix over the set of all data,
train and test. Without making the transductive assump-
tion, most earlier methods have dealt with the estimation of
kernel parameters. Our method, on the other hand, learns
a non-parametric kernel function defined over all pairs of
data points. The proposed method is semi-supervised and
can also make use of unlabeled data (which may not neces-
sarily come from the test set).

2. KernelBoost: Kernel Learning by Product
Space Boosting

KernelBoost is a variant of the DistBoost algorithm (Hertz
et al., 2004) which is a semi-supervised distance learning
algorithm that learns distance functions using unlabeled
datapoints and equivalence constraints. While the Dist-
Boost algorithm has been shown to enhance clustering and
retrieval performance, it was never used in the context of
classification, mainly due to the fact that the learnt dis-
tance function is not a kernel (and is not necessarily met-
ric). Therefore it cannot be used by the large variety of ker-
nel based classifiers that have shown to be highly success-
ful in fully labeled classification scenarios. KernelBoost
alleviates this problem by modifying the weak learner of
DistBoost to produce a ’weak’ kernel function. The ’weak’
kernel has an intuitive probabilistic interpretation - the sim-
ilarity between two points is defined by the probability that
they both belong to the same Gaussian component within
the GMM learned by the weak learner. An additional im-
portant advantage of KernelBoost over DistBoost is that it
is not restricted to model each class at each round using a
single Gaussian model, therefore removing the assumption
that classes are convex. This restriction is dealt with by us-
ing an adaptive label dissolve mechanism, which splits the
labeled points from each class into several local subsets,
as described in Sec. 2.5. An important inherited feature of
KernelBoost is that it is semi-supervised, and can naturally
accommodate unlabeled data in the learning process. As
our empirical results show, the ability to use unlabeled data
in the training process proves to be very important when
learning from small samples.

2.1. The KernelBoost Algorithm

Let us denote by {xi}n
i=1 the set of input data points which

belong to some vector space X , and by X × X the “prod-
uct space” of all pairs of points in X . An equivalence con-
straint is denoted by (xi1 , xi2 , yi), where yi = 1 if points
(xi1 , xi2 ) belong to the same class (positive constraint) and
yi = −1 if these points belong to different classes (negative
constraint). (xi1 , xi2 , ∗) denotes an unlabeled pair.

The algorithm makes use of the observation that equiva-
lence constraints on points in X are binary labels in the
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Algorithm 1 The KernelBoost algorithm.
Input:

Data points: (x1, ..., xn), xk ∈ X
A set of equivalence constraints: (xi1 , xi2 , yi), where yi ∈ {−1, 1}
Unlabeled pairs of points: (xi1 , xi2 , yi = ∗), implicitly defined by all unconstrained pairs of points

• Initialize W 1
i1i2 = 1/(n2) i1, i2 = 1, . . . , n (weights over pairs of points)

wk = 1/n k = 1, . . . , n (weights over data points)

• For t = 1, .., T

1. Fit a constrained GMM (weak learner) on weighted data points in X using the equivalence constraints.
2. Generate a weak kernel function Kt : X × X → [0, 1] and define a weak hypothesis as

K̃t(xi, xj) = 2Kt(xi, xj) − 1 ∈ [−1, 1]

3. Compute rt =
P

(xi1 ,xi2 ,yi=±1)

W t
i1i2yiK̃t(xi1 , xi2), only over labeled pairs. Accept the current hypothesis only if rt > 0.

4. Choose the hypothesis weight αt = 1
2

ln( 1+rt
1−rt

).

5. Update the weights of all points in X × X as follows:

W t+1
i1i2

=


W t

i1i2 exp(−αtyiK̃t(xi1 , xi2)) yi ∈ {−1, 1}
W t

i1i2 exp(−λ ∗ αt) yi = ∗

where λ is a tradeoff parameter that determines the decay rate of the unlabeled points in the boosting process.

6. Normalize: W t+1
i1i2

=
W t+1

i1i2
nP

i1,i2=1
W t+1

i1i2

7. Translate the weights from X × X to X : wt+1
k =

P
j W t+1

kj

Output: A final Kernel function of the form K(xi, xj) =
PT

t=1 αtKt(xi, xj).

product space, X × X . Thus, by posing the problem in
product space the problem is transformed into a classical
binary classification problem, for which an optimal classi-
fier should assign +1 to all pairs of points that come from
the same class, and −1 to all pairs of points that come from
different classes 1. The weak learner itself is trained in the
original space X , which allows it to make use of unlabeled
data points in a semi-supervised manner. The weak learner
is then used to generate a “weak kernel function” on the
product space.

The KernelBoost algorithm (described in Alg. 1 above)
learns a Kernel function of the following form:

K(x1, x2) =
T∑

t=1

αtKt(x1, x2) (1)

which is a linear combination of “weak kernel functions”
Kt with coefficients αt. The algorithm uses an augmen-
tation of the ’Adaboost with confidence intervals’ algo-
rithm (Schapire & Singer, 1999) to incorporate unlabeled
data into the boosting process. More specifically, given
a partially labeled dataset {(xi1 , xi2 , yi)}N

i=1 where yi ∈
1Also referred to as the ideal kernel (Cristianini et al., 2002).

{1,−1, ∗}, the algorithm searches for a hypothesis which
minimizes the following loss function:

∑

{i|yi=1,−1}
exp(−yiK(xi1 , xi2)) (2)

Note that this semi-supervised boosting scheme computes
the weighted loss only on labeled pairs of points but up-
dates the weights over all pairs of points. The unlabeled
points serve as a prior on the data’s density, which effec-
tively constrains the parameter space of the weak learner
in the first boosting rounds, giving priority to hypotheses
which both comply with the pairwise constraints and with
the data’s density. In order to allow the algorithm to fo-
cus on the labeled points as the boosting process advances,
the weights of the unlabeled points decay in a rate which is
controlled by a tradeoff parameter λ and by the weight of
each boosting round αt (see Alg. 1 step 5). Throughout all
experiments reported in this paper, λ was set to 10.

2.2. KernelBoost’s Weak Learner

KernelBoost’s weak learner is based on the constrained Ex-
pectation Maximization (cEM) algorithm (Shental et al.,
2003). The algorithm uses unlabeled data points and a
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set of equivalence constraints to find a Gaussian Mixture
Model (GMM) that complies with these constraints.

At each iteration t, the cEM algorithm’s uses a set of un-
labeled points X = {xi}n

i=1, and a set of pairwise con-
straints (Ω) over these points, in order to learn a Gaussian

mixture model with parameters Θt = {πt
k, µt

k,Σt
k}Mt

k=1 .

We denote positive constraints by {(p1
j , p

2
j )}Np

j=1 and nega-

tive constraints by {(n1
k, n2

k)}Nn

k=1. Let L = {li}n
i=1 denote

the hidden assignment of each data point xi to one of the
Gaussian sources (li ∈ {1, . . . , M}). The constrained EM
algorithm assumes the following joint distribution of the
observables X and the hiddens L:

p(X,L|Θ,Ω) = (3)

1
Z

n

Π
i=1

πlip(xi|θli)
Np

Π
j=1

δl
p1

j
l
p2

j

Nn

Π
k=1

(1 − δl
n1

k
l
n2

k

)

where Z is the normalizing factor and δij is Kronecker’s
delta. The algorithm seeks to maximize the data likelihood,
which is the marginal distribution of (3) with respect to L.
For a more detailed description of this weak learner see
(Shental et al., 2003).

2.3. Generating a Weak Kernel from a GMM

Given the mixture Θt at round t, we construct a ’weak
kernel’ which essentially measures the probability that two
points belong to the same Gaussian component. Denoting
the hidden label of a point according to the mixture by l(x),
the kernel is given by

Kt(x1, x2) = p[l(x1) = l(x2)|Θ] (4)

=
Mt∑

j=1

p(l(x1) = j|Θ)p(l(x2) = j|Θ)

where p[l(x) = j|Θ] = πjG(x|µk,Σk)
MtP

k=1
πkG(x|µk,Σk)

, and G(x|µ,Σ)

denotes the Gaussian probability with parameters µ and Σ.

This “weak kernel” is bounded in the range [0, 1]. The
weak hypothesis required for updating the sample weights
in the boosting process is created by applying the linear
transformation 2K(x1, x2)− 1 ∈ [−1, 1] to the ’weak ker-
nel’. Note that the final combined kernel is a linear combi-
nation of the “weak kernels” (and not the weak hypotheses)
in order to ensure positive definiteness.

2.4. Adapting the Learned Kernel Function

As noted above, KernelBoost can learn a single kernel func-
tion over a multi-class dataset, which can then be used to
train both binary classifiers and an m-class classifier. When
training a binary classifier between any subset of labels

from the data, we adapt the learned kernel function. More
specifically, we consider all ’truncated’ kernel combina-
tions, i.e kernels that are a truncation of the full learned
kernel up to some t′ ≤ T . In order to select the optimal
truncated kernel for a given binary classification problem,
we use the empirical kernel alignment score suggested by
(Cristianini et al., 2002) between the learned kernel and the
’ideal’ kernel (Kideal = yy′) which is given by

Alignment(K,S) =
〈K,Kideal〉F√〈K,K〉F 〈Kideal,Kideal〉F

where S = (xi, yi) is the training sample, y denotes the
vector of point labels and 〈.〉F denotes the Frobenius prod-
uct . This score is computed for t = 1 . . . T and the kernel
with the highest score on the training data is selected.

2.5. The Label Dissolving Mechanism

The weak learner of the KernelBoost algorithm treats all
constraints as hard constraints; in particular, since all pos-
itive constraints are always satisfied in the cEM algorithm,
its only option is to attempt to place all of the points from
the same label in a single Gaussian at every iteration. This
is very problematic for non-convex classes generated by
non-Gaussian distributions (see Fig. 1). Therefore, in order
to enrich the expressive power of KernelBoost and to al-
low it to model classes of these types, the algorithm is aug-
mented by a label-dissolving mechanism, which relies on
the boosting weights. This mechanism splits sets of points
with the same label into several local subsets, which allows
the algorithm to model each of these subsets separately, us-
ing a different Gaussian model.

Figure 1. A 2-d synthetic
example of a non-convex
and non-Gaussian dataset.

The intuition leading to the
proposed mechanism is the
following: We would like to
model each non-convex class,
using several local Gaussians.
The attempt to model a highly
non-Gaussian, or non-convex
class using a single Gaussian,
will fail, and cause some of
the pairwise constraints to be unsatisfied. The boosting pro-
cess focuses each new weak learner on those harder pairs
still inconsistent with the current hypothesis. The adaptive
dissolve mechanism uses these pairwise weights to elimi-
nate edges already consistent with the current hypothesis
from a local neighborhood graph. Classes are therefore
split into small local subsets. The dissolve mechanism pro-
posed is presented below in Alg. 2.

This mechanism has one tunable parameter Nmutual,
which determines the pre-computed neighborhood graph
for each of the labels2. This parameter implicitly affects

2Neighbors are defined as “mutual” iff i is within the first N
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Algorithm 2 The adaptive label-dissolve mechanism.

Preprocess: For each label l, compute a local neighborhood
graph where each labeled datapoint is connected to all of
its mutual neighbors from the first Nmutual neighbors.

For t = 1 . . . T do

For each label l do

1. Define the edge weights on the graph to be the pairwise
weights W t

i1,i2 computed by the boosting process.
2. Threshold edges by removing all edges whose weight

is smaller then the average edge weight given by
1
|l|

P
(i1,i2)∈l W t

i1,i2 .

3. Compute the connected components of the graph and
use them to define a partition of the labels from the
current class into small and local subsets.

the number of subsets obtained at each boosting round.

2.6. The Kernel’s Implicit Representation

The substitution of Equation (4) into (1) yields the structure
of the learnt kernel:

K(x1, x2) = (5)
T∑

t=1

Mt∑

k=1

√
αtp[l(x1) = k|Θt] · √αtp[l(x2) = k|Θt]

If we think of each element in the sum in Equation (5) as a
feature in a feature-space of dimension

∑T
t=1 M t, then the

coordinate corresponding to the pair (t, k) holds a feature
of the form

Φt,k(x) =
√

αt
πkG(x|µt

k,Σt
k)

Mt∑
j=1

πjG(x|µt
j ,Σ

t
j)

(6)

These features can be interpreted as soft Voronoi cell indi-
cators: a high value for feature Φt,k indicates that the point
lies in cell k of the partition induced by mixture t. These
features are rather different from the prototype-like RBF
features. Specifically, their response does not necessarily
decay rapidly with the distance from the Gaussian’s center.
Decay only happens in regions where other Gaussians from
the same mixture are more likely.

3. Experiments: Learning from Small
Samples

3.1. Visualization using 2D Synthetic Datasets

We begin by returning to the non-convex, and non-
Gaussian dataset presented in Fig. 1. Each class in this

neighbors of j and vice-versa.

dataset was created using two Gaussians. We compared the
performance of KernelBoost to several standard kernels.
More specifically, we compared the following kernels: (1)
KB - KernelBoost, (2) KB-dis - KernelBoost which in-
cludes the label dissolving mechanism described above, (3)
the linear kernel, (4) the polynomial kernel of degree 2, (5)
the RBF kernel (with σ chosen using cross-validation)

The dataset contains 500 datapoints. In our experiment we
randomly selected Ntrain datapoints for training (where
Ntrain = 20 or 100) and used the remaining datapoints for
testing. We uniformly set the SVM tradeoff parameter C to
5 in all these experiments. Each of the two experiments was
repeated for 10 random train-test data splits. KernelBoost
was run for 10 boosting iterations.

Table 1. A comparison of classification accuracy on the non-
convex and non-Gaussian dataset shown in Fig. 1. Best Results
are highlighted in bold.

Ntrain KB KB-dis Linear Poly. RBF

20 17.5 4.5 12.0 13.1 6.3
100 17.9 0.9 10.4 10.5 1.9

The results are reported in Table 1. As may be seen, Kernel-
Boost with the dissolve mechanism outperforms all other
kernels on this dataset for both small and large samples.
Using the label dissolving mechanism suggested above,
KernelBoost can generate general non-convex separators,
as can be seen from the results in Table 1. Fig. 2 shows the
learnt Gaussians and the separating hyper-plane induced by
the learnt kernel in a typical experiment on this dataset.

Figure 2. Left: The Gaussians learnt by KernelBoost-dissolve
(presented in Sec. 2.5). The Ellipses mark 1-std contours. Darker
ellipses show Gaussians obtained at later boosting rounds. Right:
The separator induced by the Gaussians for this example. Support
vectors are marked by black dots.

3.2. Results on UCI Datasets

We now turn to evaluate the performance of our algorithm
on several real datasets from the UCI repository, and also
compare its performance to some standard ’off the shelf’
kernels.
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Experimental setup We used 4 datasets from the UCI
data repository (Blake & Merz, 1998): wine, ionosphere
breast cancer and balance. These experiments were con-
ducted in a transductive setting, i.e. the test data was pre-
sented to the KernelBoost algorithm as unlabeled data. We
used 10% of the data as training sample. For each of these
conditions we compare our method with some standard
’off-the-shelf’ kernels, and report the best results of (Zhang
et al., 2006) on the same experimental setup. The results
reported are averages over 10 random train/test splits. In
all of these experiments the SVM tradeoff parameter was
set to 300. The dissolve neighborhood parameter Nmutual

was set to 12, and we used T = 30 boosting rounds. The
results may be seen in Table 2. KernelBoost outperforms
other methods on 3 of the 4 datasets.

Table 2. A comparison of classification accuracy of various ker-
nels on 4 UCI datasets. In this experiment 10% of the data was
used both for learning the kernel and training the SVM classifier.
Results were averaged over 10 different realizations of train and
test data. Best results are highlighted in bold.

Data KB KB-dis Lin. Poly. RBF Zhang

wine 95.1 95.4 91.9 78.3 90.8 94.6
ionos. 85.9 90.4 79.7 72.3 84.5 87.6
breast 94.2 92.6 94.8 93.9 95.7 94.6
balance 83.5 86.4 84.4 77.4 85.0 —

4. Experiments: Learning to Learn

4.1. MNIST Digit Classification

Various different classification methods have been used on
the MNIST dataset, some of which providing almost per-
fect results (LeCun et al., 1998). However, these methods
were all trained and tested on very large samples of train-
ing data (usually on the entire training set which consists
of 60, 000 datapoints). Since we are interested in testing
inter-class transfer, we conducted a set of experiments in
which a very limited amount of training data was used.

Experimental setup: In these experiments, we randomly
selected 1000 sets of 4 digits from the dataset, and used 5
different train/test splits for each set. For each set of 4 dig-
its, we further split the classes into 2 pairs: one pair was
designated to provide large amounts of data for training,
while the other pair was designated to provide a very small
amount of training data. For each 4-tuple, we considered
all 6 possible splits into pairs. For the designated ’large’
classes we randomly selected 100 datapoints as train data.
For the designated ’small’ classes, we randomly selected k
labeled points from each class, where k = 3, 4, 5, 6, 10 and
20. Additionally, for each of the 4 digits we randomly se-
lected 200 datapoints which were supplied to the learning
algorithm as unlabeled data . KernelBoost used the train-

ing data from all 4 classes to learn a single kernel func-
tion. Predictions were evaluated on a test set of 200 points
from each class, which were not presented during the train-
ing stage. Images were represented using the first 30 PCA
coefficients of the original vectorized images. The SVM
tradeoff parameter C was set to 300, T was set to 10 and
the Nmutual parameter was uniformly set to 12.

After learning the kernel function, we trained SVM bi-
nary classifiers for all 6 digit pairs. As a baseline com-
parison, we also trained SVM binary classifiers using stan-
dard ’off-the-shelf’ kernels for all the pairs. We compared
our algorithm to the following standard kernels: linear,
RBF and a polynomial kernel of degree 5 (which has been
shown to perform well on the MNIST dataset (LeCun et al.,
1998)). The binary SVM’s were also used to create a multi-
class classifier using the ’all-pairs’ Error Correcting Output
Codes (ECOC) scheme (Dietterich & Bakiri, 1995).

These 6 binary classification problems (for each 4 digits)
can be divided into 3 subgroups, to allow a more detailed
analysis of the effects of “inter-class-transfer”:

1. ’small vs. small’ - the single binary classifier trained
on the two classes for which a very small amounts of
labeled points was present (k).

2. ’small vs. large’ - the 4 binary classifiers which were
trained on two classes, where one had a large amount
of labeled points (100) and the other had a very small
amount of labeled points (k).

3. ’large vs. large’ - the single binary classifier trained
on the two classes for which large amounts (100) of
labeled data was present.

From these three types, the first two may benefit from
inter-class transfer. Clearly the hardest binary classifica-
tion problem is the ’small vs. small’ one in which the total
amount of datapoints is only 2k. However, the 4 ’small vs.
large’ binary problems are also very challenging.

Classification results: The results on the MNIST classi-
fication tasks when using k = 3 labeled points for the small
classes are presented in Table 3. These results demonstrate
a clear advantage of KernelBoost over all other standard
kernels in this difficult classification task. Specifically, in
the challenging ’small vs. small’ condition, both Kernel-
Boost variants obtain significantly better accuracy scores
over all other kernels. Note that the performance of the
KB-dis variant is always superior to that of the original KB
method. In the ’small vs. large’ condition, both Kernel-
Boost variants achieve excellent performance with an im-
provement of roughly 15% in test accuracy over all other
kernels. Finally, as expected, in the ’large vs. large’ con-
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Table 3. A comparison of median classification accuracy of KernelBoost with various other standard kernels on randomly selected
subsets of 4 digits from the MNIST dataset. In this experiment the amount of labeled points for the ’small’ classes k was 3. Best Result
are highlighted in bold.

Type Kboost KboostDis Lin. Poly(5) RBF

’small vs. small’ 84.80(±0.40) 85.01(±0.46) 81.7(±0.31) 56.45(±0.37) 79.20(±0.33)
’small vs. large’ 92.90(±0.13) 89.60(±0.21) 72.70(±0.17) 51.10(±0.13) 77.60(±0.19)
’large vs. large’ 96.70(±0.15) 96.40(±0.23) 96.50(±0.10) 97.90(±0.08) 97.70(±0.08)
’ECOC’ (multi-class) 79.30(±0.23) 72.33(±0.27) 64.90(±0.22) 50.35(±0.17) 67.83(±0.23)
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Figure 3. Median classification accuracy on the MNIST dataset as a function of the number of labeled points. Methods compared are:
KB - KernelBoost, KB-dis - KernelBoost with the label dissolve mechanism, Lin. - linear kernel, Poly. - polynomial kernel of degree
5, and RBF - RBF kernel with σ chosen using cross-validation. Left: Results on the ’small vs. small’ classes. Middle: Results on the
’small vs. large’ classes. Right: multi-class classification results. When the Polynomial kernel is not shown its accuracy ≤ 60%.

dition all of the algorithms obtain almost perfect classi-
fication accuracy, and the polynomial kernel of degree 5
achieves the best performance. Note however, that on all
other tasks the polynomial kernel performs poorly, which
implies serious overfitting. Another clear advantage of the
KernelBoost algorithm is shown in the multi-class classi-
fication task, where its performance is significantly better
than all other methods.

It is interesting to analyze the results on these 4 classifi-
cation tasks as the number of labeled points k increases,
as shown in Fig. 3. Clearly, as the amount of labeled
data increases, the performance of all kernels improves, but
KernelBoost still maintains a significant advantage over its
competitors.

4.2. Facial Image Retrieval Results

In the previous section we have shown that KernelBoost
makes use of interclass transfer on digits from the MNIST
dataset. We now turn to another relevant application of fa-
cial image retrieval.

Experimental setup: We used a subset of the YaleB fa-
cial image dataset (Georghiades et al., 2000). The dataset
contains a total of 1920 images, including 64 frontal pose
images of 30 different subjects. In this database the vari-
ability between images of the same person is mainly due
to different lighting conditions. The images were automat-
ically centered using optical flow. Images were then con-

verted to vectors, and each image was represented using its
first 9 Fisher Linear Discriminant coefficients, which were
computed over the first 150 PCA coefficients. KernelBoost
was run for 10 boosting iterations, with a Gaussian Mix-
ture model with a single (shared) covariance matrix. On
this dataset, we conducted three experiments:

1. ’Fully supervised’ - in which we randomly selected
images from 20 of the subjects. We used 50% of their
data as training data and tested on the remaining 50%.

2. ’Semi-supervised’ setting in which we augmented the
train data of experiment 1 with an additional 50% of
the data from the remaining 10 classes as unlabeled
data, and tested performance on the remaining 50% of
the unlabeled classes.

3. ’Unsupervised’ setting in which we trained the algo-
rithm using the exact same data of exp. 1 and tested it
on images from the remaining 10 classes which were
not present during the training stage at all.

In the test stage of each of the experiments, the retrieval
database contained images of all 30 subjects, part (or all of
which) was used by the learning algorithms. For each im-
age we compute the ROC (Receiver Operating Characteris-
tic) curve and these ROCs are averaged to produce a single
ROC curve. The fraction of the area under the curve (AUC
score) is indicative of the distinguishing power of the algo-
rithm and is used as its prediction accuracy. We compare
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Figure 4. ROC retrieval curves on the YaleB dataset. The graphs
compare the performance of KernelBoost to RCA and to the Eu-
clidean distance metric in a “Learning to learn” scenario. Left:
Results for classes for which unlabeled data was presented during
the training stage. Right: Results on novel classes for which no
data at all was present during training.

the performance of our method to the RCA algorithm (Bar-
Hillel et al., 2005), which is a Mahalanobis metric learning
algorithm that has been shown to work well on image and
video retrieval (Bar-Hillel et al., 2005). As a baseline mea-
sure we also used the Euclidean metric.

Retrieval results: The results of the 3 experiments de-
scribed above are presented in Fig 4, and summarized in
Table 4. In the ’Fully-supervised’ experiment, the Kernel-
Boost method obtains almost perfect performance, with a
clear advantage over the simpler RCA algorithm. In the
’Semi-supervised’ experiment, both methods’ performance
degrades, but KernelBoost still performs significantly bet-
ter than all other methods. In the ’Unsupervised’ setting,
where the test set consists of faces of individuals not seen
during training, the performance degrades some more, but
both algorithms still perform significantly better that the
Euclidean distance metric.

Table 4. AUC scores (and ste’s) for the three image retrieval ex-
periments conducted on the YaleB dataset. See text for details.

Exp No. KernelBoost RCA Euclidean

(1) 98.94(±0.01) 93.88(±0.01) 60.84(±0.01)
(2) 84.57(±0.04) 77.37(±0.03) 59.00(±0.00)
(3) 79.74(±0.06) 76.62(±0.04) 58.92(±0.01)

5. Discussion

The main contribution of this paper lies in the description
of a method for learning non-parametric kernel functions.
The algorithm presented is semi-supervised (i.e., it bene-
fits from unlabeled data), and can learn from very small
samples. When used with kernel SVM, classification per-
formance was shown to be significantly better than various
standard kernels. The benefit of learning the kernel func-
tion was most evident in the context of “learning to learn”,
in which information is transferred to classes for which
only a few examples are available for training. In future
work we hope to explore the benefit of such learned ker-
nels when combined with other kernel-based techniques.
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Abstract
Background: Many different aspects of cellular signalling, trafficking and targeting mechanisms are
mediated by interactions between proteins and peptides. Representative examples are MHC-
peptide complexes in the immune system. Developing computational methods for protein-peptide
binding prediction is therefore an important task with applications to vaccine and drug design.

Methods: Previous learning approaches address the binding prediction problem using traditional
margin based binary classifiers. In this paper we propose PepDist: a novel approach for predicting
binding affinity. Our approach is based on learning peptide-peptide distance functions. Moreover,
we suggest to learn a single peptide-peptide distance function over an entire family of proteins
(e.g. MHC class I). This distance function can be used to compute the affinity of a novel peptide to
any of the proteins in the given family. In order to learn these peptide-peptide distance functions,
we formalize the problem as a semi-supervised learning problem with partial information in the
form of equivalence constraints. Specifically, we propose to use DistBoost [1,2], which is a semi-
supervised distance learning algorithm.

Results: We compare our method to various state-of-the-art binding prediction algorithms on
MHC class I and MHC class II datasets. In almost all cases, our method outperforms all of its
competitors. One of the major advantages of our novel approach is that it can also learn an affinity
function over proteins for which only small amounts of labeled peptides exist. In these cases, our
method's performance gain, when compared to other computational methods, is even more
pronounced. We have recently uploaded the PepDist webserver which provides binding prediction
of peptides to 35 different MHC class I alleles. The webserver which can be found at http://
www.pepdist.cs.huji.ac.il is powered by a prediction engine which was trained using the framework
presented in this paper.

Conclusion: The results obtained suggest that learning a single distance function over an entire
family of proteins achieves higher prediction accuracy than learning a set of binary classifiers for
each of the proteins separately. We also show the importance of obtaining information on
experimentally determined non-binders. Learning with real non-binders generalizes better than
learning with randomly generated peptides that are assumed to be non-binders. This suggests that
information about non-binding peptides should also be published and made publicly available.
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Background
Many different aspects of cellular signalling, trafficking
and targeting mechanisms are mediated by interactions
between proteins and peptides. In the immune system, for
example, the major task of recognizing foreign pathogen
proteins is mediated by interactions between Major Histo-
compatibility Complex (MHC) molecules and short path-
ogen-derived peptides (see Fig. 1). T-cells recognize these
peptides only when they are bound to MHC molecules.
Understanding the underlying principles of MHC-peptide
interactions is therefore a problem of fundamental impor-
tance, with applications to vaccine and drug design [3].
MHC binding is a challenging problem because MHC
molecules exhibit high specificity – it is estimated that
each molecule only binds to 1% of all existing peptides
[4]. Additionally, MHC molecules are highly polymor-
phic and polygenic – there are hundreds of different alle-
les in the entire population while each individual carries
a few alleles only (up to 6 MHC class I alleles and up to 12
MHC class II alleles) [5].

Biochemical assays, which empirically test protein-pep-
tide binding affinity, can nowadays provide a rather high
throughput rate [6]. However, note that there are 20L pep-
tides of length L (for 9 amino-acid long peptides as in the
MHC proteins this amounts to 1012 peptides) and a great
number of proteins that need to be considered. Therefore,
in recent years, there has been a growing interest in devel-
oping computational methods for protein-peptide bind-
ing prediction [7-13]. Formally, the protein-peptide
binding prediction problem can be stated as follows:
given a protein and a peptide, predict the binding affinity
of the interaction between the two. Stated this way, the
protein-peptide binding prediction is essentially a simpli-
fied version of the more general protein docking problem.

What should we expect from a "good" binding prediction
algorithm? [8].

1. Classification: A good binding prediction algorithm
should first and foremost correctly predict whether a
query peptide (which was not provided during the train-
ing stage) binds or does not bind to the given protein.

2. Ranking: An even stronger requirement is that the algo-
rithm could also obtain a relative binding score for each
peptide that can be used to rank different peptides accord-
ing to their specificity.

3. Affinity prediction: Ultimately, the algorithm's score
would predict the precise binding affinity values as deter-
mined experimentally.

Clearly, current state-of-the-art prediction methods
obtain promising classification results (for a recent com-

parison between several methods see [14]). Many of these
methods also compute binding scores for each peptide,
but these scores are in most cases not even compared to
the empirically known affinity values, and have even been
shown to have poor correspondences in some cases [15]
(an interesting exception is a recent work on the PDZ
domain [16]).

Most prediction algorithms formalize the protein-peptide
binding prediction problem as a binary classification
problem: For each protein (i.e. MHC molecule) a classifier
is trained to distinguish binding peptides from non-bind-
ing peptides. After an initial training stage, the classifier is
tested on a set of peptides, which were not presented dur-
ing the training stage. The training data consists of exper-
imentally determined binders and randomly generated
peptides which are assumed to be non-binders. Interest-
ingly enough, only rarely are experimentally determined
non-binders used, mainly because a small number of
these non-binders have been made publicly available.

In this paper we suggest a novel formulation of the pro-
tein-peptide binding prediction problem. Our approach is
driven by the following two important observations:

Observation 1 Peptides that bind to the same protein are
"similar" to one another, and different from non-binding pep-
tides.

This observation underlies most, if not all, computational
prediction methods. Motif based methods [8,13] for
example, search for a binding motif that captures the sim-
ilarity of a set of known binding peptides. Prediction is
then based on the similarity of a query peptide to the
motif, which implicitly measures the similarity of the

Schematized drawing of a peptide in the binding groove of MHC class I (a) and MHC class II (b) moleculesFigure 1
Schematized drawing of a peptide in the binding groove of 
MHC class I (a) and MHC class II (b) molecules. The peptide 
backbone is shown as a string of balls, each of which repre-
sents a residue.

(a) (b)
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query peptide to the peptides in the training set. This
observation suggests that given a novel peptide, one can
predict its binding affinity to a specific protein, by explic-
itly measuring the average distance (or similarity) of the
novel peptide to a list of known binding peptides. Intui-
tively speaking, if the peptide is close to the known bind-
ers, we would classify it as a binder, and if it is far – we
would classify it as a non-binder.

Observation 2 Peptides binding to different proteins within
the same "family" resemble each other

Proteins from the same family (e.g. MHC class I) are
known to have structural and sequential similarity. There-
fore they bind to peptides that share common characteris-
tics. Additionally, in MHC class I and MHC class II, many
proteins are grouped into supertypes [17] (such as the
HLA-A2 MHC class I supertype). A supertype is a collec-
tion of proteins whose binding peptide sets are overlap-
ping. This observation implies that we may benefit from
simultaneously learning a single binding prediction func-
tion over an entire family of proteins, instead of inde-
pendently learning a single classifier for each of the
proteins within the protein family. At a first glance it
might appear that one can recast a set of binary classifica-
tion problems using a single multi-class classification
problem. However, a closer look reveals that the protein-
peptide binding problem is not a multi-class classification
problem due to the following inherent facts: (1) Some
peptides bind to several proteins within a family (indeed
this information is used to define MHC supertypes). (2) A
peptide that does not bind to a specific protein within a
family, does not necessarily bind to a different protein
within the family.

Our novel approach is based on the two observations
described above. We propose to address the protein-pep-
tide binding prediction problem by learning peptide-pep-
tide distance functions. We do not require that the triangle
inequality holds, and thus our distance functions are not
necessarily metrics. Moreover, based on observation 2, we
suggest to pool together information from an entire pro-
tein family and to learn a single peptide-peptide distance
function (instead of learning a different distance function
for every protein independently). Our peptide-peptide
distance function is then used to compute protein-peptide
binding affinity – the affinity of a query peptide to a given
protein is inversely proportional to its average distance
from all of the peptides known to bind to that protein.
Our proposed learning scheme is summarized in Fig. 2
and elaborated in the following section.

Learning peptide distance functions

As mentioned above, we propose to address the protein-
peptide binding affinity prediction problem by learning a

peptide-peptide distance function over an entire family of
proteins. A distance function  assigns a non-negative
value for each pair of points. Most algorithms that learn
distance functions make use of equivalence constraints
[1,2,18-22]. Equivalence constraints are relations between
pairs of data points, which indicate whether the points in
the pair belong to the same category or not. We term a
constraint positive when the points are known to be from
the same class, and negative in the opposite case. In this
setting the goal of the algorithm is to learn a distance func-
tion that attempts to comply with the equivalence con-
straints provided as input.

In our setting, each protein defines a class. Each pair of
peptides (data-points) which are known to bind to a spe-
cific protein (that is, belong to the same class) defines a
positive constraint, while each pair of peptides in which
one binds to the protein and the other does not – defines
a negative constraint. Therefore, for each protein, our
training data consists of a list of binding and non-binding
peptides, and the set of equivalence constraints that they
induce.

We collect these sets of peptides and equivalence con-
straints from several proteins within a protein family into
a single dataset. We then use this dataset to learn a pep-
tide-peptide distance function (see Fig. 3 left plots). Using
this distance function, we can predict the binding affinity
of a novel peptide to a specific protein, by measuring its
average distance to all of the peptides which are known to
bind to that protein (see Fig. 3 right plots). More formally,

let us denote by  the distance

between Peptidei and Peptidek and by Bj the group of pep-

tides known to bind to Proteinj. We define the affinity

between Peptidei and Proteinj to be:



 Peptide Peptidei k,( )

The PepDist frameworkFigure 2
The PepDist framework.

Input:
A dataset of binding and non binding peptides from an entire protein family.

1. For each protein: Extract “positive” and “negative” equivalence con-
straints using its known binding and non-binding peptides, respectively.

2. Learn a single peptide-peptide distance function over this dataset using
the equivalence constraints extracted in step 1.

3. Define a protein-peptide affinity function using the peptide-peptide dis-
tance function from step 2.

Output:
A single protein-peptide affinity function over the entire protein family.
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In order to learn peptide-peptide distance functions, we
use the DistBoost algorithm [1,2], which learns distance
functions using data and some equivalence constraints
(see Methods for the algorithm's description). DistBoost
requires that the data be represented in some continuous

vector feature space. We therefore represent each amino-
acid using a 5-dimensional feature vector as suggested by
[23], and each peptide by concatenating its amino-acid
feature vectors (for further details see the Data representa-
tion section). We compare our method to various protein-
peptide affinity prediction methods on several datasets of
proteins from MHC class I and MHC class II. The results
show that our method significantly outperforms all other
methods. We also show that on proteins for which small
amounts of binding peptides are available the improve-
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Left: peptide-peptide distance matrices of MHC class I binding peptides, collected from the MHCBN datasetFigure 3
Left: peptide-peptide distance matrices of MHC class I binding peptides, collected from the MHCBN dataset. Peptides that 
bind to each of the proteins were grouped together and labeled accordingly. Following Observation 1, a "good" distance matrix 

should therefore be block diagonal. Top left: The Euclidean peptide-peptide distance matrix in  (see Methods for details). 
Bottom left: The peptide-peptide distance matrix computed using the DistBoost algorithm. Right: protein-peptide affinity matri-
ces. The affinity between a peptide and a specific protein is computed by measuring the average distance of the peptide to all 
peptides known to bind to that protein (see eq. 1). Top right: the Euclidean affinity matrix. Bottom right: the DistBoost affinity 
matrix. DistBoost was trained on binding peptides from all of the proteins simultaneously.
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ment in performance is even more pronounced. This
demonstrates one of the important advantages of learning
a single peptide distance function on an entire protein
family.

Related work
Many different computational approaches have been sug-
gested for the protein-peptide binding prediction prob-
lem (see [24] for a recent review). These methods can be
roughly divided into three categories:

Motif based methods
Binding motifs represent important requirements needed
for binding, such as the presence and proper spacing of
certain amino acids within the peptide sequence. Predic-
tion of protein-peptide binding is usually performed as
motif searches [8,15]. The position specific scoring matrix
(PSSM) approach is a statistical extension of the motif
search methods, where a matrix represents the frequency
of every amino acid in every position along the peptide.
Peptide candidates can be assigned scores by summing up
the position specific weights. The RANKPEP resource [13]
uses this approach to predict peptide binding to MHC
class I and class II molecules.

Structure based methods
These methods predict binding affinity by evaluating the
binding energy of the protein-peptide complex [9]. These
methods can be applied only when the three-dimensional
structure of the protein-peptide complex is known or
when reliable molecular models can be obtained.

Machine learning methods
Many different learning algorithms have been suggested
for binding prediction. Among these are artificial neural
networks (NetMHC) [12], Hidden Markov Models
(HMM's) [10] and support vector machines (SVMHC)
[11]. To the best of our knowledge all of these methods
are trained separately for each protein (or supertype).
Therefore, these methods work well when sufficient
amounts of training data (i.e peptides which are known to
be binders or non-binders for a given protein) is provided.

Results
We evaluated the performance of our method on several
MHC class I and MHC class II datasets, and compared it
to various other prediction methods (see Methods for
details about these datasets). We begin with a thorough
comparison of our method to the recently enhanced
RANKPEP method [13] on MHC class I and class II data-
sets. In order to assess the importance of using experimen-
tally determined non-binders, we tested our method on
another MHC class I dataset collected from the MHCBN
repository. On this dataset we also compare our method
to various other MHC binding prediction methods.

MHC binding prediction on the MHCPEP dataset
We compared our method to the recently enhanced
RANKPEP method [13]. We replicated the exact experi-
mental setup described in [13]: (1) We used the exact
same MHC class I and class II datasets. (2) Training was
performed using 50% of the known binders for each of
the MHC molecules. (3) The remaining binding peptides
were used as test data to evaluate the algorithm's perform-
ance. These binders were tested against randomly gener-
ated peptides.

We trained DistBoost in two distinct scenarios: (1) Train-
ing using only binding peptides (using only positive con-
straints). (2) Training using both binding and (randomly
generated) non-binding peptides (using both positive and
negative constraints). In both scenarios DistBoost was
trained simultaneously on all of the MHC molecules in
each class. Fig. 4 presents a comparison of DistBoost to
both of the PSSM's used in [13]. on the H-2Kd MHC class
I molecule. Comparative results on the entire MHC class I
and class II datasets are presented in Figures 5 and 6,
respectively. In all these comparisons, the PSSM AUC
scores (See Methods for details) are as reported in [13].

On the MHC class I molecules, our method significantly
outperforms both PSSM's used by RANKPEP. On 21 out

Comparative results of DistBoost and RANKPEP on the H-2Kd MHC class I moleculeFigure 4
Comparative results of DistBoost and RANKPEP on the H-
2Kd MHC class I molecule. The left plot presents ROC (see 
Evaluation methods section for details) curves of the best 
test score obtained when training on 50% of the entire data 
(red: using only positive constraints; blue: using both types of 
constraints). The intersection between the curves and the 
diagonal line marks the equal error-rate statistic. The right 
plot presents average AUC scores on test data. We compare 
the two PSSM methods used by RANKPEP (A: PROFILE-
WEIGHT, B: BLK2PSSM) to DistBoost when trained using 
only positive constraints (C) and when trained using both 
positive and negative constraints (D). The averages were 
taken over 10 different runs on randomly selected train and 
test sets. N denotes the total number of binding peptides (of 
which 50% were used in the training phase and the remaining 
50% were used in the test phase). For a detailed comparison 
see Figs. 5-6.
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Comparative results of DistBoost (left plot and bars C-D) and RANKPEP (bars A-B) on 24 MHC class I moleculesFigure 5
Comparative results of DistBoost (left plot and bars C-D) and RANKPEP (bars A-B) on 24 MHC class I molecules. Plot legends 
are identical to Fig 4. On 21 out of the 25 molecules (including Fig. 4), DistBoost outperforms both PSSM methods. On this data 
the use of negative constraints also improves performance. For numerical comparison, see additional file 1: 
Pepdist_SupplementaryMaterials.ps, Table 1.
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Comparative results of DistBoost (left plot and bars C-D) and RANKPEP (bars A-B) on 24 MHC class II moleculesFigure 6
Comparative results of DistBoost (left plot and bars C-D) and RANKPEP (bars A-B) on 24 MHC class II molecules. Plot legends 
are identical to Fig 4. As may be seen, on 19 out of the 24 molecules, DistBoost outperforms both PSSM methods. On this data-
set the use of negative constraints only slightly improves performance. For numerical comparison, see additional file 1: 
Pepdist_SupplementaryMaterials.ps, Table 2.
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of the 25 molecules DistBoost's average AUC score, when
trained using only positive constraints, is higher than
both PSSM methods. The improvement in performance is
more pronounced on molecules with relatively small
amounts of known binders (e.g. HLA-B27(B*2704) – 10
binders, HLA-A2(A*0205) – 22 binders and HLA-
A33(A*3301) – 23 binders). One possible explanation of
these results is that the information provided by other
proteins within the protein family is used to enhance pre-
diction accuracy, especially in cases where only small
amounts of known binders exist. Additionally, it may be
seen that using both positive and negative constraints on
this dataset, usually improves the algorithm's perform-
ance. Another important advantage of DistBoost can be
seen when comparing standard deviations (std) of the
AUC scores. When DistBoost was trained using only posi-
tive constraints, on 13 out of the 25 molecules the algo-
rithm's std was lower than the std of both PSSM's. When
DistBoost was trained using both positive and negative
constraints, on 20 out of the 25 molecules the algorithm's
std was lower than the std of both PSSM's. These results
imply that our method is more robust.

When tested on the MHC class II molecules, our method
obtained similar improvements (see Fig. 6): On 19 out of
the 24 molecules DistBoost's average AUC score when
trained using only positive constraints is higher than both
PSSM methods. In general, it appears that the perform-
ance of all of the compared methods is lower than on the
MHC class I dataset. It is known that predicting binding
affinity on MHC class II is more challenging, partially due
to the fact that peptides that bind to class II molecules are
extremely variable in length and share very limited
sequence similarity [25]. On this dataset, the use of both
positive and negative constraints improved DistBoost's
performance on only 11 out of 24 molecules.

MHC class I binding prediction on the MHCBN dataset
The MHCPEP dataset only contains information about
peptides that bind to various MHC molecules. In contrast,
the MHCBN dataset also contains information about
non-binding peptides for some MHC class I molecules.
We used this dataset to evaluate the importance of learn-
ing using experimentally determined non-binders (as
opposed to randomly generated non binders).

We compared DistBoost to various other computational
prediction methods on peptides that bind to the HLA-A2
supertype, collected from the MHCBN repository. Specifi-
cally, we compared the performance of the following
methods: (1) The DistBoost algorithm. (2) The SVMHC
web server [11]. (3) The NetMHC web server [12]. (4) The
RANKPEP resource [13] (5) The Euclidean distance metric

in  Despite the fact that methods (2–4) are protein

specific, they also provide predictions on various MHC
supertypes including the HLA-A2 supertype.

We note that it is unclear whether the peptides collected
from the MHCBN repository are the HLA-A2 supertype
binders, or HLA-A*0201 binders which was named HLA-
A2 in the older HLA nomenclature. When we compared
our predictions to those of the SVMHC and NetMHC
methods on the HLA-A*0201, similar results were
obtained.

We trained DistBoost on 70% of the entire MHCclass1BN
data (including binding and non-binding peptides) and
compared its performance to all other methods on the
single HLA-A2 supertype. The test set, therefore, consists
of the remaining 30% of HLA-A2 data. The results are
shown in Fig. 7(a). As may be seen, DistBoost outperforms
all other methods, including SVMHC, NetMHC and
RANKPEP, which were trained on this specific supertype.
However, it is important to note, that unlike DistBoost, all
of these methods were trained using randomly generated
non-binders. The performance of all of these methods
when tested against random peptides is much better –
AUC scores of SVMHC: 0.947, NetMHC: 0.93 and RANK-
PEP: 0.928. When DistBoost was trained and tested using
randomly generated non-binders it achieved an AUC
score of 0.976. Interestingly, when DistBoost was trained
using real non-binders and tested on randomly generated
non-binders it obtained an AUC score of 0.923. These
results seem to imply that learning using random non-
binders does not generalize well to experimentally deter-
mined non-binders. On the other hand, learning from
"real" non-binders generalizes very well to random non-
binders.

Our proposed method is trained simultaneously on a
number of proteins from the same family, unlike methods
(2–4). However, our final predictions are protein specific.
As the results reveal, we obtain high binding prediction
accuracy when tested on a single protein (see Fig. 7(a)). In
order to quantify the overall protein specific binding pre-
diction accuracy, we present ROC curves for DistBoost and
the Euclidean affinity functions when tested on the entire
MHCclass1BN dataset (Fig. 7(b)). The peptide-peptide
distance matrices and the protein-peptide affinity matri-
ces of these two methods are presented in Fig. 3. On this
dataset DistBoost obtained excellent performance.

In order to evaluate the stability and learning power of
DistBoost we ran it on the MHCclass1BN dataset, while var-
ying the percentage of training data. Fig. 8 presents the
algorithm's learning curves when trained using only posi-
tive constraints and when trained using both positive and
negative constraints. As may be expected, on average, per-
formance improves as the amount of training data45
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increases. Note that DistBoost achieves almost perfect per-
formance with relatively small amounts of training data.
Additionally, we can see that on this dataset learning from
both types of constraints dramatically improves perform-
ance.

The PepDist Webserver
Our proposed method is now publicly available through
the PepDist webserver, which can be found at http://
www.pepdist.cs.huji.ac.il. The current version provides
binding predictions of 9-mer peptides to 35 different
MHC class I alleles. The engine also supports multiple
peptide queries. We hope to enhance the webserver in the
near future to provide predictions for more MHC class I
alleles and also for MHC class II alleles.

Discussion and Conclusion
In this paper we proposed PepDist: a novel formulation of
the protein-peptide binding prediction problem that has
two foundations. The first is to predict binding affinity by
learning peptide-peptide distance functions. The second is
to learn a single distance function over an entire family of
proteins. Our formulation has several advantages over
existing computational approaches:

1. Our method also works well on proteins for which
small amounts of known binders are currently available.

2. Unlike standard binary classifiers, our method can be
trained on an entire protein family using only informa-
tion about binding peptides (i.e. without using real/ran-
domly generated non-binders).

3. Our method can compute the relative binding affinities
of a peptide to several proteins from the same protein
family.

In order to learn such distance functions we casted the
problem as a semi-supervised learning problem in which
equivalence constraints can be naturally obtained from
empirical data. Specifically, we used the DistBoost algo-
rithm, that learns distance functions using positive and
negative equivalence constraints. Our experiments suggest
that binding prediction based on such learned distance
functions exhibits excellent performance. It should be
noted that our proposed learning scheme can be also
implemented using other distance learning algorithms
and in our future work we also plan to further investigate
this idea. We also hope that the PepDist formulation will
allow addressing the more challenging task of peptide
ranking. One way of doing this is by incorporating infor-
mation about relative binding values into the distance
learning algorithm.

Our approach may also be useful for predicting some pro-
tein-protein interactions such as PDZ-protein complexes.

(a) ROC curves on test data from the HLA-A2 supertypeFigure 7
(a) ROC curves on test data from the HLA-A2 supertype. DistBoost is compared to the following algorithms: the SVMHC web 

server [11], the NetMHC web server [12], the RANKPEP resource [13] and the Euclidean distance metric in . (b) DistBoost 
and the Euclidean affinity ROC curves on test data from the entire MHCclass1BN dataset. The rest of the methods are not 
presented since they were not trained in this multi-protein scenario. In both cases, DistBoost was trained on 70% of the data 
and tested on the remaining 30%. Results are best seen in color.
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The PDZ domains are frequently occurring interaction
domains involved in organizing signal transduction com-
plexes and attaching proteins to the cytoskeleton [26]. In
most cases, this is accomplished by specific recognition of
the ligands' carboxyl termini (or regions "mimicking" the
structure of a carboxyl terminal). Therefore, predicting
whether a protein binds to a specific PDZ domain, can be
cast as protein-peptide prediction problem where the
"peptide" is the short linear sequence (4 – 6 amino acids
long) lying at the protein's C-terminal. We are currently
examining the feasibility of using the PepDist framework
for this application.

Our novel formulation of the protein-peptide binding
prediction problem and the results obtained suggest two
interesting conclusions: The first is that learning a single
distance function over an entire family of proteins
achieves higher prediction accuracy than learning a set of
binary classifiers for each of the proteins separately. This
effect is even more pronounced on proteins for which
only small amounts of binders and non-binders are cur-
rently available. The second interesting conclusion, is the
importance of obtaining information on experimentally
determined non-binders. These non-binders (as opposed
to randomly generated non-binders) are usually some-
what similar to known binders, since they were in many
cases suspected to be binders. Our results on the MHCBN
dataset show that learning with real non-binders general-
izes better than learning with randomly generated pep-
tides that are assumed to be non-binders. This suggests
that information about non-binding peptides should also
be published and made publicly available.

Methods
The DistBoost Algorithm
Our peptide-peptide distance functions are learned using
the DistBoost algorithm. DistBoost is a semi-supervised
learning technique that learns a distance function using
unlabeled data points and equivalence constraints.

Notations

Let us denote by  the set of input data points

which belong to some vector space . The space of all

pairs of points in  is called the "product space" and is

denoted by . An equivalence constraint is denoted
by (xi1, xi2, yi) where yi = 1 if points (xi1, xi2) belong to the

same class (positive constraint) and yi = -1 if these points

belong to different classes (negative constraint). (xi1, xi2,*)

denotes an unlabeled pair. The DistBoost algorithm learns

a bounded distance function, , that

maps each pair of points to a real number in [0,1].

Algorithm description

The algorithm makes use of the observation that equiva-

lence constraints on points in  are binary labels in the

product space, . By posing the problem in product
space we obtain a classical binary classification problem:
an optimal classifier should assign +1 to all pairs of points
that come from the same class, and -1 to all pairs of points
that come from different classes. This binary classification
problem can be solved using traditional margin based
classification techniques. Note, however, that in many
real world problems, we are only provided with a sparse
set of equivalence constraints and therefore the margin
based binary classification problem is semi-supervised.

DistBoost learns a distance function using a well known
machine learning technique, called Boosting [27,28]. In
Boosting, a set of "weak" learners are iteratively trained
and then linearly combined to produce a "strong" learner.
Specifically, DistBoost's weak learner is based on the con-
strained Expectation Maximization (cEM) algorithm [29].
The cEM algorithm is used to generate a "weak" distance
function. The final ("strong") distance function is a
weighted sum of a set of such "weak" distance functions.
The algorithm is presented in Fig. 9 and illustrated in Fig.
10.

In order to make use of unlabeled data points, DistBoost's

weak learner is trained in the original space, , and is
then used to generate a "weak distance function" on the
product space. DistBoost uses an augmentation of the

xi i
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Learning curves of DistBoost trained using only positive con-straints (Pos) and using both types of constraints (Pos + Neg)Figure 8
Learning curves of DistBoost trained using only positive con-
straints (Pos) and using both types of constraints (Pos + Neg). 
Prediction accuracy based on the AUC score, averaged over 
20 different randomly selected training sets.
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'Adaboost with confidence intervals' algorithm [27] to
incorporate unlabeled data into the boosting process.
More specifically, given a partially labeled dataset

 where yi ∈ {1, -1,*}, the algorithm

searches for a hypothesis 

which minimizes the following loss function:
x x yi i i

i

N

1 2 1
, ,( ){ }

=

 x x h xi
t

T

i t t i ix
1 2

1

, ,
2 1( ) = ( )

=
∑ α

The DistBoost AlgorithmFigure 9
The DistBoost Algorithm.

Input:

Data points: (x1, ..., xn), xk ∈ X
A set of equivalence constraints: (xi1 , xi2 , yi), where yi ∈ {−1, 1}
Unlabeled pairs of points: (xi1 , xi2 , yi = ∗), implicitly defined by all uncon-

strained pairs of points

• Initialize W 1
i1i2 = 1/(n2) i1, i2 = 1, . . . , n (weights over pairs of points)

wk = 1/n k = 1, . . . , n (weights over data points)

• For t = 1, .., T

1. Fit a constrained GMM (weak learner) on weighted data points in X using
the equivalence constraints.

2. Generate a weak hypothesis h̃t : X × X → [−1, 1] and define a weak

distance function as ht(xi, xj) = 1
2

“
1 − h̃t(xi, xj)

”
∈ [0, 1]

3. Compute rt =
P

(xi1 ,xi2 ,yi=±1)

W t
i1i2yih̃t(xi1 , xi2), only over labeled pairs.

Accept the current hypothesis only if rt > 0.

4. Choose the hypothesis weight αt = 1
2

ln( 1+rt
1−rt

)

5. Update the weights of all points in X × X as follows:

W t+1
i1i2

=

j
W t

i1i2 exp(−αtyih̃t(xi1 , xi2)) yi ∈ {−1, 1}
W t

i1i2 exp(−αt) yi = ∗

6. Normalize: W t+1
i1i2

=
W t+1

i1i2
nP

i1,i2=1
W t+1

i1i2

7. Translate the weights from X × X to X : wt+1
k =

P
j W t+1

kj

Output: A final distance function D(xi, xj) =
PT

t=1 αtht(xi, xj)
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Note that this semi-supervised boosting scheme computes
the weighted loss only on labeled pairs of points but
updates the weights over all pairs of points (see Figure 9
steps (3–6)). The unlabeled points effectively constrain
the parameter space of the weak learner, giving priority to
hypotheses which both comply with the pairwise con-
straints and with the data's density. Since the weak
learner's task becomes harder in later boosting rounds, the
boosting algorithm gradually reduces the weights of the
unlabeled pairs (see Figure 9 step (5)). While the weak
learner accepts a distribution over the points in the origi-

nal space , the boosting process described above gener-
ates a distribution over pairs of points that belong to the

product space . The distribution over the product
space is converted to a distribution over the sample points
by simple marginalization (see Figure 9 step (7) of the
algorithm). The translation from the original input space
into product space is introduced in step (2) of the algo-
rithm and is further discussed below.

DistBoost's weak learner

DistBoost's weak learner is based on the constrained Expec-
tation Maximization (cEM) algorithm [29]. The algorithm
uses unlabeled data points and a set of equivalence con-
straints to find a Gaussian Mixture Model (GMM) that
complies with these constraints. A GMM is a parametric
statistical model which is given by

, where πl denotes the weight of

each Gaussian, θl its parameters, and M denotes the

number of Gaussian sources in the GMM. Estimating the
parameters ( ) of a GMM is usually done using the well
known EM algorithm [30]. The cEM algorithm introduces
equivalence constraints by modifying the 'E' (Expecta-
tion) step of the algorithm: instead of summing over all
possible assignments of data points to sources, the expec-
tation is taken only over assignments which comply with
the given equivalence constraints.

The cEM algorithm's input is a set of unlabeled points

, and a set of pairwise constraints, Ω, over

these points. Denote positive constraints by 

and negative constraints by . Let

 denote the hidden assignment of each data

point xi to one of the Gaussian sources (hi ∈ {1,..., M}).

The constrained EM algorithm assumes the following
joint distribution of the observables X and the hiddens H:

where Z is the normalizing factor and δij is Kronecker's
delta. The algorithm seeks to maximize the data likeli-
hood, which is the marginal distribution of (3) with
respect to H. For a more detailed description of this weak
learner see [29].

In order to use the algorithm as a weak learner in our
boosting scheme, we modified the algorithm to incorpo-
rate weights over the data samples. These weights are pro-
vided by the boosting process in each round (see Fig. 9
step 7).

Generating a weak distance function using a GMM

The weak learners' task is to provide a weak distance func-

tion ht(xi, xj) over the product space . Let us Denote

by MAP(xi) the Maximum A-Posteriori assignment of

point xi and by pMAP(xi) the MAP probability of this point:

. We partition the data

into M groups using the MAP assignment of the points
and define

The weak distance function is given by

It is easy to see that if the MAP assignment of two points
is identical their distance will be in [0, 0.5] and if their
MAP assignment is different their distance will be in [0.5,
1].

Datasets
The first two datasets we compiled (MHCclass1 and
MHCclass2) were the same as those described in [13]. Fol-
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lowing the works of [8,9,13] we considered peptides with
a fixed sequence length of 9 amino acids. Sequences of
peptides, that bind to MHC class I or class II molecules,
were collected from the MHCPEP dataset [31]. Each entry
in the MHCPEP dataset contains the peptide sequence, its
MHC specificity and, where available, observed activity
and binding affinity. Peptides, that are classified as low
binders or contain undetermined residues (denoted by
the letter code X), were excluded. We then grouped all 9
amino acid long peptides (9-mers), that bind to MHC
class I molecules, to a dataset, called MHCclass1. This
dataset consists of binding peptides for 25 different MHC
class I molecules (see additional file 1:
Pepdist_SupplementaryMaterials.ps, Table 3).

Unlike MHC class I binding peptides, peptides binding to
MHC class II molecules display a great variability in
length, although only a peptide core of 9 residues fits into

the binding groove. Following [13], we first used the
MEME program [32] to align the binding peptides for
each molecule, based on a single 9 residues motif. We
finally filtered out redundant peptides and obtained the
MHCclass2 dataset. This dataset consists of binding pep-
tides for 24 different MHC class II molecules (see addi-
tional file 1: Pepdist_SupplementaryMaterials.ps, Table 4).

Since all peptides in the MHCPEP dataset are binders, we
added randomly generated peptides as non-binders to
both MHCclass1 and MHCclass2 datasets (amino acid fre-
quencies as in the Swiss-Prot database). The number of
non-binders used in any test set was twice the number of
the binding peptides. During the training phase, the
number of non-binders was the same as the number of
binders. In order to assess the performance of the predic-
tion algorithms on experimentally determined non-bind-
ers, we compiled a third dataset, called MHCclass1BN.

An illustration of the DistBoost algorithmFigure 10
An illustration of the DistBoost algorithm. At each boosting round t the weak learner is trained using weighted input 
points and some equivalence constraints. In the example above, points 1, 2 and 5, 6 are negatively constrained (belong to differ-
ent classes) and points 3, 4 and 4, 7 are positively constrained (belong to the same class). All other pairs of points (e.g. 8, 9 and 
1, 4) are unconstrained. The constrained EM algorithm is used to learn a GMM (step (1)). This GMM is then used to generate a 
"weak" distance function (step (2)) that assigns a value in [0, 1] to each pair of points. The distance function is assigned a hypo-
thesis weight (steps (3–4)) which corresponds to its success in satisfying the current weighted constraints. The weights of the 
equivalence constraints are updated (steps (5–6)) – increasing the weights of constraints that were unsatisfied by the current 
weak learner. Finally, the weights on pairs are translated to weights on data points (step (7)). In the example above, the dis-
tance between the negatively constrained points 1, 2 is small (0.1) and therefore the weight of this constraint will be enhanced.
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This dataset consists of binding and non-binding pep-
tides, for 8 different MHC class I molecules, based on the
MHCBN 3.1 website [33] (see additional file 1:
Pepdist_SupplementaryMaterials.ps, Table 5).

Data representation

DistBoost requires that the data be represented in some
continuous vector feature space. Following [23] each
amino acid was encoded using a 5-dimensional property
vector. Therefore, each peptide in the MHC datasets is a

point in . The property vectors for each of the 20
amino acids are based on multidimensional scaling of
237 physical-chemical properties. Venkatarajan and
Braun's analysis [23] showed that these 5 properties corre-

late well with hydrophobicity, size, α-helix preference,
number of degenerate triplet codons and the frequency of

occurrence of amino acid residues in β-strands. They also
showed that the distances between pairs of amino-acids in
the 5-dimensional property space are highly correlated
with corresponding scores from similarity matrices
derived from sequence and 3D structure comparisons.

Evaluation methods
In order to evaluate the algorithms' performance, we
measured the affinity of all test peptides to each of the
proteins. We present the prediction accuracy (that is how
well binders are distinguished from non-binders) of the
various algorithms as ROC (Receiver Operating Charac-
teristic) curves. The X-axis represents the percentage of
"false alarms" which is FP/(FP + TN) (where FP denotes
False Positives, and TN denotes True Negatives). The Y-
axis represents the percentage of "hits" which is TP/(TP +
FN) (where TP denotes True Positives and FN denotes
False Negatives). The fraction of the area under the curve
(AUC) is indicative of the distinguishing power of the
algorithm and is used as its prediction accuracy.
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Abstract
We present a novel approach to the characterization of complex sensory
neurons. One of the main goals of characterizing sensory neurons is
to characterize dimensions in stimulus space to which the neurons are
highly sensitive (causing large gradients in the neural responses) or al-
ternatively dimensions in stimulus space to which the neuronal response
are invariant (defining iso-response manifolds). We formulate this prob-
lem as that of learning a geometry on stimulus space that is compatible
with the neural responses: the distance between stimuli should be large
when the responses they evoke are very different, and small when the re-
sponses they evoke are similar. Here we show how to successfully train
such distance functions using rather limited amount of information. The
data consisted of the responses of neurons in primary auditory cortex
(A1) of anesthetized cats to 32 stimuli derived from natural sounds. For
each neuron, a subset of all pairs of stimuli was selected such that the
responses of the two stimuli in a pair were either very similar or very
dissimilar. The distance function was trained to fit these constraints. The
resulting distance functions generalized to predict the distances between
the responses of a test stimulus and the trained stimuli.

1 Introduction

A major challenge in auditory neuroscience is to understand how cortical neurons represent
the acoustic environment. Neural responses to complex sounds are idiosyncratic, and small
perturbations in the stimuli may give rise to large changes in the responses. Furthermore,
different neurons, even with similar frequency response areas, may respond very differently
to the same set of stimuli. The dominant approach to the functional characterization of
sensory neurons attempts to predict the response of the cortical neuron to a novel stimulus.
Prediction is usually estimated from a set of known responses of a given neuron to a set of
stimuli (sounds). The most popular approach computes the spectrotemporal receptive field
(STRF) of each neuron, and uses this linear model to predict neuronal responses. However,
STRFs have been recently shown to have low predictive power [10, 14].

In this paper we take a different approach to the characterization of auditory cortical neu-
rons. Our approach attempts to learn the non-linear warping of stimulus space that is in-



duced by the neuronal responses. This approach is motivated by our previous observations
[3] that different neurons impose different partitions of the stimulus space, which are not
necessarily simply related to the spectro-temporal structure of the stimuli. More specifi-
cally, we characterize a neuron by learning a pairwise distance function over the stimulus
domain that will be consistent with the similarities between the responses to different stim-
uli, see Section 2. Intuitively a good distance function would assign small values to pairs
of stimuli that elicit a similar neuronal response, and large values to pairs of stimuli that
elicit different neuronal responses.

This approach has a number of potential advantages: First, it allows us to aggregate infor-
mation from a number of neurons, in order to learn a good distance function even when the
number of known stimuli responses per neuron is small, which is a typical concern in the
domain of neuronal characterization. Second, unlike most functional characterizations that
are limited to linear or weakly non-linear models, distance learning can approximate func-
tions that are highly non-linear. Finally, we explicitly learn a distance function on stimulus
space; by examining the properties of such a function, it may be possible to determine the
stimulus features that most strongly influence the responses of a cortical neuron. While
this information is also implicitly incorporated into functional characterizations such as the
STRF, it is much more explicit in our new formulation.

In this paper we therefore focus on two questions: (1) Can we learn distance functions
over the stimulus domain for single cells using information extracted from their neuronal
responses?? and (2) What is the predictive power of these cell specific distance functions
when presented with novel stimuli? In order to address these questions we used extracellu-
lar recordings from 22 cells in the auditory cortex of cats in response to natural bird chirps
and some modified versions of these chirps [1]. To estimate the distance between responses,
we used a normalized distance measure between the peri-stimulus time histograms of the
responses to the different stimuli.

Our results, described in Section 4, show that we can learn compatible distance functions on
the stimulus domain with relatively low training errors. This result is interesting by itself as
a possible characterization of cortical auditory neurons, a goal which eluded many previous
studies [3]. Using cross validation, we measure the test error (or predictive power) of
our method, and report generalization power which is significantly higher than previously
reported for natural stimuli [10]. We then show that performance can be further improved
by learning a distance function using information from pairs of related neurons. Finally, we
show better generalization performance for wide-band stimuli as compared to narrow-band
stimuli. These latter two contributions may have some interesting biological implications
regarding the nature of the computations done by auditory cortical neurons.

Related work Recently, considerable attention has been focused on spectrotemporal re-
ceptive fields (STRFs) as characterizations of the function of auditory cortical neurons
[8, 4, 2, 11, 16]. The STRF model is appealing in several respects: it is a conceptu-
ally simple model that provides a linear description of the neuron’s behavior. It can be
interpreted both as providing the neuron’s most efficient stimulus (in the time-frequency
domain), and also as the spectro-temporal impulse response of the neuron [10, 12]. Finally,
STRFs can be efficiently estimated using simple algebraic techniques.

However, while there were initial hopes that STRFs would uncover relatively complex
response properties of cortical neurons, several recent reports of large sets of STRFs of
cortical neurons concluded that most STRFs are somewhat too simple [5], and that STRFs
are typically rather sluggish in time, therefore missing the highly precise synchronization
of some cortical neurons [11]. Furthermore, when STRFs are used to predict neuronal
responses to natural stimuli they often fail to predict the correct responses [10, 6]. For
example, in Machens et al. only 11% of the response power could be predicted by STRFs
on average [10]. Similar results were also reported in [14], who found that STRF models
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account for only 18 − 40% (on average) of the stimulus related power in auditory cortical
neural responses to dynamic random chord stimuli. Various other studies have shown that
there are significant and relevant non-linearities in auditory cortical responses to natural
stimuli [13, 1, 9, 10]. Using natural sounds, Bar-Yosef et. al [1] have shown that auditory
neurons are extremely sensitive to small perturbations in the (natural) acoustic context.
Clearly, these non-linearities cannot be sufficiently explained using linear models such as
the STRF.

2 Formalizing the problem as a distance learning problem

Our approach is based on the idea of learning a cell-specific distance function over the space
of all possible stimuli, relying on partial information extracted from the neuronal responses
of the cell. The initial data consists of stimuli and the resulting neural responses. We use
the neuronal responses to identify pairs of stimuli to which the neuron responded similarly
and pairs to which the neuron responded very differently. These pairs can be formally
described by equivalence constraints. Equivalence constraints are relations between pairs
of datapoints, which indicate whether the points in the pair belong to the same category or
not. We term a constraint positive when they points are known to originate from the same
class, and negative belong to different classes. In this setting the goal of the algorithm is to
learn a distance function that attempts to comply with the equivalence constraints.

This formalism allows us to combine information from a number of cells to improve
the resulting characterization. Specifically, we combine equivalence constraints gathered
from pairs of cells which have similar responses, and train a single distance function for
both cells. Our results demonstrate that this approach improves prediction results of the
“weaker” cell, and almost always improves the result of the “stronger” cell in each pair.
Another interesting result of this formalism is the ability to classify stimuli based on the
responses of the total recorded cortical cell ensemble. For some stimuli, the predictive
performance based on the learned inter-stimuli distance was very good, whereas for other
stimuli it was rather poor. These differences were correlated with the acoustic structure of
the stimuli, partitioning them into narrowband and wideband stimuli.

3 Methods

Experimental setup Extracellular recordings were made in primary auditory cortex of
nine halothane-anesthetized cats. Anesthesia was induced by ketamine and xylazine and
maintained with halothane (0.25-1.5%) in 70% N2O using standard protocols authorized
by the committee for animal care and ethics of the Hebrew University - Haddasah Medical
School. Single neurons were recorded using metal microelectrodes and an online spike
sorter (MSD, alpha-omega). All neurons were well separated. Penetrations were performed
over the whole dorso-ventral extent of the appropriate frequency slab (between about 2 and
8 kHz). Stimuli were presented 20 times using sealed, calibrated earphones at 60-80 dB
SPL, at the preferred aurality of the neurons as determined using broad-band noise bursts.
Sounds were taken from the Cornell Laboratory of Ornithology and have been selected
as in [1]. Four stimuli, each of length 60-100 ms, consisted of a main tonal component
with frequency and amplitude modulation and of a background noise consisting of echoes
and unrelated components. Each of these stimuli was further modified by separating the
main tonal component from the noise, and by further separating the noise into echoes and
background. All possible combinations of these components were used here, in addition
to a stylized artificial version that lacked the amplitude modulation of the natural sound.
In total, 8 versions of each stimulus were used, and therefore each neuron had a dataset
consisting of 32 datapoints. For more detailed methods, see Bar-Yosef et al. [1].
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Data representation We used the first 60 ms of each stimulus. Each stimulus was rep-
resented using the first d real Cepstral coefficients. The real Cepstrum of a signal x was
calculated by taking the natural logarithm of magnitude of the Fourier transform of x and
then computing the inverse Fourier transform of the resulting sequence. In our experiments
we used the first 21-30 coefficients. Neuronal responses were represented by creating Peri-
Stimulus Time Histograms (PSTHs) using 20 repetitions recorded for each stimuli. Re-
sponse duration was 100 ms.

Obtaining equivalence constraints over stimuli pairs The distances between responses
were measured using a normalized χ2 distance measure. All responses to both stimuli (40
responses in total) were superimposed to generate a single high-resolution PSTH. Then, this
PSTH was non-uniformly binned so that each bin contained at least 10 spikes. The same
bins were then used to generate the PSTHs of the responses to the two stimuli separately.
For similar responses, we would expect that on average each bin in these histograms would
contain 5 spikes. Formally, let N denote the number of bins in each histogram, and let ri

1,ri
2

denote the number of spikes in the i’th bin in each of the two histograms respectively. The

distance between pairs of histograms is given by: χ2(ri
1, r

i
2) =

∑N
i=1

(ri
1−ri

2)
2

(ri
1+ri

2)/2
/(N − 1).

In order to identify pairs (or small groups) of similar responses, we computed the normal-
ized χ2 distance matrix over all pairs of responses, and used the complete-linkage algorithm
to cluster the responses into 8 − 12 clusters. All of the points in each cluster were marked
as similar to one another, thus providing positive equivalence constraints. In order to obtain
negative equivalence constraints, for each cluster ci we used the 2−3 furthest clusters from
it to define negative constraints. All pairs, composed of a point from cluster ci and another
point from these distant clusters, were used as negative constraints.

Distance learning method In this paper, we use the DistBoost algorithm [7], which is
a semi-supervised boosting learning algorithm that learns a distance function using unla-
beled datapoints and equivalence constraints. The algorithm boosts weak learners which
are soft partitions of the input space, that are computed using the constrained Expectation-
Maximization (cEM) algorithm [15]. The DistBoost algorithm, which is briefly summa-
rized in 1, has been previously used in several different applications and has been shown
to perform well [7, 17].

Evaluation methods In order to evaluate the quality of the learned distance function,
we measured the correlation between the distances computed by our distance learning al-
gorithm to those induced by the χ2 distance over the responses. For each stimulus we
measured the distances to all other stimuli using the learnt distance function. We then com-
puted the rank-order (Spearman) correlation coefficient between these learnt distances in
the stimulus domain and the χ2 distances between the appropriate responses. This proce-
dure produced a single correlation coefficient for each of the 32 stimuli, and the average
correlation coefficient across all stimuli was used as the overall performance measure.

Parameter selection The following parameters of the DistBoost algorithm can be fine-
tuned: (1) the input dimensionality d = 21-30, (2) the number of Gaussian models in
each weak learner M = 2-4, (3) the number of clusters used to extract equivalence con-
straints C = 8-12, and (4) the number of distant clusters used to define negative constraints
numAnti = 2-3. Optimal parameters were determined separately for each of the 22 cells,
based solely on the training data. Specifically, in the cross-validation testing we used a
validation paradigm: Using the 31 training stimuli, we removed an additional datapoint
and trained our algorithm on the remaining 30 points. We then validated its performance
using the left out datapoint. The optimal cell specific parameters were determined using
this approach.
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Algorithm 1 The DistBoost Algorithm
Input:

Data points: (x1, ..., xn), xk ∈ X
A set of equivalence constraints: (xi1 , xi2 , yi), where yi ∈ {−1, 1}
Unlabeled pairs of points: (xi1 , xi2 , yi = ∗), implicitly defined by all unconstrained pairs of points

• Initialize W 1
i1i2

= 1/(n2) i1, i2 = 1, . . . , n (weights over pairs of points)
wk = 1/n k = 1, . . . , n (weights over data points)

• For t = 1, .., T

1. Fit a constrained GMM (weak learner) on weighted data points in X using the equivalence constraints.

2. Generate a weak hypothesis h̃t : X × X → [−1, 1] and define a weak distance function as

ht(xi, xj) = 1
2

“
1 − h̃t(xi, xj)

”
∈ [0, 1]

3. Compute rt =
P

(xi1
,xi2

,yi=±1)
W t

i1i2
yiht(xi1 , xi2 ), only over labeled pairs. Accept the current

hypothesis only if rt > 0.

4. Choose the hypothesis weight αt = 1
2 ln(

1+rt
1−rt

)

5. Update the weights of all points in X × X as follows:

W
t+1
i1i2

=

(
W t

i1i2
exp(−αtyih̃t(xi1 , xi2 )) yi ∈ {−1, 1}

W t
i1i2

exp(−αt) yi = ∗

6. Normalize: W t+1
i1i2

=
W

t+1
i1i2

nP
i1,i2=1

W
t+1
i1i2

7. Translate the weights from X × X to X : wt+1
k =

P
j W t+1

kj

Output: A final distance function D(xi, xj) =
PT

t=1 αtht(xi, xj)

4 Results

Cell-specific distance functions We begin our analysis with an evaluation of the fitting
power of the method, by training with the entire set of 32 stimuli (see Fig. 1). In gen-
eral almost all of the correlation values are positive and they are quite high. The average
correlation over all cells is 0.58 with ste = 0.023.

In order to evaluate the generalization potential of our approach, we used a Leave-One-
Out (LOU) cross-validation paradigm. In each run, we removed a single stimulus from the
dataset, trained our algorithm on the remaining 31 stimuli, and then tested its performance
on the datapoint that was left out (see Fig. 3). In each histogram we plot the test correlations
of a single cell, obtained when using the LOU paradigm over all of the 32 stimuli. As can
be seen, on some cells our algorithm obtains correlations that are as high as 0.41, while
for other cells the average test correlation is less then 0.1. The average correlation over all
cells is 0.26 with ste = 0.019.

Not surprisingly, the train results (Fig. 1) are better than the test results (Fig. 3). Inter-
estingly, however, we found that there was a significant correlation between the training
performance and the test performance C = 0.57, p < 0.05 (see Fig. 2, left).

Boosting the performance of weak cells In order to boost the performance of cells with
low average correlations, we constructed the following experiment: We clustered the re-
sponses of each cell, using the complete-linkage algorithm over the χ2 distances with 4
clusters. We then used the F 1

2
score that evaluates how well two clustering partitions are

in agreement with one another (F 1
2

= 2∗P∗R
P+R , where P denotes precision and R denotes

recall.). This measure was used to identify pairs of cells whose partition of the stimuli
was most similar to each other. In our experiment we took the four cells with the lowest
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Figure 1: Left: Histogram of train rank-order correlations on the entire ensemble of cells. The
rank-order correlations were computed between the learnt distances and the distances between the
recorded responses for each single stimulus (N = 22 ∗ 32). Center: train correlations for a “strong”
cell. Right: train correlations for a “weak” cell. Dotted lines represent average values.
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Figure 2: Left: Train vs. test cell specific correlations. Each point marks the average correlation of a
single cell. The correlation between train and test is 0.57 with p = 0.05. The distribution of train and
test correlations is displayed as histograms on the top and on the right respectively. Right: Test rank-
order correlations when training using constraints extracted from each cell separately, and when using
the intersection of the constraints extracted from a pair of cells. This procedure always improves the
performance of the weaker cell, and usually also improves the performance of the stronger cell

performance (right column of Fig 3), and for each of them used the F 1
2

score to retrieve the
most similar cell. For each of these pairs, we trained our algorithm once more, using the
constraints obtained by intersecting the constraints derived from the two cells in the pair,
in the LOU paradigm. The results can be seen on the right plot in Fig 2. On all four cells,
this procedure improved LOUT test results. Interestingly and counter-intuitively, when
training the better performing cell in each pair using the intersection of its constraints with
those from the poorly performing cell, results deteriorated only for one of the four better
performing cells.

Stimulus classification The cross-validation results induced a partition of the stimulus
space into narrowband and wideband stimuli. We measured the predictability of each stim-
ulus by averaging the LOU test results obtained for the stimulus across all cells (see Fig. 4).
Our analysis shows that wideband stimuli are more predictable than narrowband stimuli,
despite the fact that the neuronal responses to these two groups are not different as a whole.
Whereas the non-linearity in the interactions between narrowband and wideband stimuli
has already been noted before [9], here we further refine this observation by demonstrating
a significant difference between the behavior of narrow and wideband stimuli with respect
to the predictability of the similarity between their responses.

5 Discussion

In the standard approach to auditory modeling, a linear or weakly non-linear model is fitted
to the data, and neuronal properties are read from the resulting model. The usefulness of
this approach is limited however by the weak predictability of A1 responses when using
such models. In order to overcome this limitation, we reformulated the problem of char-
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Figure 3: Histograms of cell specific test rank-order correlations for the 22 cells in the dataset. The
rank-order correlations compare the predicted distances to the distances between the recorded re-
sponses, measured on a single stimulus which was left out during the training stage. For visualization
purposes, cells are ordered (columns) by their average test correlation per stimulus in descending
order. Negative correlations are in yellow, positive in blue.

acterizing neuronal responses of highly non-linear neurons. We use the neural data as a
guide for training a highly non-linear distance function on stimulus space, which is com-
patible with the neural responses. The main result of this paper is the demonstration of the
feasibility of this approach.

Two further results underscore the usefulness of the new formulation. First, we demon-
strated that we can improve the test performance of a distance function by using constraints
on the similarity or dissimilarity between stimuli derived from the responses of multiple
neurons. Whereas we expected this manipulation to improve the test performance of the
algorithm on the responses of neurons that were initially poorly predicted, we found that it
actually improved the performance of the algorithm also on neurons that were rather well
predicted, although we paired them with neurons that were poorly predicted. Thus, it is
possible that intersecting constraints derived from multiple neurons uncover regularities
that are hard to extract from individual neurons.

Second, it turned out that some stimuli consistently behaved better than others across the
neuronal population. This difference was correlated with the acoustic structure of the stim-
uli: those stimuli that contained the weak background component (wideband stimuli) were
generally predicted better. This result is surprising both because background component
is substantially weaker than the other acoustic components in the stimuli (by as much as
35-40 dB). It may mean that the relationships between physical structure (as characterized
by the Cepstral parameters) and the neuronal responses becomes simpler in the presence
of the background component, but is much more idiosyncratic when this component is ab-
sent. This result underscores the importance of interactions between narrow and wideband
stimuli for understanding the complexity of cortical processing.

The algorithm is fast enough to be used in near real-time. It can therefore be used to guide
real experiments. One major problem during an experiment is that of stimulus selection:
choosing the best set of stimuli for characterizing the responses of a neuron. The distance
functions trained here can be used to direct this process. For example, they can be used to
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Figure 4: Left: spectrograms of input stimuli, which are four different versions of a single natural
bird chirp. Right: Stimuli specific correlation values averaged over the entire ensemble of cells. The
predictability of wideband stimuli is clearly better than that of the narrowband stimuli.

find surprising stimuli: either stimuli that are very different in terms of physical structure
but that would result in responses that are similar to those already measured, or stimuli that
are very similar to already tested stimuli but that are predicted to give rise to very different
responses.

References

[1] O. Bar-Yosef, Y. Rotman, and I. Nelken. Responses of Neurons in Cat Primary Auditory Cortex to Bird Chirps: Effects of
Temporal and Spectral Context. J. Neurosci., 22(19):8619–8632, 2002.

[2] D. T. Blake and M. M. Merzenich. Changes of AI Receptive Fields With Sound Density. J Neurophysiol, 88(6):3409–3420,
2002.

[3] G. Chechik, A. Globerson, M.J. Anderson, E.D. Young, I. Nelken, and N. Tishby. Group redundancy measures reveal
redundancy reduction in the auditory pathway. In NIPS, 2002.

[4] R. C. deCharms, D. T. Blake, and M. M. Merzenich. Optimizing Sound Features for Cortical Neurons. Science,
280(5368):1439–1444, 1998.

[5] D. A. Depireux, J. Z. Simon, D. J. Klein, and S. A. Shamma. Spectro-Temporal Response Field Characterization With
Dynamic Ripples in Ferret Primary Auditory Cortex. J Neurophysiol, 85(3):1220–1234, 2001.

[6] J. J. Eggermont, P. M. Johannesma, and A. M. Aertsen. Reverse-correlation methods in auditory research. Q Rev Biophys.,
16(3):341–414, 1983.

[7] T. Hertz, A. Bar-Hillel, and D. Weinshall. Boosting margin based distance functions for clustering. In ICML, 2004.

[8] N. Kowalski, D. A. Depireux, and S. A. Shamma. Analysis of dynamic spectra in ferret primary auditory cortex. I. Charac-
teristics of single-unit responses to moving ripple spectra. J Neurophysiol, 76(5):3503–3523, 1996.

[9] L. Las, E. A. Stern, and I. Nelken. Representation of Tone in Fluctuating Maskers in the Ascending Auditory System. J.
Neurosci., 25(6):1503–1513, 2005.

[10] C. K. Machens, M. S. Wehr, and A. M. Zador. Linearity of Cortical Receptive Fields Measured with Natural Sounds. J.
Neurosci., 24(5):1089–1100, 2004.

[11] L. M. Miller, M. A. Escabi, H. L. Read, and C. E. Schreiner. Spectrotemporal Receptive Fields in the Lemniscal Auditory
Thalamus and Cortex. J Neurophysiol, 87(1):516–527, 2002.

[12] I. Nelken. Processing of complex stimuli and natural scenes in the auditory cortex. Current Opinion in Neurobiology,
14(4):474–480, 2004.

[13] Y. Rotman, O. Bar-Yosef, and I. Nelken. Relating cluster and population responses to natural sounds and tonal stimuli in
cat primary auditory cortex. Hearing Research, 152(1-2):110–127, 2001.

[14] M. Sahani and J. F. Linden. How linear are auditory cortical responses? In NIPS, 2003.

[15] N. Shental, A. Bar-Hilel, T. Hertz, and D. Weinshall. Computing Gaussian mixture models with EM using equivalence
constraints. In NIPS, 2003.

[16] F. E. Theunissen, K. Sen, and A. J. Doupe. Spectral-Temporal Receptive Fields of Nonlinear Auditory Neurons Obtained
Using Natural Sounds. J. Neurosci., 20(6):2315–2331, 2000.

[17] C. Yanover and T. Hertz. Predicting protein-peptide binding affinity by learning peptide-peptide distance functions. In
RECOMB, 2005.

121



Chapter 8

Epilogue

In this thesis we have presented algorithms for learning distance functions and considered various applications of

these algorithms in a wide variety of application domains including data clustering, image retrieval, data classifica-

tion, prediction of immunological interactions and the analysis of neuronal data recordings. The main contributions

of this thesis can be summarized as follows:

• Distance Learning Algorithms We present three novel distance learning algorithms:

1. Relevant Component Analysis (RCA) - a Mahalanobis metric learning algorithm which is trained

using positive equivalence constraints. This algorithm can be derived both from an information theo-

retic criterion and from a maximum-likelihood criterion under Gaussian assumptions. The algorithm

is very efficient and its computation only requires a single matrix inversion.

2. DistBoost - a boosting based algorithm for learning non-linear distance functions which is trained

using both positive and negative equivalence constraints. The algorithm can be shown to learn highly

non-linear distance functions via a semi-supervised boosting over product-space hypotheses.

3. KernelBoost - a variant of the DistBoost algorithm which can learn kernel functions that can be used

in any kernel-based classifier. The kernels can be learned using very small sample sizes and can also

naturally be used in a learning-to-learn scenario in which information among related classes can be

transferred or shared.

• Applications of Distance learning Using the above three algorithms, we present their applications in the

following application domains:
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– Data clustering - we show that learning a distance function can significantly improve the performance

of various clustering algorithms which are distance based such as the average-linkage algorithm. Im-

provements in clustering are shown for both the RCA algorithm and the DistBoost algorithm.

– Image retrieval - We show that a similarity based image retrieval system can be significantly improved

by learning the similarity function with which it compares image pairs. Using very simple and standard

feature representations of images we show that both for facial images and for images from a database

of animal images collected from the web, both the RCA and DistBoost algorithm can be used to obtain

retrieval results which are superior to standard canonical distance functions such as the Euclidean

distance.

– Data classification - We show that the KernelBoost algorithm can be used to learn kernels that outper-

form standard off-the-shelf kernels when trained on very small samples consisting of 3−10 datapoints

from each class. This is obtained by training a kernel function for the two classes with small amounts

of data using a learning-to-learn scenario in which training data from related classes is also used in the

training process.

– Predicting protein-peptide binding in the immune system - We suggest formalizing the problem of

predicting whether Major Histocompatability Complex (MHC) proteins will bind to a set of peptides

as a distance learning problem. More specifically we show that a distance function between peptides

can be used to predict whether they will bind to a specific protein. We suggest training a single distance

function over a family of related proteins. This enables transfer of information between related classes,

which results in significant performance enhancement over previously suggested methods that are

separately trained for each MHC protein.

We have also recently shown that this approach can be used to classify MHC proteins into Supertypes

- sets of proteins which are known to bind to similar peptides (Hertz and Yanover, 2006a). Using

this approach we suggest two different ways of learning distance functions between MHC proteins - a

peptide-based approach and a protein-based approach. Comparison with experimental classification of

proteins into supertypes shows that our method can compete very successfully with previous supertype

classifications.

– Analysis of neuronal data - We suggest a novel approach to the characterization of neuronal data

recordings which is based on learning a distance function over the input space that is trained using
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information about the neuron’s responses to the input stimuli. This distance function can then be used

to predict whether the response to a novel input stimuli is similar to the responses to other stimuli

which have been previously presented to the neuron. This novel approach shows promising results and

we hope that in the future we will be able to incorporate it as a useful tool to guide neuronal recording

experiments, where the algorithm will be trained in real-time and used to suggest which novel stimuli

should be presented to the neuron currently being recorded.
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 ט 

. ואילו המרחק בין גירויים המניבים תגובה דומה צריך להיות קטן, שלהם תגובה שונה צריך להיות גדול

. ת מוגבלת מאד של מידע צדדיאנו מראים כיצד ניתן ללמוד פונקציות מרחק אלו תוך שימוש בכמו

 primary(הנתונים שעליהם מופעלת השיטה הם רישומים מתאים בקורטקס השמיעתי הראשוני 

auditory cortex ( גירויים שהופקו מצלילים טבעיים 32 –של חתולים מורדמים בתגובה ל ) ציוצי

וג תהיה דומה מאד או שונה לכל תא אוסף של זוגות של גירויים נבחרים כך שהתגובה לכל ז). ציפורים

פונקציות המרחק שנלמדו מציגות יכולת הכללה . פונקצית המרחק אומנה תוך שימוש בזוגות אלו. מאד

  . טובה בחיזוי המרחקים בין גירויי מבחן לגירויי האימון

  

 

  

 

 

  

  

  



 ח 

בין השאר בשל הביצועים הטובים שהם מציגים במגוון רחב של , נם כיום פופולריים ביותראלו הי

וכן בשל החסמים התיאורטיים אשר הוכחו לגבי יכולת ההכללה , אפליקציות  כגון קלסיפיקציה ורגרסיה

אשר ) kernel function(אלגוריתמים אלו עושים שימוש בפונקצית גרעין . של אלגוריתמים אלו

בחירת פונקצית הגרעין הינה . תה הם מודדים את הדמיון בין העצמים אשר עליהם הם פועליםבעזר

שכן במקרים רבים הביצועים של אלגוריתמים אלו תלויים באופן מהותי בפונקצית הגרעין , חשובה ביותר

רבות ופעמים , נכון להיום לא קיימת שיטה סדורה לבחירת פונקצית הגרעין הנכונה. שבה נעשה שימוש

בשנים האחרונות החלו להופיע . י מדידת ביצועים על מדגם האימון"זו נבחרת באופן אמפירי ע

אין , למרות שהוצעו כמה אלגוריתמים כאלו. אלגוריתמים ללמידת פונקציות הגרעין מן הנתונים עצמם

בעבודה . טיותכיום הוכחה ברורה כי לאלגוריתמים אלו יש עדיפות ברורה על פני פונקציות גרעין סטנדר

אנו מציעים אלגוריתם ללמידת פונקציות גרעין אשר יכול ללמוד פונקציות כאלו ממדגמי אימון קטנים , זו

לאלגוריתם שלומד את , אנו מראים כי כאשר מדגים האימון קטן מאד.  דוגמאות2-10 הכולליםביותר 

 .  טנדרטיותפונקצית הגרעין יש עדיפות מובהקת על פני שימוש בפונקציות גרעין ס

רצפים ( תהליך הזיהוי של פפטידים – חיזוי הקישור בין חלבונים לפפטידים  במערכת החיסונית  .ד

מתחיל כאשר פפטידים אלו נקשרים לחלבונים במערכת ) פתוגניים(זרים ) קצרים של חומצות אמינו

הם  MHCחלבוני ). MHC’sאו  (Major Histocompatability Complexesהחיסונית הנקראים 

 שונים MHC חלבוני 12 –לכל אדם יש כ . מאד ספציפיים וכל אחד מהם קושר אוסף קטן של פפטידים

הפפטידים אשר . מספר החלבונים השונים המוכרים באוכלוסיה מונה כמה אלפים. במערכת החיסונית

וק את כל משיקולים אלו ברור כי לא ניתן לסר.  חומצות אמינו9נקשרים לחלבונים אלו הם לרוב באורך 

. ולכן נעשה שימוש בשיטות חישוביות שונות לחיזוי הקישור, מרחב הפפטידים והחלבונים באופן ניסויי

 הינו בעל חשיבות לפיתוח חיסונים MHCפיתוח שיטות חישוביות לחיזוי הקישור בין פפטיד לחלבון 

וי הקישור אשר מבוססת בעבודה זו אנו מציעים גישה חדשנית לחיז. וטיפול במחלות כגון איידס וסרטן

כדי ללמוד פונקציות מרחק אלו אנו מנסחים את הבעיה כבעיה . על למידת פונקצית מרחק בין פפטידים

באופן ספציפי אנו מציעים . ניתן על ידי אילוצי שקילותשבה המידע הצדדי , של למידה מפוקחת למחצה

יטה המוצעת מראה שיפורי ביצועים הש.  ללמידת פונקציות מרחק אלוDistBoostלהשתמש באלגוריתם 

אחד היתרונות של השיטה המוצעת הוא שהיא מאפשרת ללמוד . משמעותיים לעומת שיטות חיזוי אחרות

, במקרים אלו. פונקצית חיזוי גם עבור חלבונים אשר עבורם יש מעט מאד מידע מתויג לצורך של האימון

 . ותרהיתרון היחסי של השיטה בהשוואה למתחריה בולט עוד י

 אנו מציעים שיטה חדשנית לניתוח מידע עצבי ולאפיון תאי –ניתוח מידע עצבי במערכת השמיעתית   .ה

אחת המטרות באיפיון תאי עצב סנסוריים היא בזיהוי המימדים במרחב הגירויים שהנוירון . עצב סנסוריים

ם את הבעיה כבעיה אנחנו מנסחי). כלומר שעבורם קיים שינוי משמעותי בתגובה העצבית(רגיש אליהם 

המרחק בין גירויים : של למידת גאומטריה על מרחב הגירויים אשר תואמת לדמיון הנמדד בין התגובות



 ז 

  

וכן , ולמידת פונקציות מרחק, ים מבוא מקיף לתחום של פונקציות מרחקשני הפרקים הראשונים של העבודה כולל

שאר הפרקים מכילים את ). Semi-supervised learning(רקע נוסף בתחום של למידה מפוקחת למחצה 

וכן את , הכוללים בין השאר את האלגוריתמים המתוארים בעבודה, המאמרים אשר עליהם מבוססת עבודה זו

  . בהם נעשה שימוש באלגוריתמים אלוהיישומים השונים 

  

  :כוללים בין השארבעבודה זו היישומים השונים של אלגוריתמי למידת פונקציות המרחק המוצגים 

  

ועל ,  במערכת אחזור תמונות המשתמש מגיש תמונה למערכת– )Imag Retrieval(אחזור תמונות   .א

בכדי לבחור אלו תמונות לאחזר עבור . המערכת לאחזר למשתמש אוסף של תמונות הדומות לתמונה זו

לבין התמונות , שהגיש המשתמשהמקורית על המערכת למדוד את הדמיון בין התמונה , שאילתא מסוימת

 טובה בין תמונות היא בעיה הבעיה של הגדרת פונקצית דמיון. השמורות במאגר המידע של המערכת

בעובדה שבכדי להגדיר מדד דמיון טוב בין עיקרה של הבעיה טמון . אשר רחוקה מלהיות פתורה, קשה

 בעיה קשה בפני -יכולת למצוא ייצוג טוב עבור תמונות לחילופין או , תמונות נדרשת הבנה של התמונה

קיימות מערכות אחזור תמונות אשר עובדות, יחד עם זאת. עצמה אשר גם לה אין פיתרון טוב במיוחד

ר מודדות את המרחק בין תמונת השאילתא לשאר י הפעלת פונקציות מרחק פשוטות למדי אש" ע

יכול , בעבודה זו אנו מראים כי השימוש באלגוריתמים ללמידת פונקצית המרחק. התמונות במאגר המידע

  .  לשפר באופן משמעותי את הביצועים של מערכות אחזור מידע

ף של עצמים  אלגוריתמים לצברור מידע מאפשרים לקבץ אוס– )data clustering(צברור מידע   .ב

לקבוצות כאשר הדמיון בין העצמים השייכים לאותה הקבוצה גדול מהדמיון בין עצמים השייכים 

מאחר שמדובר ). ill-posed(בעית הצברור הינה בעיה שאינה מוגדרת היטב . לקבוצות שונות

 הפיתרון מהו, ומעבר לכך, לא קיימת הגדרה ברורה  מהו הדמיון בין עצמים, באלגוריתמים לא מפוקחים

ונעשה בהם שימוש רחב , קיימים אלגוריתמים רבים לצברור מידע, יחד עם זאת.  של הבעיההנכון

אלגוריתמי צברור רבים אינם . 'עיבוד תמונה וכד, ניתוח טקסט, בתחומי מחקר רבים הכוללים ביולוגיה

אשר בעזרתה , ן העצמיםבי) או דמיון(אלא נעזרים במטריצה של מרחקים , פועלים ישירות על העצמים

הביצועים של אלגוריתמים אלו תלויים באופן משמעותי . הם מכריעים כיצד לקבץ את הנתונים לצבירים

בעבודה זו אנו מראים כי כאשר לומדים את פונקצית המרחק . באיכות של מטריצת המרחקים בין העצמים

וואה לאלו שמתקבלות כשאר עושים בהש, בין העצמים השונים ניתן להשיג תוצאות צברור טובות יותר

 .שימוש בפונקציות מרחק קנוניות כגון המרחק האוקלידי

 בשנים האחרונות הוצע אוסף גדול של אלגוריתמים שהם מבוססי גרעין – למידת פונקציות גרעין  .ג

)kernel-based classifiers ( כגון אלגוריתם ה– Support Vector Machine (SVM) . אלגוריתמים



 ו 

אלו כוללים . קיימים סוגים שונים של אלגוריתמים אשר הוצעו בתחום של למידה מפוקחת למחצה. בתחומים אלו

  . אלגוריתמי צברור וכן אלגוריתמים ללמידת פונקציות מרחק, בין השאר אלגוריתמי קלסיפיקציה

  

בעיה אשר צברה לאחרונה עניין הולך וגובר בקהילייה , ת מרחקוקציעבודה זו עוסקת בבעיה של למידת פונ

הפונקציה מחזירה ערך רציף לכל זוג . פונקצית מרחק היא פונקציה אשר פועלת על זוגות של נקודות .המדעית

" טובה"באופן אינטואיטיבי נצפה כי פונקצית מרחק . ביניהן) או הדמיון(אשר מודד את מידת הקרבה , נקודות

ערך גדול עבור זוגות של תחזיר  - ובהתאמה, יר ערך קטן יחסית עבור זוגות של נקודות שהן דומות זו לזותחז

  . נקודות השונות זו מזו

  

) clustering(צברור ל, אבן בנין משמעותית בסוגים שונים של אלגוריתמים ללמידה מפוקחת הןפונקציות מרחק 

עד לאחרונה נעשה בעיקר שימוש בפונקציות , י פונקציות מרחקלמרות שפע האלגוריתמים מבוסס. ולאחזור מידע

תוך , או בפונקציות מרחק אשר תוכננו באופן ידני עבור יישום ספציפי, מרחק קנוניות כגון המרחק האוקלידי

בשנים האחרונות התעורר עניין הולך וגובר באלגוריתמים . שימוש בידע נוסף שקשור לאותו תחום היישום

מרבית האלגוריתמים ללמידת . ומספר רב של אלגוריתמים כאלו הוצעו בספרות, יות מרחקללמידת פונקצ

 . פונקציות מרחק שייכים לתחום של למידה מפוקחת למחצה

  

  :בעבודה זו יוצגו שלושה אלגוריתמים חדשים ללמידת פונקציות מרחק

  

1 .Relevant Component Anlaysis (RCA) –חק מסוג מרחקי מהלנוביס  אלגוריתם הלומד פונקציות מר

)Mahalanobis (תוך שימוש באילוצי שקילות חיוביים .  

  

2 .DistBoost –תוך שימוש באילוצי שקילות,  אלגוריתם שיכול ללמוד פונקציות מרחק לא לינאריות.  

  

3 .KernelBoost – אלגוריתם שהוא וריאציה על DistBoost אשר לומד פונקציות גרעין )kernel functions (

  ). kernel-based classifier(שיכולות לשמש כל אלגוריתם קלסיפיקציה מבוסס גרעין 

  

במספר רב של יישומים הכוללים צברור , יוצגו שימושים שונים של אלגוריתמים אלו, לאחר הצגת האלגוריתמים

לגוריתמי גרעין ניתוח רישומים עצביים וקלסיפיקציה מבוססת א, אימונלוגיה חישובית, אחזור תמונות, מידע

)kernel-based classification .(בביצועים כאשר נעשה שימוש בכל התחומים הללו הושג שיפור משמעותי 

תוצאות אלו מדגימות את חשיבותו של . בהשוואה לשימוש בפונקציות מרחק סטנדרטיות, בפונקצית מרחק נלמדת

  . תחום מחקר חדש זה



 ה 

  תקציר העבודה

תחום זה עוסק בעיקרו . למידה חישובית היא תחום מחקר שמטרתו פיתוח שיטות המאפשרות למחשבים ללמוד

האלגוריתם עובר שלב אימון שבו הוא עושה , בפרדיגמה הקלאסית . ניסוי וטעייההמבוססות עליטות בפיתוח ש

אשר ) test set(נמדדים על מדגם בחינה של האלגוריתם לאחר מכן ביצועיו ). training set(שימוש במדגם אימון 

ושגה התקדמות מרשימה בשלושת העשורים האחרונים ה. מורכב מדוגמאות חדשות שלא הוצגו בשלב האימון

אלגוריתמי למידה הופעלו בהצלחה . בתחום הלמידה החישובית הן מבחינה תיאורטית והן מבחינה יישומית

  . חישוביות עצבית ועוד, ביולוגיה חישובית, ראיה חישובית, אחזור מידע, בתחומים רבים הכוללים ניתוח טקסט

  

בתחום זה ). Supervised learning" (ידה מפוקחתלמ"המחקר בלמידה חישובית עוסק בעיקרו בתחום של 

 כלומר דוגמאות אשר לכל אחת מהן מצורף גם –האלגוריתם מקבל בשלב האימון אוסף של דוגמאות מתויגות 

האתגר . Y לתיוג Xמשמש ללמידת פונקציה אשר ממפה כל דוגמא , מדגם האימון הזה. הנדרש) label(התיוג 

כלומר פונקציות בעלות יכולת לתייג נכון ) generalization( בעלות יכולת הכללה העיקרי הינו בניית פונקציות

  . נקודות חדשות אשר לא הוצגו בפניהן בשלב האימון

  

שמטרתה לנתח , )Unsupervised learning" (למידה לא מפוקחת" מחקר נוסף בלמידה חישובית  עוסק בתחום

תחום זה כולל בין השאר אלגוריתמים לצברור מידע . ע כלשהואוסף של דוגמאות בלתי מתויגות ולחלץ מהן מיד

)clustering( , לבחירת ייצוג)feature selection( ,איתור מקרים יוצאי , שערוך פונקצית צפיפות, ויזואליזציה

מאוסף של ) כלומר להסיק כלל כלשהו(השאלה הנשאלת בתחום זה הנה האם ניתן כלל ללמוד משהו . דופן וכדומה

אם , לדוגמא. התשובה לשאלה זו תלויה באופן קריטי בהנחות שנסכים להניח לגבי הנתונים? ות לא מתויגותדוגמא

קיימים אלגוריתמים לא מפוקחים היכולים לשערך את , נניח כי הנתונים נוצרו מאוסף ידוע של פונקציות התפלגות

  . הפרמטרים של ההתפלגויות הללו

  

 Semi-supervised" (למידה מפוקחת למחצה"ך וגובר בתחום של בשנים האחרונות התעורר עניין הול

learning( , בשלב האימון  ,בתחום זה.  בין התחום של למידה מפוקחת לתחום של למידה לא מפוקחתמצויאשר

. נוסף) side-information(וכן לכמות מוגבלת של מידע צדדי ם נחשף למדגם לא מתויג של נקודות האלגורית

או להיות אוסף של  אילוצי שקילות ,  יכול להיות תיוג של חלק מהנקודות במדגם האימוןמידע צדדי זה

)equivalence constraints (-או שייכות ,  מידע לגבי זוגות של נקודות אשר ידועות כשייכות לאותה המחלקה

ל מנת לתייג נקודות המחיר היקר הנדרש ע) 1(חלק מהמוטיבציות שהובילו לפיתוח תחום זה הנן . למחלקות שונות

בתחומים מסוימים ) 2. ( במקרים רבים בכדי להשיג מדגם מתויג נדרשת השקעה מרובה של שעות אדם יקרות–

קיימת חשיבות מכרעת  לפתח , בשל כך. מאפייני הנתונים עליהם פועל האלגוריתם מצויים בשינוי איטי מתמיד

 שימוש במדגם לא מתויג במטרה לשפר ביצועים  לעקוב אחר שינויים אלו תוךמסוגליםאלגוריתמים אשר 



 ד 

 התחום שאליו פניתי – בתחום של האימונולוגיה החישובית מי שעניין אותיהיה , חברי ושותפי לחדר, חן ינובר

 היתה שיתוףעם חן העבודה . היתה לי לעונג רב, כמעט במקרהאשר החלה , עבודתנו המשותפת. להמשך לימודי

 ,הרבות שגמענווכוסות הקפה , השעות הרבות שבילינו יחדיו. ולמדתי רבות ממנו, העצמאי הראשון שליהפעולה 

  .היו מהנות במיוחד

  

בתחום ינשל יועם דפנה והעבודה המשותפת עימם . נהניתי מאד לעבוד גם עם רובי המר ושאול הוכשטיין

ה אינטרדסיפלינרי שמטרתו לעסוק באותה השאלה  שיתוף פעולהפסיכופיסיקה היתה ניסיון מעניין ומוצלח ליצור

  . עבודה תיאורטיתסימולציות מחשב ו, ייםניסויים קוגניטיב המחקרית מכיווני מחקר שונים שכללו

  

בסמינר שנתתי הרצאה אלי שמע אלי נלקן החל לאחר שנר ואינה ויי, נשלי וי דפנה עם הפרוייקט המשותף שלי

ואני שמח שהייתה , ת במינה מיוחדהעבודה המשותפת עם אלי היתה חויה. גדי של המרכז לחישוביות עצבית-עין

  . ה וללמוד ממנולי ההזדמנות לשתף עימו פעול

  

, סורקיןאנה , עמית גרובר, תמיר חזן, ון פלדמןדור,   עידו עומר-תודה רבה גם לחברים הרבים במעבדה ובמסדרון 

 ולביא שפיגלמן שתמיד היה כיף לשוחח עימם לשתות עימם קפה ולהתייעץ בנושאים שוורץ-שי שלו, מיכאל פינק

  . שונים ומשונים

  

ואני חב לו תודה עמוקה על , ביות עצבית החלה תודות לחברי הטוב אסף קראוסהתעניינותי בתחום של חישו

  . ההתלהבות שהוא הצית בי לעסוק בתחום זה

  

אינני יכול לדמיין את המסע הזה . יציבות והמון תמיכה, ליוותה אותי במסע הזה וסיפקה לי אהבה, אהובתי עינב

  .בלעדיה

  

במרכז וולקני בקיבוץ נען וברפת ן ליוויתי את אבי בתצפיות הבקר החלום לעסוק במחקר נולד בשעות הרבות שבה

  .ואני חב לו תודה עמוקה על כך, דוקטורט שלו בפיסיולוגיה בעת ששקד על סיום לימודי ה)דגן- בית(

  

אשר , ובמיוחד של אימי, הרבה של משפחתיהתמיכה והאמונה המסע הארוך הזה לא היה מתאפשר ללא האהבה 

תמיד סייעה בעצות , סבתי רבקה זגון. ה כדי לאפשר לילדיה לממש את הפוטנציאל הגלום בהםעשתה כל שביכולת

  . התיזה הזו מוקדשת לאימי ולסבתי. נפלאות ובהמון אכפתיות ואהבה

  



 ג 

  תודות
  

תוך מעורבות , שליחות האקדמית תליוותה מקרוב את תהליך ההתפ, זוינשל אשר הדריכה אותי בעבודתי ידפנה ו

הליווי הצמוד והאינטנסיבי שהיא העניקה לי בתחילת . מתוך עניין וסקרנות יוצאי דופןרבה בכל הנעשה ותמיד 

 ויכולתה, סקרנותה המדעית הרחבה. ובלעדיהם לא הייתי יכול לצלוח את המסע הזה, דרכי האקדמית סייע לי רבות

עקשנותה ועל המאמצים הרבים ,  על סבלנותהאני מודה לה. לעסוק בו זמנית בתחומי מחקר רבים מהווים נר לרגלי

  . בלתי ניתנת להערכהתי למחקר תרומתה לעיצוב גיש. אשר עשתה למעני

  

אני מודה למרכז על התמיכה הכלכלית . הדוקטורט נעשה במסגרתו ובתמיכתו של המרכז לחישוביות עצבית

חלק מן העבודות המצורפות . המרכז היה מקום פעיל ומהותי בליווי השלבים הראשונים של הדוקטורט. יתי להשזכ

לדוקטורט זה הן פרי שיתופי פעולה פוריים ומוצלחים אשר כולם נעשו עם חברי מרכז אחרים מתחומי מחקר 

  .שונים

  

. ישוביות עצבית למקום שכיף לבקר בושהפכה את המרכז לח, את תחילת דרכי במסלול ליוותה גם עליזה שדמי

עצותיה הרבות . אני מודה לה מאד על היחס האישי הדאגה והאכפתיות שהיא הפגינה בכל עניין שבו פניתי אליה

ואני מודה גם לה , מוצלח ביותרשהחליפה אותה המשיכה את דרכה באופן , י'רותי סוצ.  במיוחדטובותהיו תמיד 

  . על הדאגה והאכפתיות הרבה

   

. נשל ומישה פאבלי בעבודתי המשותפת עם דפנה וי2001תחילתו של המחקר שהוביל לתזה הזו היה באביב שנת 

והרעיונות הפוריים שעלו בהן , הפגישות המשותפות הללו היו מעין קפיצתי הראשונה למעמקי עולם המחקר

סייע לי רבות אשר , ה פאבלאני חב תודה עמוקה למיש. הובילו לפיתוח האלגוריתם הראשון המוצג בתזה הזו

  .תמך ועודד אותי ברגעים שבהם הייתי כמעט מיואשועל ש, בתחילת דרכי

  

  

ופה שביליתי עימם היתה שהתק,  תוצר של שיתופי פעולה מרובים עם חברים רביםהינוהמחקר המוצג בתיזה זו 

  :היפה בחיי

  

 השוני הרב בין כל .ית הדרך שצעדתי בהלמרבנהדרים הילל היו שותפים -חברי הטובים נועם שנטל ואהרון בר

 יםהרבה מעבר להישגלהחברות בינינו הפכה את העבודה יחדיו . ביל לשיתוף פעולה פורה במיוחדאחד מאיתנו הו

    .ליינים שעבדנו יחדיו לקראתם-הדדזכורים לי לטובה הלילות הרבים שבילינו יחדיו לפני . יםמדעי
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 .דפנה ויינשל של פרופסור העבודה זו נעשתה בהדרכת

 



  
  
 

  יישומיםאלגוריתמים ו: למידת פונקציות מרחק
  

 

 
  חיבור לשם קבלת תואר דוקטור לפילוסופיה 
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