L earning Distance Functions. Algorithms and

Applications

Thesisfor the degree of
DOCTOR of PHILOSOPHY
by

Tomer Hertz

SUBMITTED TO THE SENATE OF

THE HEBREW UNIVERSITY OF JERUSALEM

December 2006



Thiswork was carried out under the supervision of Prof. Daphna Weinshall



Acknowledgements

Daphna Weinshall, who supervised this work, has been deeply involved in shaping my academic journey. Her
intensive guidance helped me tremendously to take my first steps along my academic path, and without her shep-
herding | could have not traveled far. Her academic curiosity and her ability to simultaneously work in several
research areas have indeed been aguiding light. | thank her for her patience, judgment, and for the efforts she has
made on my behalf. Her contribution to my scientific approach is priceless.

Thisthesiswaswritten under the auspices and with the support of the Interdisciplinary Center for Computational
Neuroscience (ICNC). | thank the center for its financial support. The center had an active and important role in
assisting me during the initial stages of my PhD. Some of the work presented in this thesis is the outcome of
fruitful collaborations, all of which included other ICNC members from different research areas.

My initial stepsin the program were also overseen by Alisa Shadmi, who turned the ICNC into a fun place to
visit. | thank her for the personal interest and care she has shown whenever | turned to seek her help. Her advice
was always very good. Ruthi Suchi who replaced her, has successfully continued thistradition, and | thank her too
for all of the concern and care.

This research began during the summer of 2001, with my joint work with Daphna Weinshall and Misha Pavel.
These meetings were my first plunge into the depths of the academic ocean, and the fertileideasthat were produced
there led to the development of the first algorithm presented in this thesis. | am deeply indebted to Misha Pavel,
who helped me in many ways when | wasjust starting out, and for supporting me in times when | almost gave up.

Theresearch presented in thisthesisis the outcome of several joint efforts with many friends, with whom | have
spent the best timesin my life:

My best friends Noam Shental and Aharon Bar-Hillel were great partners with whom | have made parts of this
journey. The huge differences between us lead to very fruitful collaborations. Our friendship turned our work
to be much more than mere academic achievements. | have very good memories of the endless nights we spent
together working to meet various deadlines.

Chen Yanover, my friend and roommate, was the one who got me interested in computational immunology -
thefield I have chosen for my future studies. Our joint work, which started almost by chance, was truly enjoyable.
My work with Chen was the my first independent collaboration , and | learned alot from it. The numerous hours

we spent together and the many cups of coffee we drank were very enjoyable.



| aso enjoyed working with Rubi Hammer and Shaul Hochstein. Our joint work with Daphna Weinshall in
the field of Cognitive Psychology was an interesting and successful interdisciplinary collaboration, which aimed
at addressing the same research problem from various disciplines, including cognitive experiments, computer
simulations and theoretical work.

My joint project with Daphna Weinshall, Inna Weiner and Israel (Eli) Nelken began after Eli heard atalk that |
gave at the ICNC Ein-Gedi seminar. Our joint work was a great experience, and | am thankful to have been given
the opportunity to work with with Eli and to learn from him.

| dso thank my many friends in the corridor and lab - Ido Omer, Doron Feldman, Tamir Hazan, Amit Gruber,
Ana Sorkin, Michael Fink, Shai Shalev-Schwartz and Lavi Shpigelman, with whom it was aways fun to talk,
drink coffee and discuss various iSsues.

My interest in computational neuroscience began thanks to my good friend Assaf Krauss, and | am grateful to
him for the excitement he kindled in me to work in this area.

Einav, my love, has accompanied me throughout this journey, and provided love, stability and alot of support.
I cannot imagine this journey without her.

My dream to become aresearcher was born in the many hoursthat | spent with my Dad in his cattle observations
in Kibbutz Naan and Bet-Dagan, when he was working on his Ph.D. in physiology, and | am deeply indebted to
him for this.

Thislong journey could have not taken place without the love, support and belief of my family, and especialy
that of my mother, who did everything she could to allow her children to redlize their full potential. My grand-
mother, Rivka Zagon, always helped me with wonderful advice, with much love and care. Thisthesisis dedicated

to my mother and to my grandmoather.



Abstract

Thisthesis presents research in the field of distance learning. Distance functions are extensively used in various
application domains and also serve as an important building block in many types of algorithms. Despite their
abundance, until recently only canonical distance functions such as the Euclidean distance have been used, or
alternatively various application specific distance functions have been suggested, which in most cases were hand-
designed to incorporate domain specific knowledge. Inthelast several yearsthere has been agrowing body of work
on agorithms for learning distance functions. A considerable amount of different distance learning algorithms
have been suggested, most of which aim at learning a restricted form of distance functions called Mahalanobis
metrics.

Inthisthesis | will present three novel distance learning algorithms:

1. Relevant Component Analysis (RCA) - An algorithm for learning a Mahalanobis metric using positive

eguivalence constraints.

2. DistBoost - A boosting based algorithm which can learn highly non-linear distance functions using equiva-

lence constraints.

3. KernelBoost - A variant of the DistBoost a gorithm which learns Kernel functions, which can be used in any

kernel-based classifier.

I will then describe their applications to various data domains, which include clustering, image-retrieval, com-
putational immunology, auditory data analysis and kernel-based classification. In al of these application domains,
significant improvement is made when using alearned distance function instead of astandard off-the-shelf distance
function. These results demonstrate the importance of this growing research field.

Thefirst two chapters of thiswork present a general introduction to the field of distance functions, and distance

function learning, with some additional background on semi-supervised learning:

Chapter 1 - Introduction: In Chapter 1 we provide a general introduction to distance functions, and some rea-
sons why the distance learning problem is an important and interesting learning scenario. We then provide
a detailed overview of canonical and hand-designed distance functions. The algorithms presented in this
thesis are al from the field of semi-supervised learning. We therefore present a short introduction to the

field of semi-supervised learning, with a specific focus on learning using equivalence constraints, which is



the learning setup that is common to many distance learning algorithms, including the ones presented in this

thesis.

Chapter 2 - Algorithmsfor Learning Distance Functions: Chapter 2 provides a detailed overview of current
research on distance learning. It suggests a taxonomy of distance learning algorithms covering several sub-
categories, and describes various distance learning algorithms in each of these subcategories. Additionally,

it provides a detailed description of the three distance learning algorithms which are the focus of thisthesis.

The remaining chapters present the various publications in which these algorithms have been presented and their

use in various application domains. More specifically:

Chapter 3 - The Relevant Component Analysis Algorithm: Chapter 3 presents the Relevant Component Anal-
ysis (RCA) agorithm, which is an agorithm for learning a Mahalanobis distance metric using positive
eguivalence constraints. The paper discusses several theoretical justifications for the RCA agorithm which
show that it is the optimal Mahalanobis metric under several interesting criteriaincluding information max-
imization and maximum likelihood. The algorithm is shown to provide performance boosts when used in a

data clustering task.

Chapter 4 - The DistBoost algorithm: Chapter 4 presents the DistBoost algorithm, which is an agorithm for
learning highly non-linear distance functions using equivalence constraints. The algorithm is a semi-
supervised boosting algorithm which is based on boosting hypothesis in the product-space (the space of
al pairs of points). The agorithm is evaluated for two important applications. clustering and image re-
trieval, and is shown to improve performance when compared to linear distance learning algorithms such as

RCA.

Chapter 5 - The KernelBoost algorithm: When given asmall sample, we show that classification with SVM can
be considerably enhanced by using a kernel function learned from the training data prior to discrimination.
Thiskernel isalso shown to enhanceretrieval based on data similarity. We describe KernelBoost - aboosting
agorithm which computes a kernel function as a combination of "weak’ space partitions. The kernel learn-
ing method naturally incorporates domain knowledge in the form of unlabeled data (i.e. in semi-supervised
or transductive settings), and also in the form of labeled samples from relevant related problems (i.e. in

a learning-to-learn scenario). The latter goal is accomplished by learning a single kernel function for all



classes. We show comparative evaluations of our method on datasets from the UCI repository. We demon-
strate performance enhancement on two challenging tasks:. digit classification with kernel SVM, and facial

image retrieval based on image similarity as measured by the learnt kernel.

Chapter 6 - Predicting Protein-peptide Binding by L earning Distance Functions: Chapter 6 presents an ap-
plication of distance learning in the field of computational immunology. In the immune system, the recog-
nition of pathogen peptides begins when they bind to cell membrane Major Histocompatibility Complexes
(MHCs). Developing computational methods for predicting protein-peptide binding is important for vac-
cine design and treatment of diseases like cancer. In this work we propose a novel approach for predicting
binding affinity which is based on learning a peptide-peptide distance function. In order to learn these
peptide-peptide distance functions, we formalize the problem as a semi-supervised distance learning prob-
lem with partial information in the form of equivalence constraints. Specifically we propose to use DistBoost
which is a semi-supervised distance learning algorithm. We compare our method to various state-of-the-art
binding prediction algorithms on MHC class | and MHC class Il datasets. In amost all cases, our method
outperformsall of its competitors. One of the major advantages of our novel approachisthat it can also learn
an affinity function over proteins for which only small amounts of labeled peptides exist. In these cases,

DistBoost’s performance gain, when compared to other computational methods, is even more pronounced.

Chapter 7 - Analyzing Auditory Neurons by L earning Distance Functions Chapter 7 presents another appli-
cation of distance learning in the field of neuronal data analysis. More specifically, we present a novel
approach to the characterization of complex sensory neurons. One of the main goas of characterizing
Sensory neurons is to characterize dimensions in stimulus space to which the neurons are highly sensitive
(causing large gradients in the neural responses) or alternatively dimensionsin stimulus space to which the
neuronal responses are invariant (defining iso-response manifolds). We formulate this problem as that of
learning a geometry on stimulus space that is compatible with the neural responses: the distance between
stimuli should be large when the responses they evoke are very different, and small when the responses they
evoke are similar. Here we show how to successfully train such distance functions using a rather limited
amount of information. The data consisted of the responses of neurons in primary auditory cortex (A1) of
anesthetized cats to 32 stimuli derived from natural sounds. For each neuron, a subset of all pairs of stimuli
was selected such that the responses of the two stimuli in a pair were either very similar or very dissimilar.

The distance function was trained to fit these constraints. The resulting distance functions generalized to

Vi



predict the distances between the responses of atest stimulus and the trained stimuli.

Chapter 8 - Epilogue - in this short chapter we provide a brief discussion of the work presented and identify

some directions for future research.
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Chapter 1

| ntroduction

Machine Learning isthe study of methodsfor programming computersto learn. Thisarea of research isfocused on
algorithms which evolve through experience. In the classical scenario a learning algorithm undergoes a learning
stage, which makes use of atraining set and is then evaluated on atest set - novel data which were not presented
during the learning stage. In the last three decades, considerable advances have been made in the field of Machine
learning both in terms of theory and applications. Machine learning algorithms have been successfully applied
and used in various application domains varying from text analysis, data mining, computer vision, computational
biology, computational neuroscience and many more.

Most of the research in machine learning has focused on supervised learning. In this setting, the algorithm is
provided with atraining set which consists of a set of labeled examples {z;, yz'}fil, where z; € X denotes the
input objects (or datapoints) and y; € ) denotes the output value associated with x;. Thistraining set is used to
learn a function f : X — ) whose output can be either continuous (regression), or can predict the label of the
input object (classification). The key challenge for a supervised learning algorithm isits capability to generalize -
i.e. to learn afunction which works well over any valid input object x € X after seeing a (usually) small number
of training samples (input-output pairs).

A somewhat less explored area in Machine learning is unsupervised learning. The task in this setting is to
analyze a set of input objects {z;}}¥, for which no class |abels y; are provided. This areaincludes a wide variety
of different learning tasks such as data clustering, feature extraction, visualization, density estimation, anomaly
detection, information retrieval etc. (Dietterich, 2003). Can anything of value belearned from unlabel ed examples?
The answer depends critically on the assumptions oneiswilling to make about the data. If, for example, we assume

that our data originate from a set of known underlying probability distributions, there are unsupervised agorithms



which can estimate the parameters of these unknown distributions (Duda and Hart, 1973). In the early 70s, Duda
and Hart (1973) put forward three reasons why unsupervised learning is worth exploring: (1) Cost of labelling -
Collecting large amounts of labeled datais costly and time consuming. It can therefore be highly beneficial to train
a classifier on a small amount of labeled samples and then use large amounts of unlabeled data to “tune up” the
learned classifier. (2) Datadrifts- In many applicationstheinput characteristics slowly change over time. Tracking
these changes in an unsupervised manner can help improve performance. (3) Exploratory data analysis - When
working with novel datasets it may be valuable to gain insights into their structure and nature, using unsupervised
methods, to choose the correct form of the classifier that will later be trained in a supervised manner.

In recent years, there has been increasing interest in the field of semi-supervised learning which liesin between
supervised and unsupervised learning. In this scenario we are provided with large amounts of unlabeled training
data, and some limited amount of side-information. This side-information may be of various forms: it may
consist of partial labels - labels over small amounts of data, or equivalence constraints - information over pairs
of datapoints which are known to belong or not to belong to the same class. Interestingly, the two compelling
rationales for this field of research are the ones suggested by Duda and Hart ( (1) and (2) above) as motivations
for unsupervised learning. In this setting it is usually (and sometimes implicitly) assumed that while the amount
of side-information is not sufficient to apply classical supervised learning methods, this side- information can be
used to obtain classifiers which yield better results compared to those that would be obtained without using this

side-information.

1.1 ThesisOutline

The research presented in this thesis focuses on the problem of distance function learning. After a detailed
introduction of thefield of distance learning presented in Chapter 1, | will then provide areview of various distance
learning algorithmsin Chapter 2, including adetail ed description of three novel distancelearning algorithmswhich

are the main contribution of this thesis. More specifically | will present the following algorithms:

1. Relevant Component Analysis (RCA) - An algorithm for learning a Mahalanobis metric using positive

equivalence constraints.

2. DistBoost - A boosting based algorithm which can learn highly non-linear distance functions using equiva-

lence constraints.



3. KernelBoost - A variant of the DistBoost algorithm which learns Kernel functions, which can be used in any

kernel-based classifier.

These agorithms will be described and analyzed in detail in Chapter 2. In the remaining chapters | will pro-
ceed to show various applications of these algorithms in awide variety of application domains, including image
retrieval, data clustering, classification, protein-peptide binding prediction and also the analysis of neuronal data
recorded from the auditory pathway. The empirical results presented will make a strong case for the applicability
and importance of this somewhat new area of research.

In what follows | provide an introduction to the field of distance functions, beginning with some formal defi-
nitions and then moving on to areview of various canonical distance functions, hand-designed distance functions
and most importantly learned distance functions. Since the important common ground for the distance learning
algorithms to be presented hereis that they al come from the field of semi-supervised learning, a short review of

this areawill also be presented in Section 1.3
1.1.1 Notations

Throughout this thesis | will use the following notations. vectors will be represented as lowercase letters x
and may also be indexed x;. The j-th component of a vector z; will be denoted by z;;. Sets are represented
by caligraphic uppercase letters X', ). A distance function will be denoted by the uppercase letter D and a
similarity function will be denoted by the uppercase letter S. The symbols R and R? denote the set of reals, and
the d-dimensional real vector space respectively. Further, R, denotes the set of non-negative real numbers. For
z;,z; € RY, |2 denotesthe Ly norm, and (x;, x;), denotes the inner product. Unless otherwise mentioned, log

will represent the natural logarithm.
1.2 Learning Distance Functions

The research presented in this work focuses on the problem of Iearning distance functions. We therefore begin
with aformal definition of adistance function and discussiits relation to a distance metric and a similarity function
(Section 1.2.1). Wewill then discuss several important motivations for learning distance functionsin Section 1.2.3.
While learning distance functions is a somewhat new area of research, much work has been done both using
canonical distance functions, and using hand-designed distance functionsin various application domains. A short

review of such distance functions will be presented in Sections 1.2.4-1.2.6. The problem of learning distance
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functions is also closely related to the problem of data representation and feature selection, and these relations
will be discussed in Section 1.2.7. In Section 1.2.8 we discuss the relation between distance learning and multi
class classification. A detailed description of the algorithmsincluded in this thesis will be presented in Chapter 2.
The remaining chapters present the publications included in this thesis as listed in page viii, in which various

applications of these distance learning algorithms are presented.
1.2.1 Distance Functions, Distance Metrics, and Similarity Functions

A distance function is a function defined over pairs of datapoints. Given a pair of datapoints, the function
produces areal (and possibly bounded) value, which measures the distance between the pair of points. Intuitively
speaking, points that are similar to one another are assigned smaller values than points which are far from one
another. More formally, adistance functionisafunctionD : X x X — R which assigns area valued number for
any pair of points from the input space z;, z; € X.

A special form of distance functions are also known as distance metrics. A distance metric D is a distance
function which maps pairs of points z;, z; into the nonnegativereals- D : X x X — R and obeys the following

three properties:
1. Isolation (also known as’ldentity of indiscernibles') - D(xz;, z;) =0 iff z; = x;.
2. Symmetry - D(z;, z;) = D(zj, ;).
3. Triangular Inequality - D(z;, z;) + D(xj, 1) > D(z;, z).

A general distance function will not necessarily obey all of these properties. For example, if wealow D(z;, z;) =
0 for z; # x;, we end up with a Pseudo-metric. In all other cases (i.e. if we omit symmetry, or the triangular
inequality) we use the general term distance function.

An Ultrametric is a distance metric which satisfies a strengthened version of the triangular inequality. In a
Euclidean coordinate system, thisis equivalent to requiring that the triangles of pairwise distances between every
three points will be isosceles triangles with the unequal length no longer than the length of the two equal sides

(Hastieet al., 2001) - i.e. for any three points z;, xj, x), € X
D(xh :Uj) < maX{D(xia I’k), D(xj7 :Ck)}

A concept which is closely related to the a distance function is a similarity function. A similarity function is

a function defined over pairs of points which measures the similarity (or resemblance) of the two points. It is
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however easy to see that a similarity function is inversely related to a distance function - if a pair of points are
very similar to one another, we would expect the distance between them to be small. Therefore, there are severa
intuitive ways of transforming a similarity function into a distance function and vice-versa. One commonly used

exampleisthe following:
D(, ;) = e~ 5m)

where D(x;, x;) is a distance function and S(x;, ;) is a similarity function. If we assume that the similarity

function is bounded in the range of [0, 1] another widely used transformation is:
D(zi,zj) =1 - S(xi, ;)

Therefore, while we will mostly use the term distance function, it should be clear that algorithms which learn
distance functions are also used for learning similarity functions.
One important and widely used type of similarity functions are kernel functions. A kernel £ : X x X — Risa

function that for any z;, x; € X satisfies:

k(wi,x5) = (p(xi), p(x5))

where ¢ : © — ¢(x) € F isamapping from X to an inner product feature space F'. For example, one widely

used kernel function isthe polynomial kernel of degree 2 given by:

k(zizg) = (i, 2;)°

which corresponds to the feature map:
n T'L2
o(x) = (@i, Tipy )m=1 € F =R

A kernel function & can be used to define a Gram matrix (also known as a kernel matrix). Given a set of vectors
S ={z1,...2;} € X the Gram matrix is defined as the [ x | matrix G whose entries G;; = (¢(x;), p(z;)) =
k(xi,x;). The Gram matrix is in essence a similarity matrix of the set of vectors S. It also has several other
appealing properties. it is symmetric and positive semi-definite. In fact it can be shown that any positive semi-

definite symmetric matrix corresponds to some kernel function k (Shawe-Taylor and Cristianini, 2004).



1.2.2 Non-Metric distance functions

While distance metrics and kernels are widely used by various powerful agorithms, they work well only in
cases where their axioms hold. However, in some cases, the 'natural’ distances between objects do not conform
to these strict axioms. For example Jacobs et al. (2000) have shown that distance functions which are robust
to outliers and irrelevant aspects in the matching of pairs of input objects are not metric, as they tend to violate
the triangular inequality. Examples of such distance functions are common in machine vision, in which many
times images are compared using part-based comparisons, and also in similarity judgments provided by humans.
Human similarity judgments have been extensively studied by Tversky (1977), who showed that they often violate
both the symmetry and triangular inequality metric properties. In other contexts, it is sometimes the ' Identity of
indiscernibles' that is violated. For example Mahamud and Hebert (2003b) has shown that the optimal distance
function for nearest-neighbor classification violates this property. An additional example is given by Bar-hillel
and Weinshall (2003) who analyzed the family of binary distance functions, which also violate this property.
Finally, alarge number of hand-designed distance functions have been suggested in various application domains,
asdiscussed below in Section 1.2.6. In almost all of these cases, these distance functions are far from being metric.

Various works have suggested formulations of more general non-metric similarity functions. Lin (1998) derived
a definition of similarity that is based on information theory, for discrete valued vectors. The similarity measure
can belearned from event frequencies and has been shown to work well in the context of document retrieval (Aslam
and Frost, 2003). A different formulation was suggested by Kemp et al. (2005), in which similarity judgements
are inferences about generative processes and that the similarity of two objects is defined using the likelihood
that they were generated by the same underlying generative process. Bar-Hillel and Weinshall (2006) suggest
another information theoretic definition which is similar to the one suggested by Kemp et al. (2005), and different
from the one considered by Lin (1998). Bar-Hillel and Weinshall (2006) suggest an efficient similarity learning
algorithm which can be used for continuous valued vectors. Balcan and Blum (2006) have recently suggested a
novel formulation of similarity which provides an alternative to the widely used family of kernel functions. The
authors suggest sufficient conditions for a similarity function that will allow one to learn well, which does not

require reference to implicit spaces and does not require the function to be positive semi-definite (PSD).



1.2.3 Why aredistance functionsimportant?

Whiletheideaof explicitly learning a distance function is rather new, distance functions have been widely used
in various application domains and for various computational tasks. Thisis primarily due to the abundance of algo-
rithms which are distance based - i.e. algorithms whose only input requirement is the pairwise distances between
the input datapoints. Despite this somewhat straightforward motivation, | believe that there are several additional
important reasons why learning a distance function is an interesting and important computational challenge. Let

me now present and discuss these motivations:

e Distance-based algorithms - Many different supervised and unsupervised learning algorithms make use of
the distances between the training datapoints. Examples include graph-based clustering methods such as
average linkage (Duda and Hart, 1973), normalized-cut (Shi and Malik, 2000), nearest neighbor classifiers
(Fukunaga, 1990) and kernel-based classifiers such as support vector machines (SVMs) (Vapnik, 1998). Itis
widely known that the performance of all of these algorithmsis strongly dependent on the distance function
used. Thisis not surprising since in all of these agorithms, the only required input are the distances (or
similarities) between datapoints, and the datapoints themselves are not used directly at any stage of the
algorithm. An example of thisintricate connection will be provided in Chapter 4, publication [B], where we
will show that the performance of various hierarchical graph-based algorithms (such as the average linkage

agorithm), critically relies on the quality of the distance function used.

e Thecurseof dimensionality - The curse of dimensionality (Bellman, 1961) refersto the exponential growth
of hypervolume as a function of the dimensionality. Thisis a problem that many learning agorithms suffer
from. The importance of choosing the right distance function becomes even more critical when we consider
high-dimensional data such as images. It has been recently shown that the quality of the distance function
may be strongly affected by the sparsity of the data (Katayama and Satoh, 2001). Moreover, Beyer et al.
(1999) and Aggarwal et al. (2001) have shown that for high-dimensional data when standard L,,-norms are
used (such asthe Lo norm which is equivalent to the squared Euclidean distance), the distances between all

pairs of points are very similar to one another.

e Learning to Learn - One of the major current differences between humans and machines in the field of
learning is humans' stunning ability to learn new tasks based on previously acquired experience in related

tasks. Unlike machines, humans are extremely good at learning new tasks which are similar (or related) to
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tasks which they have previously encountered. Moreover, people are able to learn these new tasks with very
limited amount of training, sometimes even using a single example. This impressive ability to generalize
from previously related tasks to a novel task is called 'Learning to Learn’ (Thrun and Pratt, 1998) and is
also known as Inductive transfer (Caruana, 1997), Interclass transfer (Fink et al., 2006) and ' Learning with
point sets' (Minka and Picard, 1997). Thisfield of research has attracted increased attention in recent years
from the computational community both in terms of theory (Thrun, 1996; Baxter, 1997; Ben-David and
Schuller, 2003) as well as applications (Ferencz et al., 2005; Fink, 2004; Hertz et al., 2006). Various ideas
on what knowledge can be transferred between related tasks, and how such knowledge can be transferred
have been discussed in the literature, and have resulted in such notions as learning priors (Baxter, 1995),

feature selection, and learning distance functions (Caruana, 1996; Thrun, 1996; Hertz et al., 2006).

A good example of how distance functions can be used for interclass transfer can be seen when considering
afacial image retrieval system. Suppose that our task isto build afacial image retrieval system in which the
user provides aquery image and the system retrieves a set of images which are the most similar from agiven
database of facial images. The retrieval system is powered by some similarity function which is used for
measuring the similarity between pairs of images. Faces arein general semi-rigid objects, in which one can
easily identify a set of features or parts which are consistent across all faces. These shared features can be
exploited for sharing information across different faces. If we train a distance learning algorithm over a set
of training images of several subjects, we can use this distance function to measure the distances between
novel images of these subjects (which is considered the classical 'test stage’ of any learning algorithm), but
we can also use it to measure the distances of faces of new subjects which were not presented during the
training stage (see Chapter 5 for a detailed empirical study of such an application on a benchmark dataset

of facial images).

Capturing relations between datapoints - In the classical learning scenario, we attempt to learn some func-
tion f over an input space X, from a given training sample S = {(x1,91), (z2,v2), ... (xN,yn)} Where
y; = f(z;). Distance functions are functions over pairs of points - they provide information about the
similarity of pairs of points. Essentially, a distance function captures relations between the input datapoints
themselves, and not an input-output relation between the datapoints and their associated label (which can
also be continuous). However, in some cases capturing the relations between datapoints can provide infor-

mation which cannot be easily extracted from directly estimating input-output relations.



An example of such a case can be seen in clustering. Suppose that our input-output function essentially
clusters the input data into a set of well separated clusters, each with an associated label. One interesting
property of such afunction is that we can obtain an identical set of clusters from a large family of other
related functions. The commonality of all of these functionsisthat they capture the same pairwise relations
between the input datapoints - i.e. if points z; and ; were assigned to the same cluster by f; they will also
be assigned to the same (but possibly different) cluster by f>. Capturing the relatedness of these functions
can be easily abtained by directly learning these pairwise relations. Therefore, we may be able to capture
non-intuitive relations between various input-output functions by characterizing the pairwise relations that
they induce on the input objects. Oneinteresting example of such an approach will be presented in Chapter 7
in which we show how such aformulation can be used to characterize auditory neurons using a set of natural

bird chirp stimuli.

e An alternative to feature selection - Learning a distance function is closely related to both feature selection
and data representation. In fact, as discussed in more detail in Section 1.2.7 these tasks are somewhat
interchangeable and therefore learning a distance function can be viewed as an aternative approach to these

two important tasks.

Despite the abundance of distance-based learning algorithms, and the additional motivations presented above,
until recently the distance functions which were traditionally used were various standard off-the-shelf distance
metrics such as the Euclidean distance, Mahalanobis distance, or various context dependant distance measures
which were constructed by hand. Recently however, various authors have explored the idea of devel oping methods
for learning the distance function using a training data which is either labeled or is augmented with some form of
side-information. This research topic has received growing attention in recent years and many different distance
learning algorithms have been developed and used successfully in various application domains. However, before
we focus on these distance learning algorithms, let us provide a brief introduction to a number of well known

distance functions which have been widely used in various application domains and algorithms.

1.2.4 Canonical Distance Functions

Let us now turn to a brief overview of several canonical distance (and similarity) measures:

e Euclidean Distance - Perhaps the most well known and widely used distance function (which is also a



metric) is the Euclidean distance defined by

d

DEuclidean(xia ZE]') =1/ (xz - xj)Q = \J Z(xzk - xjk)z (11)

k=1
The Euclidean distance is also known as the L» distance (or the squared Lo norm).

M ahalanobis Distance - This distance measure, originally proposed by P.C. Mahaanobis (Mahaanobis,
1936) in the statistics community, is based on correlations between different features within afeature vector.
The Mahalanobis distance is a generaization of the Euclidean distance which also takes into account the
correlations of the dataset and is scale-invariant. In its original form it measures the distance of any two
vectors, based on the assumption that they originate from the same underlying distribution. Formally, given
adistribution p which has a covariance matrix X, the Mahalanobis distance between two vectors z;, z; is

given by:

d d
DMahalanobis(xiv xj) = \/(-TZ - xj)Tzil(l‘i - xj) = J Z Z xiszklle (12)

k=1 1=1
Note that if the covariance matrix X is the identity matrix, then the Mahalanobis distance becomes the

Euclidean distance. If we restrict the covariance matrix to be diagonal, we now have what is called a nor-
malized Euclidean distance. Whileinitsoriginal form the Mahalanobis distance assumes that the datapoints
originate from a probability distribution with a covariance matrix 3, it can be shown that the distanceiswell
defined for any positive semi-definite (PSD) matrix A. We will therefore denote a general Mahalanobis ma-

trix by the symbol A. We will describe severa agorithms for learning a Mahalanobis metric in Chapter 2.

Manhattan (or City-Block) Distance, L, distance - This distance, originally proposed by Minkowsky is
defined by

d
Ditanhattan (i, 25) = Y @ik — k| (13
k=1

The distance measures the shortest distance (in “city blocks") that one would be required to walk between
the two points z; and z; if acity islaid out in square blocks. More formally, it is the sum of the lengths of

the projections of the line segments between the points onto the coordinate axes of the coordinate system.

Chebychev distance (or chesshoard distance) - The Chebychev distance between two points is the maxi-

mum distance between the pointsin any single dimension:
Dchebychen(Ti, ) = max |Tik — Tk (14
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This distance measure is a special case of the L., horm. It may be appropriate if the difference between
points is reflected more by differences in individual dimensions rather than all the dimensions considered

together.

Minkowski distance - The Minkowski distance is a generalization of several other canonical distances and
isaso known asthe L,, norm distance. Note that unlike the previous distance metrics, this metric has afree

parameter p which must be defined. The distance is given by

d
Drtinkowski (T3, ©5) = d > ik — wjplP (1.5)
k=1

When p = 1 this yields the Manhattan distance. When p = 2 we obtain the Euclidean distance and finaly
when p = oo we obtain the Chebychev distance. However, we can also pick different values for p. In
general, as the value of p increases the metric tends towards a Chebychev result. Therefore by increasing
p, One can assign greater numerical value to the largest distance (in terms of elements in the two vectorsin

question).

Hamming Distance - The Hamming distance originally introduced by Richard Hamming in the field of
information theory (Hamming, 1950) is a distance measure between two strings of equal length, which is
defined as the number of positions for which the corresponding symbols are different. Put differently, it

measures the number of “errors’ that transformed one string into the other. More formally it is given by:

d

DHamming(xiafL‘j) = Z l(xz 7& ‘Tj) (1.6)
k=1

where 1{-} istheindicator function (1{True} = 1,1{False} = 0).

It can be easily shown that for a fixed length n the Hamming distance is a metric on the vector space of
al words of that length. Additionally the Hamming distance of binary strings x;; € 0,1 is equivaent to
the Manhattan distance between the two points in a d-dimensional hypercube, where d is the length of the

words.

Correlation Distance (or Pearson correlation distance) - The correlation distance measures the similarity
in shape of two feature vectors. Moreformally it isthe dot product of the Z-scores of the two vectors. z;, x;
given by

(Z(x3), Z(x))) . vy Z(wi)Z(zjn)
S el k=1 ¥ (17)

DCorrelation(xiyxj) =1-
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where Z(x;;) = (zi — k) /o, p isthe empirical mean of the data, and o is the standard deviation. The

term (Z(x;), Z(x;))/N issometimes referred to as the Correlation similarity.

TheJaccard Similarity Coefficient (or Index) - The Jaccard index isastatistic for computing the similarity
and diversity of sample sets. It is defined as the size of the intersection divided by the size of the union of
the sample sets. More formally, given two sample sets A and B the Jaccard similarity coefficient is given
by:

ANB
SJaccard<Aa B) = ;A U B; (18)

This similarity measure has been widely used in areas such as text classification, where one natural way of
representing a document is as a “bag of words’, which is simply the set of al words within the document

(sometimes omitting frequently used words).

A closely related measure is the Jaccard distance, which is obtained by subtracting the size of the intersec-
tion of the sets by the size of the union and dividing the result by the size of the union:

AUB|—-]|ANB
DJaccard(A7 B) = | |fi U |B| | =1- SJaccard(A7B) (19)

Cosine Similarity - The Cosine similarity is a similarity which is widely used for clustering directional
data - data, that deals only with the direction of unit vectors, i.e. which only measures the relative direction

between pairs of vectors. More formally it is given by
(zi,25) d D
Scosine(Ti, Tj) = m = y il y (1.10)
’ ! k=1 \/Zk:l g \/Zk:l m?k

It has been shown that the Cosine similarity measure is the natural distortion measure for prototype-based

clustering under the assumption that the data were generated by a mixture of von-Mises Fisher distributions
(Banerjee et al., 2003). This similarity measure has been widely used in information retrieval applications
including text analysis (Aggarwal, 2003), bioinformatics and collaborative filtering (Banerjee et al., 2003).

It has a so been shown by Banerjee et al. (2003) that the Pearson correlation is aform of cosine similarity.

The Weighted (or Parametrized) Cosine similarity is ageneralization of the Cosine similarity in which a
positive-definite matrix A is used:

l’iASL'j

=g (1.12)
zilla - [lzj]la

DW@ightedCosine(xb $j)
where ||| 4 isthe weighted Ly norm: ||z||4 = V2T Ax.
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Let us now review another family of distance measures, which are defined over pairs of probability distribution

functions.
1.2.5 Distancesbetween distributions

Many different approaches have been suggested for measuring the distance between apair of probability distri-
butions p and ¢. Thisis an important problem, which has been extensively studied in many application domains
such as information theory, image retrieval etc. For purposes of simplicity let us focus on the case of discrete
probability distributions. Furthermore, we will represent each probability function using an empirical histogram
H.

A histogram H = {hi}f:1 isamapping from a set of d-dimensional integer vectors to the set of non-negative
reals. These d-dimensional integer vectors typically represent bins (or their centers) in a fixed partitioning of
the relevant region of the underlying feature space, and the associated reals are a measure of the mass of the
distribution that falls into the corresponding bin. For example, in agrey-level histogram of animage, d isequal to
one, the set of possible grey valuesis split into & intervals, and h; is the number of pixelsin an image that have a
grey value in the interval indexed by i (ascalar in this case) (Rubner et al., 2000).

We now review several important examples of such distance measures. In the following, H' and H? denote

histograms and »} denotes the i’th bin in histogram H'*.

e \? tatistic - The Chi-Square statistic (Schervish, 1995) measures how unlikely it is that one distribution

was drawn from the population represented by the other distribution. More formally it is given by:

De(H' HY) =Y W (1.12)

1 2
where m; = by ;hi . Thisisawidely used distance measure in the statistics community and has also been

widely used for the analysis of neuronal data (Bar-Yosef and Nelken, 2006).

e Kullback-Leibiler Divergence - The Kullback-Leibiler divergence (Cover and Thomas, 1991) is defined
by:

hl
Dgr(H', H?) = Z h}logh—; (1.13)

This divergence, which originated in information theory, measures how inefficient on average it would be

to code one histogram using the other histogram as the code-book. This divergence is non-symmetric and

13



also sensitive to the histogram binning. One way to overcome these possible shortcomings is to use the
empirically derived Jefferey divergence (also known as the symmetric KL-divergence) given by:

h! h?
DSymmetrichL(Hlv H2) = Z (hzl 1Og — + h12 log Z> (114)

%

hl+n2
wherem; = "L,

Earth Mover’s Distance (EMD) - This distance measure, originally used by Peleg et al. (1989) and Rubner
et al. (2000) for measuring distance between images, is based on the minimal cost that must be paid to
transform one distribution into the other. Unlikethe KL divergence or the y2 distanceit is adistance measure
which also compares non-corresponding binswithin the histogram. If we define the ground distance between
apair of binsi € H' and j € H? to be d;; and by f;; the flow between binsi and j the EMD distance is
given by:

_ Zz Zj dij fij

D2 sum; fij

Intuitively, given two distributions, one can be seen as a mass of earth properly spread in space, the other

Deyp(HY, H?) (1.15)

as a collection of holes in that same space. The EMD measures the least amount of work needed to fill
the holes with earth. Here, a unit of work corresponds to transporting a unit of earth by a unit of ground
distance. Computing the EMD is based on a solution to the well-known transportation problem (Rubner

et al., 2000).

Despite the extensive use of these (and various other) canonical distance functions in various application do-

mains, in the last three decades, considerable efforts have been invested in hand designing application specific

distance functions which incorporate some form of domain knowledge into the distance computation. Let us now

review several well known hand-designed application specific distance functions.

1.2.6 Application specific Distance Functions

According to Aggarwal (2003), the process of designing application specific distance functions has intrigued

researchers for over three decades. While there are several well known distance functions for datapoints that are

represented in some vector space RY, there are many application domains in which the data instances are various

objects which cannot be readily represented by a feature vector in some vector space. Classical examples are

images, biological sequences, and text documents.
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Consider for example the problem of measuring the distance (or similarity) between a pair of images. Each
image is represented by a matrix where the value in position (i, j) denotes the gray-scale (or color) value of the
(i,7)'th pixel. If we assume that apair of images /; and I, are of equal size, then we can readily transform each
image into a vector by a simple concatenation of its rows. However, this can be easily shown to be a fairly bad
representation of the image since it is very sensitive to small changes in the image. If for example we are given
two images of the same object in which in one image the object has been slightly moved to the right (or l€eft), the
location of object pixels within this vector representation will be very different. This would cause any canonical
distance measure (e.g. the Euclidean distance) to define a’large’ distance between the vectors representing these
two images of the same object. Similar effects will aso occur if we alow the object to be dlightly rotated, or
scaled.

In these structured domains, where the objects which we would like to classify (or cluster etc.) cannot be
naturally represented by some feature vector, considerable work has focused on the following approaches. (1)
Finding good feature representations, and (2) Hand-designing various distance measures which can measure the
distances between such objects. The intricate relationship between these two approaches will be further discussed
in Section 1.2.7, but before doing this, let us focus on these hand-designed distance functions.

The basic idea of a hand-designed distance measure is to tailor a distance measure which incorporates some
form of domain knowledge. It should be made clear that almost al of these functions are heuristic in that they are
“optimized” manually, and in many cases focus on specific characteristics of the data which were hand-picked.
Their “claim-to-fame” is therefore usually based on empirical evaluations and comparisons. Despite the heuristic
nature of most of these distance functions, it should be noted that in some applications, these hand-designed dis-
tance functions demonstrate state-of-the art performance. Onewell known exampleisthe Shape-Context Matching
distance proposed by Belongie et al. (2002) (see details below) which when used with a 1-Nearest Neighbor clas-
sifier on the MNIST (LeCun et al., 1998) dataset has been shown to outperform all other classification methods,
most of which include atraining phase which makes use of 60000 datapoints.

Let us now describe several prototypical examples of such hand-designed distance functions for various appli-

cation domains;

e Shape-context matching - Shape context matching is a similarity measure between shapes which is used
to measure the similarity of pairs of images (Belongie et al., 2002). This similarity measurement makes use

of various image processing and computer vision techniques which can be used automatically without the
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need of any form of feedback, or learning stage. The basic ideaisto use hand-defined image features which
are called shape-context features. The shape context of a reference point captures the distribution of the
remaining points relative to it, and therefore offers some form of global characteristic of the image (hence
the use of the term “context™). After extracting these features from a pair of images, the method then finds
the correspondences between the feature points on the two shapes, and then uses these correspondences to
estimate a global transform which best aligns the two shapes. The dissimilarity (or distance) between the
two shapes is computed as the sum of matching errors between the corresponding points, together with an

additional term that measures the magnitude of the aligning transform.

Computing thisdistance on apair of imagesisacomputationally costly process, which can take up to severa
seconds, depending on the number of sample points used to select the features and the size of the images.
This is therefore one classical example of a complex highly specific distance measure which is compu-
tationally intense, but generates impressive empirical results on various image retrieval and classification

applications (Belongie et al., 2002; Zhang and Malik, 2003; Berg et al., 2005).

Chamfer distance - The Chamfer distance is another shape matching algorithm which is used for shape-
based object detection and recognition. At the core of thisdistance measureisadistance transform. Chamfer
distance transformations rely on the assumption that it is possible to deduce the value of the distance at a
pixel from the value of the distance at its neighbors. In order to compute the distance transform on an image,
theimageisfirst transformed into afeature image, which is done using some feature extraction method over
the image such as edge detection. The feature image is then transformed into a distance image using the
distance transform. Severa distance transforms have been suggested and analyzed. Fundamentally they are
all based on measuring the minimal distance of every “on” pixel to the closest “off” pixel given a binary
image. For example the d, distance transform measures this distance based solely on the 4 close neighbors
of agiven pixel. Matching isthen done by aligning apair of distanceimagesto one ancther, or by attempting

to align amodel (or template) with a single distance image.

Edit-distance (also known as the Levenshtein Distance) - The edit distance was originaly defined by
Levenshtein (1965) as a method for measuring the similarity of pairs of strings. The basic ideaisto find a
sequence of edit operations which transform one string into the other, at a minimal cost. The elementary
operations are substitution, deletion and insertion of string symbols. This distance can aso be considered

a generdization of the Hamming distance, which is defined only on strings of equal length and only con-

16



siders substitution edits. The edit-distance is usually computed by a bottom-up approach using dynamic
programming. Various variants of the basic algorithm have been suggested, which in general refine the cost
of various edit operations. A domain in which many of these improvements have been considered isin

algorithms for aligning biological sequences such as proteins.

Alignment scores for biological sequences - Aligning pairs and sets of biological sequences such as pro-
teins, genes, etc, is a problem for which various a gorithms have been proposed (Durbin et al., 1998). This
is a fundamental problem in computational biology, and serves as a building block for many other com-
putational tasks which have been addressed. Alignment algorithms are in most cases specific variants of
the basic edit-distance method, which make use of domain knowledge to provide refined definitions of the
cost of various edit operations. These models are all based on evolutionary models which attempt to mimic
the natural (and slow) process of biological evolution. When a protein is manufactured in a cell, it will
sometimes undergo various mutations - which can basically consist of a substitution of one amino-acid
by another, or omitting or inserting a single amino acid (or a sequence of such amino-acids). Since some
amino-acids have similar chemical and electrical properties, we can define a different substitution cost for
each pair of amino acids which is based on their pairwise similarity. Intuitively, substituting an amino-acid

for asimilar amino-acid would result in alower cost than replacing it with avery dissimilar amino-acid.

Cophenetic distance - the cophenetic distance is used for measuring the distances between clusters gener-
ated by a hierarchical clustering algorithm. Given a dendrogram D of N points the cophenetic distance (or
dissimilarity) between points z; and z; is the inter-group distance of the cluster Cj, in which points z; and
x; arefirst joined together in the dendrogram. Thisisavery restrictive distance measure to begin with, since
only N — 1 values within the entire N (N — 1)/2 values are distinct. Moreover, the cophenetic distances

obey the ultrametric inequality (Hastie et al., 2001), i.e. for any three points z;, z;, 1, we have:

Dcophonetic(xi7 .’L'j) < max{Dcophenetic(xiy I‘k), Dcophenetic($j7 .%'k)} (116)

This distance istypically used to measure the quality of the dendrogram provided by some clustering algo-
rithm. Thisis done by measuring the cophenetic correlation coefficient which is the correl ation between the

pairwise distances used by the clustering algorithm and the corresponding cophenetic distances.

String Kernels - String kernels are sequence similarity measures which have been widely used in text clas-

sification. These kernels are an excellent example of how one may define asimilarity (or distance) measure
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over objectswhich cannot be naturally represented by feature vectors. Representing atext document in order
to classify documentsis a hard problem for which various solutions have been proposed. Among these are
the Bag of Words model and a mapping of each document into a high-dimensional binary vector in which
each entry represents the presence or absence of afeature (usually simply a word, excluding specific 'stop

words'), (Salton et al., 1975).

String kernels take a somewhat different approach: each document is represented as a “string” which is
simply a sequence of symbols from a given (and finite) alphabet. The main idea of string kernels is to
compare documents not by words, but by the substrings they contain (Lodhi et al., 2002). These substrings
do not need to be contiguous, but they receive different weighting according to the degree of contiguity. For
example: the substring “ c-a-r” ispresent both in theword “ card” and “ custard” but with different weightings.
The main advantage of this approach isthat it can detect words with different suffixes or prefixes: the words
“microcomputers’, “computers’ and “computer-based” all share common substrings. Several string kernels
have also been suggested for measuring the similarities of biological sequences. Examples are the spectrum

kernel (Ledlieet al., 2002) and the mismatch kernel (Ledlie et al., 2003).

M easuring distances between silhouettes - Gdalyahu and Weinshall (1999) suggested an agorithm for
classifying silhouettes based on measuring the similarity between pairs of silhouettes. Each image of a
silhouette is first represented using a set of contours (or line segments) which are segmented using the
K-means algorithm. These provide a syntactic representation of the image. The algorithm then identifies
points of high curvature which are used as feature points to represent each contour. A global alignment
procedure is then used, which is based on an edit-distance, which is specifically tailored for the vision do-
main: substitution isinterpreted as matching two shape primitives and the substitution cost is defined by the
distance between the matched primitives. Additional operations are added which include a gap insertion and
the merging of primitives. Moreover, the distance between the line segments is hand-defined and depends
on the scale and orientation of the segments. This similarity is based on the (plausible) assumption that
an object may be pictured at different scales and rotations. Making use of this domain-specific knowledge
enables the definition of a similarity measure which is based on a flexible matching algorithm. Thisflexible

matching algorithm can match curves which are only weakly similar to one another.

Kernels for measuring the similarity between images - Measuring the similarity between a pair of im-

agesis a hard problem which has been recently addressed by several authors (Grauman and Darrell, 2005;
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Wallraven et al., 2003; Lyu, 2005; Kondor and Jebara, 2003; Wolf and Shashua, 2003; Moreno et al., 2003;
Shashuaand Hazan, 2005). Many image representations consist of unordered sets of features or parts, where
the sets may be of varying cardinality. For example, an image may be represented by a set of local features
which are detected using some interest point operator (see for example (Lowe, 2004)). An object may be
represented by a set of patches which correspond to various object parts (Bar-Hillel et al., 2005c,a). The
major challenge of using these representations is that most machine learning algorithms are designed to
operate on fixed-length input vectors, and not on a set of unordered features. A classical way to address this
problem isto compute pairwise correspondences over these feature sets (see for example the Shape-Context
Matching method described above). Another way to address this challenge is to define a kernel over these
unordered feature sets which can measure the similarity of these sets. By defining such a kernel, we can
then use any kernel-based classifier over this kernel without the explicit need to solve the correspondence
problem between these unordered sets of features. For example Grauman and Darrell (2005) proposed a
pyramid match kernel - which measures the similarity of a pair of unordered sets of features by mapping
each feature set into a multi-resolution histogram and then compares these histograms using a weighted
histogram intersection computation. They show how this distance measure can be successfully used on a

challenging object recognition task.

1.2.7 Therdation to data representation, feature selection and feature weighting

Many classification and clustering algorithms operate over adataset S in which each datapoint is represented by
some feature vector. |n most cases these vectors are assumed to be ordered, i.e. each dimension within thevector is
assumed to represent some measurement or aspecific feature (e.g. color, size) of theinput instance. Finding agood
representation of the input data is known as the data representation problem. This problem has been extensively
studied over the last several decades, and numerous representation schemes have been suggested for various input
domains. For example, if we want to represent an image of some object, we can represent the image using a vector
of its pixels, use some dimensionality reduction method such as Principal Component Analysis (PCA) over the
original pixel vectors, represent the image using a color (or grayscale) histogram, or represent the image using a
set of wavelet coefficients. These are a few of the numerous vector representations which have been suggested
and explored for images. It should be clear that for each different input domain, different representations can be

defined, with varying degrees of complexity and incorporation of domain knowledge.
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The reason the representation problem has received enormous attention is that by improving the representation
of the data, one can significantly enhance the performance of the clustering (or classification) algorithm over which
itisapplied. In fact, finding the optimal (or ideal) representation can eliminate the need for further clustering or
classification the data, since such an ideal representation would map each input instance into its cluster or class
label. Suppose for example that our task isto classify a set of input images into two categories - 'facia images
and 'non-facial images'. If we had a good representation of these facial images - i.e. one that would represent
facial imagesin avery different way than non-facial images, the classification task would become very easy, and a
very simple classifier such as alinear separator would easily provide perfect classification performance. However,
if our representation mapped facial images and non-facial images very similarly, the classification task would
become much harder, and in order to obtain good performance we would probably need to use more sophisticated
classifiers to solve the problem *.

In general the success of many learning algorithms is often strongly dependent on various assumptions which
they make about the data representation - i.e. about the feature space in which the input data objects are repre-
sented: Classes are assumed to be convex, or at least continuous, and at least some of the features are expected to
be relevant for predicting the class label of the input instances. However, in most cases, the data representations
used in various application domains are far from ideal, and some of these assumptions do not hold. Put differently,
in most cases, the data representation is rather *weak’ and is usually based on some standard off-the-shelf domain
specific features.

One way to improve such 'weak’ representationsis to apply some pre-processing transformation F' to the input
datapoints. The transformation attempts to map the datapoints into a feature space in which the data are ’ better’
represented. In many cases, this pre-processing transformation can also be used to reduce the dimensionality of
the input space, by selecting 'relevant’ dimensions, or by eliminating 'non-relevant’ dimensions. This problem
is aso known as the feature selection problem, for which various algorithms have been suggested (see Langley
(1994) for areview of traditional methods and Guyon et al. (2006) for a more recent summary).

The representation problem is closely related to the distance learning problem. Since, as noted above in Sec-
tion 1.2.3 many algorithms are distance based (i.e. they only require as input the distances between datapoints),
selecting a'better’ distance function will improve the performance of these algorithms. In other words, there is

an analogy here - finding a better distance function for a distance based algorithm is just like finding a better

This is one of the main motivations for kernel-based classifiers which attempt to map the original datapoints into some high-

dimensional (possibly infinite) feature space, in which the data would hopefully become linearly separable.
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representation for a feature-based algorithm.

However, in some cases, the connections between data representation and distance functions can be made more
explicit. Consider for example distance-based clustering agorithms such as linkage algorithms. It iswell known
that the performance of these algorithms depends to a great extent on the quality of the distance function used.
Therefore, one way to improve the performance of these algorithms is to improve the quality of the distance
function used to compute their input distance matrix. However, note that if we had an ideal representation of our
data (i.e. one that would map every datapoint into a set of well separated feature vectors, each of which would
represent a single class within our data), any ssmple (and non-trivial) distance function we chose would provide
perfect clustering results.

Another more formal example of the connection between distance functions and data representation can be seen
when considering the relation of the Mahalanobis distance metric to linear transformations. Since a Mahalanobis
distance matrix A isasymmetric PS.D matrix, it can be decomposed using singular value decomposition (SVD)

asfollows:
A=UsUT = Wy z)(x:UT) = BTB (1.17)

where U is an orthonormal matrix (UUT = I) where each column is an eigen-vector of the matrix A, and ¥ isa
diagonal matrix which holds the singular values of the matrix A (that are equal to the squared eigen-values of the
matrix), and B = A3.

It can therefore clearly be seen that using the Mahalanobis distance metric defined by A isequivalent to applying
a linear transformation of the data using the matrix B and then measuring the Euclidean distance between the

transformed datapoints:
a7 Az = 27(BTB)2 = (27 BT)(Bz) = (Bz)" (Bx) (1.18)

Therefore, finding an optimal Mahalanobis metric A is equivalent to finding an optimal linear transformation B
and then using the Euclidean distance metric over the transformed space.

When the Mahalanobis metric considered is of low rank, it is equivalent to a linear projection of the data.
Linear projections have been widely used in various application domains. One well known supervised algorithm
for learning a linear projection of the data is Linear Discriminant Analysis (LDA, also known as FLD), which
was originally suggested by Fisher (1936). Learning LDA from equivalence constraints has been suggested by
Bar-Hillel et al. (2003) and Bie et al. (2003a) and also by Bar-Hillel and Weinshall (2006) (see chapter 2 for more
details).
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However, in the case of a genera distance function D there is no principled way to find the (possibly non-
linear) transformation which can be used to represent the data in some feature space where the Euclidean distance
between the data points would provide the same pairwise distances. One possible approach to this problem, which
has been explored in the literature, is based on embedding. The classical problem of embedding is to take a set
of datapoints for which pairwise distances are provided, and to embed them into some low-dimensional Euclidean
space, in which the pairwise Euclidean distances between the datapoints would be minimally distorted. Several
algorithms have been suggested for this problem, including Local Linear Embedding (LLE) (Roweis and Saul,
2000), Isomap (Tenenbaum et al., 2000) and BoostMap (Athitsos et al., 2004).

Distance learning algorithms are a principled way for going in the opposite direction - they are provided with
a set of datapoints that lie in some vectorial feature space, and with some additional side-information on the
distances (or more commonly relations) between some pairs of datapoints, and attempt to learn a distance function
in which the distances between pairs of datapoints will reflect the side information provided. Learning distance
functions can therefore be seen as an dternative to finding a good representation of the data, using some standard
representation of the data and some additional side-information. Therefore, distance learning can also be seen as
an alternative approach to feature selection, or to finding a strong data representation.

The problem of learning distance functions is also closely related to the problem of feature weighting. In this
setting, each data object is represented using a set of features (or a feature vector), and the objective is to learn
a set of weights over these input features. The distances between a pair of objects are defined as the weighted
sum of their corresponding feature vectors. In most cases, feature weighting methods are used in the context of
K-Nearest-Neighbor (KNN) classifiers (see (Wettschereck et al., 1997) for areview). Feature weighting can be
seen as ageneralization of feature selection. More importantly, it can be seen as a special case of distance function
learning, in which a diagonal Mahalanobis metric is learnt. Therefore recent works in this area are sometimes
described as “feature selection” algorithms (e.g. the Smba algorithm suggested by Gilad-Bachrach et al. (2004)),
and sometimes described as “ distance-learning” algorithms (see for example (Schultz and Joachim, 2003; Xing

et al., 2002)).

1.2.8 Therelation to multiclass L earning

In Multiclass learning (or classification) we are required to learn a function over an input space X which

takes a discrete set of values Y = {0,1,2,... M — 1} where M is the number of classes in our data. At first
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glance, multiclass learning appears to be a straightforward generaization of binary classification (in which our
function can only take two values {0, 1}. However, while there has been a considerable amount of theoretical and
algorithmic work done on binary classification, the problem of multiclass learning is less well understood. Most
available algorithms are usually tailored for binary classification, for example SVM’s (Vapnik, 1998) and Boosting
(Schapire et al., 1997). Several recipes have been suggested which make it possible to combine binary classifiers
in order to produce a multiclass classifier, such as a’winner-takes-al’ approach (Dietterich and Bakiri, 1995) and
the use of error correcting output codes (Dietterich and Bakiri, 1995; Har-Peled et al., 2002). Other approaches
have been based on generative models, e.g. a Gaussian mixture model, which strongly depend on the assumption
that the data distribution is known in advance.

The multiclass classification problem is closely related to the problem of data partitioning in which we attempt
to learn a partitioning of the datainto M discrete sets. In fact data partitioning is simply unsupervised multiclass
learning. This observation can provide an alternative approach to multiclass classification, based on defining an
equivalent binary classification problem which turns out to be a special form of distance function. Specifically
if the origina problem is to learn a multiclass classifier over some input data space X', we can pose a binary
classification problem over the product space X’ x X’ in which each pair is assigned a value of 1 if the two points
originate from the same class, and avalue of 0 if they originate from different classes. This binary functionisin
fact abinary distance function - i.e. it is a distance function which only assigns avalue of 0 or 1 for every pair of
points.

Intuitively, if we can learn an ideal distance function which assigns a value of 1 to every pair of points that
originate from the same class, and 0 to every pair of points that originate from different classes, this function also
provides an optimal multi-class classifier of our data. However, the question still remains as to how these problems
are related when a non-optimal solution is obtained.

Bar-hillel and Weinshall (2003) provided aformal analysis of the relation between these two concepts. Specif-
ically, they analyzed the relation between the family of binary distance functions (i.e. distance functions whose
output is constrained to be 0 or 1) and multi-class classification. They showed that the solutions to these two
problems are related, in the sense that finding a good solution to the binary distance learning problem entails the
existence of a good solution to the multi-class problem, and vice-versa. More formally they showed that for any

solution of the binary product space with error e, there exists a solution of the multiclass problem with error e,
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such that

< ey < \/2Mepy (1.19)

€o
They further showed that under mild assumptions, a stronger version of the right side inequality exists, which

shows that these two types of errors are linearly related to one another:

Epr
0 < —— 1.20
€o < 7 (1.20)

where K isthe frequency of the smallest class.
They also showed that the sample complexity of these two problemsis similar, by comparing the VC-dimension
Sy ¢ of the binary distance learning problem to the Natargjan-dimension Sy of the multi-class problem. More

specifically they showed that

SN
f1(M)

where f1(M) is O(M?) and f>(M) is O(logM).

—1<Syc < fo(M)SNn (1.21)

They then concluded by suggesting an algorithm for learning a multi-class classifier by solving the equivalent
binary distance learning problem. The algorithm suggests away in which a product-space hypothesis (or distance
function) can be greedily used to define a partition of the data, which in turn is equivalent to amulticlass classifier.

The relation between distance function learning and multiclass classification shows that in essence, distance
function learning can be viewed as another way of addressing the problem of multiclass classification as well
as the problem of data clustering. However, in many cases, being able to pose the same question in different
formulations can lead to very different solutions, and can sometimes help to identify intuitive ways of solving a
problem which in its original formulation was harder to approach. Distance function learning can certainly be
seen as such a case, and as some of the works presented in this thesis show, it can be used to obtain significant

performance improvement in various machine learning applications which have been extensively studied.
1.3 Semi-Supervised Learning

Semi-supervised learning is a topic which has attracted great interest in recent years (see (Zhu, 2005) for a
detailed review). In this scenario, we are provided with an unlabeled dataset {z;}% ; and with some additional
side- information. The two most common types of side-information considered in the literature are partial-labels,

and equivalence constraints. In the following sections we will provide a detailed account of these two approaches
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and describe some related work which has taken place in these two sub-areas. Before doing so, let us focus on
why semi-supervised learning is a promising field of research.

As noted above, the main motivation for semi-supervised learning lies in the fact that labelling data may be
both costly and time-consuming, while obtaining unlabeled data is usually cheap and fast. The main underlying
assumption is that since unsupervised learning algorithms can only help discover the underlying inherent prop-
erties of the data, augmenting the unlabeled data with some form of side-information can enable the use of more
powerful supervised learning algorithms, and may therefore hopefully lead to improved performance. However,
Cozman et al. (2003) have shown that this is not always the case, and that if wrong assumptions are made re-
garding the model used to describe the data, adding unlabeled data can actually degrade the performance of a
classifier, when compared to its performance when trained using only labeled data 2. Several different families
of semi-supervised learning algorithms have been described in the literature and have been successfully used in

various application domains. These are briefly described bel ow.
1.3.1 Semi-supervised learning using partial labels

Semi-supervised learning using partia labelsis the scenario in which the additional side -information provided
to the algorithm apart from a set of N unlabeled datapoints Xy = {1 ---xn} is an additional (usually) small
number L of input datapoints for which labels are provided X; = {xn41--- x4} Thisscenario iswell suited
for applications in which obtaining unlabeled datais cheap, while labelling each data point may be expensive and
time-consuming. Examples of such cases are the problem of predicting the three-dimensional structure of proteins.
Despite the fact that roughly a million proteins have been sequenced, we only know the structure of about 30, 000
of them.

A closely related scenario is transductive learning , in which we augment a set of labeled training data with a
set of unlabeled points. It is clear that the only real difference between transductive learning and semi-supervised
learning then becomes the amount of labeled data which is provided to the algorithm. An additiona (and some-
times not merely technical) difference between the two isthat transductive learning algorithms usually require that
the test data be provided at training time, a requirement which cannot always be satisfied.

Algorithms which have been developed in this area are usually adaptations of well-known supervised learning

algorithms, which have been augmented to make use of the set of unlabeled points X ;. Here are several examples

2Note that this comparison is valid only for semi-supervised algorithms which make use of partial labels, and not necessarily those

which use equivalence constraints.
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of such agorithms:

1. Semi-Supervised EM - Both Miller and Uyar (1997) and Nigam et al. (1998) have suggested enhancements
of the EM algorithm for a Gaussian Mixture Model (GMM) which incorporates|abelled data. The algorithm
uses the labeled data by defining an objective function which has the standard unsupervised |og-likelihood
term for the unlabeled datapoints and an additional term for the labeled data which directly represents
posterior probabilities. A different formulation in which the labeled data are used to seed the clusters used
asinitial conditions was suggested by Basu et al. (2002).

2. Semi-supervised K-means - Demiriz et al. (1999) suggested an augmentation of the K-means algorithm
which is based on defining an objective function that combines cluster purity and cluster compactness,

where the purity term is evaluated using the set of labeled points.

3. Semi-SQupervised EM of a Hidden Markov Random Field - Lange et al. (2005) proposed an approach that
incorporates labeled and unlabeled data within an HMRF-like model, while a mean field approximation
method for posterior inference is used in the E-step of the algorithm. A similar formulation was suggested

by Basu et al. (2004).

4. Semi-supervised Graph-Cuts - Boykov et al. (1999) and Blum and Chawla (2001) suggested an augmenta-
tion of graph-cut algorithms which minimizes the cost of a cut in the graph using a set of labeled points.
An extension of the normalized-cut (Shi and Malik, 2000) was suggested both by Yu and Shi (2001) and
Joachims (2003). Another related formulation was suggested in (Zhu et al., 2003; Zhou et al., 2003) in
which a quadratic cost function is minimized. An extension of the typical-cut algorithm (Gdalyahu et al .,
2001) was suggested by Getz et al. (2005). In thiswork instead of searching for a single cut which may not

be robust to noise, a number of cuts are considered.

5. Partially labeled random walks - Szummer and Jaakkola (2002) suggests how a small humber of labeled
points can be used to augment a set of unlabeled points in a Markov random walk over a weighted graph
whichis constructed using agiven distance metric D. Given apartially labeled dataset X = { XU Xy}, the
conditional probabilities that the random process started from point x; given that it ended in point z; after ¢
time steps is used to define an N-dimensiona representation of each datapoint, where N is the number of

datapoints. Thisrepresentation isthen used to estimate the posterior probability of alabel for each datapoint.
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The labeled points are used to learn the parameters of the prior distribution over the class labels for each

given point which is required for estimating the posterior probabilities.
1.3.2 Semi-supervised learning using equivalence constraints

In this second sub-area of semi-supervised learning the side-information provided to the algorithm is a set of
equivalence constraints. Equivalence constraints are relations between pairs of data points that indicate whether
the points belong to the same category or not. We term a constraint ' positive’ when the points are known to be
from the same class, and ' negative’ otherwise.

Equivalence constraints carry less information than explicit labels on the original datapoints. This can be seen
by observing that a set of labeled points can be easily used to extract a set of equivalence constraints. any pair of
points that belong to the same label form a positive constraint, while any pair of points that belong to different
labels form a negative equivalence constraint. Note however that the opposite is hot true - equivalence constraints
cannot usually betransformed into label's, since this requires that the entire set of pairwise constraints be provided,

arequirement which is usualy far from being fulfilled.
1.3.21 Obtaining Equivalence Constraints

In contrast to explicit labels that are usually provided by a human instructor, in some scenarios, equivalence
constraints may be extracted with minimal effort or even automatically. Two examples of such scenarios are

described below:

1. Temporal continuity - In this scenario, we consider cases where the data are inherently sequential and
can be modeled by a Markovian process. In these cases we can automatically obtain positive equivalence
constraints by considering a set of samples which are temporally close to one another. In some cases, we

can also use this scenario to obtain negative constraints. Examples are:

(d) Movie segmentation: The objective of a movie segmentation task isto find all the frames in which the
same actor appears (Boreczky and Rowe, 1996). Due to the continuous nature of most movies, faces
extracted from successive frames in roughly the same location can be assumed to come from the same
person, and thus provide a set of positive equivalence constraints®. Yan et al. (2004) have presented

an interesting application of video object classification using this approach.

3Thisistrue as long as there is no scene change, which can be robustly detected (Boreczky and Rowe, 1996)
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(b) Image Surveillance: In surveillance applications (Shental et al., 2002) we automatically obtain small
sequences of images that are known to contain the same intruder, and therefore define a set of positive
equivalence constraints. Alternatively, when two people simultaneously walk in front of two distinct
cameras, the corresponding images are known to contain different people, thus providing negative

equivalence constraints.

(c) Speaker segmentation and Recognition: In the task of speaker segmentation and recognition, the con-
versation between several speakers needs to be segmented and clustered according to speaker identity.
Here, it may be possible to automatically identify small segments of speech which arelikely to contain

data points from a single butunknown speaker.

2. Generalized Relevance Feedback - Anonymous users of aretrieval system can be asked to help annotate
the data by providing information about small portions of the data that they see 4. We can use these user

annotations to define equivalence constraints. Examples are:

(a) Image Retrieval: We can ask the users of an image retrieval engine to annotate the set of images re-
trieved as an answer to their query (Bar-Hillel et al., 2005b). Thus, each of these cooperative users will
provide a collection of small sets of images which belong to the same category. Moreover, different
sets provided by the same user are known to belong to different categories. Note however that we can-
not use the explicit labels provided by the different users because we cannot assume that the subjective
labels of each user are consistent with one another: A certain user may label a set of imagesas“F-16"
images, and another (less’wanna be pilot’) user may label another set of F-16 images as “Airplane”
images.

(b) Facial image recognition: Suppose we are provided with alarge database of facial images, which we
would like to use to train a facial recognition engine. Due to its vast size, the database cannot be
labeled by a small number of human teachers. In order to obtain some form of partial informationin a
relatively short amount of time, we can take the following approach: We arbitrarily divide the database
into P parts (where P is very large), which are then given to P teachers to annotate. The labels
provided by the different teachers may be inconsistent: because images of the same person appear in

more than one part of the database, they are likely to be given different names. Coordinating the labels

4This scenario is also known as the *distributed learning scenario’ .
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of the different teachersis almost as daunting as labelling the original data set. However, equivalence
constraints can be easily extracted, since points which were given the same tag by a certain teacher are
known to originate from the same class.

(c) Text Classification (the” Yahoo!” problem): In this scenario we are provided with very large corpora
of text documents (papers, hewsgroup articles, web pages etc.) and asked to group them into classes,
or into a hierarchy in which related documents will be grouped together. The purpose of creating such
ataxonomy would be to alow these corporato be browsed and accessed efficiently. It may also be the
case that there is no clear cut definition of how to create such a taxonomy, despite the fact that some
general criteriaare provided. Cohn et al. (2003) who were the first to address this scenario, suggested
the following iterative solution:

i. Cluster the documents using some unsupervised clustering algorithm.

ii. Browse the resulting clusters and provide some user feedback on which clusters you like and
which you don't like. This does not have to be done for al clusters. More specifically feedback
can bein one of the following forms:

¢ |dentify a document which does not belong to the cluster in which it was placed.
e Move adocument from one cluster to another.
e Identify apair of documents which do/do not belong together.
(d) Recluster the documents after allowing the clustering algorithm to modify the distance metric, in a

way which would satisfy the constraints provided by the user.

(e) Repeat this process until results are satisfactory.

The underlying motivation here (as noted in (Cohn et al., 2003)) is that “it is easier to criticize than to

construct” °.
1.3.2.2 Learningfrom Equivalence Constraints

Recently, agrowing number of papers have suggested learning algorithms which make use of side -information

in the form of equivalence constraints. Both positive (‘ais similar to b') and negative (‘ais dissimilar from b’)

5To the best of my knowledge this is the first paper which presented the semi-supervised learning scenario of using side-information
in the form of equivalence constraints. Interestingly, this paper, which was clearly ahead of its time, was not accepted for publication and

only appears as a tech report.
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equivalence constraints were considered. Most of these works have focused on two specific learning scenarios:

1. Semi-supervised clustering - Several authors have suggested how to adapt classical clustering algorithms
of various typesin order to make use of additional side-information in the form of equivalence constraints.

More specifically constraints were introduced into the following algorithms:

() Semi-supervised Clustering with User Feedback - Cohn et al. (2003) were actually the first to suggest
a semi-supervised technique which is trained using equivalence constraints. The suggested method is
an EM agorithm in which the distances between datapoints are based on a weighted Jensen-Shannon

divergence. Equivalence constraints are used to learn the weights using gradient descent.

(b) Constrained Complete-Linkage - Klein et al. (2002) introduced equival ence constraintsinto the compl ete-
linkage algorithm by a simple modification of the similarity matrix provided as input to the algorithm:
The similarity between all pairs of points which are positively constrained is set to oo, thus ensuring
that they will be merged into a single cluster before any other pairs of points. Similarly, the similarity
value between any pair of points which are negatively constrained is set to —oo, which ensures that

they will be merged only at the final merge steps of the algorithm.

(c) Constrained K-means (COP K-means, MPCK-means) - Wagstaff et al. (2001) suggested a heuristic
for incorporating both types of equivalence constraints into the K-means algorithm. Constraints are
incorporated as follows. for each datapoint the algorithm attempts to assign the point to the closest
cluster to it such that its assignment does not violate any of the constraintsto which it belongs. If such
a cluster cannot be found (i.e. assigning the point to any of the clusters will violate some pairwise
constraint) the algorithm fails. It can be easily shown that only incorporating negative constraints may
cause the algorithm to fail. Moreover, as the number of negative constraints increases, the probability
of failure increases dramatically. A more principled approach was suggested by Bilenko et al. (2004)

(see below).

(d) Constrained EM - Shental et al. (2004b) introduced equivalence constraints into the Expectation-
Maximization (EM) agorithm of a Gaussian Mixture-Model (GMM). The algorithm makes use of
clear probabilistic semantics, and therefore introduces constraints in a principled way, which over-
comes many of the drawbacks of previous heuristic approaches. Equivalence constraintsareintroduced

by modifying the Expectation step of the EM algorithm: instead of considering (summing) over all of
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the possible assignments of datapoints to clusters (partitions), the algorithm only considers partitions
which do not violate the constraints. When positive constraints are introduced, this turns out to be a
simple modification which leads to closed-form update rules. However, when negative constraints are
introduced, the problem becomes computationally hard, and in most cases an approximation scheme
isused. A more detailed description of the algorithm will be provided in Chapter 2, in the context of
the DistBoost agorithm.

(e) Spectral Clustering - Kamvar et al. (2003) introduced pairwise constraints into spectral clustering by
modifying the similarity matrix in a similar way to that suggested in (Klein et al., 2002). This work
isalso closely related to the work of Yu and Shi (2001). An alternative formulation was presented by
Bie et al. (2003b) who incorporated a separate label constraint matrix into the objective function of a
spectral clustering algorithm such as the normalized-cut (Shi and Malik, 2000).

(f) Correlation Clustering - Motivated by the connection between spectral clustering and graph-cut algo-
rithms, Bansal et al. (2002) have suggested a general graph-based algorithm which attempts to incor-
porate both positive and negative constraints. In thisformulation agraph isformed in which datapoints

are represented by vertices and the constraints correspond to edge label s between the vertices.

2. Learning distance functions - Since a distance function is a function defined over pairs of points, equiva
lence constraints are in fact the natural form of supervision in this context. This may be seen by observing
that equivalence constraints are binary labels in the product space X x X' - i.e. the space of al pairs of
points. This can be done by labeling pairs of points which are negatively constrained by —1, and labeling
points which are positively constrained by 1. Therefore it is not surprising that the most of the works done
on learning distance functions have suggested algorithms which learn distance functions using equivalence

constraints.

Most of the work done on learning distance functions using equivalence constraints has focused on learning
a Mahalanobis metrics. More recently several authors have suggested algorithms for learning non-linear

distance functions. A detailed description of distance learning algorithms will be provided in Chapter 2.

Several authors have aso presented hybrid approaches which combine semi-supervised clustering and distance
function learning. The work of Cohn et al. (2003) was perhaps the first to take this approach. More recently,
Bilenko et al. (2004) suggested the MPCK-Means a gorithm, which is an adaptation of the K-means algorithm
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that integrates a metric learning step in each clustering iteration. More specifically, constraints are utilized both
for cluster initiaization and for learning a cluster specific Mahalanobis weight matrix A;. A more general frame-
work was suggested by Basu et al. (2004) that presents and EM algorithm over a Hidden Markov Random Field
(HMRF), which incorporates both positive and negative equivalence constraints. Using this formulation the algo-

rithm can be used with various distortion measures, al of which are Bregman divergences.
1.3.2.3 Typesof equivalence constraints

Equivalence constraints considered in this work are treated as hard constraints in the sense that it is assumed
that there is no noise in the constraints provided. Recently Law et al. (2004, 2005) and Lu and Leen (2005) have
suggested two different formalisms which introduce soft constraints into clustering algorithms. In these works,
constraints are assumed to be probabilistic, where the probability of each constraint denotes our belief in its truth.
It is important to note that these soft constraints cannot be naturally obtained in real-life scenarios, and are in
general harder to incorporate.

An additional form of side-information which has been recently considered is relative comparisons. Thisform
of side-information which is even weaker than equivalence constraints, consists of triplets of the form’ A is more
similar to B than to C'. Relative comparisons can be naturally extracted from labels, and in some cases also from
a set of positive and negative equivalence constraints. This form of side-information has been used for distance
learning mainly in various retrieval contexts (Athitsos et al., 2004; Rosales and Fung, 2006; Schultz and Joachim,
2003), in which they are anatural form of supervision, since the main objective is to rank objects in the ’ correct’

order.
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Chapter 2

Algorithmsfor Learning Distance Functions

Asnoted in the Introduction, for many years only canonical distance functions or hand-designed distance functions
were used. Recently, a growing body of work has addressed the problem of learning distance functions. This
somewhat new area of research has its roots in works on supervised learning of distance functions for nearest-
neighbor classification (Short and Fukunaga, 1981; Hastie and Tibshirani, 1996).

There are several ways to categorize distance learning algorithms. In thisthesis, | suggest roughly splitting the

distance learning family into the following four sub-categories:

1. Nearest-Neighbor distance learning algorithms - These agorithms are designed to improve nearest-
neighbor classification by learning the local neighborhood structure of the data. The learnt distance function
is then used to retrieve nearest neighbors. These algorithms have been motivated by various application

domains such asinformation retrieval and more specifically image retrieval and document retrieval.

2. Mahalanobis metric learning algorithms - Research on learning Mahalanobis metrics is by far the most
advanced, and numerous algorithms have been suggested for thistask. These metrics are rather simple and

easy to interpret and can also in some cases be easily kernelized - i.e. they can be used over any valid kernel.

3. Non-linear distance learning algorithms - This category includes algorithms that go beyond Mahalanobis
metric learning, in an attempt to model the non-linearity of the distances between input datapoints. De-
spite the fact that empirically these algorithms have shown performance which in most cases is superior
to Mahalanobis distance learning algorithms, only a few non-linear distance learning algorithms currently

exist.
4. Kernel learning algorithms - These algorithms aim at learning the kernel used to measure the similarity
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between datapoints in kernel-based classifiers directly from the data, instead of simply using a standard
off-the-shelf kernel such asan RBF kerndl.

Algorithms for learning distance functions can also be characterized by the side-information that they use in
order to learn the distance function: Algorithms for learning nearest-neighbor classifiers and kernels are usually
trained using labeled data, while most Mahalanobis metric learning algorithms and non-linear learning algorithms
are trained using equivalence constraints. In the following sections, we will review each of these families of

distance learning algorithms in more detail.

2.1 Nearest-Neighbor Distance learning algorithms

K-Nearest-Neighbor (KNN ) classifiers have been popularly and successfully used in various application do-
mains. There are severa properties that make KNN classifiers appealing. To begin with they are conceptually
simple, and do not require any learning stage. Additionally, they can be used when very few examples are present
(i.e. when provided with a small sample), and aso have been shown to work well even for moderate values of K.
But perhaps the most attractive property of these classifiersisthat they only rely on the local neighborhood of each
datapoint in order to classify it. This meansthat for a KNN classifier to perform well, only the distances between
each point and its local neighborhood need be'good’. Dueto this'locality’ property, KNN classifiers can aso be
successfully used when the classes are non-convex, or even in cases where each class is represented using a set of
distinct clusters.

Another set of appealing properties of KNN classifiers is the asymptotic theoretical guarantees that can be
shown for these classifiers: it can be shown that for any separable metric space, ! as the training set size grows
to infinity, for every ¢ there is an n. (which is dependent on the specific sequence of training datapoints) such
that for al n > n. the distance between any point in the training sample and its nearest neighbor is less than «.
Additionally Cover and Hart (1967) showed that the generalization error of the one-nearest-neighbor classifier is
bounded above by twice the error obtained by the optimal Bayes classifier.

Clearly since KNN classifiersrely on the distances between each point and its neighbors, improving the distance
function used for selecting the nearest neighbors can significantly improve the classifier's performance. Short
and Fukunaga (1981) were the first to consider distance learning in the context of KNN classification. They

characterized the optima metric for NN classification in terms of the local class densities and their gradients.

Lametric space X is separableif it has a countable dense subset.
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They then provided an algorithm which learns alocal distance function which can be estimated separately for each
datapoint. Another influential method for adapting a local metric was proposed by Hastie and Tibshirani (1996)
who suggested a local LDA agorithm. More recently, Domeniconi and Gunopulos (2001) suggested a local
metric which is computed using an SVM, in which the maximum margin boundary found by the SVM is used to
determine the most discriminant direction over the query’s neighborhood. Vincent and Bengio (2002) suggested
amethod for computing distances from local-dependant hyperplanes. Several distance learning algorithms which
are aimed at improving KNN classifiers that are based on learning a Mahalanobis metric have been put forward
(Lowe, 1995; Grauman and Darrell, 2005; Globerson and Roweis, 2005; Weinberger et al., 2006; Zhang et al.,
2003; Shalev-Shwartz et al., 2004) and we therefore defer their description to Section 2.2.

2.2 Mahalanobis Metric Learning Algorithms

To date, most distance learning algorithms proposed in the literature suggest various formulations of learning a
Mahalanobis metric. Thisis probably due to several important properties of Mahalanobis metrics - their positive
semi-definiteness and their relation to linear transformations and feature weighting (as discussed in Sec. 1.2.7).
Due to these properties, and the simplicity of this distance metric, alarge and growing corpus of work in the last
few years has addressed the problem of learning Mahalanobis metrics. As noted above, some of these algorithms
use side-information in the form of labeled data, and others make use of equivalence constraints. In what follows
we provide a brief review of the various techniques which have been suggested for learning Mahal anobis metrics.

Lowe (1995) was perhaps one of the first to suggest a diagonal Mahalanobis distance learning algorithm in the
context of kernel learning. He defines the probability of agiven label for each point by computing the normalized
average distance of the first K-neighbors of that point, where the distance assigned to each neighbor is determined
by a Gaussian kernel centered around the point. The distances used to compute the Gaussian probabilities are a
diagonal Mahalanobis metric, i.e. they are parametrized by weight vector W which weights the different input
dimensions, which is learned during training. Another somewhat more general formulation was presented by
Aggarwal (2003) who suggests learning aweighted Minkowsky distance (or L,, norm), of which the Mahalanobis
distance is a special case. A simple gradient descent algorithm is presented. Aggarwal (2003) aso considers a
parametric Cosine model.

Xing et al. (2002) were one of thefirst to suggest a method for learning afull Mahalanobis metric. Their method

attempts to find a Mahalanobis metric in which the distances between pairs of positively constrained pointsis as
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small as possible, and the distances between negatively constrained pairs are larger than some constant factor. They
then suggest an iterative gradient ascent algorithm for optimizing their suggested criterion. However, in order to
ensure positive semi-definiteness, their method requires projection of the Mahalanobis matrix into the PSD cone,
in every iteration. All in all, the suggested algorithm’s complexity is O(d%) where d is the dimensionality of the
data®. Another disadvantage of their method is that it can only work on pairs of positively constrained points, and
does not explicitly exploit the transitivity property of positive equivalence constraints.

Bilenko et al. (2004) suggested an al gorithm which combines Mahal anobis metric | earning with semi-supervised
clustering. Their algorithm can learn a separate Mahalanobis metric for each of the clusters, which in effect pro-
vides a generalized version of the K-means algorithm, very similar to an EM algorithm for a Gaussian Mixture
Model. Their suggested algorithm also varies the weight of each constraint with respect to the distance between
the constrained points under the Mahalanobis metric. The rationale is that violating a positive constraint between
distant points is worse than violating a positive constraint between points that are close to one another, since the
former would require a more aggressive modification of the current distance metric.

Shalev-Shwartz et al. (2004) suggest a Pseudo Metric Online Learning agorithm (POLA) for learning a Ma-
halanobis metric, which makes use of pairs of positively and negatively constrained points. Unlike most other
distance learning algorithms, POLA can be trained in an online fashion, where at each time step a pair of points
is received and the algorithm predicts whether they are similar to each other or not, by measuring the distance
between them using the current metric, and determining if it is smaller or larger than athreshold parameter, which
isaso learned. Following feedback, the algorithm updates the metric and the threshold parameter, in an attempt
to correct classification errors. Similar to Xing et al. (2002), in order to ensure that the computed distance metric
isPSD, a projection operation is required after each update step. Additionally since the PSD matrix that islearned
isalinear combination of rank-one matrices defined by vectors in the span of the input instances, the paper also
suggests a kernelized version of the algorithm. By showing that the PSD matrices learned are norm bounded,
Shalev-Shwartz et al. (2004) aso provide an online error bound for the algorithm.

Goldberger et al. (2004) suggest the Neighborhood Component Analysis Algorithm (NCA), which derives its
motivation from Nearest-Neighbor classifiers. The algorithm directly maximizes a leave-one-out KNN score on
the training set. The papers suggests a cost function which is based on maximizing the expected number of points

which are correctly classified under stochastic (soft) nearest-neighbor assignments. The stochastic soft assign-

2As noted by Bie et al. (2003a) the paper attempts to address this issue by considering a gradient descent algorithm instead of the

standard Newton algorithms, but this may sometimes lead to convergence problems, when the dimensionality of the dataiis high.
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ments are defined using a softmax over the Mahalanobis distances between each pair of points. The algorithms
can aso be used for dimensionality reduction and low rank projections by restricting the dimensions of the learnt
matrix. The objective function, which is non-convex, is optimized using gradient descent.

Globerson and Roweis (2005) present the Maximally Collapsing Metric Learning algorithm (MCML). The
algorithm attempts to find a Mahal anobis metric in which each class would be mapped (or collapsed) into asingle
location in feature space, which would differ for each class. Thisis an idea approximation of the equivalence
relation the algorithm makes use of. This scenario is approximated using the same stochastic selection rule of
the NCA algorithm (Goldberger et al., 2004). However, unlike NCA, the optimization objective is convex and
therefore has a single and unique solution. In order to find a metric which approximates the ideal metric, the
algorithm tries to minimize the KL-divergence between the ideal bi-level distribution which maps al points from
the same class into a single point, infinitely far from pointsin different classes and the distribution that is defined
by the learned metric.

Weinberger et al. (2006) suggest the Large Margin Nearest Neighbor algorithm (LMNN), which learns a Ma-
halanobis metric based on large-margin intuitions. More specifically, the algorithm attempts to ensure that the
K-nearest neighbors of each data point always belong to the same class, while examples from different classes
are separated by alarge margin. Unlike previous approaches that attempt to minimize the pairwise distances be-
tween al points within the same class, their method only focuses on the K-near neighbors of each data point. The
problem is formulated as a semi-definite program, in which the objective function is similar to the classical SVM
objective function and has two competing terms: the first term penalizes large distances between each input point
and its neighbors, and the second term penalizes small distances between each input point and all other points that
do not originate from the same label.

Zhang et al. (2003) propose a parametric distance learning algorithm which uses labeled data. The algorithm is
based on defining a similarity measure over pairs of pointsin the input space, in which the within- class similarity
is aways greater than the between- class similarity. This similarity measure is then approximated by aregression
model which embeds the original input pointsin a Euclidean low dimensional space. The regression parameters
are estimated using the iterative majorization algorithm.

Bieet al. (2003a) - Suggest an approximation of Linear Discriminant Analysis (LDA) which makes use of pos-
itive equivalence constraints. They suggest using a parametrized version of the data label matrix, which explicitly

realizes the equivalence constraints provided. They then derive acost function which is equivalent to the LDA cost
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function, but can be written in terms of this parametrization. They then suggest maximizing the expected value of
this cost function with respect to the parameters in their parametrization. Note, however, that the RCA algorithm
presented in Section 2.2.1 is aso closely related to LDA, and more specifically in (Bar-Hillel et al., 2005b) we

suggest a simple derivation of LDA which can be learned solely using positive equivalence constraints.

221 TheReevant Component Analysis (RCA) Algorithm

The Relevant Component Analysis Algorithm (RCA) was one of the first algorithms for Mahalanobis metric
learning that was suggested and analyzed. The original motivations that led to the development of the algorithm
were from the field of computer vision. As noted in the Introduction, in several classical computer vision appli-
cations such as image retrieval and video surveillance, equivalence constraints can be obtained automatically or
with a minimal amount of supervision (Shenta et al., 2002). In Chapter 3 (publication [A]), we present severa
theoretical justifications for the algorithm. We show that RCA is the closed form solution of several interesting
optimization problems whose computation is no more complex than a single matrix inversion. We also provide a
detailed analytical and empirical comparison between RCA and the Mahalanobis metric algorithm suggested by
Xing et al. (2002). We now turn to a detailed description of the algorithm.

RCA isamethod that seeksto identify and down-scale globa unwanted variability within the data. The method
changesthe feature space used for datarepresentation by aglobal linear transformation which assignslarge weights
to “relevant dimensions’ and low weightsto “irrelevant dimensions” (Tenenbaum and Freeman, 2000, see). These
“relevant dimensions” are estimated using chunklets; that is, small subsets of pointsthat are known to belong to the
same athough unknown class. A chunklet isformed by applying a transitive closure over a set of pairs of points
which are positively constrained. For example, if points z; and x» are related by a positive constraint, and x5 and
x3 are also related by a positive constraint, then a chunklet {x1, z2, 23} is formed. The agorithm is presented
below as Algorithm 1.

The RCA transformation is intended to reduce clutter, so that in the new feature space, the inherent structure
of the data can be more easily unravelled (see illustrations in Figure 2.1 (a)-(f)). Thisis obtained by estimating
the within class covariance of the data cov(X|Z) where X and Z describe the data points and their labels re-
spectively. The estimation is based on positive equivalence constraints only, and does not use any explicit label
information. In high dimensional data, the estimated matrix can be used for semi-supervised dimensionality re-

duction. After estimating the within class covariance matrix cov(X|Z), the dataset is whitened with respect to
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Algorithm 1 The RCA agorithm
Givenadataset X = {z;}Y, andn chunkletsC; = {z;;};, j=1...n, do

1. Compute the within chunklet covariance matrix (Figure 2.1 (d)).

n nj

C = %Z > (aji —my) (@ —my)' (2.1)

j=1i=1

where m; denotes the mean of the j’th chunklet.

2. If needed, apply dimensionality reduction to the data using C' as described in Algorithm 2 (see Sec-
tion 2.2.1.2).

3. Compute the whitening transformation associated with C: W = C3 (Figure 2.1 (€)), and apply it to
the data points. X,,., = WX (Figure 2.1 (f)), where X refers to the data points after dimensionality
reduction when applicable. Alternatively, use the inverse of C' in the Mahalanobis distance: d(zy,x9) =

~

(xl — $2)t071(2¢1 — xQ).

the estimated within class covariance matrix. The whitening transformation W (in Step 3 of Algorithm 1) assigns
lower weights to directions of large variability, since this variability is mainly due to within class changes and is
therefore “irrelevant” to the task of classification.

Step 2 of the RCA agorithm applies dimensionality reduction to the data if needed. In high dimensional spaces
dimensionality reduction is almost always essential for the success of the algorithm, because the whitening trans-
formation essentially rescales the variability in al directions so as to equalize them. Consequently, dimensions
with small total variability cause instability and, in the zero limit, singularity. Section 2.2.1.2 describes this issue

in more detail.

2211 Theoretical justification of the RCA algorithm

While the RCA algorithm can be intuitively understood as an a gorithm which seeks to reduce the effect of un-
wanted variability within the data, it can also be theoretically justified from three different perspectives, as shown
in (Bar-Hillel et al., 2003) and in (Bar-Hillel et al., 2005b). Let us now examine these theoretical justificationsin

more detail.

39



/,3 % Wzi % %’?fé 5 g
L)) * AENK o Foo m
(d) (€) )

Figure 2.1. Anillustrative example of the RCA a gorithm applied to synthetic Gaussian data. (a) The fully labelled data set with
3 classes. (b) Same data unlabelled; clearly the class structure is less evident. (c) The set of chunklets that are provided to the
RCA agorithm (points that share the same color and marker type form a chunklet). (d) The centered chunklets, and their empirical
covariance. (€) The whitening transformation applied to the chunklets. (f) The original data after applying the RCA transformation.

RCA from an information theoretic perspective RCA can be shown to be derived from an information theo-
retic criterion. Following Linsker (1989), an information theoretic criterion states that an optimal transformation
f of theinput X" into its new representation f(X’), should seek to maximize the mutual information (X, f(X))
under suitable constraints. It can be shown that RCA is the solution to the following constrained optimization
problem
1 p oy e
P S0 D23l = I < K

where F' are invertible linear transformations, {yﬁ}?:’lgl denote the set of pointsin p chunklets after the trans-

formation, m? denotes the mean of the pointsin chunklet j after the transformation, and K denotes some constant

threshold.

Under Gaussian assumptions, the optimization problem stated above can be rewritten as:

1 p oy
Y2
maxlog|A| st N;;wﬂ i3 < K (2.2)
Jj=111=
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As shown in Chapter 3, the solution to this problem isidentical to the Mahalanobis matrix computed by RCA up
to aglobal scale factor. When dimensionality reduction is also required, the solution of this problem becomes
Fisher's Linear Discriminant (FLD) followed by the whitening of the chunklet covariance matrix in the reduced

space (see Bar-Hillel et al. (2005b) Appendix A).

RCA and the minimization of inner chunklet distances RCA can aso be shown to be a result of another
constrained optimization problem, which tries to minimize the inner class distances.
S AN e
mﬁnp;;|xﬂ —-mjlla st |A[>1 (2.3
This optimization problem can be interpreted as follows: we seek a Mahalanobis distance A, which minimizes the
sum of all inner chunklet squared distances. The constraint | A| > 1 preventsthetrivial solution of “shrinking” the

entire space.

RCA and Maximum Likelihood It can also be shown that when the data consist of several normally distributed
classes sharing the same covariance matrix, RCA can be interpreted as the maximum-likelihood (ML) estimator of
the within-class covariance matrix. If we assume chunklets are sampled i.i.d. and that points within each chunklet
are also sampled i.i.d., the likelihood of the chunklet distribution can be written as:

n nj 1

jl_[ 21_[1 m eXP (=3 (zji—my)' S~ (zji—m;)) (24)

If we take the log of Equation. 2.4, neglecting constant terms and denoting A = X!, we obtain:

n Ny

D> i = myl[3 — Nlog A (2.5)

j=1 i=1
where N isthe total number of pointsin the chunklets. Maximizing the log-likelihood is equivalent to minimiz-
ing (2.5), whose minimum is obtained when A equals the RCA Mahalanobis matrix (2.1). Under these assump-
tions, we also provide a bound over the variance of this estimator, showing that it is at most twice the variance of

the ML estimator obtained using labeled data.
2.2.1.2 Dimensionality reduction and the Constrained Fisher Linear Discriminant Algorithm (cFLD)

As noted above, RCA may include dimensionality reduction, which is some cases may be essential to its per-

formance. We now address this issue in detail. We begin by presenting a detailed version of the dimensionality
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reduction step of the RCA agorithm (Step 2), which is presented in Algorithm 2. We then provide an analysis
which formally shows when dimensionality reduction is required by analyzing the within-class covariance ma-
trix before and after applying RCA. Finally, we describe the constrained Fisher Linear Discriminant Algorithm
(cFLD), which is also used in the dimensionality reduction step of the RCA agorithm.

Algorithm 2 Dimensionality reduction: Step 2 of RCA
Denote by D the original data dimensionality. Given a set of chunklets {C;}7_, do

1. Compute the rank of the estimated within chunklet covariance matrix R = 37, (|C;| — 1), where |C}|

denotes the size of thej’th chunklet.

2. If (D > R), apply PCA to reduce the data dimensionality to aR, where 0 < « < 1 (to ensure that cFLD

provides stable results).

3. Compute the total covariance matrix estimate S;, and estimate the within class covariance matrix using

S,, = C from (2.1). Solve (2.7), and use the resulting A to achieve the target data dimensionality.

As shown in Chapter 3 the optimal dimensionality reduction often starts with Principal Component Analysis
(PCA). PCA may appear contradictory to RCA, since it eliminates principal dimensions with small variability,
while RCA emphasizes principal dimensions with small variability. One should note, however, that the principal
dimensions are computed in different spaces. The dimensions eliminated by PCA have small variability in the
original data space (corresponding to C'ov (X)), while the dimensions emphasized by RCA have low variability in
aspace where each point is translated according to the centroid of its own chunklet (corresponding to C'ov(X |Z2)).
As a result, the method ideally emphasizes those dimensions with large total variance, but small within -class

variance.

Why is dimensionality reduction required? Step 3 of the RCA algorithm decreases the weight of principal
directions along which the within- class covariance matrix isrelatively high, and increases the weight of directions
along which it islow. Thisintuition can be made precise in the following sense:

Denote by {\'}2 ;| the eigenvalues of the within- class covariance matrix, and consider the squared distance
between two points from the same class ||z; — x2||2. We can diagonalize the within-class covariance matrix
using an orthonormal transformation which does not change the distance. Therefore, let us assume without loss of

generality that the covariance matrix is diagonal.
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Before whitening, the average squared distanceis E |||z —x2||%] = 2 Zle M\ and the average squared distance
indirection i is E[(z% — 24)?] = 2\%. After whitening these values become 2D and 2, respectively. Let us define
the weight of dimension i, W (i) € [0, 1], as
\_ El(a] —2h)’]

W)= ==

Y= Hllin — P

Now the ratio between the weight of each dimension before and after whitening is given by

Wbefore(l) . A (26)

Wafter(i) - %Z]'Dzl by,

In Equation (2.6) we observe that the weight of each principal dimension increases if its initial within-class
variance was lower than the average, and vice versa. When thereis high irrelevant noise along several dimensions,
the algorithm will indeed scale down noise dimensions. However, when the irrelevant noise is scattered among
many dimensions with low amplitude in each of them, whitening will amplify these noisy dimensions, which is
potentially harmful. Therefore, when the data are initially embedded in a high dimensional space, the optional

dimensionality reduction in RCA (Step 2) becomes mandatory.

ThecFLD algorithm As stated above, and shown in Chapter 3, FLD is the dimensionality reduction technique
which maximizes the mutual information under Gaussian assumptions, and is therefore part of the RCA algorithm
when dimensionality reduction is desired. Traditionally FLD is computed from a fully labelled training data
set, and the method therefore falls within supervised learning. We can extend FLD, using the same information
theoretic criterion, to the case of partial supervisionin the form of equivalence constraints. Specifically, denote by
S, and S, the estimators of the total covariance and the within -class covariance respectively. FLD maximizesthe

following determinant ratio

t

S, A5 &0

by solving ageneralized eigenvector problem. The row vectors of the optimal matrix A arethefirst K eigenvectors

of S;;1.S;. In our case the optimization problemis of the same form asin (2.7), with the within chunklet covariance

matrix from (2.1) playing therole of S,,. We compute the projection matrix using SVD in the usual way, and term
this FLD variant cFLD.

To understand the intuition behind cFLD, note that both PCA and cFLD remove dimensions with small total

variance, and hence reduce the risk of RCA amplifying irrelevant dimensions with small variance. However,
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unsupervised PCA may remove dimensions that are important for the discrimination between classes, if their total
variability is low. Intuitively, better dimensionality reduction can be obtained by comparing the total covariance
matrix (used by PCA) to the within- class covariance matrix (used by RCA), and thisis exactly what the partially
supervised cFLD triesto accomplishin (2.7).

The cFLD dimensionality reduction can only be used if the rank of the within chunklet covariance matrix is
higher than the dimensionality of the initial data space. If this condition does not hold, we use PCA to reduce the

original data dimensionality as needed.

2.2.1.3 Extensionsof RCA

Recently several works have suggested various augmentations of the RCA agorithm. Specificaly Wu et al.
(2004) suggest the Self-enhanced Relevant Component Analysis Algorithm (SERCA). SERCA employsaboosting
procedure in product-space, which makes use of both positive and negative equival ence constraints, and unlabeled
data. The agorithm uses a boosting process similar to the one used by the DistBoost algorithm (Hertz et al.,
2004a) (See Section 2.3.1). Asin (Hertz et al., 2004a), the weak learner is a constrained Gaussian Mixture model
(Shental et al., 2004b), and boosting weights are also updated for the unlabeled points. The boosting process is
then used to build new candidate sets for the positive constraints - that is, after the boosting process, a new set
of positive constraints is obtained, and this set is then used to perform RCA in the original space, based on the
augmented set of chunklets. The paper compares the performance of RCA with SERCA, and improvements are
shown on two datasets from the UCI repository.

More recently, two authors have suggested a kernelized version of the RCA algorithm (Tsang et al., 2005; Wolf,
2006). More specifically, Tsang et al. (2005) show how the chunklet covariance matrix can be computed using
inner products between the data matrix and a binary matrix which encapsulates chunklet information. They then
use the Woodbury formula to compute the inverse of this matrix. Their experimental comparisons, over a set of
UCI datasets, the SCOP protein family dataset and on the USPS digit dataset show that in many cases kernel
RCA outperforms RCA. Wolf (2006) proposes a different kernelized version, which is motivated by quantum

mechanics.



2.3 Non-Linear Distance Function Learning Algorithms

As noted above, most of the research on distance learning has focused on learning a Mahalanobis metric.
However, severa papers have also suggested non-linear methods for distance learning, which are the focus of this
section. Most of the research in this area was motivated by, or specifically designed for various image retrieval
applications. There are two main reasons for this somewhat surprising connection. To begin with, unlike various
other data domains in which the input data can be naturally represented by some predefined feature vectors, there
is no such natural representation for images. Additionally, while in most application domains, the number of
features which exist are usualy small (< 100), images are usually represented using thousands of features. For
these reasons, most of the work on learning distance functions in the context of image retrieval and classification
has focused on non-metric distance functions, which are usually also highly non-linear. Another issue which also
naturally arises in image applications is inter-class transfer, i.e. the ability to transfer knowledge between related
tasks. One classic example is facia retrieval and verification, in which several works have considered inter-class
transfer 3,

Phillips (1999) suggested afacial image representation formulated in difference space, which explicitly captures
the dissimilarities between two facial images. An SVM binary classifier is trained to discriminate dissimilarities
between images of the same individual vs. dissimilarities between images of different people. The decision
boundary of the SVM is reinterpreted to produce a similarity metric between facial images. Each facial imageis
represented using PCA coefficients, after aligning all of the facial imagesin the dataset.

Mahamud and Hebert (2003b,a) presented a non-linear distance measure for object discrimination, which can
be shown to be optimal under a nearest neighbor framework. The authors suggest a distance function which
minimizes the mis-classification risk of the one-nearest-neighbor classifier, which is shown to be the probability
that apair of input points originate from different classes. This distance function is modeled using alinear logistic
model that combines a set of elementary distance functions which operate in feature spaces such as color, texture
and local shape properties. The distance function proposed does not satisfy the self-similarity property, but does
satisfy the triangular inequality, and can aso be shown to be optimal when compared to any metric distance

measure (in the limit where the training set size grows to infinity), and also is tightly bounded from below by the

3Despite al of the above said, several Mahalanobis metric algorithms were also tested in visual recognition tasks. Among these are
RCA, POLA and various others. However in these cases simple vectoria representations of the images were used. Fink et al. (2006)

suggested the use of POLA for transferring knowledge between related classification tasks.
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Bayes optimal classifier. Finding the optimal linear combination isaconvex problem, and for purposes of speedup,
it isoptimized in agreedy stepwise manner. They present results on a database of everyday objects with varying
backgrounds (Mahamud and Hebert, 2003b) and also on a face recognition task on the FERET dataset.

Athitsos et al. (2004) suggest an approach similar to the one presented by Mahamud and Hebert (2003b). More
specifically, they present the BoostMap algorithm, which is a boosting process over the product space used to
greedily combine a set of 1-dimensional embeddings into a multidimensional embedding. The boosting process
is optimized using relative comparison triplets. The algorithm is designed to efficiently approximate a pre-defined
similarity measure that is computationally intensive for purposes of speeding up retrieval performance.

In the context of face verification, Chopra et al. (2005) suggest a discriminative non-linear similarity learning
algorithm, which is trained using equivalence constraints. Their method attempts to map the input patterns into
a target space in which the L; norm approximates the “semantic” distance in the input space. The agorithms
minimizes a discriminative loss function that penalizes small distances between negatively constrained pairs of
points, and large distances between positively constrained pairs of points. Optimization is done using a convo-
lutional network designed to be robust to geometric distortions. The metric is parametrized by pairs of identical
convolutional neura nets. Their method can be applied on datasets where the number of categoriesis very large
and not known in advance.

Chang and Yeung (2004, 2005b) proposed the Locally Linear Metric Adaptation algorithm (LLMA), which is
a non-linear metric learning algorithm that is trained using positive equivalence constraints. LLMA attempts to
transform the original datapoints into a new space in which similar points are closer to one another. However, in
order to preserve the topological relationships between points, they apply the transformation not only to the similar
point pairs, but also to other close points, in a varying manner which is dependent on their distance with respect
to the constrained points. LLMA applies alinear transformation to each local neighborhood, but a different linear
transformation is applied to different local neighborhoods, thus resulting in global non-linearity. A kernel based
version of the algorithm was presented in (Chang and Yeung, 2005a). Results were presented on semi-supervised
clustering (Chang and Yeung, 2004) and on image retrieval (Chang and Yeung, 2005b).

More recently Bar-Hillel and Weinshall (2006) presented the Gaussian Coding Similarity algorithm (GCS). The
algorithm outputs a non-metric distance function which is learned from a set of positive equivalence constraints.
The similarity of apair of pointsis defined using information-theoretic principles. More specifically, it is defined

as the gain in coding length which can be obtained when shifting from encoding each point independently to
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jointly encoding the pair of points. Under simple Gaussian assumptions, the formulation provides a non-linear
metric which is efficient and ssmple to learn. GCS can be viewed as alikelihood ratio test, and can be shown to be
avariant of the FLD algorithm. Bar-Hillel and Weinshall (2006) also showed that under rather smple sampling
assumptions of equivalence constraints, GCS converges to the RCA algorithm. The GCS method is a relatively
simple and efficient technique, requiring only the estimation and inverse of two covariance matrices. It was used to
improve graph-based clustering results on UCI datasets and the MNIST digit dataset and also for image retrieval

on afacia image database and on a database of animal images.
2.3.1 TheDistBoost Algorithm

The DistBoost algorithm is a distance function algorithm which can learn highly non-linear distance functions.
The algorithm, originally presented in Hertz et al. (2004a,b), has been successfully applied in various application
domains including image retrieval (Hertz et al., 2004b), data clustering (Hertz et al., 2004a), in computational
immunology (Yanover and Hertz, 2005; Hertz and Yanover, 2006a,b) and aso in the analysis of neuronal data
(Weiner et al., 2005). This wide variety of applications demonstrate not only that many different problems can
be formulated as distance learning problems, but also that in many of these applications the distances between
the data instances are highly non-linear and cannot be successfully modeled using the simpler linear model of a
Mahalanobis metric. We now turn to a detailed description of the algorithm and its various components.

Recall that a distance function D is a function which maps every pair of points into some positive real number.
The key observation that led to the development of the DistBoost algorithm is that we can learn such a distance
function by posing a related binary classification problem over the product space X' x X, and solving it using
margin-based classification techniques. The binary problem is the problem of distinguishing between pairs of
points that belong to the same class and pairs of points that belong to different classes®. Moreover, note that
equivalence constraints can be formally regarded as binary labels on pointsin X' x X’: If we label pairs of points
from the same class by 0 and pairs of points belonging to different classes by 1, we can interpret the classifier's
margin as the required distance function.

Having reduced distance learning to binary classification with margins, we can now attempt to solve this prob-

lem using standard powerful margin-based classifiers. The DistBoost algorithm is a non-linear distance learning

“Note that this problem is closely related to the multi class classification problem: if we can correctly generate a binary partition of the
datain product space, we implicitly define a multi-class classifier in the original vector space X'. The relations between the learnability of

these two problems is discussed in Bar-hillel and Weinshall (2003) and in Section 1.2.8.
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algorithm which is powered by a margin-based binary classifier. Before introducing the algorithm in detail, we
briefly note that prior to suggesting this a gorithm, we also explored various other adaptations of classical margin-
based binary classifiers for learning distance functions. More specifically, we explored both support vector ma-
chines (SVM'’s) and boosting of decision trees (Hertz et al., 2004a). These led us to realize that although the
distance learning problem can be cast as a binary classification in the product space, it has some unique features

which require special treatment:

1. The product space binary function we wish to learn has some unique structure which may lead to ' unnatural’
partitions of the space between the labels. The concept we wish to learn is an indicator of an equivalence
relation over the original space. Thus the properties of transitivity and symmetry of the relation place
geometrical constraints on the binary hypothesis. If for example we represent a product space point as a
concatenation of the two origina space points [x, y], then the function should be symmetric with respect
to a’hyper diagona’, i.e d([z,y]) = d([y,z]). The transitivity requirement leads to further non-intuitive
constraints. Obvioudly, traditional families of hypotheses, such aslinear separators or decision trees, are not
limited to equivalence relation indicators, and it is not easy to enforce these constraints when such classifiers

are used.

2. In the semi-supervised learning setting, we are provided with N datapoints in X and with a sparse set
of eguivalence constraints (or labels in product space) over some pairs of pointsin our data. We assume
that the number of equivalence constraints provided is much smaller than the total number of equivalence
constraints O(N?), and is of order O(IV). We therefore have access to large amounts of unlabeled data, and
hence semi-supervised learning seems like an attractive option. However, classical binary classifiers like

SVM and boosting methods are trained using labeled data alone.

These considerations led us to develop the DistBoost agorithm. DistBoost is a distance learning algorithm
which attempts to address the i ssues discussed above. The agorithm learns a distance function using awell known
machine |earning technique called Boosting (Schapire et al., 1997; Schapire and Singer, 1999). In Boosting, a set
of "weak” learners are iteratively trained and then linearly combined to produce a”strong” learner. Specificaly,
DistBoost's weak learner is based on the constrained Expectation Maximization (CEM) agorithm suggested by
Shental et al. (2004a). The cEM agorithm is used to generate a "weak” distance function. The final ("strong”)

distance function is a weighted sum of a set of such "weak” distance functions. The algorithm is presented in
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The DistBoost algorithm
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(9] 9 (3-4) Compute “weak”
(8] ge — —_ N distance function
3 h(x5,x)=0.7 weight a,
4
(5] o e
."@ (@] .,- 0o
° 7 (7) Translate weights
o on pairs to weights % (5-6) Update weights
on data points %o on pairs of points

Final distance function: D(x;,x,)= Z; o h(x;,x;)

Figure 2.2. Anillustration of the DistBoost algorithm. At each boosting round ¢ the weak learner is trained using weighted
input points and some equivalence constraints. In the example above, points 1,2 and 5, 6 are negatively constrained (belong to
different classes) and points 3,4 and 4, 7 are positively constrained (belong to the same class). All other pairs of points (e.g. 8,9
and 1, 4) are unconstrained. The constrained EM algorithm isused to learn a GMM (step (1)). This GMM is then used to generate a
“weak” distance function (step (2)) that assignsavaluein [0, 1] to each pair of points. The distance function is assigned a hypothesis
weight (steps (3-4)) which corresponds to its success in satisfying the current weighted constraints. The weights of the equivalence
constraints are updated (steps (5-6)) —increasing the weights of constraints that were unsatisfied by the current weak learner. Finally,
the weights on pairs are trandated into weights on data points (step (7)). In the example above, the distance between the negatively

constrained points 1, 2 is small (0.1) and therefore the weight of this constraint is enhanced.

Alg. 3andillustrated in Fig 2.2. In order to make use of unlabeled data points, DistBoost’s weak learner istrained
in the original space, and isthen used to generate a”weak distance function” on the product space.

The DistBoost a gorithm builds distance functions based on the weighted majority vote of aset of original space
soft partitions. The weak learner’s task in this framework is to find plausible partitions of the space that comply
with the given equivalence constraints. In this task, the unlabeled data can be of considerable help, asthey can be
used to define a prior on putative ' plausible partitions'. In order to incorporate the unlabeled datainto the boosting
process, we augmented the ' Adaboost with confidence intervals' algorithm presented in (Schapire and Singer,
1999). The details of this augmentation are presented in Section 2.3.1.1. The details of the weak learner we use

are presented in Section 2.3.1.2.
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Algorithm 3 The DistBoost algorithm.
Input:

Data points: (x1,...,x,), xp € X
A set of equivalence constraints: (z;,, zi,, yi), Wherey; € {—1,1}
Unlabeled pairsof points:(z;,, xi,, y; = *), implicitly defined by all unconstrained pairs of points
e Initidize W}, =1/(n?) i1,ip = 1,...,n (weights over pairs of points)
wr = 1/n k=1,...,n (weightsover data points)

e Fort=1,..,T

1. Fitaconstrained GMM (weak learner) on weighted data pointsin X’ using the equivalence constraints.

2. Generate a weak hypothesis 7, : X x X — [—o0,00] and define a weak distance function as

hy(i, 75) = & (1 _ Bt(xi,xj)) € [0,1]

3. Computer;, = > Wi,
(@i, iy, yi=%1)

esisonly if r > 0.

yihe (i, xi,), only over labeled pairs. Accept the current hypoth-

4. Choose the hypothesis weight a; = 3 In(1%2)

5. Update the weights of all pointsin X' x X asfollows:

Wi, exp(—agyihe (i, 243,)) yi € {~1,1}
Witlig exp(—ay) Y = *
6. Normalizes Wil = — 12

122

7. Trandate the weightsfrom X x X to X: wi'! = > W,ﬁ;rl

Output: A final distance function D(z;, ;) = Y., ashy(z, ;)
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2.3.1.1 Semi supervised boosting in product space

Our boosting scheme is an extension of the Adaboost algorithm with confidence interval s (Schapire and Singer,
1999) to handle unsupervised data points. Asin Adaboost, we use the boosting process to maximize the margins
of the labeled points. The unlabeled points only provide a decaying density prior for the weak learner. Given
a partialy labeled dataset {(x;,v;)}¥, where y; € {1, -1, x}, the agorithm searches for a hypothesis f(z) =

k
>~ aygh(x) which minimizes the following loss function:
i=1

D> exp(—yihl(wi, ;) (2.8)

{ilyi=1,-1}

Note that this semi-supervised boosting scheme computes the weighted loss only on labeled pairs of points
but updates the weights over all pairs of points. The unlabeled points serve as a prior on the data’s density,
which effectively constrains the parameter space of the weak learner in the first boosting rounds, giving priority
to hypotheses which both comply with the pairwise constraints and with the data’'s density. In order to allow the
algorithm to focus on the labeled points as the boosting process advances, the weights of the unlabeled points
decay at arate which is controlled by a tradeoff parameter A and by the weight of each boosting round «; (see
Algorithm 3 step 5).

In the product space there are O(NN?) unlabeled points, which correspond to all the possible pairs of original
points, and the number of weightsistherefore O(IN?). However, the update rules for the weight of each unlabeled
point are identical, and so al the unlabeled points can share the same weight. Hence the number of updates
effectively required in each round is proportional to the number of labeled pairsalone. If A > 1, the weight of the
unlabeled pairs is guaranteed to decay at least as fast as the weight of any labeled pair.

Several algorithms which incorporate unlabeled data into the boosting process have been suggested (d’' Alche
Buc et al., 2002; Grandvalet et al., 2001). In these algorithms, the incorporation of unlabeled points is achieved
by extending the ' margin’ concept to the unlabeled points. Several margin extensions were suggested, relating the
margin of ahypothesisover an unlabeled point to the certainty of the hypothesisregarding the point’s classification.
The extended margins are then incorporated into the MarginBoost algorithm (Mason et al., 2000). Specifically,
given a partialy labeled dataset {(;,v;)}Y., where y; € {1,—1,x}, the algorithm searches for a hypothesis

f(z) = Zk: agh(x) minimizing:
i=1

N
Y oexp(—pr(ziy) = D> expl—prliy))+ D exp(—ps(xs))
i=1 {ily;=1,-1} {ilyi=+}
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where p¢(z,y) = yf(x) for alabeled point and p(z) = | f(x)| or ps(z) = f(z)? for an unlabeled point. The
minimization argument hence contains a mixture of the supervised loss (which measures the agreement between
the combined hypothesis and the labels) and the unsupervised loss (which measures the certainty of the hypothesis
over the unsupervised data).

Minimizing traditional supervised loss is an intuitive goal, which has well known justifications in terms of
generalization error (Schapire et al., 1997). In contrast, minimizing the unsupervised lossis not clearly a desired
goal, as a hypothesis can be very certain about the classification of unlabeled points even when it classifies them
incorrectly. This problem becomes more acute when the number of unsupervised points is much larger than the
number of supervised points, asis the case in our application. We have empirically tested some variants of these

algorithms and found that minimizing these scores tends to lead to poor generalization performancein our context.
2.3.1.2 DistBoost’'sweak learner - the constrained EM algorithm (cEM)

The weak learner in DistBoost is based on the constrained EM algorithm presented by Shental et al. (20044).
Thisalgorithm learns a mixture of Gaussians over the original data space, using unlabeled dataand a set of positive
and negative constraints. Below we briefly review the basic agorithm, and then show how it can be modified to
incorporate weights on sample data points. We also describe how to trandate the boosting weights from product
space pointsto original data points, and how to extract a product space hypothesis from the soft partition found by
the EM agorithm.

A Gaussian mixture model (GMM) isaparametric statistical model which assumesthat the data originate from a
weighted sum of several Gaussian sources. More formally, aGMM isgivenby p(z|0©) = M, a;p(x|6;), where oy
denotes the weight of each Gaussian, 6; its respective parameters, and M denotes the number of Gaussian sources
in the GMM. EM is a widely used method for estimating the parameter set of the model (©) using unlabeled
data (Dempster et al., 1977). In the constrained EM algorithm equivalence constraints are introduced into the
'E’ (Expectation) step, such that the expectation is taken only over assignments which comply with the given
constraints (instead of summing over all possible assignments of data points to sources).

Assume we are given a set of unlabeled i.i.d. sampled points X = {z;} ,, and a set of pairwise constraints
over these points €. Denote the index pairs of positively constrained points by {(p}, pf.) ;VZ”I and the index pairs
of negatively constrained points by {(n},n?) kagl. The GMM model contains a set of discrete hidden variables

H, where the Gaussian source of point x; is determined by the hidden variable h;. The constrained EM algorithm
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Figure 2.3. A Markov network representation of the constrained mixture setting. Each observable data node has a discrete hidden
node as its ancestor. Positively constrained nodes have the same hidden node as their ancestor. Negative constraints are expressed
using edges between the hidden nodes of negatively constrained points.Here points 2,3,4 are constrained to be together, and point 1

is constrained to be from a different class.

assumes the following joint distribution of the observables X and the hiddens H:

1 n NP Nn
p(X,H’@,Q) = E 4H ahip(l‘iwm) 'H o, 1hoo 11 (1 —0p Lh 2) (2.9)
1=1 j=1 Pj Pj k=1 "k "k

7P
The agorithm seeks to maximize the data likelihood, which isthe marginal distribution of (2.9) with respect to H.

The equivalence constraints create complex dependencies between the hidden variables of different data points.
However, the joint distribution can be expressed using a Markov network, as seen in Figure 2.3. Inthe 'E’ step
of the algorithm the probabilities p(h;| X, ©, ) are computed by applying a standard inference algorithm to the
network. Such inference is feasible if the number of negative constraints is O(N), and the network is sparsely
connected. The model parameters are then updated based on the computed probabilities. The update of the
Gaussian parameters {6;} can be done in closed form, using rules similar to the standard EM update rules. The
update of the cluster weights {«; }1£, is more complicated, since these parameters appear in the normalization
constant Z in (2.9), and the solution is found with a gradient descent procedure. The agorithm finds a local
maximum of the likelihood, but the partition found is not guaranteed to satisfy any specific constraint. However,
since the boosting procedure increases the weights of points which belong to unsatisfied equivalence constraints,

itishighly likely that any constraint will be satisfied in one or more partitions.

Incorporating weights into the cEM algorithm  We incorporated weights into the constrained EM algorithm
according to the following semantics. The algorithm is presented with avirtual sample of size N,,. A training point

x; with weight w; appears w; N,, timesin this sample. All the repeated tokens of the same point are considered to
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be positively constrained, and are therefore assigned to the same source in every evaluation inthe 'E’ step. In all
of our experiments we have set N, to be the actual sample size.

When introduced this way, the incorporation of weights has some non- trivial consequences. The posterior
distribution of the hidden variables, which is computed at the E-step, has a strong dependency on the absolute
weight w; N,, of the point. High values (w;N,, > 1) tend to sharpen the distribution, so the point is assigned to
a single source with a probability closeto 1. Low values (w; N,, < 1) have the opposite effect of flattening the
point’s posterior. Because of these effects the parameter IV,,, which controls the absolute size of the weights, has
amajor impact on the algorithm’s behavior. Itsrole is similar to the role that % (where T' is the temperature), has
in many statistical mechanics models. In all of the experiments with the algorithm (Hertz et al., 2004a,b) we used

the actual sample size as the value of this’virtual sample size' parameter.

Trandating pair weights in product-space into singleton weights in the original space While the weak
learner accepts a distribution over the original space points, the boosting process described in 2.3.1.1 generates a
distribution over the sample product space in each round. The product space distribution is converted to a distri-
bution over the sample points by simple marginalization. Specifically, denote by wfj the weight of pair (i, j); the

weight w; of point i is defined to be

wi = wh, (2.10)

Generating a weak distance function from a GMM  The weak learners’ task is to provide a weak distance
function hy(x;, ;) over the product space . Let us denote by M AP (z;) the Maximum A-Posteriori assignment
of point z; and by p™ 4 (z;) the MAP probability of this point:

MAP(%}')

P = max p(h; = m|x;, ©)
p

We partition the datainto M groups using the MAP assignment of the points and define

- +pMAP () - pMAP () if M AP(x;) = MAP(x;
o) = P () - pP A () (:) (z;) (2.11)
—pMAP(xZ-)-pMAP(a:j) if MAP(z;) # MAP(x;)
The weak distance function is given by
1 ~
ho(ais ;) = 5 (1 - ht(xi,a:j)) € 0,1] (2.12)

It is easy to seethat if the MAP assignment of two pointsisidentical their distance will bein [0,0.5], and if their

MAP assignment is different their distance will bein [0.5, 1].
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24 Kernd Learning algorithms

Kernel based classifiers have been successfully used in various application domains, and have now become part
of the standard toolbox of the machine learning community. The popularity of these classifiers derives from the
fact that by the use of akernel, one can in effect bypass the problem of feature selection (or datarepresentation) via
the use of some kernel. Each kernel projects the data into some high (and possibly infinite) dimensional space, in
which the data are hopefully well separated. However, by using the so called "kernel trick’, the high dimensional
representation is only implicit, since only the dot products of the feature mappings are required for training the
classifier. While many standard kernels have been successfully used in the literature, such as the linear kerne,
the polynomial kernel and the RBF kernel, selecting the right kernel is usually application-dependent, and there is
no principled way to select the kernel other than resorting to data driven techniques such as cross-validation. It is
now widely recognized that the performance of any kernel-based classifier strongly depends on the kernel used.
In fact, in some application domains such as computational biology, hand-designed kernels which incorporate
various forms of domain knowledge have been widely used for various applications (Ledlie et al., 2002, 2003; Vert
et al., 2005).

Recently there has been a growing body of work on learning the kernel directly from the training data. Most of
the work in this area focuses on learning the kernel matrix (also known as the Gram matrix) and can therefore only
be applied in atransductive learning scenario. A first attempt to address this problem was suggested by Cristianini
et al. (2001) who introduced the concept of kernel alignment, which intuitively measures the similarity between
two given kernels. More formally, given two kernels K and K5 the kernel alignment score is given by

<K 1, K 2>F
\/<K1, K1>F<K27 K2>F

where (.) » denotes the Frobenius product. Cristianini et al. (2001) suggested how this score can be used to

Alignment (K1, K3) =

measure the alignment of agiven kernel to atraining set S = (z;, y;) by measuring the alignment of a given kernel

to theideal kernel givenby K;jeq = YY':

<K, Kideal)F
\/<K7 K>F<Kideal7 Kideal>F

This score can then be used to choose a good kernel, by selecting the kernel which has the highest alignment

Alignment(K, S) =

with the given training data. Cristianini et al. (2001) then considered several agorithms which can learn the

Gram matrix. Severa other works have also considered learning the Gram matrix: Crammer et al. (2002) have
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suggested a boosting based formulation of the problem. Lanckriet et al. (2002) have suggested an algorithm
which is based on semi-definite programming, and Bousquet and Herrmann (2002) put forward a gradient descent
approach over generaization bounds. Finaly, Zhang et al. (2006) proposed a formulation based on generative
modeling. Learning of kernel functions in the context of learning-to-learn is discussed in Yu et al. (2005).

Based on the idea of kernel alignment (Cristianini et al., 2001), Kwok and Tsang (2003) suggested a kernel
learning algorithm which attempts to learn the ideal kernel using equivalence constraints. The paper proposes a
method for “idealizing” agiven kernel K by adding theideal kernel K* toit K = K + K *, where the parameter
~ is optimized. They then show how this problem can be formulated as a distance learning problem in which a
Mahalanobis metric is learned that can aso be used to provide similarity values over unseen patterns (i.e. in an
inductive setting). The metric learned requires that the distance between pairs of dissimilar points be greater than
a certain margin, which can be shown to increase its alignment. This leads to a quadratic optimization which is
similar to the v-SVM agorithm, over pairs of points. An additional and similar formulation was suggested by Wu
et al. (2005) which adapts an existing kernel matrix using a set of equivalence constraints. Features are weighted
in the induced feature space by learning a Mahalanobis metric in the induced space.

Another avenue of research on kernel learning has focused on learning combination kernels, which are linear
combinations of aset of predefined kernelswhere the weight of each kernel islearned. More specifically, Lanckriet
et al. (2002) have suggested a semi-definite programming formulation of the problem, and Zien and Ong (2006)
have presented another formulation in the context of biological sequence kernels.

Some recent works have considered the problems of learning the parameters of a given pre-defined kernel
family that is not based on cross validation (as usually done). For example, Ong et al. (2005) suggest a super ker nel
approach, which relieson astatistical estimation of the kernel parameters. Chapelleet al. (2002) suggest agradient
descent approach over the estimates of the generalization error, which is estimated over hold out data, or uses a
leave-one-out approach.

Another interesting kernel that has been suggested for image retrieval (or more generally for unordered feature
sets) isthe pyramid match kernel (Grauman and Darrell, 2005). The kernel maps unordered feature setsinto multi-
resolution histograms and then computes a weighted histogram intersection in this histogram feature space. The
kernel can be shown to approximate the similarity measured by the optimal partial matching (correspondences
between sets of unequal cardinality).

Degspite the growing number of works on learning kernels, al of the works described above have focused on
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learning the kernel matrix, rather than learning a kernel function which is defined for every pair of pointsin the
product space. Unlike most other algorithms, the KernelBoost algorithm which will be presented in Sec. 2.4.1
learns kernel functions, and can therefore be used in an inductive learning scenario. As will be demonstrated
in Chapter 5 the algorithm can be successfully applied in a “learning to learn” setting in which knowledge is
transferred between related classification tasks, when using very limited amounts of training data. However, when
considering the more standard |earning scenario, when there are large amounts of training data, to date none of the
suggested methods have been shown to provide significant performance boosts as compared to standard off-the-
shelf kernels. Recently, Srebro and Ben-David (2006) have provided a theoretical analysis of the generalization
error of akernel-based classifier when using alearned kernel which isalinear combination of pre-defined kernels,

or a convex combination of these. Specifically, they show that for akernel family with a given pseudodimension

d, the estimation error of akernel-based classifier with margin -y is given by \/@(d¢ + 1/~42)/n where n denotes
the sample size. Unlike previous boundsin which the relationship between the margin term and kernel-family term
is multiplicative, this recent bound is additive. Srebro and Ben-David (2006) also compute the pseudodimension

of several well known and widely used kernel families.
24.1 TheKernelBoost Algorithm

The KernelBoost isavariant of the DistBoost algorithm, which learns distance functionsthat are Mercer kernels.
While the DistBoost algorithm described in Section 2.3.1 has been shown to enhance clustering and retrieval
performance, it has never been used in the context of classification, mainly due to the fact that the learnt distance
function is not akernel (and is not necessarily metric). Therefore it cannot be used by the large variety of kernel-
based classifiersthat have been shown to be highly successful in fully labeled classification scenarios. Kernel Boost
alleviates this problem by modifying the weak learner of DistBoost to produce a 'weak’ kernel function. The
'weak’ kernel has an intuitive probabilistic interpretation - the similarity between two points is defined by the
probability that they both belong to the same Gaussian component within the GMM learned by the weak |earner.
An additional important advantage of KernelBoost over DistBoost is that it is not restricted to model each class
at each round using a single Gaussian model, therefore removing the assumption that classes are convex. This
restriction is dealt with by using an adaptive label dissolve mechanism, which splits the labeled points from each
classinto several local subsets, as described in Sec. 2.4.1.2. An important inherited feature of KernelBoost is that

it is semi-supervised, and can naturally accommodate unlabeled data in the learning process. As our empirical
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results show, the ability to use unlabeled data in the training process proves to be very important when learning
from small samples. Additionally, as our experiments show (Hertz et al., 2006), the algorithm can be trained with
very small amounts of labeled data, and can be used in “learning to learn” scenarios.

Let usdenote by {x;}" ; the set of input data points which belong to some vector space X', and by X' x X' the
“product space” of al pairs of pointsin X'. An equivalence constraint is denoted by (z;,, zi,, v;), wherey; = 1
if points (z;, , z;,) belong to the same class (positive constraint) and y; = —1 if these points belong to different
classes (negative constraint). (x;,, z;,, *) denotes an unlabeled pair.

As in DistBooost, the algorithm makes use of the observation that equivalence constraints on points in X
are binary labels in the product space, X x X. Thus, by posing the problem in product space the problem is
transformed into a classical binary classification problem, for which an optimal classifier should assign +1 to all
pairs of points that come from the same class, and —1 to all pairs of points that come from different classes ®. The
weak learner itself istrained in the original space X', which allows it to make use of unlabeled data pointsin a
semi-supervised manner. The weak learner isthen used to generate a“weak kernel function” on the product space.

The KernelBoost algorithm (described in Algorithm 4) learns a Kernel function of the following form:

T
K(zy,22) = Zath(xl,xg) (2.13)
t=1

which is alinear combination of “weak kernel functions’ K; with coefficients a;, which is optimized using the

same semi-supervised Adaboost extension described in Section 2.3.1.1.
24.1.1 KernelBoost'sweak learner

As in DistBoost, KernelBoost's weak learner is based on the constrained Expectation Maximization (CEM)
algorithm (Shental et al., 20044). The agorithm uses unlabeled data points and a set of equivalence constraints
to find a Gaussian Mixture Model (GMM) that complies with these constraints. The difference between the two
algorithms lies in the way in which the weak learner is used in order to generate a weak distance function. We

therefore now describe thisissue in more detail .

GeneratingaWeak Kernel fromaGMM  Given the mixture ©f at round ¢, we construct a’ weak kernel” which

essentially measures the probability that two points bel ong to the same Gaussian component. Denoting the hidden

SAlso referred to astheideal kernel (Cristianini et al., 2001).
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Algorithm 4 The KernelBoost algorithm.
Input:

Data points: (z1,...,x,), xp € X
A set of equivalence constraints: (x;,, z;,,v:), wherey; € {—1,1}

Unlabeled pairsof points:(x;, , zi,, y; = *), implicitly defined by all unconstrained pairs of points

o InitidizeW}!, =1/(n?) i1,ia = 1,...,n (weights over pairs of points)

wr =1/n k=1,...,n (weghtsover data points)
e Fort=1,..,T

1. Fitaconstrained GMM (weak learner) on weighted data pointsin X' using the equivalence constraints.

2. Generate awesak kernel function K; : X x X — [/, oo] and define aweak hypothesis as

Kt((ti,l‘j) = 2Kt(xi,xj) —1e [—1, 1]

3. Compute r; = > W, yili(zi,, 4,), only over labeled pairs.

(]
(®iy,Tig,yi=%1)

Accept the current hypothesis only if r; > 0.

4. Choose the hypothesis weight o = 3 In(112t).

1—re

5. Update the weights of all pointsin X' x X asfollows:

Wit1i2 eXP(—atyif(t(%uwiz)) yi € {—1,1}
wt

1112

exp(—A * ay) Y = *

where )\ is atradeoff parameter that determines the decay rate of the unlabeled points in the boosting

process.
. witl
6. Normalizee Wit!l = — 2
. S it
117/2

i1,dp=1

7. Trandatethe weightsfrom X x X to X: wi! = > W,ﬁ;rl

Output: A fina Kernel function of the form K (z;, x;) = Zthl a Ky (i, xj).
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label of apoint according to the mixture by (), the kernel is given by

Ki(z1,22) = p[l(x1) = l(z2)|©] = Zp x1) = 7|O)p(l(z2) = j|O) (2.19)

The combined 'strong’ kernel therefore becomes:

T M?

K(an,22) = 33 vamli(er) = KO - yap(i(zs) = k6" (2.15)

t=1 k=1
If wethink of each element inthe sumin Equation (2.15) as afeature in afeature-space of dimension Zthl M,

then the coordinate corresponding to the pair (¢, k) holds a feature of the form

TG (x|t , Xt
By (2) = /At Y (2.16)

2 TGl |15, 55)

These features can be interpreted as soft Voronoi cell indicators: a high value for feature @, ;, indicates that the
point liesin cell k& of the partition induced by mixture ¢. These features are rather different from the prototype-like
RBF features. Specifically, their response does not necessarily decay rapidly with the distance from the Gaussian's

center. Decay only happens in regions where other Gaussians from the same mixture are more likely.
2.4.1.2 ThelLabd Dissolving Mechanism

The weak learner of the KernelBoost algorithm treats all constraints as hard constraints; in particular, since
all positive constraints are always satisfied in the cEM agorithm, its only option is to attempt to place al of the
points from the same label in asingle Gaussian at every iteration. Thisis very problematic for non-convex classes
generated by non-Gaussian distributions (see Figure 2.4, left plot). Therefore, in order to enrich the expressive
power of KernelBoost and to allow it to model classes of these types, the agorithm is augmented by a label-
dissolving mechanism, which relies on the boosting weights. This mechanism splits sets of points with the same
label into several local subsets, which alows the agorithm to model each of these subsets separately, using a
different Gaussian model.

The intuition leading to the proposed mechanism is the following. We would like to model each non-convex
class, using several loca Gaussians. The attempt to model a highly non-Gaussian, or non-convex class using
a single Gaussian will fail, and cause some of the pairwise constraints to be unsatisfied. The boosting process
focuses each new weak learner on those harder pairs still inconsistent with the current hypothesis. The adaptive

dissolve mechanism uses these pairwise weights to eliminate edges aready consistent with the current hypothesis
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Figure 2.4. Left: A 2-d synthetic example of a non-convex and non-Gaussian dataset. Center: The Gaussians learnt by
Kernel Boost-dissolve (presented in Sec. 2.4.1.2). The Ellipses mark 1-std contours. Darker ellipses show Gaussians obtained at
later boosting rounds. Right: The separator induced by the Gaussians for this example. Support vectors are marked by black dots.

from alocal neighborhood graph. Classes are therefore split into small local subsets. The dissolve mechanism

proposed is presented below in Algorithm 5.

Algorithm 5 The adaptive label-dissolve mechanism.
Preprocess: For each label [, compute alocal neighborhood graph where each labeled datapoint is connected to

al of itsmutual neighbors from the first N,,,.tua NEIghbors.
For t=1...Tdo
For eachlabel [ do

1. Define the edge weights on the graph to be the pairwise weights I/Vi’fw.2 computed by the boosting
process.

2. Threshold edges by removing all edges whose weight is smaller than the average edge weight given
by ﬁ 2 (inin)el Witl,ig'

3. Compute the connected components of the graph and use them to define a partition of the labels from

the current class into small and local subsets.

This mechanism has one tunable parameter N,,,.vq01, Which determines the pre-computed neighborhood graph
for each of the labels ©. This parameter implicitly affects the number of subsets obtained at each boosting round.

The effect of using this mechanism on a non-linear non-convex dataset can be seen in Figure 2.4 (center and right

plots).

®Neighbors are defined as “mutual” iff i iswithin thefirst N neighbors of j and vice-versa
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Chapter 3

The RCA algorithm - Learning a Mahalanobis

Metric using Equivalence Relations

This chapter includes the following publications

[A] Aharon Bar-Hillel, Tomer Hertz, Noam Shental and Daphna Weinshall, L ear ning Distance Func-
tionsUsing Equivalence Relationsin 20th International Conference on Machine Learning (ICML

2003), Washington DC, August 2003.
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Abstract

We address the problem of learning distance
metrics using side-information in the form of
groups of “similar” points. We propose to use
the RCA algorithm, which is a simple and
efficient algorithm for learning a full ranked
Mahalanobis metric (Shental et al., 2002).
We first show that RCA obtains the solu-
tion to an interesting optimization problem,
founded on an information theoretic basis. If
the Mahalanobis matrix is allowed to be sin-
gular, we show that Fisher’s linear discrimi-
nant followed by RCA is the optimal dimen-
sionality reduction algorithm under the same
criterion. We then show how this optimiza-
tion problem is related to the criterion opti-
mized by another recent algorithm for metric
learning (Xing et al., 2002), which uses the
same kind of side information. We empir-
ically demonstrate that learning a distance
metric using the RCA algorithm significantly
improves clustering performance, similarly to
the alternative algorithm. Since the RCA al-
gorithm is much more efficient and cost ef-
fective than the alternative, as it only uses
closed form expressions of the data, it seems
like a preferable choice for the learning of full
rank Mahalanobis distances.

Keywords: Learning from partial knowledge, semi-
supervised learning, feature selection, clustering

1. Introduction

Many learning algorithms use a distance function over
the input space as a principal tool, and their perfor-
mance critically depends on the quality of the metric.
Learning a “good” metric from examples may there-
fore be the key to a successful application of these
algorithms. In many cases choosing the right metric

may be more important than the specific algorithm
which is later used.

Choosing the right metric is especially important in
the unsupervised setting of clustering tasks, for such
clustering algorithms as K-means and graph based
methods. There are also supervised classification tech-
niques which are distance based such as K-Nearest-
Neighbors. Kernel machines use inner-product func-
tions which are closely related to the Euclidean dis-
tance metric. In this wide variety of algorithms the
problem of finding a good metric is equivalent to
the problem of finding a good representation function
f : X — Y, transferring the data X into represen-
tation Y. We will therefore discuss the two problems
interchangeably. Our main goal in this paper is to de-
sign a simple method for learning a metric, in order
to improve the subsequent performance of unsuper-
vised learning techniques. This is accomplished using
side-information in the form of equivalence relations.
Equivalence relations provide us with small groups of
data points that are known to be similar (or dissimi-
lar).

A key observation is that in many unsupervised learn-
ing tasks, such groups of similar points may be ex-
tracted from the data with minimal effort and possi-
bly automatically, without the need for labels. This
occurs when the data originates from a natural se-
quence that can be modeled as a Markovian process.
Consider for example the task of movie segmentation,
where the objective is to find all the frames in which
the same actor appears. Due to the continuous na-
ture of most movies, faces extracted from successive
frames in roughly the same location can be assumed
to come from the same person. This is true as long as
there is no scene change, which can be automatically
and robustly detected (Boreczky & Rowe, 1996). An-
other analogous example is speaker segmentation and
recognition, in which a conversation between several
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speakers needs to be segmented and clustered accord-
ing to the speaker identity. Here, it may be possible to
automatically identify small segments of speech which
are likely to contain data points from a single unknown
speaker.

In this paper we discuss the problem of learning lin-
ear representation functions, or equivalently an opti-
mal Mahalanobis distance between data points, using
equivalence relations. Specifically, we focus here on
the Relevant Component Analysis (RCA) algorithm,
which was first introduced in (Shental et al., 2002);
the algorithm is reviewed in Section 2. In Section 3
we present a new analysis, based on a novel informa-
tion theoretic optimality criterion. RCA is shown to be
an optimal learning procedure in this sense. We show
that Fisher’s linear discriminant function followed by
RCA optimizes the same criterion if dimensionality re-
duction is allowed.

In Section 4 we show that RCA can be presented as
an optimal solution to a problem of minimizing inner
class distances. Viewed this way, RCA can be directly
compared with the approach proposed in (Xing et al.,
2002), which is another recent algorithm for metric
learning with side information. The comparison shows
that the optimality criteria of the two algorithms are
similar, but some arbitrary aspects of the criterion pre-
sented in (Xing et al., 2002) do not exist in RCA. Our
empirical study also shows that the results of the al-
gorithms are comparable: We empirically tested the
RCA algorithm on a number of databases from the
UCI repository, showing significant improvement in
clustering performance which is similar or better than
the improvement reported in (Xing et al., 2002). The
major difference between the two algorithms is com-
putational: RCA is robust and efficient since it only
uses closed-form expressions of the data; the algorithm
described in (Xing et al., 2002), on the other hand,
uses iterative methods which are sensitive to param-
eter tuning and which are very demanding computa-
tionally.

Related work

There has been much work on learning representations
and distance functions in the supervised learning set-
ting, and we can just briefly mention some examples.
(Hastie & Tibshirani, 1996) and (Jaakkola & Haus-
sler, 1998) use labeled data to learn good metrics for
classification. In (Thrun, 1996) a distance function (or
a representation function) is learned for classification
using a “leaning-to-learn” paradigm. In this setting
several related classification tasks are learned using
several labeled data sets, and algorithms are proposed

which learn representations and distance functions in a
way that allows for the transfer of knowledge between
the tasks. In (Tishby et al., 1999) the joint distribu-
tion of two random variables X and Y is assumed to
be known, and the problem is reduced to the learning
of a compact representation of X which bears high rel-
evance to Y. This work, which is further developed in
(Chechik & Tishby, 2002), can be viewed as supervised
representation learning. Information theoretic criteria
for unsupervised learning in neural networks were first
suggested by (Linsker, 1989), and has been used since
in several tasks in the neural network literature, e.g.,
(Bell & Sejnowski, 1995).

In recent years some work has been done using equiva-
lence relations as side information. In (Wagstaff et al.,
2001) equivalence relations were introduced into the
K-means clustering algorithm. Both positive (’a is
similar to b’) and negative (’a is dissimilar from b’)
relations were used. The problem of finding a bet-
ter Mahalanobis metric using equivalence relations was
addressed in (Xing et al., 2002), in conjunction with
the constrained K-means algorithm. We compare this
algorithm to our current work in Section 4, and com-
pare our empirical results with the results of both al-
gorithms in section 6. We have also recently developed
a way to introduce both positive and negative equiv-
alence relations into the EM algorithm for the esti-
mation of a mixture of Gaussian models (Hertz et al.,
2002; Shental et al., 2003).

2. Relevant Component Analysis

Relevant Component Analysis (RCA) is a method that
seeks to identify and down-scale global unwanted vari-
ability within the data. The method changes the fea-
ture space used for data representation, by a global lin-
ear transformation which assigns large weights to “rel-
evant dimensions” and low weights to “irrelevant di-
mensions” (cf. (Tenenbaum & Freeman, 2000)). These
“relevant dimensions” are estimated using chunklets.
We define a chunklet as a subset of points that are
known to belong to the same although unknown class;
chunklets are obtained from equivalence relations by
applying a transitive closure. The RCA transforma-
tion is intended to reduce clutter, so that in the new
feature space, the inherent structure of the data can
be more easily unraveled. The method can be used as
a preprocessing step for the unsupervised clustering of
the data or nearest neighbor classification.

Specifically, RCA does the following (see illustration
in Fig. la-f):

1. For each chunklet, subtract the chunklet’s mean
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Figure 1. An illustrative example of the RCA algorithm applied to synthetic Gaussian data. (a) The fully labeled data
set with 3 classes. (b) Same data unlabeled; clearly the classes’ structure is less evident. (c) The set of chunklets that are
provided to the RCA algorithm (points that share the same color and marker type form a chunklet). (d) The centered
chunklets, and their empirical covariance. (e) The whitening transformation applied to the chunklets. (f) The original

data after applying the RCA transformation.

from all of the points it contains (Fig. 1d).

2. Compute the covariance matrix of all the centered
data-points in chunklets (Fig. 1d). Assume a total
of p points in k£ chunklets, where chunklet j con-
sists of points {z;};2, and its mean is 11;. RCA
computes the following matrix:

j

) (zji — ) (@j; — )t (1)

é:

D=

3. Compute the whitening transformation W =
C~% associated with this covariance matrix
(Fig. le), and apply it to the original data points:
ZTnew = Wa (Fig. 1f). Alternatively, use the in-
verse of C' as a Mahalanobis distance.

In effect, the whitening transformation W assigns
lower weight to some directions in the original feature
space; those are the directions in which the data vari-
ability is mainly due to within class variability, and is
therefore “irrelevant” for the task of classification.

3. Information maximization under
chunklet constraints

In this section we suggest an information theoretic for-
mulation for the problem at hand. The problem is

formulated as a constrained search for a good repre-
sentation function . Although it is possible to state
the problem for general families of transformations,
we treat here only the linear case. In section 3.1 we
present and discuss the problem formulation. In 3.2
we show that RCA solves this problem when only lin-
ear invertible transformations are considered. In sec-
tion 3.3 we extend the family of functions considered
to include non-invertible linear transformations, which
leads to dimensionality reduction. We show that when
the data is Gaussian, the solution is given by Fisher’s
linear discriminant followed by RCA.

3.1. An information theoretic perspective

Following (Linsker, 1989), an information theoretic cri-
terion states that when an input X is transformed into
a new representation Y, we should seek to maximize
the mutual information I(X,Y") between X and Y un-
der suitable constraints. In the general deterministic
case a set X = {x;}1, of data points in R is trans-
formed into the set Y = {f(z;)}1, of points in RM.
We wish to find a function f € F that maximizes
I(X,Y), where F is the family of allowed transforma-
tion functions (the “hypotheses family”).

In our case we are also given a set of chunklets of
data points from X, {:Eji}?:’lygl, which the repre-
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sentation function f is required to keep close to each
other. Therefore, we may pose the problem as:

k nj

1
— o —mY 2<

r;lea}(I(X,Y) s.t. p§ > lyji —miP <K (2)

j=1i=1

where m? denotes the mean of points in chunklet j af-
ter the transformation, P is the total number of points
in chunklets, and K is a constant. The mutual in-
formation here is the differential mutual information
between two continuous variables X and Y, and it de-
pends on their respective densities. One should note
that we can only asses these densities using the pro-
vided sample of data points.

Since in our case f is deterministic, the maximiza-
tion of I(X,Y) is achieved by maximizing the entropy
H(Y) alone. To see this, recall that

I(X,Y)=H(Y) - HY|X)

Since f is deterministic, there is no uncertainty con-
cerning Y when X is known. Thus H(Y|X) has its
lowest possible value at —oo.! However, as noted in
(Bell & Sejnowski, 1995), H(Y'|X) does not depend on
f but on the quantization scale. For every finite quan-
tization of the space this term is a constant. Hence
maximizing with respect to f can be done by consid-
ering only the first term, H(Y).

It should be noted that H(Y) can be increased by
simply ’stretching’ the data space (e.g. by choosing
f = Az, where A > 1 ). Therefore, a constraint that
keeps certain points close together is required in order
to prevent this trivial scaling solution. Also the fam-
ily F' of representation functions should be carefully
chosen to avoid trivial solutions.

3.2. RCA from an information theoretic
perspective

We now look at the problem posed for the family F
of invertible linear functions. When f is an invert-
ible function, the connection between the densities of
Y = f(X) and X is expressed by p,(y) = Ipf(—(f))‘, where
|J(x)| is the Jacobian of the transformation. Not-
ing that p,(y)dy = pe(z)dx, we can relate H(Y) and
H(X) as follows:

H(Y)=- / p(y) log p(y)dy =

!This non-intuitive divergence is a result of the gen-
eralization of information theory to continuous variables;
specifically, it is a result of ignoring the discretization con-
stant in the definition of differential entropy.

Y B G I oo | J(x
[ p@ytor Zida = HX) + flog (@)

For a linear function Y = AX the Jacobian is constant
and equals | A[, and it is the only term in I(X,Y") that
depends on the transformation A. Hence problem (2)
becomes

x

k nj
1
max [A] .. 5 DD lwji—myllhea <K (3)
J=1i=1

Let B = A*A denote a Mahalanobis distance matrix,
where B is positive definite and log |A| = 1 log|B]|. (3)
can now be rewritten as

max |B| (4)

ko nj
1
s.t. ];ZZ||$W—THJH?3SK7 B>0

j=11i=1

Writing and solving for the Lagrangian, we get the so-
lution B = %C"l where C is the average chunklet
covariance matrix (1) and N is the dimension of the
data space. The solution is identical to the Maha-
lanobis matrix proposed by RCA up to a scale factor.?
Hence RCA is the solution of (4).

3.3. Dimensionality reduction

In this section we analyze the problem posed in Section
3.1 for the case of general linear transformations, i.e.
Y = AX where A € Mp;«n and M < N. To simplify
the analysis, we assume that X is a multivariate Gaus-
sian. As we saw earlier, maximizing H (Y") is equivalent
to maximizing I(X,Y") with respect to f. Since X is
assumed to be Gaussian, Y is also Gaussian and its
entropy is given by

d 1
HY) = 5 log 2me + 3 log |, ]

d 1
= 3 log 2me + 3 log |[AX, A

so that (2) becomes

max log |AY, A’ (5)
1
j=1i=1

For a given target dimension M the solution to the
problem is Fisher linear discriminant followed by ap-
plying RCA in the reduced dimensional space. A
sketch of the proof is given in appendix A.

2Such a scale constant is not important in classification

tasks, i.e. when using relative distances.
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4. RCA also minimizes inner class
distances

In order to gain some intuition to the solution provided
by the information maximization criterion formalized
in Eq. (2), let us look at the optimization problem
obtained by reversing the roles of the maximization
term and the constraint term:

HllIl ZZWZ m;l|% st

lel

[Bl>1  (6)

In (6) a Mahalanobis distance B is sought, which min-
imizes the sum of all inner chunklet squared distances.
Demanding that |B| > 1 amounts to the demand
that minimizing the distances will not be achieved by
“shrinking” the entire space. Using Kuhn-Tucker the-
orem, we can reduce (6) to

k nj
min >3 flaj; — mylE — Alog|B|

j=1i=1

st. A>0, Alog|B|=0

(7)

Differentiating the Lagrangian above shows that the
minimum is given by B = |C|2C~!, where C is the
average chunklet covariance matrix. Once again, the
solution is identical to the Mahalanobis matrix pro-
posed by RCA up to a scale factor.

It is interesting, in this respect, to compare RCA and
the method proposed recently by (Xing et al., 2002).
They also consider the problem of learning a Maha-
lanobis distance using side information in the form of
pairwise similarities.?> They assume knowledge of a set
S of pairs of points known to be similar, and a set D
of pairs of points known to be dissimilar. Given these
sets, they pose the following optimization problem.

. 2
min > flar - z2llp (8)
(z1,22)ES
s.t. Z [lz1 — x2||lg, B >0
(z1,22)€ED

This problem is solved using gradient ascent and iter-
ative projection methods.

To allow a clearer comparison of RCA to Eq. (8), we
can cast (6) as a minimization of inner chunklet pair-
wise distances. For each point xj; in chunklet j we

have:
nj
Tji =My = Tji — E l‘]k = f > (i — )
"=
ki

3Chunklets of size > 2 are not considered.
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Problem (6) can now be rewritten as

mlnz ZHZ zji — 1)l B

37. 1 k#i

Bl =1 (9)

When only chunklets of size 2 are given (as in the case
studied by Xing et al.), the problem reduces to

k
1
min 5 E 1 lzj1 — 2521 % |B| > 1 (10)
o

Clearly the minimization terms in problems (10) and
(8) are identical up to a constant (3). The differ-
ence between the two problems lies in the constraint
term they use. The constraint proposed by Xing et
al. tries to use information concerning pairs of dissim-
ilar points, whereas the constraint in the RCA formu-
lation can be interpreted as a pure scale constraint,
which does not allow the ’volume’ of the Mahalanobis

neighborhood to shrink.

Although the constraint used by Xing et al. appears
to take into consideration further information, closer
look shows that it is somewhat arbitrary. The usage
of squared distance in the minimization term and the
root of square distance for the constraint term is ar-
bitrary and a-symmetric. Most importantly, it should
be noted that in most unsupervised applications dis-
similar pairs are not explicitly available. In this case
(Xing et al., 2002) recommends to take D to be all the
pairs of points that are not in S. This is a problem-
atic choice for two reasons: In most practical scenarios
pairs of points which are not in S are not necessarily
dissimilar. In addition, this definition usually yields a
very large set D, which substantially slows the algo-
rithm’s running time. In contrast, the RCA distance
computation is simple and fast (requiring a single ma-
trix inversion) without any need for an iterative pro-
cedure.

In order to further justify the constraint suggested in
problem (6), we proceed to suggest a probabilistic
interpretation of the RCA algorithm.

5. RCA and Maximum Likelihood

We now analyze the case of data which consists of
several normally distributed classes which share the
same covariance matrix. Under the assumption that
the chunklets are sampled i.i.d and that points within
each chunklet are also sampled i.i.d, the likelihood of
the chunklets’ distribution can be written as:

e

_]111

$(wji—m;) S @gi—my))  (11)

exp (-
(2w 2\E|
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It is easy to see that the RCA Mahalanobis matrix
C from (1) maximizes (11) over all possible choices of
¥~1 and is therefore the Maximum Likelihood esti-
mator in this setting.

In order to gain further insight into the constraint cho-
sen in (6), we take the log of the likelihood equation
(11), drop constant terms and denote B = X!, to
obtain:
k ny
C =argminy > [le;; — my|[5 —plog|B|  (12)
B 4=
where p denotes the total number of points in all
chunklets. This equation is closely related to the La-
grangian in (7), but here A (the Lagrange multiplier)
is replaced by the constant p. Hence, under Gaussian
assumptions, the solution of problem (7) has a proba-
bilistic justification.

The effect of chunklet size

Under Gaussian assumptions, we can define an unbi-
ased version of the RCA estimator. Assume for sim-
plicity that there are p constrained data points divided
into n chunklets of size k each. The unbiased RCA es-
timator can be written as follows :
k . .
C(n,k) = (2] =) (@] —iny)" (13)
=1

k—1¢4

1 J

S|

n

2

where xf denotes the data point j in the chunklet i, and
1n; denotes the empirical mean of chunklet i. C(n, k)
in (13) is the empirical mean of the covariance estima-
tors produced by each chunklet. It can be shown that
the variance of the estimator matrix elements C’ij is

bounded by

Var(Ci;(n,k)) < %V&r(é’ij(l,nk)) (14)
where C'ij(l, nk) is the estimator when all the p = nk
points are known to belong to the same class, thus
forming the best estimate possible when given p points.
For proof see (Hertz et al., 2002). The bound shows
that the variance of the RCA estimator using small
chunklets rapidly converges to the variance of this best
estimator.

6. Experimental Results: Application
to clustering

As noted in the introduction, the main goal of our
method is to use side information in the form of equiv-
alence relations to improve the performance of unsu-
pervised learning techniques. In order to test our pro-
posed RCA algorithm and to compare it with the work

presented by Xing et. al, we used six data sets from the
UC Irvine repository which were used in (Xing et al.,
2002). As in (Xing et al., 2002) we are given a set S
of pairwise similarity constraints (or chunklets of size
2).4 We used the following clustering algorithms:

1. K-means using the default Euclidean metric (i.e.
using no side-information).

2. Constrained K-means: K-means subject to points
(x;,z;) € S always being assigned to the same
cluster (Wagstaff et al., 2001).

3. Constrained K-means + Metric proposed by
(Xing et al., 2002): Constrained K-means us-
ing the distance metric proposed in (Xing et al.,
2002), which is learned from S.

4. Constrained K-means + RCA: Constrained K-
means using the RCA distance metric learned
from S.

5. EM: Expectation Maximization of a Gaussian
Mixture model (using no side-information).

6. Constrained EM: EM using side-information in
the form of equivalence constraints (Hertz et al.,
2002; Shental et al., 2003), when using the RCA

distance metric as an initial metric.

Following (Xing et al., 2002) we will use a normal-
ized accuracy score to evaluate the partitions obtained
by the different clustering algorithms presented above.
More formally, in the case of 2-cluster data the accu-
racy measure used can be written as:

3 HH{ei =¢jp =Hé =¢}}
£ 0.5m(m — 1)

1>]
where 1{} is the indicator function (1{True} =
1),1{False} = 0), {¢;}™, is the cluster to which point
x; is assigned by the clustering algorithm, and ¢; is
the “correct” or desired assignment. The score above
is equivalent to computing the probability that the al-
gorithm’s assignment ¢ of two randomly drawn points
z; and x; agrees with the “true” assignment c.”

“To allow for a fair comparison with (Xing et al., 2002),

we repeated their exact experimental setup and criteria.

®As noted in (Xing et al., 2002), this score needs nor-
malization when the number of clusters is larger than 2.
The normalization is achieved by sampling the pairs x;
and z; from the same cluster (as determined by ¢) with
probability 0.5 and from different clusters with probabil-
ity 0.5, so that “matches” and “mismatches” are given the
same weight.
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Figure 2. Clustering accuracy on 6 UCI datasets. In each panel, the six bars on the left correspond to an experiment with
”little” side-information, and the six bars on the right correspond to "much” side-information. From left to right the six
bars are respectively: (a) K-means over the original feature space (without using any side-information). (b) Constrained
K-means over the original feature space. (c¢) Constrained K-means over the feature space suggested by (Xing et al., 2002).
(d) Constrained K-means over the feature space created by RCA. (e) EM over the original feature space (without using
any side-information). (f) Constrained EM (Shental et al., 2003) over the feature space created by RCA. Also shown are
N - the number of points, C - the number of classes, d - the dimension of the feature space, and K. - the mean number

of connected components (see footnote 6). The results were averaged over 20 realizations of side-information.

As in (Xing et al., 2002) we tested our method using
two conditions: (1) using “little” side-information S;
(2) using “much” side-information.® As in (Xing et al.,
2002) in all of our experiments we used K-means with
multiple restarts.

Fig. 2 shows the results of all algorithms described
above when using the two conditions of “little” and
“much” side-information.

Clearly using RCA as a distance measure significantly
improves the results over the original K-means algo-
rithm. When comparing our results with the results re-
ported in (Xing et al., 2002), we see that RCA achieves
similar results. In this respect it should be noted that
the RCA metric computation is a single step efficient
computation, whereas the method presented in (Xing
et al., 2002) requires gradient descent and iterative
projections.

55 was generated by choosing a random subset of all
pairs of points sharing the same class ¢;. In the case of little
side-information, the size of the subset was chosen so that
the resulting number of connected components K. (using
transitive closure over pairs) is roughly 90% of the size of
the original dataset. In case of much side information this
was changed to 70%.

7. Discussion and Concluding remarks

We have presented an algorithm which makes use of
side-information in the form of equivalence relations
to learn a Mahalanobis metric. We have shown that
our method is optimal under several criteria, and also
showed considerable improvement in clustering on sev-
eral standard datasets.

RCA is one of several techniques which we have de-
veloped for using equivalence relations to enhance un-
supervised learning. In a related technique, we in-
troduced the constraints into an EM formulation of
a Gaussian Mixture Model (Hertz et al., 2002; Shen-
tal et al., 2003). This work enhances the power of
RCA in two ways: First, it makes it possible to incor-
porate negative constraints. Second, it allows further
improvement of the RCA metric, as may be seen in
Fig. 2.
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Appendix A: Information
Maximization in the case of non
invertible linear transformation

Here we briefly sketch the proof of the claim made in
Section 3.3. As before, we denote by C' the average
covariance matrix of the chunklets. We can rewrite
the constrained expression as:

ko nj
j=11i=1
Hence the Lagrangian may be written as:
log |AX, A'| — A(tr(ACA") — K)
Differentiating the Lagrangian w.r.t A leads to

YL AATY, AT =)CA (15)

Multiplying by A? and rearranging we get: + = A'CA.
This equation does not give us information concerning
the subspace to which the optimal A takes us. How-
ever, A whitens the data with respect to the chunklet
covariance C' in this subspace, similarly to RCA. From
A # 0 it then follows that the inequality constraint is
an equality, which can be used to find .

tr(ACA") = tr(é) = % =K== \= %
K

ACAt = —T
= AC U

Now, since in our solution space ACA! = %I ,
log |[ACA*| = Mlog & holds for all points. Hence we
can modify the maximization argument as follows
AY, Al K
log |AX, A" :1‘71M1—
og | | og |A0At|+ g 77

Now the optimization argument has a familiar form.
It is known (Fukunaga, 1990) that maximizing the de-
terminant ratio can be done by projecting the space on
the span of the first M eigenvectors of C~'%,. Denote
by B the solution matrix for this unconstrained prob-
lem. In order to enforce the constraints we define the
K AT%°B and we claim that A is the

solution of the constrained problem. Notice that the
value of the maximization argument does not change
when we switch from A to B since A is a product of B
and another full ranked matrix. It can also be shown
that A satisfies the constraints and is thus the solution
of the problem presented in Eq. (5).

matrix A =

Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), Washington DC, 2003.

Z Z(wji — mj)tAtA(xji — mj) = tT(AtAC) = tT(AtCA)
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Abstract

The performance of graph based clustering meth-
ods critically depends on the quality of the dis-
tance function used to compute similarities be-
tween pairs of neighboring nodes. In this pa-
per we learn distance functions by training bi-
nary classifiers with margins. The classifiers
are defined over the product space of pairs of
points and are trained to distinguish whether two
points come from the same class or not. The
signed margin is used as the distance value. Our
main contribution is a distance learning method
(DistBoos}, which combines boosting hypothe-
ses over the product space with a weak learner
based on partitioning the original feature space.
Each weak hypothesis is a Gaussian mixture
model computed using a semi-supervised con-
strained EM algorithm, which is trained using
both unlabeled and labeled data. We also con-
sider SVM and decision trees boosting as mar-
gin based classifiers in the product space. We
experimentally compare the margin based dis-
tance functions with other existing metric learn-
ing methods, and with existing techniques for the
direct incorporation of constraints into various
clustering algorithms. Clustering performance
is measured on some benchmark databases from
the UCI repository, a sample from the MNIST
database, and a data set of color images of ani-
mals. In most cases thaistBoostalgorithm sig-
nificantly and robustly outperformed its competi-
tors.

ative methods such awerage linkagéDuda et al., 2001),

to the recently developed and more sophisticated spectral
methods (Shi & Malik, 2000) and stochastic formulations
(Blatt et al., 1997; Gdalyahu et al., 2001). The initial rep-
resentation in all these methods is a matrix (or graph) of
distances between all pairs of datapoints. The computation
of this distance matrix is considered a “preprocessingd,ste
and typically one uses sorndg, norm on the feature space
(or a related variant).

Despite the important differences between the various
graph-based clustering algorithms, it is widely acknowl-
edged that clustering performance critically depends en th
quality of the distance function used. Often the quality of
the distance function is more important then the specifics
of the clustering algorithm. In this paper we focus on the
guestion of how to learn a “good” distance function, which
will lead to improved clustering. Our main contribution is
DistBoost- a novel semi-supervised algorithm for learning
distance functions.

We consider a semi-supervised clustering scenario in which
the data is augmented by some sparse side information,
in the form of equivalence constraints. Equivalence con-
straints are relations between pairs of data points, which
indicate whether the points belong to the same category
or not. We term a constraint 'positive’ when the points
are known to be from the same class, and 'negative’ oth-
erwise. Such constraints carkyssinformation than ex-
plicit labels on the original datapoints, since clearly iggu
alence constraints can be obtained from explicit labels but
not vice versa. More importantly, it has been suggested that
in some cases equivalence constraints are easier to obtain,
especially when the database is very large and contains
a large number of categories without pre-defined names

1. Introduction (Hertz et al., 2003).

Graph based clustering methods have been widely and sub recent years there has been a growing interest in semi su-
cessfully used in many domains such as computer visiorP€rvised clustering scenarios, leading to two differenti(a

spans a wide range of algorithms, from classical agglomerincorporated directly into the clustering algorithm, [tmi
ing the clustering solutions considered to those that com-

Appearing inProceedings of the** International Conference ply with the given constraints. Examples are the con-

?hnehgﬁtchhci?s LearningBanff, Canada, 2004. Copyright 2004 by girained complete linkage algorithm (Klein et al., 2002),
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constrained K-means (Wagstaff et al., 2001) and a con-
strained EM of a Gaussian mixture (Shental et al., 2003).
The second line of research, to which this work belongs,
uses the constraints to learn an informative distance func-
tion (prior to clustering). Most of the work in this area has
focused on the learning of Mahalanobis distance functions
of the form(x — y)T A(z — y) (Shental et al., 2002; Xing

et al., 2002). In these papers the parametric Mahalanobis

linear separators or decision trees, are not limited to
equivalence relation indicators, and it's not easy to en-
force these constraints when such classifiers are used.

2. In the learning setting we have described above, we

are provided withV datapoints in¥ and with a sparse
set of equivalence constraints (or labels in product
space) over some pairs of points in our data. We as-

sume that the number of equivalence constraints pro-
vided is much smaller than the total number of equiv-
alence constraint®(N?), and is of ordelO(N). We
therefore have access to large amounts of unlabeled
data, and hence semi-supervised learning seems like
an attractive option. However, classical binary classi-
fiers like SVM and boosting methods are trained using
labeled data only.

metric was used in combination with some suitable para-
metric clustering algorithm, such as K-means or EM of a
mixture of Gaussians. In contrast, we develop in this paper
a method that learns a non-parametric distance function,
which can be more naturally used in non-parametric graph
based clustering.

More formally, letX denote the original data space, and as-
sume that the data is sampled frdmdiscrete labels. Our
goal is to learn a distance functigh: X' x & — [0,1].) 1666 considerations led us to developHistBoostalgo-

Our key observation is that we can learn such a fu”Ct'O”rithm, which is our main contribution in this papeBis-

by posing a related binary classification problem over thgg,gtis a distance learning algorithm which attempts to
product spacet’ x &, and solving it using margin based ,qqress the issues discussed above. It learns a distance
classification techniques. The binary problem is the proby, tion which is based on boosting binary classifiers with
lem of distinguishing between pairs of points that belong o, ¢ nfidence interval in product space, using a weak learner
- X ) Nhat learns in theriginal feature space (and not in product
classe§.. The trf':unlng data included a set of eqU|yaIenceSpace)_ We suggest a boosting scheme that incorporates un-
constraints, which can be formally regarded as binary lajapejed data points. These unlabeled points provide a den-
bels on points int’ x X' If we label pairs of points from g rior. and their weights rapidly decay during the beost
the same class byand pairs of points belonging to differ- ;4 nrocess. The weak learner we use is based on a con-
ent class_es bi{' we can mtgrpret the classifier's margin as strained Expectation Maximization (EM) algorithm, which
the required distance function. computes a Gaussian mixture model, and hence provides
Having reduced distance learning to binary classificatiorg partition of the original space. The constrained EM pro-
with margins, we can now attempt to solve this problemcedure uses unlabeled data and equivalence constraints to
using standard powerful margin based classifiers. We havénd a Gaussian mixture that complies with them. A weak
explored both support vector machines (SVM's) and boostproduct space hypothesis is then formed as the equivalence
ing algorithms. However, experiments with several SVM relation of the computed partition.

variants and decision trees (C4.5) boosting have led us e have experimented witBistBoostand conducted sev-

recognize that the specific classification problem we are iNaral empirical comparisons of interest. The first is a com-

terested in has some unique features which require specigh ison ofbistBoostto other margin based distance func-
treatment: tions obtained using the more traditional algorithms of
SVM and decision tree boosting. Another comparison
1. The product space hinary function we wish to learnis betweenDistBoostand previously suggested distance
has some unique structure which may lead to 'unnatlearning algorithms which are based on Mahalanobis met-
ural’ partitions of the space between the labels. Theic estimation. Finally, clustering using the distancedun
concept we wish to learn is an indicator of an equiva-tion learnt by DistBoostis compared to previously sug-
lence relation over the original space. Thus the propergested methods of incorporating equivalence constraints d
ties of transitivity and symmetry of the relation place rectly into clustering algorithms. During the comparative
geometrical constraints on the binary hypothesis. ObassessmerdistBoostwas evaluated with several agglom-

viously, traditional families of hypotheses, such aserative clustering algorithms and with different amounts
—_— o _ _ ~of equivalence constraints information. We used several
the that.thls function is not necessarily a metric, as the tri-qatasets from the UCI repository (Blake & Merz, 1998), A
angle inequality may not hold. sample from the MNIST dataset (LeCun et al., 1998), and a
2Note that this problem is closely related to the multi classd taset of natural i btained f ’ ; i
classification problem: if we can correctly generate a binary parti- ataset or natural Images o .alne rom a Commercialim=
tion of the data in product space, we implicitly define a multi-class@g€ CD. In most of our experiments tBéstBoostmethod

classifier in the original vector spaée. outperformed its competitors.
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2. Boosting original space partitions using

Algorithm 1 Boosting with unlabeled data

DistBoost

Given(z1,y1), oy (Tn,yn); x € X, y; € {—1,1,%}

Initialize D1 (i) =1/n i=1,..,n

The DistBoostalgorithm builds distance functions based

on the weighted majority vote of a set of original spacer,., _ 1

soft partitions. The weak learner’s task in this framework
is to find plausible partitions of the space, which comply

with the given equivalence constraints. In this task, the un 1.

labeled data can be of considerable help, as it allows to
define a prior on what are ’plausible partitions’. In order
to incorporate the unlabeled data into the boosting process
we augmented the Adaboost with confidence intervals pre-
sented in (Schapire & Singer, 1999). The details of this
augmentation are presented in Section 2.1. The details of

Train weak learner using distributidp

2. Get weak hypothesis; : X — [-1,1] with r, =

S De(i)he(i) > 0.
If no such hypothesis can be found, terminate the loop
and sefl" = ¢.

. ) _ lig(lt
the weak learner we use are presented in Section 2.2. 3. Choosey; = 3 In(27)

. ) o 4. Update:
2.1. Semi supervised boosting in product space
Yi € {717 1}

Our boosting scheme is an extension of the Adaboost algo- i —

rithm with confidence intervals (Schapire & Singer, 1999;
Schapire et al., 1997) to handle unsupervised data points.

As in Adaboost, we use the boosting process to maximize -
the margins of the labeled points. The unlabeled points
only provide a decaying density prior for the weak learner.
The algorithm we use is sketched in Fig. 1. Given a par-
tially labeled datasef(z;,v:)}., wherey; € {1, —1,x},

~ | Du(7) exp(—ouyihe ()
Dt+1(2) = { Dy (i) exp(—ay)

Normalize:D;11 (i) = Dy1(7)/Zt+1
whereZ; 1 = >°1 | Diya(4)

6. Output the final hypothesi(x) = 37, avhy(x)

k
the algorithm searches for a hypothegis) = > arh(z)
=1 decay at least as fast as the weight of any labeled pair. This
immediately follows from the update rule in step 4 of the
algorithm (Fig. 1), as each unlabeled pair is treated as a
labeled pair with maximal margin of 1.

(]
which minimizes the following loss function:

> exp(—uif (@) 1)

{ilyi=1,-1}

We note in passing that it is possible to incorporate un-
labeled data into the boosting process itself, as has been

Note that the unlabeled points do not contribute to the minsuggested in (d’Alche Buc et al., 2002; Grandvalet et al.,
imization objective (1). Rather, at each boosting round2001). In this work the margin concept was extended to
they are given to the weak learner and supply it with someinlabeled data points. The margin for such a point is a pos-
(hopefully useful) information regarding the domain’s den itive number related to the confidence the hypothesis has
sity. The unlabeled points effectively constrain the searc in classifying this point. The algorithm then tries to min-
space during the weak learner estimation, giving priorityimize the total (both labeled and unlabeled) margin cost.
to hypotheses which both Comp|y with the pairwise Con-The problem with this framework is that a hypothesis can
straints and with the density information. Since the wealkd€ very certain about the classification of unlabeled ppints
learner’s task becomes harder in later boosting rounds, thand hence have low margin costs, even when it classifies
boosting algorithm slowly reduces the weight of the un-these points incorrectly. In the semi supervised clusgerin
labeled points given to the weak learner. This is accomcontext the total margin cost may be dominated by the mar-

plished in step 4 of the algorithm (see Fig. 1). gins of unconstrained point pairs, and hence minimizing it
) ) ) doesn't necessarily lead to hypotheses that comply with the
In product space there a@N*) unlabeled points, which  ¢onqiraints. Indeed, we have empirically tested some vari-

correspond to all the possible pairs 0‘; original points, andy g of these algorithms and found that they lead to inferior
the number of weights is therefof@(N*). However, the performance.

update rules for the weight of each unlabeled point are

|de_nt|cal, and so all the unlabeled points can sha_re the Same, \riviures of Gaussians as weak hypotheses
weight. Hence the number of updates we effectively do in
each round is proportional to the number of labeled pairsThe weak learner iDistBoostis based on the constrained
only. The weight of the unlabeled pairs is guaranteed tdcEM algorithm presented by (Shental et al., 2003). This al-
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gorithm learns a mixture of Gaussians over the original dat:
space, using unlabeled data and a set of positive and ne /

ative constraints. Below we briefly review the basic algo- /
rithm, and then show how it can be modified to incorporate

>
Point 4

weights on sample data points. We also describe how t e -
translate the boosting weights from product space points tw R

original data points, and how to extract a product space hy
pothesis from the soft partition found by the EM algorithm.

r'd

A Gaussian mixture model (GMM) is a parametric statis-Figure 1.A Markov network representation of the constrained
tical model which assumes that the data originates from &ixture setting. Each observable data node has a discrete hidden
weighted sum of several Gaussian sources. More formaIIWOde as its ancestor. Positively constrained nodes have the same
a GMM is given byp(z|©) = El]\;{lalp(ﬂ@z), whereq, de- hi(jden node as their ancest_or. Negative constrair_ns are expre_ssed
notes the weight of each Gausgiéms respective parame- using edges bgtween the hidden nqdes of negatively constraln_ed
. . oints.Here points 2,3,4 are constrained to be together, and point
ters, andM.denot.es the number of Gaussu’:.m sources in th% is constrained to be from a different class.
GMM. EM is a widely used method for estimating the pa-
rameter set of the mode®) using unlabeled data (Demp-
ster et al., 1977). In the constrained EM algoritaquiva- ~ With a gradient descent procedure. The algorithm finds a
lence constraintsre introduced into the 'E’ (Expectation) local maximum of the likelihood, but the partition found
step, such that the expectation is taken only over assigriS not guaranteed to satisfy any specific constraint. How-
ments which comply with the given constraints (instead oféVer, since the boosting procedure increases the weights of
summing overall possible assignments of data points toPoints which belong to unsatisfied equivalence constraints
sources). it is most likely that any constraint will be satisfied in one

. .. or more partitions.
Assume we are given a set of unlabeled i.i.d. sampled

points X = {z;}}¥,, and a set of pairwise constraints over We have incorporated weights iqto the cons@rained EM pro-
these points2. Denote the index pairs of positively con- cedure according to the following semantics: The algo-
strained points bY(p;,p?)};vﬁl and the index pairs of neg- fithm is presented with a virtual sample of si2&. A
atively constrained points by(n!,n2)}2" . The GMM training point.z; with weight w; appearsw; N, times in
model contains a set of discretekhidkdeﬁ:vlarialﬂesrvhere this sample. All the repeated tokens of the same point are
the Gaussian source of point is determined by the hid- considered to be positively constrained, and are therefore

den variableh;. The constrained EM algorithm assumes atssngnled tlcl> t?e same squrcetln everr]y evaluazlog |nt:]he E

the following joint distribution of the observables and Step. In all ot our experiments we have 3€t to be the

the hiddensT- actual sample size.

While the weak learner accepts a distribution over the origi-

nal space points, the boosting process described in 2.1 gen-
) erates a distribution over the sample product space in each

i round. The product space distribution is converted to a dis-
tribution over the sample points by simple marginalization

'Specifically, denote byufj the weight of pair(i, j); the
weightw; of point i is defined to be

The equivalence constraints create complex dependencies

between the hidden variables of different data points. How- w) =Y wh ®)

ever, the joint distribution can be expressed using a Markov J

network, as seen in Fig. 1. In the 'E’ step of the algorithm

the probabilitiep(h;| X, ©, ) are computed by applying In each round, the mixture model computed by the con-

a standard inference algorithm to the network. Such instrained EM is used to build a binary function over the

ference is feasible if the number of negative constraints igproduct space and a confidence measure. We first derive

O(N), and the network is sparsely connected. The modeh partition of the data from the Maximum A Posteriori

parameters are then updated based on the computed prolf8#AP) assignment of points. A binary product space hy-

bilities. The update of the Gaussian paramefér canbe  pothesis is then defined by giving the valugo pairs of

done in closed form, using rules similar to the standard EMpoints from the same Gaussian source, arfido pairs of

update rules. The update of the cluster weights}¥, points from different sources. This value determines the

is more complicated, since these parameters appear in ttsign of the hypothesis output. This setting further support

normalization constant in (2), and the solution is found a natural confidence measure - the probability of the pair's

p(X7H‘@7Q) = 2

2

1 n 0 Np (5 n
Eil;ll Oéh,,p(fﬂz‘ hi)]‘gl hp hp?

=

(1 B 5hn1 hn
k

1
J k=1 k

The algorithm seeks to maximize the data likelihood
which is the marginal distribution of (2) with respect#b
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MAP assignment which is: found that pre-processing with RCA was most benefi-
cial for both the SVM and C4.5 boosting algorithms.

max p(hy = |z, ©) - maxp(hy = i|x2, O)

‘ ‘ e Parameter tuning: for the SVM we used the polyno-

whereh;, ho are the hidden variables attached to the two mial kernel of order 4, and a trade-off constant of 1 be-

points. The weak hypothesis output is the signed confi-  tween error and margin. The boosting algorithm was
dence measure ir-1, 1], and so the weak hypothesis can run for 25-150 rounds (depending on the dataset), and
be viewed as a weak “distance function”. the decision trees were built with a stopping criterion

of train error smaller than 0.05 in each leaf.

3. Learning in the product space using
traditional classifiers The clustering performance obtained using these two vari-

ants is compared tDistBoostin section 4. The design is-
We have tried to solve the distance learning problem ovesues mentioned above were decided based on the perfor-
the product space using two more traditional margin basedhance over the UCI datasets, and the settings remained
classifiers. The first is a support vector machine, that triegixed for the rest of the experiments.
to find a linear separator between the data examples in a
high dimensi_onal feature space. The second is the .A.dZL Experimental Results
aBoost algorithm, where the weak hypotheses are decision
trees learnt using the C4.5 algorithm. Both algorithms hadVMe compared oubDistBoostalgorithm with other tech-
to be slightly adapted to the task of product space learningriques for semi-supervised clustering using equivalence
and we have empirically tested possible adaptations usingonstraints. We used both distance learning techniques,
data sets from the UCI repository. Specifically, we had toincluding our two simpler variants for learning in product
deal with the following technical issues: space (SVM and boosting decision trees), and constrained
clustering techniques. We begin by introducing our exper-
e Product space representation: A pair of original spacémental setup and the evaluated methods. We then present
points must be converted into a single point, whichthe results of all these methods on several datasets from the
represents this pair in the product space. The simpled¢Cl repository, a subset of the MNIST letter recognition
representation is the concatenation of the two pointsdataset, and an animal image database.
Another intuitive representation is the concatenation
of the sum and difference vectors of the two points.4.1. Experimental setup

Our empirical tests indicated that while SVM works Gathering equivalence constraints: Following (Hertz

bettgr Wlth the first representatlon, the C,:4'5 boostlpget al., 2003), we simulateddistributed learningscenario,
achieves its best performance with the 'sum and dif-

, . where labels are provided by a number of uncoordinated
ference’ representation. . .
independent teachers. Accordingly, we randomly chose
e Enforcing symmetry: If we want to learn a symmet- small subsets of data points from the dataset and parti-
ric distance function satisfying(z,y) = d(y,z), we  tioned each of the subsets into equivalence classes. The
have to explicitly enforce this property. With the first constraints obtained from all the subsets are gathered and
representation this can be done simply by doublingused by the various algorithms.

the _number- of t.ra|n|ng p0|nt§, introducing each CON"The size of each subsktin these experiments was chosen
strained palr'tW|ce5 as the poif, y| anq as the point be2M, whereM is the number of classes in the data.
[y,z]. In f[h|s setting the SVM algorlthm finds the In each experiment we usédsubsets, and the amount of
global optimum of a symmetric Lagrangian and the partial information was controlled by themnstraint index

solution is guaranteed to be symmetric. With the S€Cp _ & . I: this index measures the amount of points which

ond representation we found that modifying the repre-

! b icallv i ) he b {’Jvarticipate in at least one constraint. In our experiments
sentation to € symmetrically mvarlant. gave t € PeSlye usedr = 0.5,1. However, it is important to note that
results. Specifically, we represent a pair of pointg

X the number of equivalence constraints thus provided typi-
using the vectofx +y, sign(xz1 —y1) * (x —y)], where d P P

. 4 . cally includes only a small subset of all possible pairs of
x1,y; are the first coordinates of the points. datapoints, which i©(N?)

e We considered two linear preprocessing transforma-
tions of the original data before creating the productEvaluated Methods: we compared the clustering perfor-
space points: the whitening transformation, and themance of the following techniques:
RCA transformation (Bar-Hilel et al., 2003) which
uses positive equivalence constraints. In general we 1. Our proposed boosting algorithmiétBoos}.
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2. Mahalanobis distance learning with Relevant Compo-{0, 1, .., M — 1} andz; € R¢, LDA is given by thek x d
nent Analysis (RCA) (Bar-Hilel et al., 2003). matrix W that maximizes

_ Wrsw

- WTS,W

3. Mahalanobis distance learning with non-linear opti-

mization (Xing) (Xing et al., 2002). JW)

(®)
4. Margin based distance learning using SVM as a prodwhere S, = Zf\il(xi — m)(xz; —m)T denotes theotal

uct space learner (SVM) (described in Section 3).  scattermatrix (m is the data’s empirical mean) aist, =
S0 iy (@i = my) (s — my;)T denotes thevithin-
Class scattematrix (m; is the empirical mean of thg-th
class).

5. Margin based distance learning using product spac
decision trees boosting (DTboost).

6. Coqstramed EM of a Gaussian Mixture Model (Con- Since in our semi-supervised learning scenario we have ac-
strained EM) (Shental et al., 2003). cess to equivalence constraints instead of labels, we can
7. Constrained Comp|ete Linkage (Constrained Comwrite down a constrained LDA algorithm. Thus we esti-
plete Linkage) (Klein et al., 2002). mate thewithin class scattematrix using positive equiva-
lence constraints instead of labels. Specifically, giveata s
8. Constrained K-means (COP K-means) (Wagstaffof positive equivalence constraints, we use transitive clo
etal., 2001). sure over this set to obtain small subsets of points that are
known to belong to the same class. Denote these subsets by
Methods 1-5 compute a distance function, and they arch}fgol, where each subsét; is composed of a variable
evaluated by applying a standard agglomerative clusteringumber of data point€’; = {1, 2, .., 7jn, }. We use
algorithm (Ward) to the distance graph they induce. Meth-these subsets to estimafg as follows
ods 6-8 incorporate equivalence constraints directly into

—1 N
the clustering process. e at
_ Si =YY (wji—my) (w5 —my)" (6)
All methods were evaluated by clustering the data and mea- §=0 i=1

suring theF'. score defined as
2 where heren; denotes the mean of subget.

o 2P+ R 4
3 R+P (4) 4.2, Results on UCI datasets

where P denotes precision an@& denotes recall. For We selected several datasets from the UCI data repository

the distance learning techniques we also sibamulative — and used the experimental setup above to evaluate the var-

neighbor puritycurves. Cumulative neighbor puritynea-  ious methods. Fig. 2 shows clusterig score plots for

sures the percentage of correct neighbors up toifkiln ~ several data sets using Ward's agglomerative clustering al

neighbor, averaged over all the datapoints. In each expegorithm. ClearlyDistBoostachieves significant improve-

iment we averaged the results over 50 or more differentments over Mahalanobis based distance measures and other

equivalence constraint realizations. BatlstBoostand the  product space learning methods. CompaiigtBoostto

decision tree boosting algorithms were run for a constanmethods which incorporate constraints directly, cledly t

number of boosting iteratiors = 25, 150 (depending on  only true competitor oDistBoostis its own weak learner,

the dataset). In each realization all the algorithms werdhe constrained EM algorithm. Still, in the vast majority

given the exact same equivalence constraints. of casedistBoostgives an additional significant improve-
ment over the EM.

Dimensionality reduction: the constrained LDA algo-

rithm Some of the datasets reside in a high dimensiona#.3. Results on the MNIST letter recognition dataset

space, which must be reduced in order to perform paramy,

eter estimation from training data. We used two method We compared all clustering methods on a subset of the
9 X MNIST letter recognition dataset (LeCun et al., 1998). We

for dimensionality reduction: standard Principal Compo- L
. . . ..~ randomly selected(0 training samples50 from each of
nents Analysis (PCA), and a constrained Linear Discrimi- - ; .
the 10 classes). The original data dimension wessl,

nant Analysis (LDA) algorithm which is based on equiva- which was projected by standard PCA to the figtprin-

lence constraints. cipal dimensions. We then further projected the data using
Classical LDA (also called FDA, (Fukunaga, 1990)) com-the constrained LDA algorithm té0 dimensions. Cluster-
putes projection directions that minimize the within-slas ing and neighbor purity plots are presented on the left side
scatter and maximize the between-class scatter. More foef Fig 3. The clustering performance of tBéstBoostal-
mally, given a labeled datasdtr;,y;}Y, wherey; € gorithm is significantly better than the other methods. The
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Figure 2.CIusteringF% score over 4 data sets from the UCI repository using Ward's clustetgagitam. Methods shown are: (a)
Euclidean, (b) RCA, (c) constrained EM, (d) SVM, (e) DTboost, (§tBoost, (g) Xing, (h) Constrained Complete Linkage, (i) Con-
strained K-means. The results were averaged over 100 realizationgstfaints, and 1-std error bars are shown. ddmestraint index

P was0.5 in all cases.

cumulative purity curves suggest that this success may bdowever,DistBoost still outperforms its competitors, as it
related to the slower decay of the neighbor purity scores fodid in all previous examples.
DistBoost
5. Discussion

4.4. Results on an Animal image dataset

) . ) . In this paper, we have describ&istBoost- a novel al-
We created an image database which contained images g iihm which learns distance functions that enhance clus-
animals taken from a commercial image CD, and tried t0gjng performance using sparse side information. Our ex-
cluster them based on color features. The clustering task if, ,sive comparisons showed the advantage of our method

this case is much harder than in the previous applicationg,yer many competing methods for learning distance func-
The database contained 10 classes with total of 565 imageg,ns and for clustering using equivalence constraints. An

Fig. 3 shows a few examples of images from the databas€qer gpplication which we have not explored here, is near-

The original images were heavily compressed jpg im-€st neighbor classification. Nearest neighbor classiéinati
ages. The images were represented using Color Coherendo critically depends on the distance function between
Vectors (Pass et al., 1996) (CCV's). This representatiorflatapoints; our hope is that distance functions learned fro
extends the color histogram representation, by capturingguivalence constraints can also be used for improving
some crude spatial properties of the color distributiorrin a nearest neighbor classification.

image. Specifically, in a CCV vector each histogram bin is

divided into two bins, representing the number of 'Coher-References

ent’ and 'Non-Coherent’ pixels from each color. 'Coher- ] ]

ent’ pixels are pixels whose neighborhood contains mord3a-Hilel, A., Hertz, T., Shental, N., & Weinshall, D.
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color image database (565 images, 10 classes). Bottom: Cumulativeoejurity graphs on the same datasets. Methods shown are:
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Constrained K-means. Results were averaged over 50 realizatiomsomhktraint indeXP is 1 in all cases.
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Abstract feedback methods [1]. Learning distance functions can be
Image retrieval critically relies on the distance function used to usefgl in this context for training user dependent distance
compare a query image to images in the database. We suggesfunctions.
to learn such distance functions by training binary classifiers with ~ Formally, letX” denote the original data space, and as-
margins, where the classifiers are defined over the product space ofsume that the data is sampled frathdiscrete labels where
pairs of images. The classifiers are trained to distinguish between M is large and unknown. Our goal is to learn a distance
pairs in which the images are from the same class and pairs which functionf : X x X — [0’ 1}_ In order to learn such a func-
contain images from different classes. The signed margin is usedtion, we pose a related binary classification problem over
as a dlstancg function. We explqre sever_al variants of this idea, product space, and solve it using margin based classifica-
based on using SVM and Boosting algorithms as product spaceyjgn techniques. The binary problem is the problem of dis-

classifiers. Our main contribution is a distance learning method _. o . .
which combines boosting hypotheses over the product space withtmgUIShIng between pairs of points that belong to the same

a weak learner based on partitioning the original feature space. class and pairs of points that belong to different claddés.

The weak learner used is a Gaussian mixture model computed usVe label pairs of points from the same classibgnd pairs

ing a constrained EM algorithm, where the constraints are equiv- Of Points belonging to different classes bywe can then
alence constraints on pairs of data points. This approach allows View the classifier's margin as the required distance func-
us to incorporate unlabeled data into the training process. Us- tion.
ing some benchmark databases from the UCI repository, we show The training data we consider is composed of binary
that our margin based methods significantly outperform existing |abels on points inf¥ x X. The labels describe equiva-
metric learning methods, which are based on learning a Maha- |ence constraints between datapoints in the original space
lanobis distance. We then show comparative results of image re- y-- Equivalence constraints are relations between pairs of
trieval in a distributed learning paradigm, using two databases: a datapoints, which indicate whether the point in the pair be-
large database of facial images (YaleB), and a database of natu- long to the,same category or not. We term a constraint 'pos-
ral images taken from a commercial CD. In both cases our GMM . 2 - )
based boosting method outperforms all other methods, and its gen-mve 7When_th(-:: _pomts are kn_own to be from the same class,
eralization to unseen classes is superior. and 'negative’ in the opposite case. Such constraints carry
lessinformation than explicit labels of the original images
1. Introduction in X, since c]garly equivalenpe cpnstraints can be obtained
from M explicit labels on points ink’, but not vice versa.
Image retrieval is often done by computing the distance More importantly, we observe that equivalence constraints
from a query image to images in the database, followed by are easier to obtain, especially when the image database is
the retrieval of nearest neighbors. The retrieval perfoieea  very large and contains a large number of categories without
mainly depends on two related components: the image reppre-defined names.
resentation, and the distance function used. Given a specifi  To understand this observation, ask yourself how can
image representation, the quality of the distance functionyou obtain training data for a large facial images database?
used is the main key to a successful systerm this paper  You may ask a single person to label the images, but as the
we focus on learning 'good’ distance functions, that will sjze of the database grows this quickly becomes impracti-
improve the performance of content based image retrieval.cal. Another approach is thdistributed learningapproach

The quality of an image retrieval system also depends on its[9]: divide the data into small subsets of images and ask a
ability to adapt to the intentions of the user as in relevance

’Note that this problem is closely related to the multi classsifica-

1A distance function is a function from pairs of datapointstte posi- tion problem: if we can correctly generate a binary partittbthe data in
tive real numbers, usually (but not necessarily) symmetrib véspect to product space, we implicitly define a multi-class classifiethia original
its arguments. We do not require that the triangle inequalitigls, and vector spaceX.The relations between the learnability of these two prob-
thus our distance functions amet necessarily metrics. lems is discussed in [4].
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number of people to label each subset. Note that you areweak learner that learns in thweiginal feature space (and
still left with the problem of coordinating the labels pro- not in product space). We suggest a boosting scheme that
vided by each of the labellers, since these are arbitrary. Toincorporates unlabeled data points. These unlabeledspoint
illustrate the arbitrariness of tags, imagine a database co provide a density prior, and their weights rapidly decay dur
taining all existing police facial images. While in one falde ing the boosting process. The weak learner we use is based
all the pictures of a certain individual may be called 'Insur on a constrained EM algorithm, which computes a Gaussian
ance Fraud 205, different pictures of the same individual mixture model, and hence provides a partition of the orig-
in another folder may be called 'Terrorist A. In this dis- inal space. The constrained EM procedure uses unlabeled
tributed scenario, full labels are hard to obtain, but 'lbca data and equivalence constraints to find a Gaussian mixture
equivalence information can be easily gathered. that complies with them. A product space hypothesis is then
Learning binary functions with margins over an input formed based on the computed partition.
space is a well studied problem in the machine learning There has been little work on learning distance functions
literature. We have explored two popular and powerful in the machine learning literature. Most of this work has
classifiers which incorporate margins: support vector ma- been restricted to learning Mahalanobis distance funstion
chines (SVM's) and boosting algorithms. However, exper- of the form(x—y)? A(z—y). The use of labels for the com-
iments with several SVM variants and Boosting decision putation of the weight matri¥ has been discussed in [10];
trees (C4.5) have led us to recognize that the specific elassithe computation ofi from equivalence constraints was dis-
fication problem we are interested in has some unique fea-cussed in [17, 13]. Yianilos [18] has proposed to fit a gener-
tures which require special treatment. ative Gaussian mixture model to the data, and use the prob-
ability that two points were generated by the same source
1. The product space binary function we wish to learn has 35 3 measure of the distance between them. Schemes for
some unique structure which may lead to "unnatural’ jncorporating unlabeled data into the boosting process wer
partitions of the space between the labels. The con-jntroduced by Ambroise et. al [5, 19]. We discuss the rela-
cept we learn is an indicator of an equivalence relation tjon petween these schemes and pistBoostalgorithm in
over the original space. Thus the properties of transi- gection 3.
tivity and symmetry of the relation place geometrical e have experimented with th2istBoostalgorithm as
constraints on the binary hypothesis.  Obviously, well as other margin based distance learning algorithms,
traditional families of hypotheses, such as linear sepa-and compared them to perviously suggested methods which
rators or decision trees, are not limited to equivalence are based on Mahalanobis metric learning. We used several
relation indicators, and it's not easy to enforce the con- gatasets from the UCI repository [15], the yaleB facial im-
straints when such classifiers are used. age dataset, and a dataset of natural images obtained from

2. Inthe learning setting we have described above, we are® commercial image CD. The results clearly indicate that

provided with ' datapoints int’ and with equivalence our margin based distance functions provide much better re-

constraints (or labels in product space) over some pairstrleval results than all other distance learning methods- F

of points in our data. We assume that the number of thermore, on all these datasets BistBoostmethod outper-

equivalence constraints provided is much smaller than forms all oth_er methods, including our earlier margin based
the total number of equivalence constrai@éN?). methods which use state of the art binary classifiers.

We therefore have access to large amounts of unlabelec? L . in th d .
data, and hence semi-supervised learning seems an at=* earning in the pro uct Space using

tractive option. However, classical SVM and boosting traditional classifiers

methods are trained using labeled data only. ) ) i
We have tried to solve the distance learning problem over

These considerations led us to the development of thethe product space using two of the most powerful margin
DistBoostalgorithm, which is our main contribution in this  based classifiers. The first is a support vector machine, that
paper.DistBoostis a distance learning algorithm which at- tries to find a linear separator between the data examples
tempts to address all of the issues discussed above. Islearnin @ high dimensional feature space. The second is the Ad-
a distance function which is based on boosting binary clas-aBoost algorithm, where the weak hypotheses are decision
sifiers with a confidence interval in product space, using atrees learnt using the C4.5 algorithm. Both algorithms had

to be slightly adapted to the task of product space learning,

SInconsistencies which arise due to different definitiondisfinct cat-

egories by different teachers are more fundamental, and &eddoessed and we have empmcally teStgd posable_qdaptauons using
in this paper. Another way to solve the problem of tag artiitisss is to data sets from the UCI repository. Specifically, we had to

use pre-defined category names, like letters or digits. Wmiately this deal with the following technical issues:

is not always possible, especially when the number of caiegan the

database is large and the specific categories are unknovemiapr e Product space representation: A pair of original space
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over the UCI datasets, and all settings remained fixed for all

points must be converted into a single which representsunlabeled data into the boosting process, we augmented an
this pair in the product space. The simplest represen-existing boosting version. The details of this augmentatio
tation is the concatenation of the two points. Another are presented in Section 3.1. The details of our weak learner
intuitive representation is the concatenation of the sum are presented in Section 3.2.

and difference vectors of the two points. Our empirical

tests indicated that while the SVM works better with 3.1. Semi Superwsed boost|ng in product space

tbhe Ilrstr;erpr;esnenta\t,sltt)kr]\t rghe C:;S ggodslgng icmervesr S Our boosting scheme is an extension of the Adaboost al-
seer?tzsﬁi%no ance e’suma erence: repre- gorithm with confidence intervals [11] to handle unsuper-
' vised data points. As in Adaboost, we use the boosting pro-

Enforcing symmetry: If we want to learn a symmet- Cess to maximize the margins of the labeled points. The
ric distance function satisfyind(z,y) = d(y,z), we unlabeled points only provide a decaying density prior for
have to explicitly enforce this property. With the first the weak learner. The algorithm we use iS sketched in
representation this can be done simply by doubling Fig. 1. Given a partially labeled datagét:;, y;)};"., where

the number of training points, introducing each con- ¥ € {1, —1 ,*}, the algorithm searches for a hypothesis
strained pair twice: as the poifit, y] and as the point flz) =
[y,z]. In this setting the SVM algorithm finds the

global optimum of a symmetric Lagrangian and the so- fUﬂCthﬂ
lution is guaranteed to be symmetric. With the second
representation we found that modifying the representa- > exp(—yif(xi)) (1)
tion to be symmetrically invariant gave the best results. {ilyi=1,—1}

Specifically, we represent a pair of poiatg, using the
vector[z + y, sign(x1 — y1) * (z — y)], wherezy, y1
are the first coordinates of the points. Algorithm 1 Boosting with unlabeled data
Given(z1,y1), o, (Tn,yn); i € X, y; € {—1,1,%}
Initialize D1(i) =1/n i=1,..,n

Z aih(z) which minimizes the following loss

Preprocessing transformation in the original space: We
considered two possible linear transformation of the
data before creating the product space points: the
whitening transformation, and the RCA transforma-
tion [9] which uses positive equivalence constraints. In
general we found that pre-processing with RCA was 1. Train weak learner using distributidp,

most beneficial for both the SVM and C4.5 boosting
algorithms. 2. Getweak hypothests, : X — [—1, 1] with

T = Z?:l Dt(Z)ht(Z) > 0.
If no such hypothesis can be found, terminate the loop
and sefl” = t.

Fort=1,..T

Parameter tuning: for the SVM we used the polyno-
mial kernel of order 4, and a trade-off constant of 1 be-
tween error and margin. The boosting algorithm was
run for 50 rounds, and the decision trees were built 3. Choosey, = %m(}j:)
with a stopping criterion of train error smaller than

0.05 in each leaf. 4. Update:

These design issues were decided based on the performance o | D(i) exp(—ouyihi(zi)) vy € {—1,1}
t+1(4) o
Dt(l) ( at) Yi = *

further experiments.

5. Normalize:D;11 (i) = Dyy1(i)/Zi41

3. Boosting original space partitions whereZ, 1 = 27, Dyy1(d)

using DistBoost 6. Output the final hypothesi&(z) = 37, avhy(x)

Our DistBoostalgorithm builds distance functions based on

the weighted majority vote of a set of original space soft  Note that the unlabeled points do not contribute to the
partitions. The weak learner’s task in this framework is to minimization objective of the product space boosting in (1)
find plausible partitions of the space, which comply with the Rather, at each boosting round they are given to the weak
given equivalence constraints. In this task, unlabeled dat learner and supply it with some (hopefully useful) informa-
can be of considerable help, as it allows to define a prior ontion regarding the domain density. The unlabeled points ef-
what are 'plausible partitions’. In order to incorporate th fectively constrain the search space during the weak learne
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estimation, giving priority to hypotheses which both com- pectation is taken only over assignments which comply with
ply with the pairwise constraints and with the density in- the given constraints (instead of summing cakmpossible
formation. Since the weak learner’s task becomes harderassignments of data points to sources).
in later boosting rounds, the boosting algorithm slowly re-  Assume we are given a set of unlabeled i.i.d. sampled
duces the weight of the unlabeled points given to the weakpoints X = {x,;}¥ ,, and a set of pairwise constraints over
learner. This is accomplished in step 4 of the algorithm (seethese point€). Denote the index pairs of positively con-
Fig. 1). strained points by (p;,p?)};-vz”l and the index pairs of neg-
In product space there ar@(N?) unlabeled points, atively constrained points bj(n! n2)}Nn _ The GMM
which correspond to all the possible pairs of original peint  y5qe| contains a set of discretekhicicde]r%:\}ariaﬁfeswhere
and the number of weights is therefad ). However,  {he Gaussian source of point is determined by the hid-
the update rules for the weight of each unlabeled point are 4o, variableh;. The constrained EM algorithm assumes

identical, and so all the unlabeled points can share the samey, following joint distribution of the observable and
weight. Hence the number of updates we effectively do in ,q hiddensy:

each round is proportional to the number of labeled pairs

only. The weight of the unlabeled pairs is guaranteed to de-  ,, x 7|0, Q) = )

cay at least as fast as the weight of any labeled pair. This . N, N

immediately follows from the update rule in step 4 of the 7 I an,p(xilfn,) T 0n on oy I (1—=0n 1n,)
1=1 j=1 Pj Pj k=1 "5

algorithm (Fig. 1), as each unlabeled pair is treated as a la-

beled pair W_'th max'|mal margin of 1'_ . The algorithm seeks to maximize the data likelihood, which
We note In passing that 'F is possible t_o Incorporate un- j 1o marginal distribution of (2) with respect ib.
labeled data into the boosting process itself, as has been The equivalence constraints create complex dependen-

sugges:etzd ml[sb’ 1|921 dT?ew 'fj‘ia Vﬁs t? exfctehndttrllqe r;iargltn cies between the hidden variables of different data points.
concept fo uniabeled data poin's. The aigorithm En et ., yeyer, the joint distribution can be expressed using a

minimize the total (both labeled and unlabeled) margin.cost Markov network, as seen in Fig. 1. In the 'E’ step of

T e e he g he probabilie .6 ) e computed
by applying a standard inference algorithm to the network.

Such an inference is feasible if the number of negative con-
straints isO(N), and the network is sparsely connected.
The model parameters are then updated based on the com-
puted probabilities. The update of the Gaussian parame-
. . ters {6,} can be done in closed form, using rules similar
3.2. Mixtures of Gaussians as product space to the standard EM update rules. The update of the cluster

weak hypotheses weights {o; }, is more complicated, since these param-
The weak learner iDistBoostis based on the constrained eters appear in the normalization constanin (2), and it
EM algorithm presented in [9]. This algorithm learns a mix- requires a gradient descent procedure. The algorithm finds
ture of Gaussians over the original data space, using unla-a local maximum of the likelihood, but the partition found
beled data and a set of positive and negative constraints. Iris not guaranteed to satisfy any specific constraint. How-
this section we briefly review the basic algorithm, and then ever, since the boosting procedure increases the weights of
show how it can be extended to incorporate weights on sam-points which belong to unsatisfied equivalence constraints
ple data points. We describe how to translate the boostingit is most likely that any constraint will be satisfied in some
weights from product space points to original data points, partitions.
and how to generate a product space hypothesis from the We have incorporated weights into the constrained EM
soft partition found by the EM algorithm. procedure according to the following semantics: The algo-

A Gaussian mixture model (GMM) is a parametric sta- rithm is presented with a virtual sample of siXg. A train-

tistical model which assumes that the data originates from aing pointz; with weightw, appearsv; NV, times in this sam-
weighted sum of several Gaussian sources. More formally,ple. All the repeated tokens of the same point are consid-
a GMM is given byp(z|©) = =M, a;p(z|6,), whereo; de-  ered to be positively constrained, and are therefore asdign
notes the weight of each Gaussiénits respective parame- to the same source in every evaluation in the 'E’ step. In all
ters, andM denotes the number of Gaussian sources in theof our experiments we have s&t, to be the actual sample
GMM. EM is a widely used method for estimating the pa- size.
rameter set of the mode®] using unlabeled data [6]. In While the weak learner accepts a distribution over origi-
the constrained EM algorithrequivalence constraintare nal space points, the boosting process described in 3.1 gen-
introduced into the 'E’ (Expectation) step, such that the ex erates a distribution over the sample product space in each

points incorrectly. Indeed, we have empirically tested som
variants of these algorithms and found poor generalization
performance in our context.
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a number of uncoordinated independent teachers. Accord-
/ \\ ingly, we randomly chose small subsets of data points from
/ the dataset and partitioned each of the subsets into equiva-
/ = N lence classes.
The size of each subsktin these experiments was cho-
ata Data Data N -
sento be M, where)M is the number of classes in the data.

In each experiment we usédsubsets, and the amount of
Figure 1: A Markov network representation of the constrained mixture partial information was controlled by tr@nstraint index
setting. Each observable data node has a discrete hidderasafather. P = k - I; this index measures the amount of points which

Positively constrained nodes have the same hidden nodehes. fateg- f i ; ; ;
ative constraints are expressed using edges between tthenhitbdes of participate in at least one constraint. In our experimeres w

negatively constrained points.Here points 2,3,4 are kntoave together, usedP = 0.3,0.5. _However’ it is important to no_te that )
and point 1 is known to be from a different class. the number of equivalence constraints thus provided typi-

cally includes only a small subset of all possible pairs of

round. The product space distribution is converted to a dis- ) oY 4
datapoints, which i©(N?).

tribution over the sample points by simple summation. De-

noting bwaj the weight of pair(, j), the weightw; of

point i is defined to be Evaluated Methods: we compared the performance of
the following distance learning methods:

wi = w? 3

; J ® e Our proposedistBoostalgorithm.

In each round, the mixture model computed by the con- Mahalanobis distance learning with Relevant Compo-
strained EM is used to build a binary function over the prod- nent Analysis (RCA) [3].

uct space and a confidence measure. We first derive a par-
tition of the data from the Maximum A Posteriori (MAP)
assignment of points. A binary product space hypothesis is
then defined by giving the valukto pairs of points from e SVM for direct discrimination in product space.
the same Gaussian source, antlto pairs of points from
different sources. This value determines the sign of the hy- e Boosting decision trees in product space.
pothesis output.

This setting further supports a natural confidence mea-
sure - the probability of the pair's MAP assignment which
is:

e Mahalanobis distance learning with non-linear opti-
mization [17].

In order to set a lower bound on performance, we also com-
pared with the whitened Mahalanobis distance, where the
weight matrix A is taken to be the data’s global covariance
matrix.

max p(hy = i|z1,0) - max p(hy = i|zs, ©) We present our results using ROC curves anthula-

! ! tive neighbor puritygraphs. Cumulative neighbor purity
whereh,, hy are the hidden variables attached to the two measures the percentage of correct neighbors up ta’'the
points. The weak hypothesis output is the signed confi- neighbor, averaged over all the queries. In each experi-
dence measure i1, 1], and so the weak hypothesis can ment we averaged the results over 50 different equivalence
be viewed as a 'weak distance function’. constraint realizations. BotDistBoostand the decision
tree boosting algorithms were run for a constant number of

4. Learning distance functions: com-  boosting iterationd” = 50. In each realization all the algo-
. rithms were given the exact same equivalence constraints.
parative results

In this section we compare olistBoostalgorithm with ~ 4.2. Results on UCI datasets

other distance learning techniques, including our twomthe We selected several standard datasets from the UCI data

proposed methods for learning in product space (SVM andrepository and used the experimental setup above to evalu-

boosting decision trees). We begin by introducing our ex- ate our proposed methods. The cumulative purity was com-

perimental setup. We then show results on several datasetputed using all the points in the data as queries.

from the UCI repository, which serve as benchmark to eval-  Fig. 2 shows neighbor purity plots for each of these data

uate the different distance learning methods. sets. As can be readily seddistBoostachieves significant
improvements over Mahalanobis based distance measures,

4.1. Experimental setup _ _ _ _
. . . . . 4t can be readily shown that by wisely selecti®f N M) equivalence
Gathering equivalence constraints: we simulated alis- constraints, one can label the entire dataset. This folfowa the transi-

tributed learningscenario [9], where labels are provided by tive nature of positive equivalence constraints.
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Figure 2:Cumulative neighbor purity plots over 6 data sets from the t#bsitory. The UCI results were averaged over 50 reatimatof constraints,
and 1-std error bars are shown. The percentage of data itraions wass0% in all cases.

and also outperforms all other product space learning meth-generalization,we used a slightly modified policy for con-

ods (except SVM in the 'balance’ dataset). straint sampling. specifically, constraints were drawmrfro
20 out of the30 classes in the dataset, and in the constrained
5 Experiments on image retrieval classegp was set tol ( which means that all the training

points in these classes were divided between uncoordinated
We ran experiments on two image retrieval tasks: facial im- labellers). When testing the learnt distance functions mea-
age retrieval using the YaleB dataset, and color based imag&urements were done separately for test images from the
retrieval using pictures from a commercial image CD. The first 20 classes and for the las0. Notice that in this sce-
evaluated methods are described in Section 4.1. nario images from the 10 unconstrained classes were not

In our experiments we randomly selected from each helpful in any way to the traditional algorithms, but they

dataset a subset of images, to be the retrieval databasevere used byDistBoostas unlabeled data. On the left in
and this subset was used as the training set. We then folFig. 3 we present the ROC curves of the different methods
lowed the same experimental setup of distributed learningon test data from the constrained classes. We can see that
(described in Section 4.1) for the generation of equiva- the margin based distance functions give very good results,
lence constraints, and trained all methods on the selectedndicating an adaptation of the distance function to these
data. Retrieval performance was measured using test imclasses. On the right we present the ROC curves when the
ages which were not presented during training. queries are from unconstrained classes. It can be seen that

the performance of SVM and C4.5Boost severely degrades,

indicating strong overfit behavior. TheistBoost on the
5.1 Facial image retrieval - YaleB other hand, degrades gracefully and is still better then the

. . . other alternatives.
As an image retrieval example with known ground-truth

and a clear definition of categories, we used a subset of

the YaleB facial image database [7]. The dataset contains5 2 Color based image retrieval

a total of 1920 images, including 64 frontal pose images

of 30 different subjects. In this database the variabilédy b We created a picture database which contained images from
tween images of the same person is mainly due to differ- 16 animal classes taken from a commercial image CD. The
ent lighting conditions. We automatically centered all the retrieval task in this case is much harder then in the facial
images using optical flow. Images were then converted toretrieval application. We uset)% of the data from each
vectors, and each image was represented using its first 6@lass as our dataset (training data), and the remaBtifig
PCA coefficients. From each class, we used 22 imagesas our test data. We experimented with two scenarios vary-
(a third) as a data base training set, and 42 images wereang in their difficulty level. In the first scenario we used 10
used as test queries. In order to check different types ofclasses with a total of 405 images. In the second scenario
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Figure 4:Typical retrieval results on the Animal image database. Eastpresents a query image and its first 5 nearest neighbors cimgRistBoost
and normalized.1 CCV distance (baseline measure). Results appear in paisast rTop row: DistBoost results, Bottom row: normalizéd CCV

distance. Results are best seen in color.

the database contained 16 classes with 565 images, and 60Bistogram, by capturing some crude spatial propertieseof th
‘clutter’ images from unrelated classes were added to thecolor distribution in an image. Specifically, in a CC vector

data base. The clutter included non-animal categories, suc each histogram bin is divided into two bins, representing
as 'landscapes’ and ’'buildings’. the number of 'Coherent’ and 'Non-Coherent’ pixels from

each color. 'Coherent’ pixels are pixels whose neighbor-

The original images were heavily compressed jpg im- o404 contains more thanneighbors which have the same
ages. The images were represented using Color Coherencggor. Following [2] we represented the images in HSV
Vectors [2] (CCV’'s). This representation extend the color
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color space quantized the imagesite 2 x 4 = 32 color [7] Georghiades, A.S. and Belhumeur, P.N. and Kriegman, D.J.,

bins, and computed the CCV of each image64adimen- From Few To Many: Generative Models For Recognition Un-

sional vector - using = 25. der Variable Pose and lllumination”, IEEE Int. Conf. on Au-
Fig. 5 shows neighbor purity plots of all different dis- tomatic Face and Gesture Recognition, page 277-284, 2000.

tance learning methods. As our baseline measure, Werg k. Fukunaga. Introduction to statistical pattern recognition.
used the normalized'1 distance measure suggested in Academic press, 1990.

[2]. Clearly theDistBoostalgorithm and our product space

SVM methods outperformed all other distance learning [9] T. Hertz, N. Shental, A. Bar-Hillel, and D. Weinshall. En-
methods. The C4.5Boost performs less well, and it suffers ~ hancing Image and Video Retrieval: Learning via Equiva-
from a relatively high degradation in performance when the lence Constraints. In Proc. of CVPR, 2003.

task becomes harder. Retrieval results are presented 4 Fig [10] D. G. Lowe. Simlarity metric learning for a variable-kernel
for our proposedistBoostalgorithm (Top row) and for the classifier. Neural Computation 7:72-85, 1995.

baseline normalized1 distance over CCV’s (bottom row).
As can be seen our algorithm seems to group images whic
do not appear trivially similar in CCV space.
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Abstract

When given a small sample, we show that classi-
fication with SVM can be considerably enhanced
by using akernel function learned from the train-
ing data prior to discrimination. This kernel is
also shown to enhance retrieval based on data
similarity. Specifically, we describe Kernel Boost
- a boosting agorithm which computes a kernel
function as a combination of "weak’ space parti-
tions. The kernel learning method naturally in-
corporates domain knowledge in the form of un-
labeled data (i.e. in a semi-supervised or trans-
ductive settings), and also in the form of labeled
samples from relevant related problems (i.e. ina
learning-to-learn scenario). The latter god is ac-
complished by learning a single kernel function
for all classes. We show comparative evaluations
of our method on datasets from the UCI repos-
itory. We demonstrate performance enhance-
ment on two challenging tasks. digit classifica-
tion with kernel SVM, and facial image retrieval
based on image similarity as measured by the
learnt kernel.

1. Introduction

Learning from small samples is an important problem,
where machine learning tools can in general provide very
few guarantees. This problem has received considerable
attention recently in the context of object recognition and
classification (seefor example (Li et al., 2004)). Successful
generalization from a very small number of training sam-
ples often requires the introduction of a certain * hypotheses
space bias' (Baxter, 1997) using additional available infor-
mation. One such source of information may be unlabeled
data, leading to semi-supervised or transductive learning
(Chapelle et al., 2006). Another possible source of infor-
mation isto uselabeled samplesfrom related problems, and

Appearing in Proceedings of the 23"¢ International Conference
on Machine Learning, Pittsburgh, PA, 2006. Copyright 2006 by
the author(s)/owner(s).

try to achieve “inter-class transfer”, also known as “learn-
ing to learn”. “Learning to learn” may be expected when
there is some shared within-class structure between vari-
ous classes. The ideaisto learn from very small samples
by making use of information provided from other related
classes, for which sufficient amounts of labeled data are
present. There are a number of different methods which
have been previously suggested for exploiting the shared
structure between related classes (Thrun & Pratt, 1998).
These include the selection of priors (Baxter, 1997), hier-
archical modeling, and learning transformations between
classinstances (Sali & Ullman, 1998; Ferencz et al., 2005;
Miller et al., 2000).

In this paper, we suggest to learn distance functions, and
show that such functions can provide a plausible alter-
native for transferring inter-class structure. In particular,
we describe KernelBoost - an algorithm that learns non-
parametric kernel functions. These kernels can then be
used for classification with kernel SVM. They can aso be
used directly for retrieval based on similarity (as measured
by the kernel). The algorithm is semi-supervised and can
naturally handle unlabeled data. The direct input of the
algorithm is actually equivalence constraints - relations de-
fined on pairs of data points that indicate whether the pair
belongs to the same class or not. When provided with la-
beled data, such constraints may be automatically extracted
from the labels.

The learning algorithm we suggest is based on boosting.
In each round, the weak learner computes a Gaussian Mix-
ture Model (GMM) of the data using some of the equiva-
lence constraints and weights on the labeled and unlabeled
data points. The mixture is optimized using EM to find
a partition which complies with the data density, as well
as with the equiva ence constraints provided. A "weak ker-
nel’ hypothesis, defined over pairs of points, isthen formed
based on the probability that the two points originate from
the same cluster in the learnt model. The boosting process
accumulates a weighted linear combination of such 'weak
kernels', which define the final kernel. Note that this fi-
nal kerndl is afunction, defined for any pair of data points.
Details are presented in Sec. 2.
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We test our proposed algorithm both on classification and
retrieval tasks. We first tested the algorithm without using
any additional domain knowledge on several UCI datasets
(see Sec. 3). Wethen present results on the task of classify-
ing digit images, and on facial image retrieval using addi-
tional domain knowledge (see Sec. 4). Both tasks were se-
lected because there are good reasons to expect some form
of “inter-class-transfer” between the different classes (dig-
its or faces). In the classification tasks, the kernel function
isused in a standard 'soft margin’ SVM agorithm. Multi-
class problems are addressed using the 'al-pairs’ Error-
Correcting Output Codes (ECOC) technique (Dietterich &
Bakiri, 1995), in which the full set of binary classifiers over
pairs are combined to form an m-class classifier. In order
to try and make use of the relatedness of these binary clas-
sification problems, a single kernel function is trained on
the entire m-class training set. This single kernel function
isused (up to truncation as described in Sec. 2.4), by al of
the pairwise binary classifiers trained.

In an image retrieval task, the system is presented with a
query image and is required to return the images in the
database that are most similar to the query image. Per-
formance therefore relies on the quality of the similarity
function used to retrieve images. The similarity measure
can be hand-defined, or learnt using a set of labeled train-
ing images. Ultimately a good similarity function could
be trained on a set of labeled images from a small set of
classes, and could then be used to measure similarity be-
tween images from novel classes. In general, thisisavery
challenging and currently unsolved problem. However, as
we show, on the more specific task of facial imageretrieval,
our proposed algorithm learns a similarity function which
also generalizes well to faces of subjects who were not pre-
sented during training at all.

1.1. Related Work

There is a growing literature on the learning of distance
functions and kernels, two problems that are typicaly
treated quite differently. For example, learning a Maha-
lanobis metric from equivalence constraints is discussed
in (Xing et a., 2002; Bar-Hillel et a., 2005), while Dist-
Boost (Hertz et al., 2004) uses boosting to learn generative
distance functions which are not necessarily metric. The
guestion of how to learn a new kernel from a set of exist-
ing kernelsand atraining set of labeled datais discussed in
anumber of recent papers, for example, (Cristianini et a.,
2002; Zhang et al., 2006; Lanckriet et a., 2002; Crammer
et al., 2002; Ong et al., 2005). Finaly, learning of kernel
functionsin the context of learning-to-learn is discussed in
(Yuetal., 2005).

We note however, that most of these kernel learning meth-
odslearn akernel matrix (rather than afunction), and there-
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foretypically use the transductive framework which makes
it possible to learn a kernel matrix over the set of all data,
train and test. Without making the transductive assump-
tion, most earlier methods have dealt with the estimation of
kernel parameters. Our method, on the other hand, learns
a non-parametric kernel function defined over al pairs of
data points. The proposed method is semi-supervised and
can also make use of unlabeled data (which may not neces-
sarily come from the test set).

2. KernelBoost: Kernel Learning by Product
Space Boosting

KernelBoost is a variant of the DistBoost algorithm (Hertz
et a., 2004) which is a semi-supervised distance learning
algorithm that learns distance functions using unlabeled
datapoints and equivalence constraints. While the Dist-
Boost algorithm has been shown to enhance clustering and
retrieval performance, it was never used in the context of
classification, mainly due to the fact that the learnt dis-
tance function is not a kernel (and is not necessarily met-
ric). Thereforeit cannot be used by the large variety of ker-
nel based classifiers that have shown to be highly success-
ful in fully labeled classification scenarios. KernelBoost
alleviates this problem by modifying the weak learner of
DistBoost to produce a’weak’ kernel function. The’weak’
kernel has an intuitive probabilistic interpretation - the sim-
ilarity between two points is defined by the probability that
they both belong to the same Gaussian component within
the GMM learned by the weak learner. An additional im-
portant advantage of KernelBoost over DistBoost is that it
is not restricted to model each class at each round using a
single Gaussian model, therefore removing the assumption
that classes are convex. Thisrestriction is dealt with by us-
ing an adaptive label dissolve mechanism, which splits the
labeled points from each class into severa local subsets,
as described in Sec. 2.5. An important inherited feature of
KernelBoost isthat it is semi-supervised, and can naturally
accommodate unlabeled data in the learning process. As
our empirical results show, the ability to use unlabeled data
in the training process proves to be very important when
learning from small samples.

2.1. The KernelBoost Algorithm

Let usdenote by {z;}?_, the set of input data points which
belong to some vector space X, and by X’ x X’ the “prod-
uct space” of all pairsof pointsin X'. An equivalence con-
straint is denoted by (x;,, z;,,v:), where y; = 1 if points
(x4, , x,) belong to the same class (positive constraint) and
y; = —1if these pointsbelong to different classes (negative
constraint). (x;,, z;,, *) denotes an unlabeled pair.

The agorithm makes use of the observation that equiva-
lence constraints on points in X are binary labels in the
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Algorithm 1 The KernelBoost algorithm.

Input:

Datapoints: (z1,...,2n), Tk € X

A set of equivalence constraints: (x,, s, yi), Wherey; € {—1,1}

Unlabeled pairsof points: (z;, , x:,,y: = *), implicitly defined by all unconstrained pairs of points

e Initidize W}

140
w =1/n

=1/(n?) i1,d2 =1,...

e Fort=1,..,T

1.
2.
Ki(wi,x;) = 2K (i, ;) — 1 € [-1,1]

Compute ¢

(®iq,®iy,y;=%1)
Choose the hypothesis weight o, = 3 In(3£2%).
Update the weights of all pointsin X x X asfollows:

{

t
Wi 102
Wi

172

Wit =

i1%2

exp(—awyi K¢ (Tiy, Tiy))
exp(—\ * ay)

,n (weights over pairs of points)
k=1,...,n (weights over data points)

Fit aconstrained GMM (weak learner) on weighted data pointsin X’ using the equivalence constraints.
Generate aweak kernel function K, : X x X — [0, 1] and define aweak hypothesis as

Wflizyif(t(x“ , iy ), Only over labeled pairs. Accept the current hypothesisonly if r, > 0.

Yi € {_171}
Yi = *

where ) is atradeoff parameter that determines the decay rate of the unlabeled points in the boosting process.

t+1

i1%2

wit!
i1i2

Normalize: W/l = —;
>

ip,ig=1

7. Trandate the weightsfrom X' x X' to & wi ™

1
25 Wi

Output: A final Kernel function of theform K (z;,2;) = 31, cu K¢ (4, 2;5).

product space, X x X. Thus, by posing the problem in
product space the problem is transformed into a classical
binary classification problem, for which an optimal classi-
fier should assign +1 to al pairs of points that come from
the sameclass, and —1 to al pairs of pointsthat come from
different classes 1. The weak learner itself istrained in the
original space X', which alowsit to make use of unlabeled
data points in a semi-supervised manner. The weak learner
is then used to generate a “weak kernel function” on the
product space.

The KernelBoost algorithm (described in Alg. 1 above)
learns a Kernel function of the following form:

T
K(w1,m9) =Y ayKy(w1,22) )
=1

which is a linear combination of “weak kernel functions’
K, with coefficients «;. The agorithm uses an augmen-
tation of the 'Adaboost with confidence intervals' ago-
rithm (Schapire & Singer, 1999) to incorporate unlabeled
data into the boosting process. More specifically, given
a partialy labeled dataset {(z;,,z4,,v:)}Y., Wherey; €

1Also referred to as the ideal kernel (Cristianini et al., 2002).
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{1, —1, %}, the algorithm searches for a hypothesis which
minimizes the following loss function:

2.

{ilyi=1,-1}

Note that this semi-supervised boosting scheme computes
the weighted loss only on labeled pairs of points but up-
dates the weights over all pairs of points. The unlabeled
points serve as a prior on the data's density, which effec-
tively constrains the parameter space of the weak learner
in the first boosting rounds, giving priority to hypotheses
which both comply with the pairwise constraints and with
the data’'s density. In order to allow the algorithm to fo-
cus on the labeled points as the boosting process advances,
the weights of the unlabeled points decay in arate which is
controlled by a tradeoff parameter A and by the weight of
each boosting round «a; (see Alg. 1 step 5). Throughout all
experiments reported in this paper, A was set to 10.

CXp(_yiK(Iiwxiz)) (2)

2.2. KernelBoost's Weak L earner

Kernel Boost's weak learner is based on the constrained Ex-
pectation Maximization (cEM) agorithm (Shental et al.,
2003). The agorithm uses unlabeled data points and a
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set of equivalence congtraints to find a Gaussian Mixture
Model (GMM) that complies with these constraints.

At each iteration ¢, the cEM algorithm’s uses a set of un-
labeled points X = {z;}? ,, and a set of pairwise con-
straints (2) over these points, in order to learn a Gaussian
mixture model with parameters O = {rf, ul, SL}, .
We denote positive constraints by {(pj, p?)}jv:’)l and nega-
tive constraints by {(nt,n3)}n",. Let L = {I;}7_, denote
the hidden assignment of each data point x; to one of the
Gaussian sources (I; € {1,...,M}). The constrained EM
algorithm assumes the following joint distribution of the
observables X and the hiddens L:

p(X,L]©,Q) = ©)
1 n Np Ny,
7 m,p(wi|6r,) jlle 51%1_1%2_ klel(l =01 11 5)

where Z is the normalizing factor and J;; is Kronecker's
delta. The algorithm seeksto maximize the datalikelihood,
which isthe marginal distribution of (3) with respect to L.
For a more detailed description of this weak |learner see
(Shental et al., 2003).

2.3. Generating a Weak Kernel froma GMM

Given the mixture ©f at round ¢, we construct a ’weak
kernel” which essentially measures the probability that two
points belong to the same Gaussian component. Denoting
the hidden label of apoint according to the mixtureby I(z),
the kernel is given by

pll(z1) = 1(x2)|0]

Mt
Zp(l(if?l) = j1O)p(l(x2) = j|©)

Ki(x1,22) = (4)

7 G (g, Zk)
Mt
> meG(x|pk,Zk)
1

denotes the Gaussian problé\:bi lity with parameters 1, and X.

This “weak kernel” is bounded in the range [0,1]. The
weak hypothesis required for updating the sample weights
in the boosting process is created by applying the linear
transformation 2K (x1, z2) — 1 € [—1, 1] to the 'weak ker-
nel’. Note that the final combined kernel isalinear combi-
nation of the “weak kernels’ (and not the weak hypotheses)
in order to ensure positive definiteness.

where p[i(z) = j|O] = ,and G(x|u, X)

2.4. Adapting the Learned Kernel Function

Asnoted above, KernelBoost can learn asingle kernel func-
tion over a multi-class dataset, which can then be used to
train both binary classifiers and an m-class classifier. When
training a binary classifier between any subset of labels
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from the data, we adapt the learned kernel function. More
specifically, we consider al 'truncated” kernel combina-
tions, i.e kernels that are a truncation of the full learned
kernel up to some ' < T'. In order to select the optimal
truncated kernel for a given binary classification problem,
we use the empirical kernel alignment score suggested by
(Cristianini et al., 2002) between the learned kernel and the
"idedl’ kernél (K;qeq; = yy') which is given by
<K, K’ideal>F

\/<Ka K>F<Kid€al7 Kideal>p
where S = (x;,y;) is the training sample, y denotes the
vector of point labels and (.) . denotes the Frobenius prod-

uct . Thisscoreiscomputed fort = 1...7T and the kernel
with the highest score on the training data is selected.

Alignment(K, S) =

2.5. The Label Dissolving M echanism

The weak learner of the KernelBoost algorithm treats all
constraints as hard constraints; in particular, since all pos-
itive constraints are always satisfied in the cEM algorithm,
its only option is to attempt to place al of the points from
the same label in asingle Gaussian at every iteration. This
is very problematic for non-convex classes generated by
non-Gaussian distributions (see Fig. 1). Therefore, in order
to enrich the expressive power of KernelBoost and to al-
low it to model classes of these types, the algorithm is aug-
mented by a label-dissolving mechanism, which relies on
the boosting weights. This mechanism splits sets of points
with the same label into several local subsets, which allows
the algorithm to model each of these subsets separately, us-
ing a different Gaussian model.

The intuition leading to the
proposed mechanism is the
following: We would like to
model each non-convex class,
using several local Gaussians.
The attempt to model ahighly
non-Gaussian, or non-convex
class using asingle Gaussian,
will fail, and cause some of
the pairwise constraints to be unsatisfied. The boosting pro-
cess focuses each new weak learner on those harder pairs
gtill inconsistent with the current hypothesis. The adaptive
dissolve mechanism uses these pairwise weights to elimi-
nate edges aready consistent with the current hypothesis
from a local neighborhood graph. Classes are therefore
splitinto small local subsets. The dissolve mechanism pro-
posed is presented below in Alg. 2.

Figure 1. A 2-d synthetic
example of a non-convex
and non-Gaussian dataset.

This mechanism has one tunable parameter N,,utvais
which determines the pre-computed neighborhood graph
for each of the labels®. This parameter implicitly affects

2Neighbors are defined as “mutual” iff 4 is within the first N
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Algorithm 2 The adaptive |abel-dissolve mechanism.

Preprocess: For each label 1, compute a local neighborhood
graph where each labeled datapoint is connected to all of
its mutual neighbors from the first N,,,.tuq: Neighbors.

Fort=1...T do

For each label | do

1. Definetheedge weightson the graph to be the pairwise
weights W, ,, computed by the boosting process.
Threshold edges by removing all edges whose weight
is smdler then the average edge weight given by
s WL
7] (i1,i2)€l 21,12

Compute the connected components of the graph and
use them to define a partition of the labels from the

current class into small and local subsets.

2.

the number of subsets obtained at each boosting round.

2.6. The Kernel’s Implicit Representation

The substitution of Equation (4) into (1) yieldsthe structure
of the learnt kernel:

K($1,$2) = (5)
T M*

SO Vapli(:) = HE') - Vapli(as) = k6]
t=1 k=1

If we think of each element in the sum in Equation (5) asa
feature in a feature-space of dimension S°7_, M*, then the
coordinate corresponding to the pair (¢, k) holds a feature
of the form

TG (x|t ,
q’t,k(ﬂﬁ):\/OTt k (|Mk k)

Mt
) ™ G (|5, 3)
]:

(6)

These features can be interpreted as soft Voronoi cell indi-
cators: ahigh valuefor feature @ ; indicates that the point
liesin cell k of the partition induced by mixture ¢. These
features are rather different from the prototype-like RBF
features. Specifically, their response does not necessarily
decay rapidly with the distance from the Gaussian’s center.
Decay only happensin regions where other Gaussians from
the same mixture are more likely.

3. Experiments: Learning from Small
Samples

3.1. Visualization using 2D Synthetic Datasets

We begin by returning to the non-convex, and non-
Gaussian dataset presented in Fig. 1. Each class in this

neighbors of j and vice-versa.
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dataset was created using two Gaussians. We compared the
performance of KernelBoost to several standard kernels.
More specifically, we compared the following kernels: (1)
KB - KernelBoost, (2) KB-dis - KernelBoost which in-
cludesthe label dissolving mechanism described above, (3)
the linear kernel, (4) the polynomia kernel of degree 2, (5)
the RBF kernel (with o chosen using cross-validation)

The dataset contains 500 datapoints. In our experiment we
randomly selected Ny,..;,, datapoints for training (where
Nirain = 20 or 100) and used the remaining datapoints for
testing. We uniformly set the SVM tradeoff parameter C' to
5inall these experiments. Each of the two experimentswas
repeated for 10 random train-test data splits. KernelBoost
was run for 10 boosting iterations.

Table 1. A comparison of classification accuracy on the non-
convex and non-Gaussian dataset shown in Fig. 1. Best Results
are highlighted in bold.

Nirain KB KB-dis Linear Poly. RBF
20 175 45 12.0 131 6.3
100 17.9 0.9 10.4 105 1.9

Theresultsarereported in Table 1. Asmay be seen, Kernel-
Boost with the dissolve mechanism outperforms all other
kernels on this dataset for both small and large samples.
Using the label dissolving mechanism suggested above,
KernelBoost can generate general non-convex separators,
as can be seen from the resultsin Table 1. Fig. 2 shows the
learnt Gaussians and the separating hyper-plane induced by
the learnt kernel in atypical experiment on this dataset.

Figure2. Left: The Gaussians learnt by KernelBoost-dissolve
(presented in Sec. 2.5). The Ellipses mark 1-std contours. Darker
ellipses show Gaussians obtained at later boosting rounds. Right:
The separator induced by the Gaussians for this example. Support
vectors are marked by black dots.

3.2. Resultson UCI Datasets

We now turn to evaluate the performance of our algorithm
on several real datasets from the UCI repository, and also
compare its performance to some standard ’off the shelf’
kernels.
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Experimental setup We used 4 datasets from the UCI
data repository (Blake & Merz, 1998): wine, ionosphere
breast cancer and balance. These experiments were con-
ducted in a transductive setting, i.e. the test data was pre-
sented to the KernelBoost algorithm as unlabeled data. We
used 10% of the data as training sample. For each of these
conditions we compare our method with some standard
' off-the-shelf’ kernels, and report the best results of (Zhang
et al., 2006) on the same experimental setup. The results
reported are averages over 10 random train/test splits. In
all of these experiments the SVM tradeoff parameter was
set to 300. The dissolve neighborhood parameter N, 1va1
was set to 12, and we used 7' = 30 boosting rounds. The
results may be seen in Table 2. KernelBoost outperforms
other methods on 3 of the 4 datasets.

Table 2. A comparison of classification accuracy of various ker-
nels on 4 UCI datasets. In this experiment 10% of the data was
used both for learning the kernel and training the SVM classifier.
Results were averaged over 10 different realizations of train and
test data. Best results are highlighted in bold.

Data KB KB-dis Lin. Poly. RBF Zhang

wine 95.1 95.4 919 783 90.8 94.6
ionos. 85.9 90.4 797 723 845 876
breast 94.2 92.6 948 939 957 946
balance 83.5 86.4 844 774 8.0 —

4. Experiments. Learningto Learn
4.1. MNI ST Digit Classification

Various different classification methods have been used on
the MNIST dataset, some of which providing aimost per-
fect results (LeCun et al., 1998). However, these methods
were all trained and tested on very large samples of train-
ing data (usually on the entire training set which consists
of 60,000 datapoints). Since we are interested in testing
inter-class transfer, we conducted a set of experiments in
which avery limited amount of training data was used.

Experimental setup:  Inthese experiments, we randomly
selected 1000 sets of 4 digits from the dataset, and used 5
different train/test splits for each set. For each set of 4 dig-
its, we further split the classes into 2 pairs: one pair was
designated to provide large amounts of data for training,
while the other pair was designated to provide a very small
amount of training data. For each 4-tuple, we considered
al 6 possible splits into pairs. For the designated 'large’
classes we randomly selected 100 datapoints as train data.
For the designated 'small’ classes, we randomly selected &
labeled points from each class, where k = 3,4, 5,6, 10 and
20. Additionally, for each of the 4 digits we randomly se-
lected 200 datapoints which were supplied to the learning
algorithm as unlabeled data . KernelBoost used the train-

ing data from all 4 classes to learn a single kernel func-
tion. Predictions were evaluated on atest set of 200 points
from each class, which were not presented during the train-
ing stage. Images were represented using the first 30 PCA
coefficients of the original vectorized images. The SVM
tradeoff parameter C' was set to 300, 7" was set to 10 and
the Ny uiuar parameter was uniformly set to 12.

After learning the kernel function, we trained SVM hi-
nary classifiers for al 6 digit pairs. As a baseline com-
parison, we aso trained SVM binary classifiers using stan-
dard ' off-the-shelf’ kernels for al the pairs. We compared
our algorithm to the following standard kernels: linear,
RBF and a polynomial kernel of degree 5 (which has been
shown to performwell onthe MNIST dataset (LeCunet a.,
1998)). The binary SVM’swere also used to create amulti-
classclassifier using theall-pairs’ Error Correcting Output
Codes (ECOC) scheme (Dietterich & Bakiri, 1995).

These 6 binary classification problems (for each 4 digits)
can be divided into 3 subgroups, to alow a more detailed
analysis of the effects of “inter-class-transfer”:

1. 'small vs. small’ - the single binary classifier trained
on the two classes for which a very small amounts of
labeled points was present (k).

2. 'small vs. large’ - the 4 binary classifiers which were
trained on two classes, where one had a large amount
of labeled points (100) and the other had a very small
amount of |abeled points (k).

3. 'large vs. large’ - the single binary classifier trained
on the two classes for which large amounts (100) of
labeled data was present.

From these three types, the first two may benefit from
inter-class transfer. Clearly the hardest binary classifica-
tion problem is the 'small vs. small’ one in which the total
amount of datapointsis only 2k. However, the 4 *small vs.
large’ binary problems are also very challenging.

Classification results:  The results on the MNIST classi-
fication taskswhen using k£ = 3 labeled pointsfor the small
classes are presented in Table 3. These results demonstrate
a clear advantage of KernelBoost over all other standard
kernels in this difficult classification task. Specificaly, in
the challenging 'small vs. small’ condition, both Kernel-
Boost variants obtain significantly better accuracy scores
over al other kernels. Note that the performance of the
KB-disvariant is always superior to that of the original KB
method. In the 'small vs. large’ condition, both Kernel-
Boost variants achieve excellent performance with an im-
provement of roughly 15% in test accuracy over all other
kernels. Finally, as expected, in the ’large vs. large’ con-
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Table 3. A comparison of median classification accuracy of KernelBoost with various other standard kernels on randomly selected
subsets of 4 digits from the MNIST dataset. In this experiment the amount of labeled points for the 'small’ classes k was 3. Best Result

are highlighted in bold.

Type Kboost KboostDis Lin. Poly(5) RBF
'small vs. small’ 84.80(+£0.40) 85.01(+0.46) 81.7(+£0.31)  56.45(+0.37)  79.20(+0.33)
'small vs. large’ 92.90(+0.13)  89.60(+0.21)  72.70(+0.17)  51.10(%+0.13)  77.60(+0.19)
'large vs. large’ 96.70(£0.15)  96.40(£0.23)  96.50(+0.10) 97.90(+0.08)  97.70(+0.08)
'ECOC’ (multi-class)  79.30(+0.23)  72.33(+0. 27) 64.90(+0.22)  50.35(+£0.17)  67.83(+0.23)
*small vs. small’ ’small vs. large’ ’ECOC’
100 100 1007
95, 95 95
7 ® = 7% 3 %
% 85, % 85 § 85-
; 80, E 80, g 80
E 75 EKB é 75 E 750
|3 Il KB-dis| o o
2 79 ELin. e 70 & 70t
Il Poly.
65 [_IRBF 65 65}
i LI i I
3 4 5 6 10 20 3 4 5 6 10 20 3 4 5 6 10 20
k k k

Figure 3. Median classification accuracy on the MNIST dataset as a function of the number of labeled points. Methods compared are:
KB - KernelBoost, KB-dis - KernelBoost with the label dissolve mechanism, Lin. - linear kernel, Poly. - polynomial kernel of degree
5, and RBF - RBF kernel with o chosen using cross-validation. Left: Results on the 'small vs. small’ classes. Middle: Results on the
'small vs. large’ classes. Right: multi-class classification results. When the Polynomial kernel is not shown its accuracy < 60%.

dition all of the algorithms obtain almost perfect classi-
fication accuracy, and the polynomial kernel of degree 5
achieves the best performance. Note however, that on al
other tasks the polynomial kernel performs poorly, which
implies serious overfitting. Another clear advantage of the
KernelBoost algorithm is shown in the multi-class classi-
fication task, where its performance is significantly better
than all other methods.

It is interesting to analyze the results on these 4 classifi-
cation tasks as the number of labeled points & increases,
as shown in Fig. 3. Clearly, as the amount of labeled
dataincreases, the performance of all kernelsimproves, but
KernelBoost still maintains a significant advantage over its
competitors.

4.2. Facial Image Retrieval Results

In the previous section we have shown that KernelBoost
makes use of interclass transfer on digits from the MNIST
dataset. We now turn to another relevant application of fa-
cia imageretrieval.

Experimental setup: We used a subset of the YaleB fa
cial image dataset (Georghiades et al., 2000). The dataset
contains a total of 1920 images, including 64 frontal pose
images of 30 different subjects. In this database the vari-
ability between images of the same person is mainly due
to different lighting conditions. The images were automat-
icaly centered using optical flow. Images were then con-
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verted to vectors, and each image was represented using its
first 9 Fisher Linear Discriminant coefficients, which were
computed over thefirst 150 PCA coefficients. KernelBoost
was run for 10 boosting iterations, with a Gaussian Mix-
ture model with a single (shared) covariance matrix. On
this dataset, we conducted three experiments:

1. "Fully supervised’ - in which we randomly selected
images from 20 of the subjects. We used 50% of their
data as training data and tested on the remaining 50%.

" Semi-supervised' setting in which we augmented the
train data of experiment 1 with an additional 50% of
the data from the remaining 10 classes as unlabeled
data, and tested performance on the remaining 50% of
the unlabeled classes.

. "Unsupervised’' setting in which we trained the algo-
rithm using the exact same data of exp. 1 and tested it
on images from the remaining 10 classes which were
not present during the training stage at all.

In the test stage of each of the experiments, the retrieval
database contained images of all 30 subjects, part (or all of
which) was used by the learning algorithms. For each im-
age we compute the ROC (Receiver Operating Characteris-
tic) curve and these ROCs are averaged to produce asingle
ROC curve. The fraction of the area under the curve (AUC
score) isindicative of the distinguishing power of the algo-
rithm and is used as its prediction accuracy. We compare
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Figure 4. ROC retrieval curves on the YaleB dataset. The graphs
compare the performance of KernelBoost to RCA and to the Eu-
clidean distance metric in a “Learning to learn” scenario. Left:
Resultsfor classes for which unlabel ed data was presented during
the training stage. Right: Results on novel classes for which no
data at all was present during training.

the performance of our method to the RCA agorithm (Bar-
Hillel et a., 2005), which is a Mahalanobis metric learning
algorithm that has been shown to work well on image and
video retrieval (Bar-Hillel et a., 2005). As abaseline mea-
sure we also used the Euclidean metric.

Retrieval results: The results of the 3 experiments de-
scribed above are presented in Fig 4, and summarized in
Table 4. In the 'Fully-supervised’ experiment, the Kernel-
Boost method obtains almost perfect performance, with a
clear advantage over the smpler RCA agorithm. In the
" Semi-supervised’ experiment, both methods' performance
degrades, but KernelBoost till performs significantly bet-
ter than all other methods. In the "Unsupervised’ setting,
where the test set consists of faces of individuals not seen
during training, the performance degrades some more, but
both agorithms still perform significantly better that the
Euclidean distance metric.

Table 4. AUC scores (and ste's) for the three image retrieval ex-
periments conducted on the YaleB dataset. See text for details.

ExpNo.  KernelBoost RCA Euclidean

) 98.94(+0.01)  93.88(40.01)  60.84(+0.01)

2 84.57(4£0.04) 77.37(£0.03)  59.00(%0.00)

©) 79.74(£0.06)  76.62(40.04)  58.92(+0.01)
5. Discussion

The main contribution of this paper lies in the description
of a method for learning non-parametric kernel functions.
The algorithm presented is semi-supervised (i.e., it bene-
fits from unlabeled data), and can learn from very small
samples. When used with kernel SVM, classification per-
formance was shown to be significantly better than various
standard kernels. The benefit of learning the kernel func-
tion was most evident in the context of “learning to learn”,
in which information is transferred to classes for which
only a few examples are available for training. In future
work we hope to explore the benefit of such learned ker-
nels when combined with other kernel-based techniques.
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Chapter 6

Predicting Protein-Peptide binding by

L earning Distance Functions
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Abstract

Background: Many different aspects of cellular signalling, trafficking and targeting mechanisms are
mediated by interactions between proteins and peptides. Representative examples are MHC-
peptide complexes in the immune system. Developing computational methods for protein-peptide
binding prediction is therefore an important task with applications to vaccine and drug design.

Methods: Previous learning approaches address the binding prediction problem using traditional
margin based binary classifiers. In this paper we propose PepDist: a novel approach for predicting
binding affinity. Our approach is based on learning peptide-peptide distance functions. Moreover,
we suggest to learn a single peptide-peptide distance function over an entire family of proteins
(e.g. MHC class I). This distance function can be used to compute the affinity of a novel peptide to
any of the proteins in the given family. In order to learn these peptide-peptide distance functions,
we formalize the problem as a semi-supervised learning problem with partial information in the
form of equivalence constraints. Specifically, we propose to use DistBoost [1,2], which is a semi-
supervised distance learning algorithm.

Results: We compare our method to various state-of-the-art binding prediction algorithms on
MHC class | and MHC class Il datasets. In almost all cases, our method outperforms all of its
competitors. One of the major advantages of our novel approach is that it can also learn an affinity
function over proteins for which only small amounts of labeled peptides exist. In these cases, our
method's performance gain, when compared to other computational methods, is even more
pronounced. We have recently uploaded the PepDist webserver which provides binding prediction
of peptides to 35 different MHC class | alleles. The webserver which can be found at http:/
www.pepdist.cs.huji.ac.il is powered by a prediction engine which was trained using the framework
presented in this paper.

Conclusion: The results obtained suggest that learning a single distance function over an entire
family of proteins achieves higher prediction accuracy than learning a set of binary classifiers for
each of the proteins separately. We also show the importance of obtaining information on
experimentally determined non-binders. Learning with real non-binders generalizes better than
learning with randomly generated peptides that are assumed to be non-binders. This suggests that
information about non-binding peptides should also be published and made publicly available.
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Background

Many different aspects of cellular signalling, trafficking
and targeting mechanisms are mediated by interactions
between proteins and peptides. In the immune system, for
example, the major task of recognizing foreign pathogen
proteins is mediated by interactions between Major Histo-
compatibility Complex (MHC) molecules and short path-
ogen-derived peptides (see Fig. 1). T-cells recognize these
peptides only when they are bound to MHC molecules.
Understanding the underlying principles of MHC-peptide
interactions is therefore a problem of fundamental impor-
tance, with applications to vaccine and drug design [3].
MHC binding is a challenging problem because MHC
molecules exhibit high specificity - it is estimated that
each molecule only binds to 1% of all existing peptides
[4]. Additionally, MHC molecules are highly polymor-
phic and polygenic - there are hundreds of different alle-
les in the entire population while each individual carries
a few alleles only (up to 6 MHC class I alleles and up to 12
MHC class II alleles) [5].

Biochemical assays, which empirically test protein-pep-
tide binding affinity, can nowadays provide a rather high
throughput rate [6]. However, note that there are 20 pep-
tides of length L (for 9 amino-acid long peptides as in the
MHC proteins this amounts to 1012 peptides) and a great
number of proteins that need to be considered. Therefore,
in recent years, there has been a growing interest in devel-
oping computational methods for protein-peptide bind-
ing prediction [7-13]. Formally, the protein-peptide
binding prediction problem can be stated as follows:
given a protein and a peptide, predict the binding affinity
of the interaction between the two. Stated this way, the
protein-peptide binding prediction is essentially a simpli-
fied version of the more general protein docking problem.

What should we expect from a "good" binding prediction
algorithm? [8].

1. Classification: A good binding prediction algorithm
should first and foremost correctly predict whether a
query peptide (which was not provided during the train-
ing stage) binds or does not bind to the given protein.

2. Ranking: An even stronger requirement is that the algo-
rithm could also obtain a relative binding score for each
peptide that can be used to rank different peptides accord-
ing to their specificity.

3. Affinity prediction: Ultimately, the algorithm's score
would predict the precise binding affinity values as deter-
mined experimentally.

Clearly, current state-of-the-art prediction methods
obtain promising classification results (for a recent com-

Figure |

Schematized drawing of a peptide in the binding groove of
MHC class | (a) and MHC class Il (b) molecules. The peptide
backbone is shown as a string of balls, each of which repre-
sents a residue.

parison between several methods see [14]). Many of these
methods also compute binding scores for each peptide,
but these scores are in most cases not even compared to
the empirically known affinity values, and have even been
shown to have poor correspondences in some cases [15]
(an interesting exception is a recent work on the PDZ
domain [16]).

Most prediction algorithms formalize the protein-peptide
binding prediction problem as a binary classification
problem: For each protein (i.e. MHC molecule) a classifier
is trained to distinguish binding peptides from non-bind-
ing peptides. After an initial training stage, the classifier is
tested on a set of peptides, which were not presented dur-
ing the training stage. The training data consists of exper-
imentally determined binders and randomly generated
peptides which are assumed to be non-binders. Interest-
ingly enough, only rarely are experimentally determined
non-binders used, mainly because a small number of
these non-binders have been made publicly available.

In this paper we suggest a novel formulation of the pro-
tein-peptide binding prediction problem. Our approach is
driven by the following two important observations:

Observation 1 Peptides that bind to the same protein are
"similar" to one another, and different from non-binding pep-
tides.

This observation underlies most, if not all, computational
prediction methods. Motif based methods [8,13] for
example, search for a binding motif that captures the sim-
ilarity of a set of known binding peptides. Prediction is
then based on the similarity of a query peptide to the
motif, which implicitly measures the similarity of the
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query peptide to the peptides in the training set. This
observation suggests that given a novel peptide, one can
predict its binding affinity to a specific protein, by explic-
itly measuring the average distance (or similarity) of the
novel peptide to a list of known binding peptides. Intui-
tively speaking, if the peptide is close to the known bind-
ers, we would classify it as a binder, and if it is far - we
would classify it as a non-binder.

Observation 2 Peptides binding to different proteins within
the same "family" resemble each other

Proteins from the same family (e.g. MHC class I) are
known to have structural and sequential similarity. There-
fore they bind to peptides that share common characteris-
tics. Additionally, in MHC class I and MHC class II, many
proteins are grouped into supertypes [17] (such as the
HLA-A2 MHC class I supertype). A supertype is a collec-
tion of proteins whose binding peptide sets are overlap-
ping. This observation implies that we may benefit from
simultaneously learning a single binding prediction func-
tion over an entire family of proteins, instead of inde-
pendently learning a single classifier for each of the
proteins within the protein family. At a first glance it
might appear that one can recast a set of binary classifica-
tion problems using a single multi-class classification
problem. However, a closer look reveals that the protein-
peptide binding problem is not a multi-class classification
problem due to the following inherent facts: (1) Some
peptides bind to several proteins within a family (indeed
this information is used to define MHC supertypes). (2) A
peptide that does not bind to a specific protein within a
family, does not necessarily bind to a different protein
within the family.

Our novel approach is based on the two observations
described above. We propose to address the protein-pep-
tide binding prediction problem by learning peptide-pep-
tide distance functions. We do not require that the triangle
inequality holds, and thus our distance functions are not
necessarily metrics. Moreover, based on observation 2, we
suggest to pool together information from an entire pro-
tein family and to learn a single peptide-peptide distance
function (instead of learning a different distance function
for every protein independently). Our peptide-peptide
distance function is then used to compute protein-peptide
binding affinity - the affinity of a query peptide to a given
protein is inversely proportional to its average distance
from all of the peptides known to bind to that protein.
Our proposed learning scheme is summarized in Fig. 2
and elaborated in the following section.

Learning peptide distance functions
As mentioned above, we propose to address the protein-
peptide binding affinity prediction problem by learning a

Input:
A dataset of binding and non binding peptides from an entire protein family.

1. For each protein: Extract “positive” and “negative” equivalence con-
straints using its known binding and non-binding peptides, respectively.
2. Learn a single peptide-peptide distance function over this dataset using

the equivalence constraints extracted in step 1.

3. Define a protein-peptide affinity function using the peptide-peptide dis-
tance function from step 2.

Output:
A single protein-peptide affinity function over the entire protein family.

Figure 2
The PepDist framework.

peptide-peptide distance function over an entire family of
proteins. A distance function 9 assigns a non-negative
value for each pair of points. Most algorithms that learn
distance functions make use of equivalence constraints
[1,2,18-22]. Equivalence constraints are relations between
pairs of data points, which indicate whether the points in
the pair belong to the same category or not. We term a
constraint positive when the points are known to be from
the same class, and negative in the opposite case. In this
setting the goal of the algorithm is to learn a distance func-
tion that attempts to comply with the equivalence con-
straints provided as input.

In our setting, each protein defines a class. Each pair of
peptides (data-points) which are known to bind to a spe-
cific protein (that is, belong to the same class) defines a
positive constraint, while each pair of peptides in which
one binds to the protein and the other does not - defines
a negative constraint. Therefore, for each protein, our
training data consists of a list of binding and non-binding
peptides, and the set of equivalence constraints that they
induce.

We collect these sets of peptides and equivalence con-
straints from several proteins within a protein family into
a single dataset. We then use this dataset to learn a pep-
tide-peptide distance function (see Fig. 3 left plots). Using
this distance function, we can predict the binding affinity
of a novel peptide to a specific protein, by measuring its
average distance to all of the peptides which are known to
bind to that protein (see Fig. 3 right plots). More formally,

let us denote by D(Peptide;, Peptide;, ) the distance
between Peptide; and Peptide, and by B; the group of pep-
tides known to bind to Protein;. We define the affinity
between Peptide; and Protein; to be:
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Afﬁnity( Peptide;, Protein ) =

exp L Y, D(Peptide; Peptidey. ) | (1)

In order to learn peptide-peptide distance functions, we
use the DistBoost algorithm [1,2], which learns distance
functions using data and some equivalence constraints
(see Methods for the algorithm's description). DistBoost
requires that the data be represented in some continuous
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vector feature space. We therefore represent each amino-
acid using a 5-dimensional feature vector as suggested by
[23], and each peptide by concatenating its amino-acid
feature vectors (for further details see the Data representa-
tion section). We compare our method to various protein-
peptide affinity prediction methods on several datasets of
proteins from MHC class I and MHC class II. The results
show that our method significantly outperforms all other
methods. We also show that on proteins for which small
amounts of binding peptides are available the improve-

A2  A-6802B-2705B-3501B-5301 H-2Db H-Ld
Proteins

A2 A-6802B-2705B-3501B-5301 H-2Db H-2Kb H-Ld
Proteins

Left: peptide-peptide distance matrices of MHC class | binding peptides, collected from the MHCBN dataset. Peptides that
bind to each of the proteins were grouped together and labeled accordingly. Following Observation |, a "good" distance matrix

should therefore be block diagonal. Top left: The Euclidean peptide-peptide distance matrix in RY (see Methods for details).
Bottom left: The peptide-peptide distance matrix computed using the DistBoost algorithm. Right: protein-peptide affinity matri-
ces. The affinity between a peptide and a specific protein is computed by measuring the average distance of the peptide to all
peptides known to bind to that protein (see eq. |). Top right: the Euclidean affinity matrix. Bottom right: the DistBoost affinity
matrix. DistBoost was trained on binding peptides from all of the proteins simultaneously.
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ment in performance is even more pronounced. This
demonstrates one of the important advantages of learning
a single peptide distance function on an entire protein
family.

Related work

Many different computational approaches have been sug-
gested for the protein-peptide binding prediction prob-
lem (see [24] for a recent review). These methods can be
roughly divided into three categories:

Motif based methods

Binding motifs represent important requirements needed
for binding, such as the presence and proper spacing of
certain amino acids within the peptide sequence. Predic-
tion of protein-peptide binding is usually performed as
motif searches [8,15]. The position specific scoring matrix
(PSSM) approach is a statistical extension of the motif
search methods, where a matrix represents the frequency
of every amino acid in every position along the peptide.
Peptide candidates can be assigned scores by summing up
the position specific weights. The RANKPEP resource [13]
uses this approach to predict peptide binding to MHC
class I and class I molecules.

Structure based methods

These methods predict binding affinity by evaluating the
binding energy of the protein-peptide complex [9]. These
methods can be applied only when the three-dimensional
structure of the protein-peptide complex is known or
when reliable molecular models can be obtained.

Machine learning methods

Many different learning algorithms have been suggested
for binding prediction. Among these are artificial neural
networks (NetMHC) [12], Hidden Markov Models
(HMM's) [10] and support vector machines (SVMHC)
[11]. To the best of our knowledge all of these methods
are trained separately for each protein (or supertype).
Therefore, these methods work well when sufficient
amounts of training data (i.e peptides which are known to
be binders or non-binders for a given protein) is provided.

Results

We evaluated the performance of our method on several
MHC class I and MHC class II datasets, and compared it
to various other prediction methods (see Methods for
details about these datasets). We begin with a thorough
comparison of our method to the recently enhanced
RANKPEP method [13] on MHC class I and class II data-
sets. In order to assess the importance of using experimen-
tally determined non-binders, we tested our method on
another MHC class I dataset collected from the MHCBN
repository. On this dataset we also compare our method
to various other MHC binding prediction methods.

MHC binding prediction on the MHCPEP dataset

We compared our method to the recently enhanced
RANKPEP method [13]. We replicated the exact experi-
mental setup described in [13]: (1) We used the exact
same MHC class I and class II datasets. (2) Training was
performed using 50% of the known binders for each of
the MHC molecules. (3) The remaining binding peptides
were used as test data to evaluate the algorithm's perform-
ance. These binders were tested against randomly gener-
ated peptides.

We trained DistBoost in two distinct scenarios: (1) Train-
ing using only binding peptides (using only positive con-
straints). (2) Training using both binding and (randomly
generated) non-binding peptides (using both positive and
negative constraints). In both scenarios DistBoost was
trained simultaneously on all of the MHC molecules in
each class. Fig. 4 presents a comparison of DistBoost to
both of the PSSM's used in [13]. on the H-2Kd MHC class
I molecule. Comparative results on the entire MHC class I
and class II datasets are presented in Figures 5 and 6,
respectively. In all these comparisons, the PSSM AUC
scores (See Methods for details) are as reported in [13].

On the MHC class I molecules, our method significantly
outperforms both PSSM's used by RANKPEP. On 21 out

H-2Kd
1 1
0.5 0.75
0.5

05 1 A B C D

Figure 4

Comparative results of DistBoost and RANKPEP on the H-
2Kd MHC class | molecule. The left plot presents ROC (see
Evaluation methods section for details) curves of the best
test score obtained when training on 50% of the entire data
(red: using only positive constraints; blue: using both types of
constraints). The intersection between the curves and the
diagonal line marks the equal error-rate statistic. The right
plot presents average AUC scores on test data. We compare
the two PSSM methods used by RANKPEP (A: PROFILE-
WEIGHT, B: BLK2PSSM) to DistBoost when trained using
only positive constraints (C) and when trained using both
positive and negative constraints (D). The averages were
taken over 10 different runs on randomly selected train and
test sets. N denotes the total number of binding peptides (of
which 50% were used in the training phase and the remaining
50% were used in the test phase). For a detailed comparison
see Figs. 5-6.
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Figure 5

Comparative results of DistBoost (left plot and bars C-D) and RANKPEP (bars A-B) on 24 MHC class | molecules. Plot legends
are identical to Fig 4. On 2| out of the 25 molecules (including Fig. 4), DistBoost outperforms both PSSM methods. On this data
the use of negative constraints also improves performance. For numerical comparison, see additional file I:

Pepdist_SupplementaryMaterials.ps, Table |.
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Figure 6

Comparative results of DistBoost (left plot and bars C-D) and RANKPEP (bars A-B) on 24 MHC class Il molecules. Plot legends
are identical to Fig 4. As may be seen, on |9 out of the 24 molecules, DistBoost outperforms both PSSM methods. On this data-
set the use of negative constraints only slightly improves performance. For numerical comparison, see additional file I:
Pepdist_SupplementaryMaterials.ps, Table 2.

Page 7 of 15

(page number not for citation purposes)



BMC Bioinformatics 2006, 7:S3

of the 25 molecules DistBoost's average AUC score, when
trained using only positive constraints, is higher than
both PSSM methods. The improvement in performance is
more pronounced on molecules with relatively small
amounts of known binders (e.g. HLA-B27(B*2704) - 10
binders, HLA-A2(A*0205) - 22 binders and HLA-
A33(A*3301) - 23 binders). One possible explanation of
these results is that the information provided by other
proteins within the protein family is used to enhance pre-
diction accuracy, especially in cases where only small
amounts of known binders exist. Additionally, it may be
seen that using both positive and negative constraints on
this dataset, usually improves the algorithm's perform-
ance. Another important advantage of DistBoost can be
seen when comparing standard deviations (std) of the
AUC scores. When DistBoost was trained using only posi-
tive constraints, on 13 out of the 25 molecules the algo-
rithm's std was lower than the std of both PSSM's. When
DistBoost was trained using both positive and negative
constraints, on 20 out of the 25 molecules the algorithm's
std was lower than the std of both PSSM's. These results
imply that our method is more robust.

When tested on the MHC class II molecules, our method
obtained similar improvements (see Fig. 6): On 19 out of
the 24 molecules DistBoost's average AUC score when
trained using only positive constraints is higher than both
PSSM methods. In general, it appears that the perform-
ance of all of the compared methods is lower than on the
MHC class I dataset. It is known that predicting binding
affinity on MHC class II is more challenging, partially due
to the fact that peptides that bind to class Il molecules are
extremely variable in length and share very limited
sequence similarity [25]. On this dataset, the use of both
positive and negative constraints improved DistBoost's
performance on only 11 out of 24 molecules.

MHC class I binding prediction on the MHCBN dataset
The MHCPEP dataset only contains information about
peptides that bind to various MHC molecules. In contrast,
the MHCBN dataset also contains information about
non-binding peptides for some MHC class I molecules.
We used this dataset to evaluate the importance of learn-
ing using experimentally determined non-binders (as
opposed to randomly generated non binders).

We compared DistBoost to various other computational
prediction methods on peptides that bind to the HLA-A2
supertype, collected from the MHCBN repository. Specifi-
cally, we compared the performance of the following
methods: (1) The DistBoost algorithm. (2) The SVMHC
web server [11]. (3) The NetMHC web server [12]. (4) The
RANKPEP resource [13] (5) The Euclidean distance metric

in R* Despite the fact that methods (2-4) are protein

specific, they also provide predictions on various MHC
supertypes including the HLA-A2 supertype.

We note that it is unclear whether the peptides collected
from the MHCBN repository are the HLA-A2 supertype
binders, or HLA-A*0201 binders which was named HLA-
A2 in the older HLA nomenclature. When we compared
our predictions to those of the SVMHC and NetMHC
methods on the HLA-A*0201, similar results were
obtained.

We trained DistBoost on 70% of the entire MHCclass1BN
data (including binding and non-binding peptides) and
compared its performance to all other methods on the
single HLA-A2 supertype. The test set, therefore, consists
of the remaining 30% of HLA-A2 data. The results are
shown in Fig. 7(a). As may be seen, DistBoost outperforms
all other methods, including SVMHC, NetMHC and
RANKPEP, which were trained on this specific supertype.
However, it is important to note, that unlike DistBoost, all
of these methods were trained using randomly generated
non-binders. The performance of all of these methods
when tested against random peptides is much better —
AUC scores of SVWMHC: 0.947, NetMHC: 0.93 and RANK-
PEP: 0.928. When DistBoost was trained and tested using
randomly generated non-binders it achieved an AUC
score of 0.976. Interestingly, when DistBoost was trained
using real non-binders and tested on randomly generated
non-binders it obtained an AUC score of 0.923. These
results seem to imply that learning using random non-
binders does not generalize well to experimentally deter-
mined non-binders. On the other hand, learning from
"real" non-binders generalizes very well to random non-
binders.

Our proposed method is trained simultaneously on a
number of proteins from the same family, unlike methods
(2-4). However, our final predictions are protein specific.
As the results reveal, we obtain high binding prediction
accuracy when tested on a single protein (see Fig. 7(a)). In
order to quantify the overall protein specific binding pre-
diction accuracy, we present ROC curves for DistBoost and
the Euclidean affinity functions when tested on the entire
MHCclass1BN dataset (Fig. 7(b)). The peptide-peptide
distance matrices and the protein-peptide affinity matri-
ces of these two methods are presented in Fig. 3. On this
dataset DistBoost obtained excellent performance.

In order to evaluate the stability and learning power of
DistBoost we ran it on the MHCclass1BN dataset, while var-
ying the percentage of training data. Fig. 8 presents the
algorithm's learning curves when trained using only posi-
tive constraints and when trained using both positive and
negative constraints. As may be expected, on average, per-
formance improves as the amount of training data
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(a) ROC curves on test data from the HLA-A2 supertype. DistBoost is compared to the following algorithms: the SYMHC web

server [11], the NetMHC web server [12], the RANKPEP resource [13] and the Euclidean distance metric in RY. (b) DistBoost
and the Euclidean affinity ROC curves on test data from the entire MHCclass|BN dataset. The rest of the methods are not
presented since they were not trained in this multi-protein scenario. In both cases, DistBoost was trained on 70% of the data

and tested on the remaining 30%. Results are best seen in color.

increases. Note that DistBoost achieves almost perfect per-
formance with relatively small amounts of training data.
Additionally, we can see that on this dataset learning from
both types of constraints dramatically improves perform-
ance.

The PepDist Webserver

Our proposed method is now publicly available through
the PepDist webserver, which can be found at http://
www.pepdist.cs.huji.ac.il. The current version provides
binding predictions of 9-mer peptides to 35 different
MHC class I alleles. The engine also supports multiple
peptide queries. We hope to enhance the webserver in the
near future to provide predictions for more MHC class I
alleles and also for MHC class II alleles.

Discussion and Conclusion

In this paper we proposed PepDist: a novel formulation of
the protein-peptide binding prediction problem that has
two foundations. The first is to predict binding affinity by
learning peptide-peptide distance functions. The second is
to learn a single distance function over an entire family of
proteins. Our formulation has several advantages over
existing computational approaches:

1. Our method also works well on proteins for which
small amounts of known binders are currently available.

2. Unlike standard binary classifiers, our method can be
trained on an entire protein family using only informa-
tion about binding peptides (i.e. without using real/ran-
domly generated non-binders).

3. Our method can compute the relative binding affinities
of a peptide to several proteins from the same protein
family.

In order to learn such distance functions we casted the
problem as a semi-supervised learning problem in which
equivalence constraints can be naturally obtained from
empirical data. Specifically, we used the DistBoost algo-
rithm, that learns distance functions using positive and
negative equivalence constraints. Our experiments suggest
that binding prediction based on such learned distance
functions exhibits excellent performance. It should be
noted that our proposed learning scheme can be also
implemented using other distance learning algorithms
and in our future work we also plan to further investigate
this idea. We also hope that the PepDist formulation will
allow addressing the more challenging task of peptide
ranking. One way of doing this is by incorporating infor-
mation about relative binding values into the distance
learning algorithm.

Our approach may also be useful for predicting some pro-

tein-protein interactions such as PDZ-protein complexes.
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Figure 8

Learning curves of DistBoost trained using only positive con-

straints (Pos) and using both types of constraints (Pos + Neg).
Prediction accuracy based on the AUC score, averaged over
20 different randomly selected training sets.

The PDZ domains are frequently occurring interaction
domains involved in organizing signal transduction com-
plexes and attaching proteins to the cytoskeleton [26]. In
most cases, this is accomplished by specific recognition of
the ligands' carboxyl termini (or regions "mimicking" the
structure of a carboxyl terminal). Therefore, predicting
whether a protein binds to a specific PDZ domain, can be
cast as protein-peptide prediction problem where the
"peptide" is the short linear sequence (4 - 6 amino acids
long) lying at the protein's C-terminal. We are currently
examining the feasibility of using the PepDist framework
for this application.

Our novel formulation of the protein-peptide binding
prediction problem and the results obtained suggest two
interesting conclusions: The first is that learning a single
distance function over an entire family of proteins
achieves higher prediction accuracy than learning a set of
binary classifiers for each of the proteins separately. This
effect is even more pronounced on proteins for which
only small amounts of binders and non-binders are cur-
rently available. The second interesting conclusion, is the
importance of obtaining information on experimentally
determined non-binders. These non-binders (as opposed
to randomly generated non-binders) are usually some-
what similar to known binders, since they were in many
cases suspected to be binders. Our results on the MHCBN
dataset show that learning with real non-binders general-
izes better than learning with randomly generated pep-
tides that are assumed to be non-binders. This suggests
that information about non-binding peptides should also
be published and made publicly available.

Methods

The DistBoost Algorithm

Our peptide-peptide distance functions are learned using
the DistBoost algorithm. DistBoost is a semi-supervised
learning technique that learns a distance function using
unlabeled data points and equivalence constraints.

Notations
Let us denote by {x; }?=1 the set of input data points

which belong to some vector space X . The space of all
pairs of points in X is called the "product space" and is
denoted by XxX. An equivalence constraint is denoted
by (x;1, X, ¥;) where y;= 1 if points (x;;, x;,) belong to the
same class (positive constraint) and y; = -1 if these points
belong to different classes (negative constraint). (x;;, X;,,*)
denotes an unlabeled pair. The DistBoost algorithm learns
a bounded distance function, D: Xx X — [0,1] , that

maps each pair of points to a real number in [0,1].

Algorithm description

The algorithm makes use of the observation that equiva-
lence constraints on points in X are binary labels in the
product space, XxX . By posing the problem in product
space we obtain a classical binary classification problem:
an optimal classifier should assign +1 to all pairs of points
that come from the same class, and -1 to all pairs of points
that come from different classes. This binary classification
problem can be solved using traditional margin based
classification techniques. Note, however, that in many
real world problems, we are only provided with a sparse
set of equivalence constraints and therefore the margin
based binary classification problem is semi-supervised.

DistBoost learns a distance function using a well known
machine learning technique, called Boosting [27,28]. In
Boosting, a set of "weak" learners are iteratively trained
and then linearly combined to produce a "strong" learner.
Specifically, DistBoost's weak learner is based on the con-
strained Expectation Maximization (cEM) algorithm [29].
The cEM algorithm is used to generate a "weak" distance
function. The final ("strong") distance function is a
weighted sum of a set of such "weak" distance functions.
The algorithm is presented in Fig. 9 and illustrated in Fig.
10.

In order to make use of unlabeled data points, DistBoost's
weak learner is trained in the original space, X, and is
then used to generate a "weak distance function" on the
product space. DistBoost uses an augmentation of the
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Input:
Data points: (x1,...,2,), xx € X
A set of equivalence constraints: (z;,,zi,,¥:), where y; € {—1,1}
Unlabeled pairs of points: (z;,,%i,,y; = *), implicitly defined by all uncon-

strained pairs of points

e Initialize WilliQ =1/(n?) i1,ia = 1,...,n (weights over pairs of points)
wp =1/n k=1,...,n (weights over data points)

e Fort=1,..,T
1. Fit a constrained GMM (weak learner) on weighted data points in X using
the equivalence constraints.

2. Generate a weak hypothesis h; : X x X — [—1,1] and define a weak
distance function as h¢(zs, ;) = % (1 — Bt(mi,xj)) € [0,1]

3. Compute ry = > Wflizyiizt (i, ,Tiy ), only over labeled pairs.
(Tiy Tig,yi==%1)
Accept the current hypothesis only if r; > 0.

1+
)

4. Choose the hypothesis weight a: = % In(
5. Update the weights of all points in X x X as follows:

1192 t L
Wiliz exp(_at) Yy = *
t+1
6. Normalize: Witl = — _f1t2
b1tz S witl
. n 1119
i1,i9=1

7. Translate the weights from X x X to X: w} " = Zj Wlijl

Output: A final distance function D(x;, ;) = 31—, ache(zs, ;)

Figure 9
The DistBoost Algorithm.

'Adaboost with confidence intervals' algorithm [27] to T
incorporate unlabeled data into the boosting process. searches for a hypothesis D( Xj, 1 Xi, ) = zatht(xilrxiz)

More specifically, given a partially labeled dataset t=1
N which minimizes the following loss function:

{(xil,xiz,yi)} . where y; € {1, -1,*}, the algorithm

i=
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exp| —y; D x; xj, (2)
{ilyi=1-1} ( ( ))

Note that this semi-supervised boosting scheme computes
the weighted loss only on labeled pairs of points but
updates the weights over all pairs of points (see Figure 9
steps (3-6)). The unlabeled points effectively constrain
the parameter space of the weak learner, giving priority to
hypotheses which both comply with the pairwise con-
straints and with the data's density. Since the weak
learner's task becomes harder in later boosting rounds, the
boosting algorithm gradually reduces the weights of the
unlabeled pairs (see Figure 9 step (5)). While the weak
learner accepts a distribution over the points in the origi-
nal space X, the boosting process described above gener-
ates a distribution over pairs of points that belong to the
product space XXX . The distribution over the product
space is converted to a distribution over the sample points
by simple marginalization (see Figure 9 step (7) of the
algorithm). The translation from the original input space
into product space is introduced in step (2) of the algo-
rithm and is further discussed below.

DistBoost's weak learner

DistBoost's weak learner is based on the constrained Expec-
tation Maximization (cEM) algorithm [29]. The algorithm
uses unlabeled data points and a set of equivalence con-
straints to find a Gaussian Mixture Model (GMM) that
complies with these constraints. A GMM is a parametric
statistical model which is given by

p( x|®) = 2;\11”117( x|01 ) , where 7z;denotes the weight of

each Gaussian, ¢ its parameters, and M denotes the

number of Gaussian sources in the GMM. Estimating the
parameters ( ® ) of a GMM is usually done using the well
known EM algorithm [30]. The cEM algorithm introduces
equivalence constraints by modifying the 'E' (Expecta-
tion) step of the algorithm: instead of summing over all
possible assignments of data points to sources, the expec-
tation is taken only over assignments which comply with
the given equivalence constraints.

The cEM algorithm's input is a set of unlabeled points
X ={x }?:1, and a set of pairwise constraints, Q, over

Ny

these points. Denote positive constraints by {( p} , p]2 )}
j=1

NTI
and negative constraints by {(n;lg,n;%)} . Let
k=1

H={h }?:1 denote the hidden assignment of each data

point x; to one of the Gaussian sources (h; € {1,..., M}).

The constrained EM algorithm assumes the following
joint distribution of the observables X and the hiddens H:

p(X H|O,Q)=
L1, (|0 )All{a Ha-s, )  (3)
= X -
7 i TP\ i[O i hp} hp}2 el LR

where Z is the normalizing factor and g; is Kronecker's
delta. The algorithm seeks to maximize the data likeli-
hood, which is the marginal distribution of (3) with
respect to H. For a more detailed description of this weak

learner see [29].

In order to use the algorithm as a weak learner in our
boosting scheme, we modified the algorithm to incorpo-
rate weights over the data samples. These weights are pro-
vided by the boosting process in each round (see Fig. 9
step 7).

Generating a weak distance function using a GMM

The weak learners' task is to provide a weak distance func-

tion hy(x; x;) over the product space XXX . Let us Denote

by MAP(x;) the Maximum A-Posteriori assignment of

point x; and by pMAP(x;) the MAP probability of this point:

pMAP (x;) = max p(h; =m|x;,©). We partition the data
m

into M groups using the MAP assignment of the points
and define
X

+p X]

—pMAP(xi)-pMAP(xj) ifMAP(xi);tMAP(xj)

MAP ),pMAP( ) ifMAP(xi):MAP(xj)

l’;t ( xi , x] ) =
The weak distance function is given by

ht(xi,xj):%(l—ﬁt(xi,xj))e[0,1] (4)

It is easy to see that if the MAP assignment of two points
is identical their distance will be in [0, 0.5] and if their
MAP assignment is different their distance will be in [0.5,
1].

Datasets
The first two datasets we compiled (MHCclass1 and
MHCclass2) were the same as those described in [13]. Fol-
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The DistBoost algorithm

Fort=1,...,T

(2) Generate “weak”

Input: weighted (1) Learn constrained
data-points + GMM
eq. constraints
o 9
® o — —
3
4
(5}
(6 .
7 (7) Translate weights
® ® on pairs to weights
on data points

distance function

h,(x,,x,)=0.1

(X5,%5)=0.7

(3-4) Compute “weak”
distance function
weight a,

(5-6) Update weights
on pairs of points

Final distance function: D(xl., xj) = Z; Oltht (xl., xj)

Figure 10

An illustration of the DistBoost algorithm. At each boosting round t the weak learner is trained using weighted input
points and some equivalence constraints. In the example above, points |, 2 and 5, 6 are negatively constrained (belong to differ-
ent classes) and points 3, 4 and 4, 7 are positively constrained (belong to the same class). All other pairs of points (e.g. 8, 9 and
I, 4) are unconstrained. The constrained EM algorithm is used to learn a GMM (step (I)). This GMM is then used to generate a
"weak" distance function (step (2)) that assigns a value in [0, 1] to each pair of points. The distance function is assigned a hypo-
thesis weight (steps (3—4)) which corresponds to its success in satisfying the current weighted constraints. The weights of the
equivalence constraints are updated (steps (5-6)) — increasing the weights of constraints that were unsatisfied by the current
weak learner. Finally, the weights on pairs are translated to weights on data points (step (7)). In the example above, the dis-
tance between the negatively constrained points I, 2 is small (0.1) and therefore the weight of this constraint will be enhanced.

lowing the works of [8,9,13] we considered peptides with
a fixed sequence length of 9 amino acids. Sequences of
peptides, that bind to MHC class I or class II molecules,
were collected from the MHCPEP dataset [31]. Each entry
in the MHCPEP dataset contains the peptide sequence, its
MHC specificity and, where available, observed activity
and binding affinity. Peptides, that are classified as low
binders or contain undetermined residues (denoted by
the letter code X), were excluded. We then grouped all 9
amino acid long peptides (9-mers), that bind to MHC
class I molecules, to a dataset, called MHCclass1. This
dataset consists of binding peptides for 25 different MHC
class I molecules (see additional file 1:
Pepdist_SupplementaryMaterials.ps, Table 3).

Unlike MHC class I binding peptides, peptides binding to
MHC class II molecules display a great variability in
length, although only a peptide core of 9 residues fits into

the binding groove. Following [13], we first used the
MEME program [32] to align the binding peptides for
each molecule, based on a single 9 residues motif. We
finally filtered out redundant peptides and obtained the
MHCclass2 dataset. This dataset consists of binding pep-
tides for 24 different MHC class II molecules (see addi-
tional file 1: Pepdist_SupplementaryMaterials.ps, Table 4).

Since all peptides in the MHCPEP dataset are binders, we
added randomly generated peptides as non-binders to
both MHCclass1 and MHCclass2 datasets (amino acid fre-
quencies as in the Swiss-Prot database). The number of
non-binders used in any test set was twice the number of
the binding peptides. During the training phase, the
number of non-binders was the same as the number of
binders. In order to assess the performance of the predic-
tion algorithms on experimentally determined non-bind-
ers, we compiled a third dataset, called MHCclass1BN.
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This dataset consists of binding and non-binding pep-
tides, for 8 different MHC class I molecules, based on the
MHCBN 3.1 website [33] (see additional file 1:
Pepdist_SupplementaryMaterials.ps, Table 5).

Data representation

DistBoost requires that the data be represented in some
continuous vector feature space. Following [23] each
amino acid was encoded using a 5-dimensional property
vector. Therefore, each peptide in the MHC datasets is a

point in R*> . The property vectors for each of the 20
amino acids are based on multidimensional scaling of
237 physical-chemical properties. Venkatarajan and
Braun's analysis [23] showed that these 5 properties corre-
late well with hydrophobicity, size, a-helix preference,
number of degenerate triplet codons and the frequency of
occurrence of amino acid residues in #strands. They also
showed that the distances between pairs of amino-acids in
the 5-dimensional property space are highly correlated
with corresponding scores from similarity matrices
derived from sequence and 3D structure comparisons.

Evaluation methods

In order to evaluate the algorithms' performance, we
measured the affinity of all test peptides to each of the
proteins. We present the prediction accuracy (that is how
well binders are distinguished from non-binders) of the
various algorithms as ROC (Receiver Operating Charac-
teristic) curves. The X-axis represents the percentage of
"false alarms" which is FP/(FP + TN) (where FP denotes
False Positives, and TN denotes True Negatives). The Y-
axis represents the percentage of "hits" which is TP/(TP +
FN) (where TP denotes True Positives and FN denotes
False Negatives). The fraction of the area under the curve
(AUC) is indicative of the distinguishing power of the
algorithm and is used as its prediction accuracy.
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standard deviations obtained by RANKPEP and DistBoost on MHC class
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obtained by RANKPEP and DistBoost on MHC class II molecules. 3.
Tables 3, 4, 5, describe the 3 datasets used in the paper.
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Chapter 7

Analyzing Auditory Neurons by L earning

Distance Functions

This chapter includes the following publications:

[F] Inna Weiner, Tomer Hertz, Israel Nelken and Daphna Weinshall, Analyzing Auditory Neurons
by Learning Distance Functions, in the 19th International Conference on Neural Information

Processing Systems (NIPS), Vancouver, Canada, December 2005.
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Abstract

We present a novel approach to the characterization of complex sensory
neurons. One of the main goals of characterizing sensory neurons is
to characterize dimensions in stimulus space to which the neurons are
highly sensitive (causing large gradients in the neural responses) or al-
ternatively dimensions in stimulus space to which the neuronal response
are invariant (defining iso-response manifolds). We formulate this prob-
lem as that of learning a geometry on stimulus space that is compatible
with the neural responses: the distance between stimuli should be large
when the responses they evoke are very different, and small when the re-
sponses they evoke are similar. Here we show how to successfully train
such distance functions using rather limited amount of information. The
data consisted of the responses of neurons in primary auditory cortex
(A1) of anesthetized cats to 32 stimuli derived from natural sounds. For
each neuron, a subset of all pairs of stimuli was selected such that the
responses of the two stimuli in a pair were either very similar or very
dissimilar. The distance function was trained to fit these constraints. The
resulting distance functions generalized to predict the distances between
the responses of atest stimulus and the trained stimuli.

1 Introduction

A major challengein auditory neuroscience isto understand how cortical neurons represent
the acoustic environment. Neural responses to complex sounds are idiosyncratic, and small
perturbations in the stimuli may give rise to large changes in the responses. Furthermore,
different neurons, even with similar frequency response areas, may respond very differently
to the same set of stimuli. The dominant approach to the functional characterization of
Sensory neurons attempts to predict the response of the cortical neuron to anovel stimulus.
Prediction is usually estimated from a set of known responses of a given neuron to a set of
stimuli (sounds). The most popular approach computes the spectrotemporal receptive field
(STRF) of each neuron, and usesthis linear model to predict neuronal responses. However,
STRFs have been recently shown to have low predictive power [10, 14].

In this paper we take a different approach to the characterization of auditory cortical neu-
rons. Our approach attempts to learn the non-linear warping of stimulus space that isin-



duced by the neuronal responses. This approach is motivated by our previous observations
[3] that different neurons impose different partitions of the stimulus space, which are not
necessarily simply related to the spectro-temporal structure of the stimuli. More specifi-
cally, we characterize a neuron by learning a pairwise distance function over the stimulus
domain that will be consistent with the similarities between the responsesto different stim-
uli, see Section 2. Intuitively a good distance function would assign small values to pairs
of stimuli that elicit a similar neuronal response, and large values to pairs of stimuli that
eicit different neuronal responses.

This approach has a number of potential advantages: First, it allows us to aggregate infor-
mation from anumber of neurons, in order to learn agood distance function even when the
number of known stimuli responses per neuron is small, which is atypica concern in the
domain of neuronal characterization. Second, unlike most functional characterizations that
are limited to linear or weakly non-linear models, distance learning can approximate func-
tionsthat are highly non-linear. Finally, we explicitly learn adistance function on stimulus
space; by examining the properties of such afunction, it may be possible to determine the
stimulus features that most strongly influence the responses of a cortical neuron. While
thisinformation is also implicitly incorporated into functional characterizations such asthe
STREF, it is much more explicit in our new formulation.

In this paper we therefore focus on two questions. (1) Can we learn distance functions
over the stimulus domain for single cells using information extracted from their neuronal
responses?? and (2) What is the predictive power of these cell specific distance functions
when presented with novel stimuli? In order to address these questions we used extracellu-
lar recordings from 22 cells in the auditory cortex of catsin response to natural bird chirps
and some modified versions of these chirps[1]. To estimate the distance between responses,
we used a normalized distance measure between the peri-stimulus time histograms of the
responses to the different stimuli.

Our results, described in Section 4, show that we can learn compatible distance functionson
the stimulus domain with relatively low training errors. Thisresult isinteresting by itself as
apossible characterization of cortical auditory neurons, agoal which eluded many previous
studies [3]. Using cross validation, we measure the test error (or predictive power) of
our method, and report generalization power which is significantly higher than previously
reported for natural stimuli [10]. We then show that performance can be further improved
by learning adistance function using information from pairs of related neurons. Finally, we
show better generalization performance for wide-band stimuli as compared to narrow-band
stimuli. These latter two contributions may have some interesting biological implications
regarding the nature of the computations done by auditory cortical neurons.

Related work Recently, considerable attention has been focused on spectrotemporal re-
ceptive fields (STRFs) as characterizations of the function of auditory cortical neurons
[8, 4,2, 11, 16]. The STRF model is appealing in several respects: it is a conceptu-
ally simple model that provides a linear description of the neuron’s behavior. It can be
interpreted both as providing the neuron’s most efficient stimulus (in the time-frequency
domain), and also as the spectro-temporal impulse response of the neuron [10, 12]. Finaly,
STRFs can be efficiently estimated using simple algebraic techniques.

However, while there were initial hopes that STRFs would uncover relatively complex
response properties of cortical neurons, several recent reports of large sets of STRFs of
cortical neurons concluded that most STRFs are somewhat too simple [5], and that STRFs
are typically rather sluggish in time, therefore missing the highly precise synchronization
of some cortical neurons [11]. Furthermore, when STRFs are used to predict neuronal
responses to natural stimuli they often fail to predict the correct responses [10, 6]. For
example, in Machens et a. only 11% of the response power could be predicted by STRFs
on average [10]. Similar results were also reported in [14], who found that STRF models
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account for only 18 — 40% (on average) of the stimulus related power in auditory cortical
neural responses to dynamic random chord stimuli. Various other studies have shown that
there are significant and relevant non-linearities in auditory cortical responses to natural
stimuli [13, 1, 9, 10]. Using natural sounds, Bar-Yosef et. a [1] have shown that auditory
neurons are extremely sensitive to small perturbations in the (natural) acoustic context.
Clearly, these non-linearities cannot be sufficiently explained using linear models such as
the STRF.

2 Formalizing the problem as a distance learning problem

Our approach isbased on theidea of learning a cell-specific distance function over the space
of al possible stimuli, relying on partia information extracted from the neuronal responses
of the cell. Theinitial data consists of stimuli and the resulting neural responses. We use
the neuronal responses to identify pairs of stimuli to which the neuron responded similarly
and pairs to which the neuron responded very differently. These pairs can be formally
described by equivalence constraints. Equivalence constraints are relations between pairs
of datapoints, which indicate whether the points in the pair belong to the same category or
not. We term a constraint positive when they points are known to originate from the same
class, and negative belong to different classes. In this setting the goal of the algorithm isto
learn a distance function that attempts to comply with the equivalence constraints.

This formalism allows us to combine information from a number of cells to improve
the resulting characterization. Specifically, we combine equivalence constraints gathered
from pairs of cells which have similar responses, and train a single distance function for
both cells. Our results demonstrate that this approach improves prediction results of the
“weaker” cell, and amost always improves the result of the “stronger” cell in each pair.
Another interesting result of this formalism is the ability to classify stimuli based on the
responses of the total recorded cortical cell ensemble. For some stimuli, the predictive
performance based on the learned inter-stimuli distance was very good, whereas for other
stimuli it was rather poor. These differences were correlated with the acoustic structure of
the stimuli, partitioning them into narrowband and wideband stimuli.

3 Methods

Experimental setup Extracellular recordings were made in primary auditory cortex of
nine halothane-anesthetized cats. Anesthesia was induced by ketamine and xylazine and
maintained with halothane (0.25-1.5%) in 70% N>O using standard protocols authorized
by the committee for animal care and ethics of the Hebrew University - Haddasah Medical
School. Single neurons were recorded using metal microelectrodes and an online spike
sorter (MSD, apha-omega). All neuronswere well separated. Penetrationswere performed
over the whole dorso-ventral extent of the appropriate frequency slab (between about 2 and
8 kHz). Stimuli were presented 20 times using sealed, calibrated earphones at 60-80 dB
SPL, at the preferred aurality of the neurons as determined using broad-band noise bursts.
Sounds were taken from the Cornell Laboratory of Ornithology and have been selected
asin [1]. Four stimuli, each of length 60-100 ms, consisted of a main tonal component
with frequency and amplitude modulation and of a background noise consisting of echoes
and unrelated components. Each of these stimuli was further modified by separating the
main tonal component from the noise, and by further separating the noise into echoes and
background. All possible combinations of these components were used here, in addition
to a stylized artificial version that lacked the amplitude modulation of the natural sound.
In total, 8 versions of each stimulus were used, and therefore each neuron had a dataset
consisting of 32 datapoints. For more detailed methods, see Bar-Yosef et al. [1].
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Data representation We used the first 60 ms of each stimulus. Each stimulus was rep-
resented using the first d real Cepstral coefficients. The real Cepstrum of a signal « was
calculated by taking the natural logarithm of magnitude of the Fourier transform of x and
then computing the inverse Fourier transform of the resulting sequence. In our experiments
we used thefirst 21-30 coefficients. Neuronal responses were represented by creating Peri-
Stimulus Time Histograms (PSTHS) using 20 repetitions recorded for each stimuli. Re-
sponse duration was 100 ms.

Obtaining equivalence constraintsover stimuli pairs The distances between responses
were measured using anormalized x? distance measure. All responses to both stimuli (40
responsesin total) were superimposed to generate asingle high-resolution PSTH. Then, this
PSTH was non-uniformly binned so that each bin contained at least 10 spikes. The same
bins were then used to generate the PSTHSs of the responses to the two stimuli separately.
For similar responses, we would expect that on average each bin in these histograms would
contain 5 spikes. Formally, let N denote the number of binsin each histogram, and let ri %
denote the number of spikesin the i’th bin in each of the two histograms respectively. The

distance between pairs of histogramsis given by: x2(ri,r3) = 1 | ((Tﬁtrﬂ%i/(N —1).
1 2

In order to identify pairs (or small groups) of similar responses, we computed the normal-
ized y? distance matrix over all pairsof responses, and used the compl ete-linkage al gorithm
to cluster the responsesinto 8 — 12 clusters. All of the pointsin each cluster were marked
as similar to one another, thus providing positive equival ence constraints. In order to obtain
negative eguivalence constraints, for each cluster ¢; we used the 2 — 3 furthest clustersfrom
it to define negative constraints. All pairs, composed of apoint from cluster ¢; and another
point from these distant clusters, were used as negative constraints.

Distance learning method In this paper, we use the DistBoost algorithm [7], which is
a semi-supervised boosting learning algorithm that learns a distance function using unla-
beled datapoints and equivalence constraints. The algorithm boosts weak learners which
are soft partitions of the input space, that are computed using the constrained Expectation-
Maximization (CEM) algorithm [15]. The DistBoost algorithm, which is briefly summa-
rized in 1, has been previously used in several different applications and has been shown
to perform well [7, 17].

Evaluation methods In order to evaluate the quality of the learned distance function,
we measured the correlation between the distances computed by our distance learning a-
gorithm to those induced by the x? distance over the responses. For each stimulus we
mesasured the distances to all other stimuli using the learnt distance function. We then com-
puted the rank-order (Spearman) correlation coefficient between these learnt distances in
the stimulus domain and the x2 distances between the appropriate responses. This proce-
dure produced a single correlation coefficient for each of the 32 stimuli, and the average
correlation coefficient across al stimuli was used as the overall performance measure.

Parameter selection The following parameters of the DistBoost algorithm can be fine-
tuned: (1) the input dimensionality d = 21-30, (2) the number of Gaussian models in
each weak learner M = 2-4, (3) the number of clusters used to extract equivalence con-
straints C' = 8-12, and (4) the number of distant clusters used to define negative constraints
numAnti = 2-3. Optimal parameters were determined separately for each of the 22 cells,
based solely on the training data. Specifically, in the cross-validation testing we used a
validation paradigm: Using the 31 training stimuli, we removed an additional datapoint
and trained our algorithm on the remaining 30 points. We then validated its performance
using the left out datapoint. The optimal cell specific parameters were determined using
this approach.
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Algorithm 1 The DistBoost Algorithm
Input:

Datapoints. (z1,...,Zn), T € X
A set of equivalence constraints. (i, , ©i,, yi), Wherey; € {—1,1}
Unlabeled pairsof points: (z,, iy, yi = *), implicitly defined by al unconstrained pairs of points

. Initia\lizeV[/'illi2 =1/(n?) 41,42 = 1,...,n (weights over pairs of points)
wi =1/n k=1,..., n (weights over data points)
o Fort=1,..,T
1. Fitaconstrained GMM (weak learner) on weighted data pointsin X" using the equivalence constraints.
2. Generate a wesk hypothesis b, : X x X — [—1,1] and define a weak distance function as

hi(wi, ;) = & (1 - ;Lt(:l;i,a;j)) €[0,1]

3. Compute ry = > Witlizy,,h,,(.m1 , Tiy ), ONly over labeled pairs. Accept the current
(@1 @iy y;=%1)
hypothesisonly if r > 0.

147y
1—r¢

4. Choose the hypothesisweight iy = 2 In(
5. Update the weights of all pointsin X x X asfollows:

t41 _{ W, exp(—awyihi(wiy, iy))  yi € {~1,1}

Tl ;
vz Wili2 exp(—ay) Yy = *
; t+1 WZ;;;
6. Normaize W'~ = —f—12——
12 > wit!
ip.ig=1 ‘1'2

7. Trandatetheweightsfrom X' x X to X1 wy ™! = 32, wit!

Output: A find distance function D(z;, z;) = 7, arhe(ws, x5)

4 Results

Cell-specific distance functions  We begin our analysis with an evaluation of the fitting
power of the method, by training with the entire set of 32 stimuli (see Fig. 1). In gen-
eral almost al of the correlation values are positive and they are quite high. The average
correlation over all cellsis 0.58 with ste = 0.023.

In order to evaluate the generalization potential of our approach, we used a L eave-One-
Out (LOU) cross-validation paradigm. In each run, we removed a single stimulus from the
dataset, trained our algorithm on the remaining 31 stimuli, and then tested its performance
on the datapoint that wasleft out (see Fig. 3). In each histogram we plot thetest correlations
of asingle cell, obtained when using the LOU paradigm over all of the 32 stimuli. Ascan
be seen, on some cells our agorithm obtains correlations that are as high as 0.41, while
for other cellsthe average test correlation islessthen 0.1. The average correlation over all
cellsis0.26 with ste = 0.019.

Not surprisingly, the train results (Fig. 1) are better than the test results (Fig. 3). Inter-
estingly, however, we found that there was a significant correlation between the training
performance and the test performance C' = 0.57, p < 0.05 (see Fig. 2, | eft).

Boosting the performance of weak cells In order to boost the performance of cellswith
low average correlations, we constructed the following experiment: We clustered the re-
sponses of each cell, using the complete-linkage algorithm over the x2 distances with 4
clusters. We then used the F% score that evaluates how well two clustering partitions are

in agreement with one another (F, = 257, where P denotes precision and R denotes

recall.). This measure was used to identify pairs of cells whose partition of the stimuli
was most similar to each other. In our experiment we took the four cells with the lowest
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Figure 1. Left: Histogram of train rank-order correlations on the entire ensemble of cells. The
rank-order correlations were computed between the learnt distances and the distances between the
recorded responses for each single stimulus (V = 22 * 32). Center: train correlations for a“strong”
cell. Right: train correlations for a“weak” cell. Dotted lines represent average val ues.
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Figure 2: Left: Trainvs. test cell specific correlations. Each point marksthe average correlation of a
single cell. The correlation between train and test is0.57 with p = 0.05. The distribution of train and
test correlationsis displayed as histograms on the top and on the right respectively. Right: Test rank-
order correlations when training using constraints extracted from each cell separately, and when using
the intersection of the constraints extracted from a pair of cells. This procedure always improves the
performance of the weaker cell, and usually also improves the performance of the stronger cell

performance (right column of Fig 3), and for each of them used the F1 scoreto retrieve the
most similar cell. For each of these pairs, we trained our algorithm once more, using the
congtraints obtained by intersecting the constraints derived from the two cells in the pair,
in the LOU paradigm. The results can be seen on the right plot in Fig 2. On all four cells,
this procedure improved LOUT test results. Interestingly and counter-intuitively, when
training the better performing cell in each pair using the intersection of its constraints with
those from the poorly performing cell, results deteriorated only for one of the four better
performing cells.

Stimulus classification The cross-validation results induced a partition of the stimulus
space into narrowband and wideband stimuli. We measured the predictability of each stim-
ulus by averaging the LOU test results obtained for the stimulus across al cells (see Fig. 4).
Our analysis shows that wideband stimuli are more predictable than narrowband stimuli,
despite the fact that the neuronal responses to these two groups are not different asawhole.
Whereas the non-linearity in the interactions between narrowband and wideband stimuli
has already been noted before [9], here we further refine this observation by demonstrating
asignificant difference between the behavior of narrow and wideband stimuli with respect
to the predictability of the similarity between their responses.

5 Discussion

In the standard approach to auditory modeling, alinear or weakly non-linear model isfitted
to the data, and neuronal properties are read from the resulting model. The usefulness of
this approach is limited however by the weak predictability of Al responses when using
such models. In order to overcome this limitation, we reformulated the problem of char-
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Figure 3: Histograms of cell specific test rank-order correlations for the 22 cellsin the dataset. The
rank-order correlations compare the predicted distances to the distances between the recorded re-
sponses, measured on a single stimulus which was | eft out during the training stage. For visualization
purposes, cells are ordered (columns) by their average test correlation per stimulus in descending
order. Negative correlations are in yellow, positive in blue.

acterizing neuronal responses of highly non-linear neurons. We use the neural data as a
guide for training a highly non-linear distance function on stimulus space, which is com-
patible with the neural responses. The main result of this paper is the demonstration of the
feasibility of this approach.

Two further results underscore the usefulness of the new formulation. First, we demon-
strated that we can improve the test performance of a distance function by using constraints
on the similarity or dissimilarity between stimuli derived from the responses of multiple
neurons. Whereas we expected this manipulation to improve the test performance of the
algorithm on the responses of neurons that were initially poorly predicted, we found that it
actually improved the performance of the algorithm also on neurons that were rather well
predicted, athough we paired them with neurons that were poorly predicted. Thus, it is
possible that intersecting constraints derived from multiple neurons uncover regularities
that are hard to extract from individual neurons.

Second, it turned out that some stimuli consistently behaved better than others across the
neuronal population. This difference was correlated with the acoustic structure of the stim-
uli: those stimuli that contained the weak background component (wideband stimuli) were
generally predicted better. This result is surprising both because background component
is substantially weaker than the other acoustic components in the stimuli (by as much as
35-40 dB). It may mean that the relationships between physical structure (as characterized
by the Cepstral parameters) and the neuronal responses becomes simpler in the presence
of the background component, but is much more idiosyncratic when this component is ab-
sent. This result underscores the importance of interactions between narrow and wideband
stimuli for understanding the complexity of cortical processing.

The algorithm is fast enough to be used in near real-time. It can therefore be used to guide
real experiments. One major problem during an experiment is that of stimulus selection:
choosing the best set of stimuli for characterizing the responses of a neuron. The distance
functions trained here can be used to direct this process. For example, they can be used to
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Figure 4. Left: spectrograms of input stimuli, which are four different versions of a single natural
bird chirp. Right: Stimuli specific correlation values averaged over the entire ensemble of cells. The
predictability of wideband stimuli is clearly better than that of the narrowband stimuli.

find surprising stimuli: either stimuli that are very different in terms of physical structure
but that would result in responses that are similar to those already measured, or stimuli that
are very similar to already tested stimuli but that are predicted to give rise to very different

responses.
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Chapter 8

Epilogue

In this thesis we have presented algorithms for learning distance functions and considered various applications of
these algorithms in awide variety of application domainsincluding data clustering, image retrieval, data classifica-
tion, prediction of immunol ogical interactions and the analysis of neuronal datarecordings. The main contributions

of this thesis can be summarized as follows:
e Distance L earning Algorithms We present three novel distance learning algorithms:

1. Relevant Component Analysis (RCA) - a Mahalanobis metric learning algorithm which is trained
using positive equivalence constraints. This algorithm can be derived both from an information theo-
retic criterion and from a maximum-likelihood criterion under Gaussian assumptions. The algorithm

isvery efficient and its computation only requires a single matrix inversion.

2. DistBoost - a boosting based algorithm for learning non-linear distance functions which is trained
using both positive and negative equivalence constraints. The algorithm can be shown to learn highly

non-linear distance functions via a semi-supervised boosting over product-space hypotheses.

3. KernelBoost - a variant of the DistBoost algorithm which can learn kernel functions that can be used
in any kernel-based classifier. The kernels can be learned using very small sample sizes and can aso
naturally be used in a learning-to-learn scenario in which information among related classes can be

transferred or shared.

e Applications of Distance learning Using the above three algorithms, we present their applications in the

following application domains:
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— Data clustering - we show that learning a distance function can significantly improve the performance
of various clustering algorithms which are distance based such as the average-linkage algorithm. Im-

provements in clustering are shown for both the RCA agorithm and the DistBoost algorithm.

— Imageretrieval - We show that asimilarity based image retrieval system can be significantly improved
by learning the similarity function with which it comparesimage pairs. Using very simple and standard
feature representations of images we show that both for facial images and for images from a database
of animal images collected from the web, both the RCA and DistBoost algorithm can be used to obtain
retrieval results which are superior to standard canonical distance functions such as the Euclidean

distance.

— Data classification - We show that the KernelBoost algorithm can be used to learn kernels that outper-
form standard off-the-shelf kernels when trained on very small samples consisting of 3 — 10 datapoints
from each class. Thisis obtained by training a kernel function for the two classes with small amounts
of datausing alearning-to-learn scenario in which training datafrom related classesisaso used in the

training process.

— Predicting protein-peptide binding in the immune system - We suggest formalizing the problem of
predicting whether Major Histocompatability Complex (MHC) proteins will bind to a set of peptides
as a distance learning problem. More specifically we show that a distance function between peptides
can be used to predict whether they will bind to a specific protein. We suggest training asingle distance
function over afamily of related proteins. Thisenablestransfer of information between related classes,
which results in significant performance enhancement over previously suggested methods that are
separately trained for each MHC protein.

We have also recently shown that this approach can be used to classify MHC proteinsinto Supertypes
- sets of proteins which are known to bind to similar peptides (Hertz and Yanover, 2006a). Using
this approach we suggest two different ways of learning distance functions between MHC proteins - a
peptide-based approach and a protein-based approach. Comparison with experimental classification of
proteins into supertypes showsthat our method can compete very successfully with previous supertype

classifications.

— Analysis of neuronal data - We suggest a novel approach to the characterization of neuronal data

recordings which is based on learning a distance function over the input space that is trained using

123



information about the neuron’s responses to the input stimuli. This distance function can then be used
to predict whether the response to a novel input stimuli is similar to the responses to other stimuli
which have been previously presented to the neuron. Thisnovel approach shows promising results and
we hope that in the future we will be able to incorporate it as a useful tool to guide neuronal recording
experiments, where the algorithm will be trained in real-time and used to suggest which novel stimuli

should be presented to the neuron currently being recorded.
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