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HEBREW UNIVERSITY OF JERUSALEM

Abstract
Edmond and Lily Safra Center for Brain Sciences

Doctor of Philosophy

Automated Analysis of Non-verbal Behavior in Schizophrenia

by Talia TRON

The descriptive non-quantitative manner in which psychiatric disorders are
diagnosed, makes it hard to monitor patients, evaluate treatment influence,
and compare between different symptomatology. In recent years, techno-
logical and algorithmic developments enable us to extract and analyze mea-
sures of nonverbal behavior such as facial expressiveness, body gestures and
prosody, which are an integral part of psychiatric diagnosis.

The objective of this dissertation is to characterize nonverbal behavior
in schizophrenia, and to develop automatic tools for quantitatively describ-
ing and analyzing relevant measures of this behavior. We focus on facial
expressions and motor behavior, and combine descriptive statistical meth-
ods together with data-driven analysis techniques to obtain a wide range of
nonverbal characteristic measures. These measures include the intensity, dy-
namics, consistency and appropriateness of facial and motor behavior. The
obtained nonverbal measures are then used to refine the definition of non-
verbal alterations in schizophrenia, explore the relation between them, and
describe the way they are manifested in a clinical setting. In addition, these
measures are used to automatically classify clinical sub-population, evaluate
symptom severity and identify significant irregularities in patients behavior
over time.

We hope that the methods and approaches for automatic non-verbal be-
havior analysis introduced here, will contribute to the field of affective com-
puting in general, and psychiatric diagnosis in particular, will increase the
reliability of the diagnostic procedure, and will allow better characterization
and monitoring of patients’ behavior, which will promote both research and
treatment.
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Chapter 1

Introduction

Psychiatric diagnosis and nonverbal behavior

In psychiatry, mental disorders are diagnosed in a descriptive non-etiological
manner based on patients’ complaints, medical condition, psychiatric his-
tory and on the evaluation of their mental status. Mental status examination
(MSE) is done using lists of signs and symptoms, which include nonverbal
observations such as facial and vocal expressions, since they convey exten-
sive information about the patient’s emotional and mental state [82, 21, 24].
Bodily expressions may be as informative as voice in clinical settings, and
even as facial expressions, although they are hard to map into discrete emo-
tional conditions [38].

The diagnostic process is based on the Diagnostic and Statistical Manual of
Mental Disorders (DSM), a handbook written and published by the American
Psychiatric Association (APA), which contains prototype categories for more
than 200 mental disorders [8]. The DSM was criticized for having low inter-
rater reliability, for lacking empirical evidence and for being subjected to
personal interpretation. The fluid, non-evidence based nature of the DSM
makes it vulnerable to political and economical interests rather than clinical
ones [30, 83, 20]. Under the DSM framework, nonverbal behaviors are non-
accurately described using general terms such as ’motor retardation’ and ’flat
affect’. More specific clinical scales, such as the Positive and Negative Syndrome
Scale for Schizophrenia (PANSS) [53] and the Hamilton Rating Scale for Depres-
sion (HRSD) [40] contain items which directly address patients nonverbal
behavioral symptoms. Nonetheless, to date, these symptoms are evaluated
based on the subjective impression of the diagnosing psychiatrist which may
be biased by their life experience, ideation and culture. In addition, symptom
evaluation process requires expert staff and availability of resources, and it
is not done frequently enough to capture delicate changes in patients’ spon-
taneous and drug-induced condition [103]. To date, there are no objective,
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quantitative methods to measure nonverbal behavior in psychiatric patients,
which causes multiple interpretations of phenomenology and results in low
reliability and validity of psychiatric diagnosis [21].

In 2008 the American National Institute of Mental Health (NIMH) have rev-
olutionized the field of mental disorder research by announcing that studies
which use the DSM as a clinical criteria will no longer be supported and
funded. Instead, they began implementing a different approach, manifested
in the Research Domain Criteria (RDoC) framework. The RDoC framework
shifts the focus from high level categories such as ’schizophrenia’ and ’de-
pression’, to more refined subcategories homogeneous across different men-
tal disorders (e.g. attention, visual perception and facial communication).
The rational is that bottom up data accumulation will create the evidence
foundation needed for integrating circuit, neural network and behavioral
levels, and will allow better understanding of the underlying mechanisms
of psychiatric conditions [45]. The work presented in this dissertation may
contribute to the RDoC effort by providing tools for objective and detailed
description of nonverbal phenomenology and its relation to different behav-
ioral and clinical aspects.

Non verbal behavior in schizophrenia

We focus on schizophrenia, one of the most severe mental disorders with
lifetime prevalence of about 1% worldwide. The disorder is characterized by
negative symptoms, which involve the loss of functions and abilities (e.g. lack
of speech and motivation, blunted affect), and by positive symptoms, which
are pathological functions not present in healthy individuals (e.g. auditory
hallucinations, delusions and paranoid thoughts).

Psychiatrists generally distinguish between two types of schizophrenia.
Type I are psychotic disorganized patients characterized mainly by posi-
tive symptoms (positive-signs schizophrenia). In clinical setting, these patients
show disorganized speech, restless behavior and lack of consistency. Their
facial expressiveness tend to be less suitable to their subjective feeling and
to the external situation, and their motor behavior is characterized mainly
by irritability, involuntary movements, dyskinesia and catatonic symptoms
[80, 106, 78, 108, 102]. Type II are patients who demonstrate post-psychotic
residual negative-signs schizophrenia. These patients nonverbal behavior is
characterized by reduced facial expressiveness, monotonic speech and ob-
served slowness and psycho motor poverty [73, 72, 18, 60, 27, 107]. Some
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patients demonstrate both types simultaneously or during different phases
of the illness. Treatment is mainly through neuroleptic drugs which relieve
the positive symptoms but are less effective against the negative ones [7]. The
neuroleptic treatment may also result in drug-induced movement disorders
such as tremor dystonia, parkinsonism (rigidity and bradykinesia), akathisia
and tardive dyskinesia, mainly in chronic patients [10, 47, 59].

The diversity and specificity of facial alterations and motor symptoms
throughout different phases of schizophrenia disorder and as a response to
drugs, makes them good candidates for patients monitoring and treatment
outcome evaluation. Nonetheless, as is the case in other aspects of psychiatric
diagnosis, these are evaluated subjectively and qualitatively with low inter-
rater reliability. Consequently, it is useful, and often time critical, to develop
an assistive technology that can achieve more objective nonverbal activity as-
sessments, and further refine the often-subtle discrimination between motor
and different affect-related symptoms. Such automatic nonverbal measures
may allow for a rich, quantitative and continuous monitoring of patients’ be-
havior over time, making it easier to detect delicate changes in their clinical
condition and compare clinical phenotypes between patients.

Automated nonverbal analysis tools

In the two past decades there was a considerable effort to automatically ex-
tract and analyze human nonverbal behaviors such as facial expressions, vo-
cal prosody and bodily gestures. The extraction of nonverbal behavioral fea-
tures has improved vastly in recent years, thanks to some technological and
algorithmic innovations including 3D cameras for facial expressions and em-
bedded actymetric sensors for motor activity (see Sections 1.1.2 and 1.2.1 re-
spectively). The field has become known as Affective Computing (AC) or Social
Signal Processing (SSP). AC studies mainly focus on the emotional aspect of
nonverbal behavior, while SSP studies gives greater weight to interpersonal
communication and takes into account measures like context and environ-
ment [101, 99, 38].

An emerging field of study focuses on implementing AC/SSP techniques
to medical data in order to improve diagnosis, monitoring and treatment.
In such studies, subject’s behavior (body, voice or face) is recorded during
an interview, nonverbal behavioral features are extracted manually or auto-
matically, analyzed, and correlated with medical condition or evaluated by



4 Chapter 1. Introduction

clinical tests. The growing body of work in the field includes different neu-
rological and psychiatric states such as ADHD [75, 52, 81], autism [77, 110]
depression [99, 34, 55, 35] and some studies about schizophrenia [41, 42, 57,
62, 71, 93], which will be further discussed in Sections 1.1.4 and 1.2.3.

Most clinical studies take a descriptive approach, where basic behavioral
measurements or combination of measurements are given a semantic mean-
ing by the researcher (for example ’anxiety level’, ’happiness level’). Such a
semantic interpretation may be compelling, but should be done with great
caution, since it relies heavily on theoretical assumptions which in some
cases are still under debate. A good example is the continuous debate be-
tween prominent researchers in the field of psychology and sociology over
the emotional interpretation of facial activity data (see Section 1.1.1).

To avoid possibly misleading theoretical assumptions, some studies ad-
dress behavior directly, without looking for the message underlying it, taking
a data-driven approach. In such studies classic statistical methods are com-
bined with machine learning tools to derive nonverbal behavioral measures
of various kinds. These are then often used for automated clinical classi-
fication, prediction of patients symptom severity or digitized evaluation of
treatment outcome. The main advantage of such methods is the objective
manner in which measures are derived and analyzed, reducing possible sta-
tistical and conceptual biases. Notwithstanding, data-driven methods typi-
cally require great amount of labeled data, and researchers in the field tend
to use broad, general measures of nonverbal behavior which can hardly be
construed as representing human behavior (e.g. general movement mea-
surements commonly used in computer vision). There is a fine line between
over interpreting behavioral features and using unintelligible measures, non-
relevant for clinical diagnosis.

This dissertation can be seen as an implementation of AC techniques for
the study of schizophrenia, with a focus on facial expressions and motor
behavior. We attempt to define data-based ecologically relevant measures,
which will be accurate and informative enough to be used as input for learn-
ing and prediction algorithms, and self-explanatory and ecologically relevant
enough to gain clinical insights.

Research objectives

The main objectives of this dissertation are: (1) to characterize nonverbal be-
havior in schizophrenia patients, focusing on facial and motor activity; and
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(2) to develop automatic tools for quantitatively describing and analyzing
relevant measures of this activity. In order to achieve these objectives, we
combine descriptive statistical methods together with data-driven analysis
techniques including time series forecasting, machine learning and natural
language processing (NLP) algorithms. With these techniques, we obtain
a wide range of nonverbal characteristic measures. These are then used to
refine the definition of nonverbal alterations in schizophrenia, explore the
relation between them, and describe the way they are expressed in a clini-
cal setting. In addition, these nonverbal measures are used to automatically
classify clinical sub-population, evaluate symptom severity and identify sig-
nificant irregularities in patients behavior over time.

Our hope is that automatic extraction and analysis of such behavioral
measures will contribute to the reliability of psychiatric diagnosis, and al-
low better characterization of patients’ behavior, which will promote both
research and treatment.

In the remainder of the introduction we elaborate the discussion sepa-
rately on facial expressions (Section 1.1) and motor analysis (Section 1.2). We
will start with an overview of prominent technological and theoretical ap-
proaches in each field, followed by a literature review of AC/SSP studies
done in schizophrenia, and conclude with a brief description of our work
and its main innovations.

1.1 Facial Expressions

1.1.1 Theoretical approaches

The face has a major role in signaling people’s emotional and mental state.
Subsequently, most traditional studies in psychology and sociology as well as
AC/SSP studies focused on facial expressions and their relation to emotions
[99, 38, 97]. The work in the field may be roughly divided into the Categori-
cal approach vs. the Dimensional approach (Figure 1.1). The categorical approach
was pioneered by Paul Ekman, who in a set of extensive studies done since
the 50’s pointed out 6 prototype expressions universally expressed and rec-
ognized - anger, fear, sadness, happiness, disgust and surprise [22]. Ekman’s
critics argue that he uses exaggerated, static and posed facial expressions,
while those presented in everyday life are dynamic, spontaneous and far
more subtle [38, 9]. In contrast, the dimensional approach characterizes emo-
tions according to two or more axes, usually including valence (negative to
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positive feelings) and arousal [84, 86]. These dimensions may capture greater
variety and subtleties of human emotions, but are harder to report and mea-
sure. Both approaches focus on the emotional aspect of facial activity while ne-
glecting other characteristics such as the amount of variability and the way
expressions change over time. Overall, the vast majority of studies in the
field are limited to categorical, static and posed expressions while modeling
natural behavior in a continuous, dynamic manner remains a challenge only
few research take [48].

(A) (B)

FIGURE 1.1: Illustration of the two most prominent approaches
for emotional modeling. (A) The categorical approach which
maps facial expressions to 6 prototype emotions (anger, fear,
sadness, happiness, disgust and surprise), (B) The dimensional
approach which describe emotions on valence and arousal axes.

An alternative approach is to analyze the facial activity without interpret-
ing its emotional state. This is commonly done using the Facial Action Coding
System (FACS), originally developed by the Swedish anatomist Carl-Herman
Hjortsjö [43]. FACS gives a score to the activity of roughly 46 individual facial
muscles called Action Units (AUs) based on their intensity level and temporal
segments (Figure 1.2-A). Neuroscientists, psychologists and sociologist have
been using FACS for the past 30 years to conduct extensive research regard-
ing various aspects of facial expressions. In the early 80’s, Ekman adopted
FACS and developed the Emotional Facial Action Coding System (EMFACS)
which systematically categorizes combination of AUs to specific emotions
[31] (Figure 1.2-B). This allowed those in favor of the categorical approach to
implement FACS in their studies. To date, there is no systematic transfor-
mation from FACS coding to emotional dimensions of valence and arousal.
In a parallel effort, we addressed this problem using emotionally evocative
YouTube videos, with some reassuring results [39].
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(A) (B)

FIGURE 1.2: Illustration of (A) the Facial Action Coding Sys-
tem (FACS), which gives a score to the activity level of of inde-
pendent facial muscles (facial Action Units), and (B) the Emo-
tional Facial Action Coding System (EMFACS), which system-
atically categorizes combination of facial Action Units to proto-

type emotional expressions.

1.1.2 Facial features extraction tools and technology

While automatic prototype expression detection may be considered by some
a solved problem [51], automatic FACS coding that will replace the manual
one still poses a major challenge in the field of machine learning and com-
puter vision [76]. The problem is of high complexity given the large number
of classes (AUs), the subtle, small different between them, and the lack of
standardized, large quantities labeled data-sets. Subsequently, deep learning
methods, which have dramatically enhanced performance in other computer
vision challenges, have only been moderately beneficial for AUs recognition
as yet [67, 37, 46].

Leaving deep learning methods aside, automatic AUs extraction may be
done using Geometric-Features based methods, based on information regard-
ing location of points or shapes on the face (e.g. position, speed, acceleration)
[66, 63] or using Appearance-Based methods based on changes in texture and
motion of the skin such as wrinkles and furrows [61, 12, 5]. The use of geo-
metric features usually yields better results, since appearance based methods
are more sensitive to illumination conditions and to individual differences,
though a combination of both methods may be preferable [96]. A newer,
promising method is based on temporal information in AU activity, which
was found to improve recognition as compared to static methods [68, 56].

Basic features are classified into AUs using model driven methods such
as active appearance models (AAMs) [48, 64, 98] or data driven methods [89].
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Data-driven methods require larger sets of data in order to cope with varia-
tions in pose, lighting and textures, and they allow a more accurate person
independent analysis of AUs expression [91].

3D cameras based on structured light technology enable the capture of
facial surface data which is less sensitive to head pose and to lighting con-
ditions as compared with 2D data. These cameras project infra-red patterns
onto the 3D scene, and measure the deformation created by objects, yielding
a better recognition rate of AUs [87]. A drawback, however, is that the depth
resolution is rather low, and that the image may contain small artifacts in
highly reflective and non-reflective regions, or holes in regions not covered
by the projector [90].

The most prominent developments in the field have become commercial-
ized and are available as software for industry and academic use [25, 44, 1].

1.1.3 Facial Expressions in schizophrenia

Facial expressions are essential to the definition and description of schizophre-
nia. Blueler, the swiss psychiatrist and eugenicist who coined the term at the
beginning of the last century, described Affective incongruence as a main char-
acteristic of the disorder. He clinically defined it as ’a discrepancy between
the affect and the content of speech, subjective feeling, or the situation’ [17]. This
discrepancy is typically manifested in the early psychotic stage of the dis-
order (positive-signs schizophrenia). As the disorder progresses to deficiency
negative-signs schizophrenia, affect usually becomes more constricted, with a
severe reduction in emotional expressiveness clinically known as Affective
Flatness [69]. There is evidence for high congruence between flat affect sever-
ity, patients’ wellbeing and treatment outcome [3].

Traditionally, Affective incongruence is thought to be independent of Affec-
tive Flatness and is therefore measured separately using different clinical and
empirical scales [65]. Nonetheless, the reports of incongruence may some-
times merely be the result of misinterpretation of facial flattening, depend-
ing on the context. For example, a ’frozen smile’ which does not change over
time, may be considered as facial flattening, but when the patient is asked to
describe how he or she feels, it can be interpreted as inappropriate. In this
dissertation we made an effort to overcome this confound, and to propose a
way to distinguish between flat and incongruent affects (See Figure 1.3).

Another possible clinical bias may arise in the emotional interpretation
of facial activity. The Inhibition Theory states that the emotional experience
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FIGURE 1.3: Illustration of the possible confound between Af-
fective flattening and Affective incongruence where the same facial
behavior (e.g. a frozen smile) can be interpreted as both, de-

pending on the behavioral context.

is not compromised in schizophrenia, but rather that there is an impairment
in emotional expression [74, 2]. In fact, Blueler himself interpreted incon-
gruence as a ’split’ between mental mechanisms controlling affect and those
controlling mood experiences, resulting in a discrepancy between patients’
mood and their affect. Subsequently, any emotional interpretation of patients
behavior based on their facial expressions should be done with maximum
caution and sensitivity, as we will demonstrate in our study.

1.1.4 Previous work

Only a minority of AC/SSP studies dealt with schizophrenia. These studies
may be roughly divided into the ones taking descriptive approach (inter-
preting the measures), versus the ones using data-driven analysis, with no
emotional or mental interpretation (both approaches are discussed in detail
in Section 1).

The descriptive studies focus mainly on the affective aspect of patients’
nonverbal behavior, namely, on the emotional value of their facial expres-
sions. These studies commonly use the Emotional Facial Action Coding System
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(EMFACS) to interpret AUs activity in terms of basic emotions such as happi-
ness, anger or fear. Based on this interpretation, studies have found patients
to demonstrate less positive emotions than controls [62], that the dominant
emotion during an interview is disgust [28] or contempt [95, 92], and that the
congruity of emotional response is reduced in patients [16]. The drawback of
such studies however, is that they heavily rely on the Categorical approach for
emotional interpretation (described in Section 1.1.1), and do not allow for a
more subtle, real-life characterization of patients facial response. In addition,
they do not necessarily take into account the possible discrepancy between
emotional experience and emotional expression (see the Inhibition Theory de-
scribed in previous section), making their conclusions somewhat superficial.

Another measure often used in studies is facial flatness, usually calculated
as the intensity of specific AUs, or overall AUs. Results indicate reduced
upper facial activity [23] and reduced overall facial expressiveness in patients
in reaction to emotional stimuli [16, 93, 26] and to social interaction [6, 32].
In a recent study by Vijay et al. [100, 11], smiling behavior was found to be
negatively correlated with negative symptoms severity. In addition, unusual
thought content and delusions were associated with more brows raise.

The aforementioned studies used a limited set of nonverbal characteristic
features and ignored information regarding facial dynamics and variability.
Furthermore, none of them used data-driven methods to obtain a more com-
prehensive description of patients’ behavior. The few data-driven studies
done on facial expression in depression, though outpointing some interesting
results, used ecologically irrelevant measures (e.g. general measurements of
motion, commonly used in computer vision) and a broad, non-reliable psy-
chiatric definition for data labeling (‘level of depression’) [50, 49].

Despite the crucial part of affective incongruent for schizophrenia diagno-
sis, only one study so far has derived facial congruity measures in schizophre-
nia patients. This was done in a study by Hamm et al., who analyzed fa-
cial activity under different emotional conditions using information theory
measures. They found patients to be lower in terms of distinctiveness (mu-
tual information between AU activity and emotional condition) and higher
in ambiguity (entropy of AU activity during a specific emotional condition)
[42]. Nonetheless, this study did not tackled the possible confound between
flatness and congruity, limiting the clinical importance and relevance of their
results.
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1.1.5 Current work

In this dissertation we used a structured light depth camera and dedicated
software to characterize spontaneous facial activity in schizophrenia patients.
Based on this characterization, we targeted the clinical definitions of Affective
flatness and Affective incongruity, suggesting a more subtle, detailed, observation-
based definition. We further investigated how these symptoms can be mea-
sured, and preferably distinguished, by automatic means from recordings
of spontaneous facial expressions of schizophrenia patients. Finally, we in-
vestigated the possibility of accurately detecting and quantifying affect as
effectively as clinicians do in their regular mental status examination.

FIGURE 1.4: Illustration of raw facial data for one patient and
one control subject during short structured interview. Each line
represent a different facial Action Unit (AU), with warmer col-

ors representing higher level of activity.

In the first two papers we compare the facial activity of schizophrenia
patients and healthy individuals during a short, structured interview. We ex-
pand the definition of Affective flatness from mere facial intensity (how strong
are facial expressions in terms of muscle activity?) to facial dynamics (how
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much do they change over time?) and richness (how much variability is
there? Namely, how many different expressions?).

In paper 2.1, looking at each facial AU separately, we characterize the
facial intensity and dynamics of patients using transition matrix representa-
tion, and present a two-step SVM based algorithm designed for patients vs.
control classification and symptom severity evaluation.

In paper 2.2, we obtain a dense representation of data-driven ’prototype’
expressions using clustering analysis over all facial AUs (illustrated in Fig-
ure 1.5). We then suggest to compartmentalize the definition of Affective flat-
ness to the following three components - Richness (how many expressions
appeared?), Typicality (how similar they were to the prototype?), and Af-
fective Distribution (which expressions were more prevalent?). These com-
ponents are then compared between patients and controls, and finally corre-
lated with clinical flat affect severity assessed by the psychiatrist.

FIGURE 1.5: Illustration of three facial clusters, their mean dis-
tribution in patients and control subjects, and their emotional
interpretation based on the Emotional Facial Action Coding
System (EMFACS). While facial activity of control subjects is
distributed over all different facial expressions (clusters), pa-

tients demonstrate mainly neutral or flat expression.

In paper 2.3, we address the definition of Affective Incongruence, aiming to
differentiate inappropriateness from Affective flatness, and rule out possible
emotional deficits. Our methods were as follows: First, we asked patients
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and control subjects to rate their emotional response to emotionally evoca-
tive photographs, and subsequently compared their ratings (Emotional Con-
gruity score). Then, we conducted variance analysis and reformulated the
term facial incongruity to consistency (how similar was facial response to
his own response when watching similar emotional stimuli?) and appro-
priateness (how similar was the facial response the typical expression in the
healthy population?). Importantly, in order to measure whether the level of
incongruity goes beyond mere facial flatness, we normalized both scores by
the overall flatness.

FIGURE 1.6: a) Illustration of the facial Action Units (AUs) au-
tomatically tracked in this study using 3D video and dedicated
software. b) Raw AUs activity of one subject while watching
emotionally evocative pictures retrieved from the International

Affective Picture System (IAPS)

To our knowledge, this is the first attempt to use automated analysis tools
in order to tackle clinical definitions of affect in schizophrenia. Likewise,
no study so far has empirically distinguished affect incongruence from mere
flatness. In this sense, our study offers a new perspective on facial behavior in
patients and demonstrate the huge potential of automated affect evaluation
as an assistive tool in clinical settings.
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1.2 Motor Behavior Analysis

1.2.1 Monitoring with wearable devices

Actigraphy, namely, non-invasive monitoring of human motor activity, often
via wearable sensors (also known as actigraphy), has become widely avail-
able in recent years, thanks to some technological developments making it
cheaper, more accessible and easy to use. The most prevalent actimetry sen-
sors are accelerometers, which measure the change in velocity in 3 dimen-
sions, and gyroscopes which measure orientation and angular velocity. In
healthy individuals actimetry sensors are commonly used to measure sleep
quality [88], physical activity (wake-time activity, calories burned estima-
tion) and other movement measures such as the number of steps per period
(step count), the overall energy, and the overall dynamic body acceleration
(ODBA) [13]. In addition, physiological sensors for heart rate and skin con-
ductance combined with accelerometers enable the detection of high heart
rate and arousal which are not associated with physical activity [4].

Wearable actimetry devices are worn on the body (usually wrist or chest)
or otherwise attached or embedded in it. Actigraphy is also commonly mon-
itored using mobile devices (smart phones), in combination with additional
behavioral measurements such as location (GPS), screen use, and anonymized
call and text message logs. The advantages of using mobile devices include
their high availability in clinical and healthy population, and the ability to
interact with users and get feedback. Nonetheless, theses devices are not car-
ried continuously on users body, making them less sensitive to subtle motor
changes, and subsequently their collected data is far less accurate and reliable
[29]. Subsequently, in this dissertation we choose to focus on accelerometer
sensors embedded in smart watches.

The last decade has seen a steep rise in use of wearable actimetry devices
in medical fields ranging from human physiology [94] to movement disor-
ders [105, 58] and mental health [104]. In a clinical setting, these devices
may be used in order to detect change in high-level movement parameters,
track their dynamics and correlate them with various behavioral and clinical
parameters. In Parkinson’s disease research, measures of mobility [105] as
well as measures of specific motor related symptoms [54] were developed to
aid monitoring and personalization both in clinical and home settings. In the
mental health field, a platform was developed for collection of heart-rate and
accelerometer data, as well as user self-report questionnaires [33], in order to
better understand the factors associated with mental health and well-being in
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students. The PSYCHE system [79] was designed to collect data from mood
disorder patients, using textile platforms and other portable sensors, in order
to monitor patients, and facilitate interaction between patient and physician.
The system is also capable of alerting the medical staff when a manic episode
is detected.

Recent developments together with empirical findings increase the feasi-
bility of using such sensors to monitor schizophrenia patients in natural and
clinical settings. Studies which tested schizophrenia patients’ compliance to
wearable devices, found that they tend to cooperate and do not report any
significant discomfort from begin recorded [36]. Mobile behavioral sensing
using smart phones was also demonstrated to be acceptable and informative
for data collection in outpatients and inpatients with schizophrenia [14].

Notwithstanding the above, to date there have been no attempts at a com-
plete, self-contained system, to directly assess and monitor schizophrenia pa-
tients using wearable devices and sensors. Such a system could have great
potential due to the illusive nature of the disease, and the overwhelming
need for sub-typing towards a better understanding of underlying causes,
and development of better and more personalized treatment.

1.2.2 Motor behavior in schizophrenia

Motor behavior is an integral part of schizophrenia disorder and is essential
for the diagnosis and evaluation process. Different phases of the disorder are
characterized by unique patterns of motor alterations. Patients with positive-
signs schizophrenia occasionally show severe motor deficits, with increased
overall motor activity, irritability, increased involuntary movement, and de-
creased voluntary movements (dyskinesia). Catatonic symptoms are also
manifested in this phase, expressed as constant hyperactivity, or rigid motor
poses indifferent to external stimuli [80, 106, 78, 108, 102]. In negative-signs
schizophrenia there is usually an overall retardation of motor activity, charac-
terized by slowness, decreased spontaneous movements, and psychomotor
poverty [73, 72, 18, 60, 27, 107]. The reduced facial activity observed in pa-
tients (flat affect) can also be seen as part of the negative-signs motor deficits,
as discussed in Section 1.1.3.

People with schizophrenia tend to do less Physical Activity (PA), making
them more vulnerable to coronary heart disease and metabolic syndromes
[109]. In addition, their sleep quality is often disturbed, which was shown
to be related with symptom severity, psychotic relapse, premature mortality,
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and even suicide [85]. In accordance, direct continuous monitoring and real
time interventions to improve PA levels and sleep quality for schizophrenia
patients, may help to improve their reduced life expectancy.

The effect of medical treatment on motor symptoms of schizophrenia is
double-sided. On the one hand, the medical treatment may improve the neu-
rological symptom signs (NSS) present in the early phases of the disorder,
reduce the level of involuntary movement and decrease the amount of dysk-
inesia [80, 19]. On the other hand, the medications may cause motor adverse
effects, mainly in chronic patients, including tremor, repetitive or sustained
muscle contractions (dystonia), parkinsonism (slowness, stiffness and speech
impairment) and akathisia (feeling of motor restlessness with the need to be
in constant motion) [10, 47, 59].

1.2.3 Previous work

Only a handful of studies in the field of wearable devices has dealt with
schizophrenia. Wichniak et al. [109] used actigraphy to test daily and 24-
hours motor activity in schizophrenia patients (n=73), and found both to be
reduced in comparison to control subjects (n=36), where in addition patients
spent more time in bed. Lower motor activity was found to be correlated
with negative symptoms and depressive symptoms. Similar findings were
described by Yamamoto et al. [70], who measured the amount of daily phys-
ical activity (PA) in schizophrenia (n=37) and control group (n=41), revealing
lower intensity level and shorter PA duration in the schizophrenia group.
Here also, reduced activity was correlated with negative symptoms. Despite
their obvious importance, these studies use very general motor activity de-
scriptors, with a main focus on the motor intensity and amplitude measures,
ignoring other parameters which might be relevant (as is the case for facial
expressions).

A different approach was suggested in a study by Berle et al. [15] who
recorded two weeks of actigraphy data in schizophrenia and major depres-
sion patients. Patients’ motor behavior was described in terms of three vari-
ables: the inter-daily stability (IS), intra-daily variability (IV), and the relative
amplitude (RA). In accordance with other studies, the relative amplitude of
motor activity in both schizophrenic and depressed patients was found to
be significantly reduced. In addition, schizophrenia patients treated with
clozapine demonstrated a more structured behavioral pattern, expressed in
higher intra-daily stability (IS), and lower intra-daily variability (IV). In a
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recent study, Reinertsen et al. [85] trained a SVM classifier to distinguish be-
tween schizophrenia and control group (n=12 in each group) based on daily
heart rate and PA measures. The classifier used classical statistical features
such as rest-activity metrics and transfer entropy (a measure of activity dis-
organization over time) and resulted in an area under the receiver operating
characteristic curve (AUC) of 0.96. The algorithm was evaluated on different
time windows, and the results demonstrate how daily estimation of illness
severity may be done using continuous patients monitoring over short time
scales. These studies demonstrate the potential of using temporal informa-
tion to gain more subtle measures of motor variability and stability.

All of the above studies suffer from several problems. First, their analysis
is restricted to group comparison and symptom severity evaluation. No ef-
fort has been made to define and characterize different clinical sub-populations
of positive and negative-signs schizophrenia, or to detect significant behav-
ioral changes on single patients level. The studies disregard behavioral con-
text, namely, what subjects were doing while being recorded, which intro-
duce a lot of noise into collected motor data, and may result in confounds
and biases. For example, patients motor behavior may be limited due to ex-
ternal constrains (hospitalization) rather than due to their clinical condition.
The measures derived from motor data, including the variability and stabil-
ity measures take into account the amount of motor activity and the way it
changes over time, but do not say anything about the nature of the activity
(what type of movement). Therefore, more qualitative measures are needed.

1.2.4 Current Work

In our study we used an accelerometer wearable device, to continuously
measure motor behavior of schizophrenia inpatients. The 3-axis accelerom-
eter data was used to derive a rich, quantitative and qualitative characteri-
zation of patients’ behavior over a period of 3 weeks on average. To reduce
environmental noise, a substantial part of the analysis focused on times of
routine daily activities. Motor data was processed and analyzed in several
manners, emphasizing various aspects of patients’ behavior, and was then
compared with clinical evaluation and drug usage.

In paper 3.1, we describe the general platform of data collection from in-
patients in the close ward, and the basic motor features obtained in our study.
These include general movement features such as energy and ODBA, as well
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as step count and energy variance, which are computed in different activity
windows and compared with patients clinical evaluation over time.

In paper 3.2 we describe the process of creating a motor ’codebook’, and
demonstrate how topic models, a broadly used method for natural language
processing (NLP), can be applied to our data in order to achieve a rich, qual-
itative description of patients’ behavior. Using this representation we com-
pare patients behavior to themselves and others, evaluate motor appropriate-
ness and consistency, and characterize clinical sub-populations. In addition,
we design a learning algorithm, for automatic patients classification based
on motor features and evaluate its performance.

FIGURE 1.7: Illustration of different ARIMA models to predict
patient’s step counts based on preceding 7 days.

Finally, in paper 3.3, we use a time forecasting method of Auto-Regressive
Moving Average (ARIMA) to build a personal model for each patient, which
allow us to predict patients motor behavior based on their behavioral pat-
terns in preceding days. We then compare the abnormal behaviors detected
by our model with extreme changes in patients’ clinical condition as well as
specific changes in neuroleptic drug usage (see Figure 1.7).
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Abstract. Facial expressions play a major role in psychiatric diagnosis,
monitoring and treatment adjustment. We recorded 34 schizophrenia pa-
tients and matched controls during a clinical interview, and extracted the
activity level of 23 facial Action Units (AUs), using 3D structured light
cameras and dedicated software. By defining dynamic and intensity AUs
activation characteristic features, we found evidence for blunted affect
and reduced positive emotional expressions in patients. Further, we de-
signed learning algorithms which achieved up to 85% correct schizophre-
nia classification rate, and significant correlation with negative symp-
toms severity. Our results emphasize the clinical importance of facial
dynamics, and illustrate the possible advantages of employing affective
computing tools in clinical settings.

Key words: Schizophrenia, Machine learning, Mental health, Facial ex-
pressions, 3D cameras, FACS

1 Introduction

Both clinical observations and computational studies suggest that facial activity
plays a major role in signaling people’s emotional and mental state [14, 8, 13].
Accordingly, several mental disorders are manifested by reduced or altered facial
activity, and facial observations are an integral part of psychiatric diagnosis. To
date, there are no objective, quantitative methods to measure these alterations,
and no clear relation between them and the underlying brain disturbances. This
causes multiple interpretations of phenomenology and results in low reliability
and validity of psychiatric diagnosis [2].

Schizophrenia is one of the most severe mental disorders, with lifetime preva-
lence of about 1% worldwide. The disorder is characterized by negative symp-
toms, which involve the loss of functions and abilities (e.g. blunted affect), and by
positive symptoms, which are pathological functions not present in healthy indi-
viduals (e.g. hallucinations). Studies have found that patients with schizophre-
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nia demonstrate less positive emotions than controls [10], and lower congruity of
emotional response [1]. Furthermore, there has been evidence for reduced upper
facial activity [3] and reduced overall facial expressivity [12, 5, 7]. Nonetheless,
these studies use a limited set of facial activity characteristic features, not nec-
essarily ecologically relevant, and ignore information regarding facial dynamics
and variability. An extensive use of computational methods together with clin-
ical intuition is needed in order to obtain a more comprehensive description of
patients behavior.

Our study combines descriptive methods with data-driven analysis. We use
machine learning tools and cutting edge technology, in order to study a wide
range of facial activity characteristic features, the relation between them, and
the way they are manifested in clinical setting.

2 Materials and Methods

2.1 Study Design

Participants The study was done in collaboration with Sha’ar Menashe mental
health center. Participants were 34 patients and 33 control subjects. All patients
were diagnosed as suffering from schizophrenia according to DSM-5, and the
course of illness in these patients varied from 1.5 years up to 37 years, with
mean of 16.9 years. All patients but one were under stable drug treatment (mood
stabilizer, antidepressant, antipsychotic and/or sedatives). Informed consent was
obtained from all individual participants included in the study.

Psychiatric Evaluation Participants were evaluated by a trained psychiatrist
using the Positive and Negative Symptoms Scale (PANSS), a 30 item scale es-
pecially designed to asses the severity of both negative and positive symptoms
in schizophrenia [9]. The majority of patients suffered from post-psychotic resid-
ual negative signs (Type II) schizophrenia, namely, they showed severe negative
symptoms (higher than 5 in the PANSS scale), while severe positive and general
symptoms were rather rare (less than 10% of patients). 16 of the symptoms did
not vary enough for statistical analysis and learning; therefore, the analysis fo-
cused on the remaining symptoms: 3 positive symptoms (Delusions, Conceptual
disorganization and Grandiosity), 2 general symptoms (Motor retardation and
Poor attention) and 7 negative symptoms (Blunted affect, Emotional withdrawal,
Poor rapport, Passive/apathetic social withdrawal, Difficulty in abstract think-
ing, Lack of spontaneity and flow of conversation and Stereotyped thinking). To
test for diagnosis consistency, the PANSS evaluation was repeated independently
by a second trained psychiatrist who watched the interview videos. Inter-rater
reliability was calculated separately for each PANSS symptom using Pearson
correlation test.

Experimental Paradigm All subjects were individually recorded using a 3D
structured light camera (carmine 1.09), during a 15 minute long interview con-
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ducted by a trained psychiatrist. The interview was constructed out of one gen-
eral question (’Tell me about yourself’), and three emotionally evocative ques-
tions regarding subject’s current mood and recent emotional events. The camera
was placed on the table between subject and interviewer, in a way that did not
interfere with eye contact and none of the subjects reported discomfort from
being recorded. All procedures performed in the study were in accordance with
the ethical standards of the institutional research committee and with the 1964
Helsinki declaration and its later amendments or comparable ethical standards.

2.2 Facial Activity Features

The Facial Action Coding System (FACS) scores the activity of 46 in-
dividual facial muscles called Action Units (AUs) based on their intensity level
and temporal segments [4]. Scoring is traditionally done manually, one frame at
a time, by certified FACS coders, and automated FACS coding poses a major
challenge in the field of affective computing. The advantage of the coding system
is that it does not interpret the emotional value of specific features, and allows
for a continuous and dynamic facial activity analysis.

Facial Activity Extraction For AUs activity extraction we used the Faceshift c©

commercial software which provides real time 3D face and head tracking,
and which is typically used for animating avatars in film and game industry
(www.faceshift.com). The software automatically analyzes data from 3D cam-
eras based on structured light technology. These cameras capture facial surface
data, which is less sensitive to head pose and to lightning conditions than 2D
data, and yields a better recognition rate of AUs [11]. Faceshift outputs the inten-
sity level over time for 48 AUs. The output was manually evaluated for tracking
sensitivity and noise level. Subsequently, 23 Faceshift Action Units (AUs) were
selected for further analysis and learning, including Brows-up (center, left and
right), Mouth-side (left or right), Jaw-open, Lips-up, Lips-Funnel, Eye-In-Right
(looking left), Chin-raise, Sneer and both sides (left and right) of Blink, Smile,
Frown, Dimple, Lips-Stretch, and Chick-squint (see Fig. 1)

Fig. 1: Illustration of Faceshift facial Action Units (AUs) used for learning.
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Characteristic Features Computation In order to obtain a detailed char-
acterization of facial behavior, which captures both the dynamics and intensity
of the activity in a clinically relevant manner, we calculated 5 characteristic
features separately for each AU. First, the raw Faceshift signal was quantized
using k-means (k=4) clustering. Then a transition matrix was generated, mea-
suring the number of transitions between quantization levels. 5 facial activity
characteristic features were then computed:

1. Activation Ratio - Fraction of segment during which the AU was activated
2. Activation Level - Mean intensity of AU activation
3. Activation Length - Number of frames that the AU activation lasted
4. Change Ratio - Fraction of the period of AU activation when there was a

change in activity level
5. Fast Change Ratio - Fraction of fast changes (> 1) in activation level

Activation Level and Change Ratio were calculated using frames with non-zero
activity only, so that they will not overlap with the Activation Ratio. For Fast
Change Ratio, we normalized the number of fast changes frames by the total
number of frames with activity change.

3 Analysis and Learning

The first part of our analysis was descriptive, and was aimed to obtain detailed
characterization of facial activity in patients in comparison with controls. In the
second part, we applied machine learning tools to generate predictions. We tested
whether facial features have predictive power for patients vs. control classifica-
tion, and for evaluating symptoms severity. To exclude possible confounds such
as gender, education level, age and religion, we performed one-way ANOVA; a
variable that was found to be different between groups, was further investigated
for its effect on facial activity within groups.

Descriptive Data Analysis In the descriptive part of the analysis, we ex-
plored how the facial activity is altered in different parts of the face, paying
special attention to smiles. This was done using two tail student’s t-tests on the
Activity Level of each AU separately. For smiles, we further analyzed the differ-
ence in all characteristic features, using separate t-test for each feature type. The
AU activity was given an emotional interpretation (e.g. high smile level indicates
positive emotion), based on the Emotional Facial Action Coding System (EM-
FACS) developed by Paul Ekman, which systematically categorizes combination
of AUs to specific emotional categories [6].

To study the way blunted affect is manifested in patients, we performed a
regularized ridge regression between symptom severity and all features over all
AUs. Feature selection (n=10) was done using f-regression, based on d’ scores.
Regression results were evaluated by Pearson′s R, and the output regression
weights were used for further feature type analysis.
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Machine Learning Tools To test the predictive power of our features we
trained a learner on train data and evaluated its performance on one test patient
at a time, following the Leave-One-Out (LOO) procedure. The basic learning
algorithm we used was Support Vector Machine (SVM) for patients vs. control
classification, and ridge regression for symptom severity prediction. Before the
regression, principle component analysis (PCA) was performed on train data
separately for each feature type, resulting in a mixture of AUs. Feature selection
was performed based on train data using f-regression (for SVM), or by selecting
the highest PCA components (for regression).

To increase learning robustness, we employed a two step prediction algorithm,
where each stage is learned separately from train data (see Fig. 2). Interview
data of each individual subject was divided into 30 seconds long segments, and
5 representative features were computed separately for each segment (F1). In
step 1, a learner was trained on the segments of all train subjects, giving as
output the first model weights (W1) and a prediction for each segment. In step
2, prediction mean and standard deviation over all segments were calculated for
each subject (F2), and a second learner was trained to predict a participant’s
label from these moments (W2).

Fig. 2: Illustration of the 2-step algorithm.

Performance evaluation was done between-subjects, namely, all segments of
one subjects were left out for testing the algorithm. The SVM classifier was
evaluated by the area under the Receiver Operator Curve (AUC), a combined
measure for the learner’s sensitivity (true positive rate) and specificity (true
negative rate) with 1 signaling perfect separation and 0.5 signaling chance. Re-
gression results were evaluated by Pearson′s R between the psychiatrist score
and the algorithm prediction, separately for each PANSS symptom.

4 Results

4.1 Inter-rater Reliability

All negative symptoms scores were at high agreement between raters (with an
average of R = 0.850, p << 0.01), and so was 3 positive symptoms (R = 0.630,
p = 0.021 for Delusions, R = 0.880, p << 0.01 for Conceptual disorganization)
and one general symptoms (R = 0.671, p << 0.01 for Motor Retardation). Poor
Attention and Grandiosity were not significantly correlated between raters.
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4.2 Facial Activity, Descriptive Analysis

Facial Parts Analysis We found a significant difference in the Activation Level
of 16 out of 23 Facefhit-AUs (see Fig. 3). Specifically, patients demonstrated
lower level of activity in Smile, Dimple, Lip-stretch and Lip-up (p << 0.01),
AUs which are typically in correspondence with positive emotional state. Frowns,
Brows-Up and Chin-raise, on the other hand, were at much higher level in pa-
tients than in controls, which may indicate the presence of negative valance emo-
tions (sadness, surprise and fear). Although those facial expressions were more
intense, they changed more slowly, with reduced Change Ratio (p = 0.004 for
Chin-raise) and Fast Change Ratio (p << 0.01 for both Chin-raise and Frowns).
Blink Activation Level was reduced in patients, which in the Faceshift frame-
work could mean that they closed their eyes less than controls. Sneer Activation
Level was also significantly reduced. The level of Cheek-Squint activation was
surprisingly enhanced in patients.

Fig. 3: Mean Activation level of facial Action Units in patients and controls.
Only significantly different results are presented (p < 0.05 in student’s t-test).

Smiles Analysis A closer look at smile activation (Fig 4) reveals that in
comparison with controls, smile Activation Level was reduced, while Activation
Length and Fast Change Ratio were significantly enhanced in patients. These
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results suggest that in clinical settings, patients may not necessarily smile less,
but rather their smiles are at lower intensity, longer, and with faster onset and
offset (aka frozen or fake smiles).

Fig. 4: Smile activation characteristic features for patients and controls.

Blunted Affect Regression results (Fig. 5) suggest a significant correlation
between AUs activation features and psychiatric evaluation of blunted affect
severity (RPearson = 0.686, p << 0.01). Based on the regression weights, the
two most discriminative AU features were Activation Level and Activation Ratio,
which were in negative correlation with symptom’s score. Change Ratio and Fast
Change Ratio were also given negative weights, while Activation Length seemed
to be positively correlated with the severity of the symptom. These Results are
consistent with clinical observations.

Fig. 5: (a) Regression between blunted affect severity and facial activity features.
(b) Weights given to each feature by the regression model.
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Possible Confounds One-way ANOVA on patients and controls data revealed
significant difference between groups for gender (F = 16.77, p << 0.01) and
education level (F = 6.42, p = 0.014). Neither of these variables was found to
have a significant effect on facial activation characteristic within each group.
The possible effect of neuroleptic drugs on observed facial activity could not be
excluded, since all of our patients were under drug treatment, and additional
control is needed.

4.3 Facial Expression Predictive Power

Patients vs. Controls Classification We employed the 2-step learning algo-
rithm one feature type at a time, and using all features together. Each of the
feature types was distinctive on its own on test data with AUC significantly bet-
ter than chance (Fig 6). Activation Length gave out the best classification results
(AUC = 0.887), followed by Fast change ratio (AUC = 0.815) and Fast change
ratio (AUC = 0.814). This indicates the importance of looking at the the dura-
tion and dynamic of facial activity, rather than general intensity measures. The
predictive power of using all features together was slightly lower (AUC = 0.799),
most likely as a result of small sample and subsequent over-fitting.

Fig. 6: (a) ROC curves of each feature type for patients vs. control classification.
(b) Classification results summarized as Area Under the ROC Curve (AUC).

PANSS Severity Regression For all negative symptoms, the prediction of the
algorithm was significantly correlated with the score given by the psychiatrist
(R > 0.3, p 6 0.01). No such significance was found for any of the positive
symptoms, which can be explained by the small variability of positive symptoms
scores in our data. We got an unexpected result for general symptoms, with
significant correlation only for Poor attention (R = 0.292 ,p < 0.05), which
outperform the inter-rater correlation for this symptom. Train and test results
are summarized in Table 1.
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Code PANSS symptom Train R p-val Test R p-val

G11 Motor retardation 0.463 1.023E-03 0.154 0.213

G7 Poor attention 0.566 9.35E-07 0.292 0.0166

N1 Blunted affect 0.686 8.27E-10 0.530 4.042E-06

N2 Emotional withdrawal 0.652 4.52E-09 0.510 1.045E-05

N3 Poor rapport 0.550 2.53E-06 0.315 0.00949

N4 Passive/apatheticsocial withdrawal 0.548 2.89E-06 0.368 0.00216

N5 Difficulty in abstract thinking 0.585 3.83E-07 0.369 0.00211

N6 Lack of spontaneity and conversation flow 0.555 1.58E-06 0.301 0.0133

N7 Stereotyped thinking 0.539 3.86E-06 0.369 0.00211

P1 Delusions 0.344 0.005 0.017 0.891

P2 Conceptual disorganization 0.332 0.007 0.065 0.600

P5 Hallucinations 0.306 0.013 0.055 0.660

Table 1: Summary of ridge regression results on train and test data, separately
for each PANSS symptom. Pearson′s R was calculated between the algorithm
prediction and symptom severity as scored by a trained psychiatrist.

5 Discussion

Our results are in excellent agreement with previous studies and reported clinical
observations. We found clear evidence for clinically reported phenomenon such
as blunted affect and lack of positive emotional expressions, and demonstrated
how the disorder is manifested differently in different facial parts. Our findings
highlight the importance of looking at dynamic characteristics of facial activity
and may be employed in clinical settings.

The results give hope that real time automated facial analysis may one day
be used for disease monitoring, drug adjustment and treatment outcome eval-
uation. To achieve these goals, future studies should include monitoring facial
activity over time, studying Type-I (positive symptom) schizophrenia patients,
and controlling subjects’ drug usage. Other future directions include broadening
facial activity research to other disorders such as depression and autism, and
investigating the relation to neural mechanisms and cognitive performance.

Acknowledgements: This work was supported in part by the Intel Collaborative
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ble Foundations.
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Facial Expressions and Flat Affect in Schizophrenia, Automatic
Analysis from Depth Camera Data

Talia Tron1,4,Abraham Peled2,3, Alexander Grinsphoon2,3 and Daphna Weinshall4

Abstract— One of the prominent clinical manifestations of
schizophrenia is flat or altered facial activity, and flattening
of emotional expressiveness (Flat Affect). In this study we
used a structured-light depth camera and dedicated software
to automatically measure the facial activity of schizophrenia
patients and healthy individuals during a short structured inter-
view. Based on K-means clustering analysis, facial activity was
characterized in terms of Typicality, Richness and Distribution
of 7 facial-clusters. Thus we found patients’ facial activity to be
poorer, more typical, and characterized mainly by neutral (flat)
expressions. The facial features defined in our study achieved
up to 85% correct diagnosis classification rate in a SVM based
two-step algorithm, and were in significant correlation with
Flat Affect severity. Our results demonstrate how the use of
assistive technology and data-driven computational tools allow
for a comprehensive description of patients’ facial behavior
in clinical settings, and may contribute to the reliability and
accuracy of psychiatric diagnosis.

I. INTRODUCTION

Schizophrenia is one of the most severe mental disorders,
with lifetime prevalence of about 1% worldwide. The dis-
order is characterized by negative symptoms, which involve
the loss of functions and abilities (e.g. lack of motivation,
cognitive impairments), and by positive symptoms, which
are pathological functions not present in healthy individuals
(e.g. hallucinations and delusions). Both clinical observa-
tions and computational studies suggest that schizophrenia
is manifested by reduced or altered facial activity, and by
overall affective flattening [15], [14]. Flat affect, also known
as blunted affect, is clinically defined as ’a severe reduc-
tion in emotional expressiveness’, and may be expressed
in diminished facial expressions, monotonic speech, lack of
expressive gestures, and overall apathetic appearance [11].
It is a matter of debate whether the observed flattening is
a result of motor or emotional deficits, nonetheless, there
is evidence for high congruence between symptom severity,
patients wellbeing and treatment outcome [1].

Facial activity is traditionally analyzed in terms of emo-
tional ’prototype expressions’ such as anger, fear, sadness,
happiness, and disgust [4] in what is known as the cate-
gorical approach of emotions. Using this approach, it has
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been shown that patients with schizophrenia demonstrate less
positive emotions than controls [12], and lower congruity
of emotional response [3]. The downfall of the approach
however, is that it uses exaggerated, static and posed fa-
cial expressions, while those presented in everyday life are
dynamic, spontaneous and far more subtle [9], [2]. An
alternative approach is to analyze the facial activity without
interpreting its emotional state, which is commonly done
using the Facial Action Coding System (FACS). This system
scores the activity of roughly 46 individual facial muscles
called Action Units (AUs), based on their intensity level and
temporal segments. FACS has been mapped into prototype
emotions using the Emotional Facial Action Coding System
(EMFACS), which systematically categorizes combination
of AUs to specific emotions [7] but it can also be used
independently. Schizophrenia studies based on FACS has
found evidence for reduced upper facial activity [5] and
reduced overall facial expressivity [13], [6], [8]. Nonetheless,
these studies use a limited set of facial activity characteristic
features, not necessarily ecologically relevant, and ignore
information regarding facial variability. An extensive use
of computational methods together with clinical intuition is
needed in order to obtain a more comprehensive description
of patients behavior.

Our study suggests a new data-driven approach, combining
FACS analysis with the assumption that typical universal
emotions can be discovered in a bottom-up analysis. We
combine cutting edge technology with data-driven analysis
to define a set of ’prototype’ facial expression clusters, and
to characterize facial activity in terms of Typicality, Richness
and Distribution of these clusters. This allow us to study a
wide range of facial features, the relation between them, and
the way they are manifested in clinical setting.

II. MATERIALS AND METHODS
A. Study Design

The study was done in collaboration with Sha’ar Menashe
mental health center. Participants were 34 patients diagnosed
as suffering from schizophrenia according to DSM-5 and
33 control subjects. The duration of illness in participating
patients was 1.5−37 years (mean=16.9), and all but one were
under stable drug treatment. Informed consent was obtained
from all individual participants included in the study.

Participants were individually recorded using a structured-
light depth camera (carmine 1.09), during a short structured
interview done by a trained psychiatrist which included
four questions regarding their emotional state. They then
underwent a psychiatric evaluation using the Positive and
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Negative Symptoms Scale (PANSS), a 30 item scale espe-
cially designed to assess the severity of both negative and
positive symptoms in schizophrenia [10]. All procedures
performed in the study were in accordance with the ethical
standards of the institutional research committee and with
the 1964 Helsinki declaration and its later amendments or
comparable ethical standards.

B. Facial Activity Extraction

Facial AUs extraction out of depth camera video was
done using Faceshift c© commercial software, which provides
real time 3D face and head tracking (www.faceshift.
com). The software automatically analyzes data from depth-
cameras based on structured light technology. The output
includes the intensity level over time for 48 facial Action
Units (AUs), corresponding to the FACS AUs described
in Section I. Faceshift output was manually evaluated for
tracking sensitivity and noise level, and subsequently 23 AUs
were selected for further analysis and learning, including
Brows-up (center, left and right), Mouth-side (left or right),
Jaw-open, Lips-up, Lips-Funnel, Eye-In-Right (looking left),
Chin-raise, Sneer and both sides (left and right) of Blink,
Smile, Frown, Dimple, Lips-Stretch, and Chick-squint.

C. Facial-Cluster Characterization

In order to find the most common combinations of facial-
AUs activation in our data, the 23 dimensional vector re-
turned by Faceshift was segmented using k-means clustering
on data from all subjects simultaneously. Subsequently, each
video frame was assigned a cluster label i ∈ [k] representing
its closest cluster centroid (ci). The resulting facial-cluster
centroids can be thought of as the data-driven facial ’pro-
totypes’, somewhat equivalent to the categorical expressions
described in I, but with no theoretical assumptions regarding
the nature of emotions.

The optimal number of clusters was determined using the
”elbow criterion”. Let Vk be the percent of data variance
explained by k centroids. Then ∆V = Vk−Vk−1 denotes the
difference in the percent of reduced variance when adding
one cluster. Under the assumption that ∆V is F distributed,
we look for the highest k such that ∆V is statistically
significant. In other words, adding more clusters will not
significantly improve the ratio of variance explained.

The new vector representation was used to quantitatively
describe facial activity in terms of Richness (how many
prototype expressions appeared), Typicality (how similar they
were to the prototype) and Distribution (which expressions
were more prevalent). Facial features were calculated indi-
vidually for each subject in the following manner:

1) Richness: Let n denote the number of clusters that
appeared in a subject’s video clip, and k the number of
clusters used for the k-means algorithm:

Richness =
n−1
k−1

(1)

This measure varies from 0 (only one cluster appeared in
the video) to 1 (full richness, all clusters appeared); it can

be thought of as a measure for the diversity in facial activity
throughout the video.

2) Typicality: Let the Within-Cluster Sum of Squares
(WCSS) be the sum of distances of each data point x in
cluster Ci from its nearest cluster centroid (ci), with an
additional sum over clusters:

WCSSk =
k

∑
i=1

∑
x∈Ci

‖x− ci‖2 (2)

For k = 1, WCSS1 is proportional to the data variance (the
average sqaured distance of the raw data from its mean).
For k > 1, we define Typicality as the percent of the general
variance which remains after adding more clusters:

Typicality = 1−WCSSk

WCSS1
(3)

In facial activity terms, we can think of WCSSk as measuring
how similar the video-frame activation is to its assigned
’prototype’ among the k facial-clusters. Thus Cluster Typ-
icality with score close to 1 indicates that the subject’s
expressions are similar to the prototypes, while a score close
to 0 indicates a significant variability around the prototypes.

3) Cluster Distribution: For each facial-cluster i sepa-
rately, we counted the number of frames in which it appeared
ti, and normalized it by the length of the video clip T . This
allowed for a specific comparison between subjects over the
degree of activation of each cluster (or prototype) among the
different facial-clusters.

Cluster Distributioni =
ti
T
∀i ∈ [k] (4)

D. Data Analysis

Patients vs. controls differences were tested using two-tail
student’s t-test for Cluster Typicality, Richness, and Cluster
Distribution (separately for each facial-cluster). Result sig-
nificance was evaluated using the Bonferroni correction, a
family-wise error rate (FWER) for multi-hypothesis testing.
In order to allow comparison of our results with the cate-
gorical approach emotions, the k centroids returned by the
clustering algorithm were also evaluated for their affective
meaning based on EMFACS (see Section I).

The relation between facial-cluster features and the sever-
ity of the Flat Affect symptom was tested using regularized
ridge regression. A regression model was built for each
facial feature separately and for all features together, using
a custom designed two-step algorithm (see II-E). Pearson’s
correlation coefficient between the algorithm prediction and
the Flat Affect score was calculated on train and test data.
Symptom’s severity was also tested for correlation with all
other clinical symptoms scores evaluated by the psychiatrist.

To test for diagnosis consistency, PANSS evaluation was
repeated independently by a second trained psychiatrist who
watched the interview videos. Inter-rater agreement for Flat
Affect was tested using Pearson′s R. Finally, to exclude
possible confounds such as gender, education level, age
and religion, one-way ANOVA was performed; a variable
that was found to be different between groups, was further
investigated for its effect on facial activity within groups.
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Fig. 1: Illustration of the 2-step algorithm used for learning. Inter-
view data of each individual subject was divided into 30 seconds
long segments, and features were calculated separately for each
segment (F1). In step 1, a learner was trained on the segments of
all train subjects, giving as output the first model weights (W1) and
a prediction for each segment. In step 2 for each subject, prediction
mean and standard deviation over all segments were calculated (F2)
and a second learner was trained to predict subject’s label from these
moments (W2)

E. Learning

In order to evaluate the predictive power of facial-cluster
features, we trained a support vector machine (SVM) for
patients vs. control classification, and a regularized ridge
regression model for Flat Affect severity prediction. To
increase learning robustness, we employed a two step pre-
diction algorithm, where each stage is learned separately
from train data (Fig. 1). The algorithm was trained and
tested separately for each feature, and using all features
together, following a Leave-One-Out (LOO) procedure with
f-regression feature selection (n=5).

Learning performance was evaluated by the Area Under
the Receiver Operator Curve (AUC), a combined measure
for the learning sensitivity (true positive rate) and specificity
(true negative rate) with 1 signaling perfect separation and
0.5 signaling chance. Pearson′s R was calculated between
Flat Affect severity score and the algorithm’s prediction.

III. RESULTS

A. Facial-Clusters Characteristics

Following the elbow method described in Section II-C, k =
7 was chosen for K-means clustering segmentation. Fig. 2
illustrates the centroids of 3 out of 7 facial-clusters returned
by the clustering algorithm. The centroid of facial-cluster C1
(c1) is characterized by low intensity in all AUs, and may
be interpreted as neutral or flat expression. In c4 we see
high intensity of ’ChinLowerRaise’ and ’LipsStretch’, which
correspond with negative valence emotions such as sadness,
fear, or anger (according to EMFACS [7]). c7, on the other
hand, is characterized by high intensity smile and dimple,
and by overall higher levels of AU activation corresponding
to positive emotions such as happiness and content.

TABLE I: Patients vs. controls classification results

Feature Type AUC
Richness and Cluster Distribution 0.85

Typicality 0.84
All Features 0.80

Fig. 2: The centroids of 3 facial-clusters returned by the K-means
clustering algorithm (k=7)

Fig. 3: Group difference for Richness, Typicality, and for the Cluster
Distribution ( f ) of facial-clusters C1, C4 and C7

B. Patients Vs. Control

Significant group differences were found in Cluster Distri-
bution for facial-clusters C1, C4 and C7. C1 was significantly
more frequent in patients in comparison with controls (t =
4.14, p << 0.01), while the frequency of C4 and C7 was
reduced in patients (t = 2.43, p = 0.018, and t = 2.84,
p = 0.006 respectively). The results for facial-cluster C4 are
not significant under the Bonferroni correction, and further
investigation using a larger sample is needed to avoid type-I
error. No significant difference was found for the remaining
facial-clusters. Richness was significantly reduced in patients
in comparison with controls (t = 4.87, p << 0.01), while
Typicality was higher in patients (t = −3.39, p << 0.01).
Results are summarized in Fig .3.

Learning results suggest that facial-cluster features are
predictive for patients vs. control classification (Table I). A
classifier (SVM) trained to discriminate between patients and
controls, using as input Richness and Cluster Distribution,
achieved the best results (AUC = 0.85). Typicality achieved
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Fig. 4: Correlation between Flat Affect score and the prediction of
the learning algorithm using the train data

the second best results (AUC = 0.84). Classification was not
improved by letting the classifier use all the features, most
likely due to the small sample limitation and subsequent
over-fitting.

C. Correlation with Flat Affect

The evaluation of Flat Affect severity was at high agree-
ment between raters (R = 0.910, p << 0.01), and was found
to be significantly correlated with 3 negative symptoms,
including Emotional withdrawal (R = 0.907,p << 0), Lack
of spontaneity and conversation flow (R = 0.818,p << 0.01)
and Difficulty in abstract thinking (R = 0.764,p = 0.0014).

Fig. 4 illustrates the correlation between Flat Affect score,
and the prediction given by the algorithm based on different
feature types. The most highly correlated feature was Rich-
ness, followed by Typicality. Correlation was also significant
on test data, ruling out the possibility of mere over-fitting.

Note that the positive correlation is not between symptom
severity and feature score, rather it is the correlation with the
prediction of the algorithm when learning is based on the
specific feature. Specifically, the average regression weights
(w̄) of Richness in the first regression (W1 in Fig. 1) are
negative (w̄ = −0.62), while Typicality is given a positive
weight (w = 0.36) as expected.

Train and test results are summarize in Table II.

TABLE II: Pearson correlation between Flat Affect score and
algorithm prediction on train and test data

R-train p-value R-test p-value
All Features 0.647 5.82E-09 0.431 2.72E-04
Richness 0.618 4.18E-08 0.420 3.98E-04
Typicality 0.480 3.912E-05 0.354 0.003
Cluster Distribution 0.472 6.95E-05 0.172 0.163

D. Possible Confounds

One-way ANOVA on patients and controls data revealed
significant difference between groups for gender (F = 16.77,
p << 0.01) and education level (F = 6.42, p = 0.014). Nei-
ther of these variables was found to have a significant effect
on cluster-facial features. The possible effect of neuroleptic
drugs on observed facial activity could not be excluded, since
all of our patients were under drug treatment, and additional
control is needed.

IV. CONCLUSIONS

Our results are in excellent agreement with clinical find-
ings, and suggest that in clinical settings schizophrenia
patients demonstrate a smaller range of expression, character-
ized mainly by reduced overall facial activity. In contrast to
other studies [12], we found a reduction in both positive and
negative emotional expressions. Another interesting finding
is that Typicality is higher in patients. This may indicate that
they don’t have a different set of basic facial expressions,
but rather that their expressivity is less diverse and more
repetitive. Finally, we found that information embedded in
facial activity is sensitive enough for symptom severity
evaluation, and for automatic patient vs. control seperation;
this may be one day beneficial for diagnosis, monitoring and
treatment.
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Differentiating Facial Incongruity and Flatness in Schizophrenia using
Structured Light Camera Data

Talia Tron1,4, Abraham Peled2,3, Alexander Grinsphoon2,3 and Daphna Weinshall4

Abstract— Incongruity between emotional experience and its
outwardly expression is one of the prominent symptoms in
schizophrenia. Though widely reported and used in clinical
evaluation, this symptom is inadequately defined in the litera-
ture and may be confused with mere affect flattening. In this
study we used structured-light depth camera and dedicated
software to automatically measure facial activity of schizophre-
nia patients and healthy individuals during an emotionally
evocative task. We defined novel measures for the congruence
of emotional experience and emotional expression and for Flat
Affect, compared them between patients and controls, and
examined their consistency with clinical evaluation. We found
incongruity in schizophrenia to be manifested in a less specific
range of facial expressions in response to similar emotional
stimuli, while the emotional experience remains intact. Our
study also suggests that when taking into consideration affect
flatness, no contextually inappropriate facial expressions are
evident.

I. INTRODUCTION

The term schizophrenia was coined by Bleuler in the
beginning of the previous century to describe (among other
findings) the observed mismatch between patients mood
and its outwardly display (affect) [3]. In psychiatric clinical
evaluation, detecting and monitoring affect incongruity is
critically important. First, since this is one of the more typical
finding in schizophrenia, it may bias the diagnosis towards it.
Second, tracking affect incongruity is a potential candidate
for treatment outcome monitoring, since incongruity usually
disappears or reduces as the patient positively responds to
medications [10].

Currently, the evaluation of affect incongruity is based
on the subjective experience of the diagnosing psychiatrist,
which leads to low inter-rater reliability and may introduce
biases and errors into the diagnosis [13], [6]. Consequently
there is a need to define objective measures for mood-
congruence assessment, providing psychiatrists with a quan-
titative indicator for this important symptom.

Although early literature on schizophrenia suggested that
the disorder is characterized by the inability to experience
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pleasure [12], a growing body of work supports the Inhibition
Theory [3], stating that the emotional experience is not
compromised, rather that there is an impairment in emotional
expression [4], [11], [1]. Many studies, together with a
substantial amount of clinical observations, report a severe
reduction in emotional expressiveness in schizophrenia pa-
tients, also known as Flat or Blunted Affect [2], [6], [9].
Affect flattening may be expressed not only as a reduction in
the intensity of emotional expression, but also as a reduction
in its variability and dynamics, as demonstrated in our
previous study [14].

Flat Affect is typically thought to be independent of
affect incongruity and is therefore measured separately using
different clinical and empirical scales [15]. Nonetheless, we
may wonder whether the clinical and experimental reports of
emotional incongruence are not merely a result of misinter-
pretation of affect flattening. For example, one of Blueler’s
descriptions of incongruent expression is ’We do not feel his
anger even when he speaks of it, because his features and
his movements are not in agreement with his words. He may
strike us with the most friendly smile on his face’. Maybe
the explanation is that this patient has a smile which doesn’t
change over time (aka ’frozen smile’), or simply flat affect?
A confusion in clinical subjective assessment may arise due
to the non-specific definition of affect incongruity.

In the past two decades a great effort has been made
to empirically evaluate facial expressions in an objective
manner. Most of the studies use the Facial Action Coding
System (FACS) which gives scores to the activity of 46
individual facial muscles called Action Units (AUs) based
on their intensity level and temporal segments [5]. The
advantage of the coding system is that it does not interpret
the emotional value of specific features, and allows for a
detailed and quantitative facial activity analysis.

In this study we used a structured light camera in order to
record schizophrenia patients and healthy individuals while
observing emotionally evocative photographs. One benefit of
using a depth camera is the resulting ability to accurately
track facial motion. This allowed us to obtain fairly reliable
measures of AU activity. We further computed discriminative
features of the AU activity in order to devise data-driven
measures for three phenomenological quantities used in the
diagnosis of schizophrenia: Flat Affect, Incongruent Affect,
and Inappropriate Affect. We show evidence in our data for
the Flat and Incongruent Affects in schizophrenia paitents,
but hardly any Inappropriate Affect. We then directly ap-
proach the question - can affect incongruity still be observed
in schizophrenia patients when taking into account affect
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flatness? our answer in Section III-C is in the affirmative.

II. MATERIALS AND METHODS

A. Study Design

Participants included 34 patients diagnosed with
schizophrenia according to the DSM-5 and 33 healthy
control subjects matched for age and education level. The
course of illness in patients varied from 1.5 years up to 37
years, with mean of 16.9 years. All patients but one were
under stable drug treatment (mood stabilizer, antidepressant,
anti-psychotic and/or sedatives). Informed consent was
obtained from all individual participants included in the
study.

Each participant was evaluated by a trained psychiatrist
using the Positive and Negative Symptoms Scale (PANSS),
a 30 item scale especially designed to assess the severity of
both negative and positive symptoms in schizophrenia [7]. In
addition, they underwent mental status examination, being
evaluated for the congruity of their affect (incongruent or
congruent).

Subjects were presented with 20 emotionally evocative
photos retrieved from the International Affective Picture Sys-
tem (IAPS), and were asked to rate their subjective emotional
experience while watching the photos (’negative’,’neutral’
or ’positive’). Presenting and rating of the photos followed
the IAPS photo rating paradigm [8]. Each subject was
individually recorded using a 3D structured light camera
(carmine 1.09).

All procedures performed in the study were in accordance
with the ethical standards of the institutional research com-
mittee and with the 1964 Helsinki declaration and its later
amendments or comparable ethical standards.

B. Facial Activity Features

Facial activity was extracted out of the video using
Faceshift c©, a commercial software which provides real time
3D face and head tracking (www.faceshift.com). The
software automatically analyzes data from 3D cameras and
outputs the intensity level over time for 48 facial AUs based
on the Facial Action Coding System (FACS) described in
Section I. This output was manually evaluated for track-
ing sensitivity and noise level. Subsequently 23 AUs were
selected for further analysis and learning, including brows,
mouth, jaw, lips, eyes, chick, and nose activation.

For each AU separately, the raw Faceshift signal was quan-
tized over time using k-means clustering (k = 4), and sub-
sequently 5 different features were calculated. The features
were designed to capture clinically relevant characteristics of
facial expressions, including the presence of specific AUs,
their intensity, and their dynamics (activation length and
change ratio). See [14] for a full description of the facial
features.

III. AFFECT ANALYSIS AND RESULTS

As stated above, we aim to devise automatic measures
of two characteristic manifestations of facial expressions in

schizophrenic patients – Flat Affect and Incongruent Affect.
Our analysis below will show that these characteristics are
very much correlated in such patients, and therefore the
challenge is to device measures which can distinguish the
two concepts. In fact, we propose below 3 measures, measur-
ing flatness, incongruity and appropriateness. We show that
the 3 measures capture different aspects of the participants’
behavior, and specifically they can independently measure
Flat, Incongruent and Inappropriate emotional expression.

In Section III-A we analyze a measure of emotional
experience, which compares the underlying emotional expe-
rience of participants independently of facial expressions.
In Section III-B we propose a measure for the congru-
ence between a person’s reported emotional state and facial
expressions, which is significantly lower in patients when
compared to controls. In Section III-C we directly approach
the question whether affect incongruity can still be observed
in schizophrenia patients when taking into account affect
flatness.

A. Emotional Experience Agreement

Emotional experience is measured independently from
emotional expression, by the reported response of partic-
ipants when asked to describe their subjective emotional
state while viewing the photos. Specifically, for each photo
separately we calculated the emotional response (negative,
neutral or positive) which was most common among all par-
ticipants in each group (patients and controls). The congruity
of emotional experience was measured by the Agreement
Score - the percentage of participants in the group which
reported the most common emotional response. This measure
was compared between groups using Student’s t-test.

Results: The Agreement Score was similar in patients and
controls (Fig. 1-b), consistent with previous studies which
report normal emotional experience in schizophrenia patients
(see Section I).

B. Emotional Experience and Facial Expressions

In order to measure the agreement between facial expres-
sions and the emotional experience of participants, we de-
vised the Predictiveness Score. For each photo, we extracted
the corresponding facial activity segment and computed the
corresponding vector of facial activity features (see Sec-
tion II-B). We excluded photos rated as ’neutral’. For each
participant, a linear SVM algorithm was trained to classify
photo rating as ’positive’ or ’negative’ based on the facial
features. A Leave One Out (LOO) train-test paradigm was
followed, and the Predictiveness Score was calculated as the
area under the Receiver Operator Curve (AUC), which is a
combined measure for classifier specificity and sensitivity.
The measure was compared between groups using Student’s
t-test and effect size was evaluated using Cohen’s d’.

Results: The Predictiveness Score was 0.90 for controls,
namely, in 90% of the normal population the vector of facial
features was useful enough to correctly determine whether
the reported emotional experience was positive or negative.
This score was significantly lower for patients (t = 2.829,
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Fig. 1: A difference in emotional expression but not in emotional experience in
schizophrenia patients in comparison with controls. a) The Predictiveness Score for
emotional response classification based on facial expressions was significantly lower
in patients (t = 2.83, p < 0.01). b) No significant group difference was found for the
Agreement Score between raters.

p < 0.01, d f = 30, effect size=0.508), meaning that in
patients facial expressions were much less indicative of their
subjective emotional experience (Fig. 1-a).

One should caution against interpreting these results as
necessarily demonstrating the incongruity of facial expres-
sions in patients. The difference may be the result of the
Flat Affect and its effect on the learning procedure, sim-
ply because a weaker (lower) signal has typically lower
SNR and is therefore harder to learn. In accordance, we
found that the clinically Flat Affect score is significantly
higher in participants with clinically reported incongruity
than in congruent participants (t = 2.08, p = 0.045, d f = 42
e f f ectsized′ = 0.32). In order to further isolate the possible
influence of affect flatness, we looked at additional measures
in the next section.

C. Distinguishing Flatness from Incongruity

In order to define measurements which differentiate facial
flatness from facial incongruity, we looked more closely into
the signal. We restrict the term Incongruity to refer to the
consistency of subject’s facial expressions when viewing
photos evoking a similar emotional response. The term
Inappropriateness refers to the agreement between subject’s
facial expressions and the typical expression in the healthy
population for photos that elicit a similar emotional response.

Notations: First, the facial feature matrix of all subjects
was normalized to Z scores: Z = [X−E(X)]/σ(X). Let j ∈
[k] denote a possible emotional response to a photo, k = [1−
negative,2− neutral,3− positive]. Let n j denote the set of
photos rated as j. Let N j = |n j| denote the number of photos
rated as j and N = ∑ j N j denote the total number of rated
photos. Let z ji denote the feature vector of subject’s facial
activity while watching photo i ∈ n j. For each participant,
z j =

1
N j

∑i z ji denotes the vector of mean facial activity while
watching photos in n j, and z = 1

N ∑ ji z ji denotes the vector
of mean facial activity while watching any photo.

Flatness Measures: For each subject separately, we cal-
culated the variance in facial activity for similarly rated
photos, SSwithin =∑ j ∑i(zi j−z j)

2, the variance in the average
response to differently rated photos SSbetween = ∑ j N j(z j −
z)2, and the total variance over all photos SStotal = SSwithin+

TABLE I: Results of Student’s t-test on our different measures in schizophrenia patients
vs. control subjects. SSwithin and SStotal were significantly lower in patients, indicating
facial flatness, while Incongruity tended to be higher in patients. Inappropriateness
was not significantly different in the two populations.

Controls Patients t p-val
SSwithin 7.52 15.91 2.305 0.027
SStotal 8.53 18.07 2.376 0.022

Incongruity 0.92 0.88 -2.014 0.051
Inappropriateness 28.62 38.27 1.414 0.168

SSbetween = ∑ j ∑i(zi j−z)2. Note that all 3 measures may be
considered as indicative of general facial flatness, with lower
values indicating higher flatness.

Results: The total facial activity variance SStotal was higher
in controls in comparison with patients (t = 2.38, p = 0.022,
e f f ectsized′= 0.43), and so were the other types of variance
(t = 2.30, p = 0.027, e f f ectsized′ = 0.41 for SSwithin and
t = 2.16, p = 0.037, e f f ectsized′ = 0.39 for SSbetween), see
Table I. This reinforces the clinical observation that patients’
affect is more flat than that of controls.

Congruity Measures: Incongruity is defined as the ratio
between the variance within each emotion and the total
variance (1). This measure tells us how unique facial ex-
pressions are with respect to each emotional state relative to
the overall variance in facial expressions. In other words, we
measure the inconsistency of emotional response given the
total emotional flatness.

Incongruity =
SSwithin

SStotal
(1)

Inappropriateness is defined as the difference between the
typical expression in response to a specific stimuli (the mean
of facial activity over all control subjects), and each subject’s
individual facial activity (2). This tells us how different
subject’s expressions are from the expected normal response.

Specifically, let zH j denote the mean facial activity of
control subjects while watching photo j. For each subject,
zH j was calculated using all remaining control subjects
(following a LOO paradigm). Then:

Inappropriateness = ∑
j
∑

i
(zi j− zH j)

2 (2)

We also define a normalized version of this same mea-
sure, dividing each summand of least square distances by
the variance of the subject’s response to similar photos:
∑ j[∑i(zi j − zH j)

2/∑i(zi j − z j)
2]. In each of the measures

listed above, we tested the difference between schizophrenia
patients and control subjects using Student’s t-test.

Results: We found that Incongruity tend to be higher in
patients (t = −2.014, p = 0.051, d f = 30, e f f ectsized′ =
0.36), indicating that the facial response to stimuli evoking
similar emotions is less consistent. The Inappropriateness
measure did not significantly differ between groups nor did
the normalized measure. Results are summarized in Table I.

Correlation with Clinical Evaluation: To justify the
interpretation of our measures in terms of affect congruity
and facial flatness we further tested the way these measures
behave in accordance with clinical evaluation. Correlation
between the various measures and the clinical score for
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Fig. 2: Pearson correlation between patients’ variance in facial expressions while
looking at photos which elicit similar emotional response (SSwithin), and the Flat Affect
score given to them by the psychiatrist (based on the PANSS scoring system).

Flat Affect was calculated, in the patients group only, using
Pearson correlation test. The difference in these measures
between subjects diagnosed as having incongruent affect vs.
congruent subjects was evaluated using Student’s t-test.

Results: (i) SSwithin was found to be negatively correlated
with the Flat Affect score given by the psychiatrist (R =
−0.598, p = 0.0398, Fig. 2), as expected, supporting our
interpretation of this measure as indicative of the clinical Flat
Affect. No such correlation was found for the Incongruity
measure (r = −0.0066, p = 0.980). (ii) The Incongruity
measure was found to be significantly higher in subjects
that were clinically diagnosed as having incongruent affect
(t = 2.238, p = 0.0373, d f = 22, e f f ectsized′ = 0.47).
No significant difference was found for any of the other
measures. Additionally, the Incongruity measure was not
correlated with the SSwithin measure (r = 0.10, p = 0.585).
These results reinforce our choice of measures and are in
accordance with their clinical interpretation.

IV. SUMMARY AND DISCUSSION

We automatically tracked facial activity of schizophre-
nia patients and healthy individuals during an experimen-
tal paradigm where subjects watched a set of emotionally
evocative photos and reported their emotional response. From
the recorded facial activity, we obtained automatic measures
of two phenomenological characteristics of schizophrenia:
Flat Affect, which describes a severe reduction in emotional
expressiveness, and Incongruent Affect, which refers to a
mismatch between facial expression and the subjective emo-
tional response to the current situation. Our study refined and
readjusted the definition of the two symptoms, eliminating
the prevalent misinterpretation of facial flatness as incon-
gruity. Our results suggest that Incongruity is manifested
independently of affect flatness, by means of a less specific
range of responses to similarly evocative emotional stimuli.

Specifically, we showed that affect flatness is measured
reliably by the variance in facial expressions, while the
relative variance in response to similar emotional stimuli is a
separate, reliable measure of affect incongruity. When taking
into consideration affect flatness, we did not find evidence

for Inappropriate Affect, when the emotional response does
not fit the socially expected response in similar situations.
The measures introduced in our study, together with their
clinical interpretations, should be further examined in both
clinical and empirical settings in light of these results.

Theoretically, our results support the inhibition hypothesis
of Kraepelin and Bleuler [3], which suggests that impairment
and blunting of facial expression as observed in schizophre-
nia patients is not a result of compromised emotional expe-
rience. We found the emotional experience of schizophrenia
patients to be comparable to that of healthy individuals.

The study demonstrates the importance of an objective,
quantitative and precise definition of clinical symptoms in
schizophrenia. Our hope is that the novel measures and
analysis approach we offer will contribute to the reliability
of psychiatric diagnosis, will allow better characterization
of patients’ behavior, and will promote both research and
treatment in the field.
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Summary. Motor peculiarity is an integral part of the schizophrenia disorder, hav-
ing various manifestations both throughout the phases of the disease, and as a re-
sponse to treatment. The current subjective non-quantitative evaluation of these
traits leads to multiple interpretations of phenomenology, which impairs the reli-
ability and validity of psychiatric diagnosis. Our long-term objective is to quanti-
tatively measure motor behavior in schizophrenia patients, and develop automatic
tools and methods for patient monitoring and treatment adjustment. In the present
study, wearable devices were distributed among 25 inpatients in the closed wards of
a Mental Health Center. Motor activity was measured using embedded accelerome-
ters, as well as light and temperature sensors. The devices were worn continuously by
participants throughout the duration of the experiment, approximately one month.
During this period participants were also clinically evaluated twice weekly, includ-
ing patients’ mental, motor, and neurological symptom severity. Medication regimes
and outstanding events were also recorded by hospital staff. Below we discuss the
general framework for monitoring psychiatric patients with wearable devices. We
then present results showing significant correlations between features of activity in
various daily time-windows, and measures derived from the psychiatrist’s clinical
assessment or abnormal events in the patients’ routine.

1 Introduction

The relevant clinical literature describes a wide range of motor pattern alter-
nations, manifested in different phases of the schizophrenia disorder. Positive-
signs schizophrenia patients are typically psychotic and disorganized, char-
acterized mainly by positive symptoms (e.g. auditory hallucinations, delu-
sions and paranoid thoughts). In clinical settings, these patients show invol-

? Published in Proc. of 7th EAI International Conference on Wireless Mobile Com-
munication and Healthcare (MobiHealth), Nov 2017, Vienna Austria.
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untary movements, dyskinesia and catatonic symptoms [1]. In negative-signs
schizophrenia, there is usually an observed motor retardation, psycho-motor
poverty, decreased spontaneous movements, psycho-motor slowing and flat-
tened affect [2, 3]. Some patients demonstrate both types simultaneously or
during different phases of the illness.

Neurological Soft Symptoms (NSS) can manifest early and during the pro-
gression of the disorder, and include deficits in coordination, sensory integra-
tion, and sequential motor behaviors [4]. Medical treatment was found to
improve some of the motor symptoms, including NSS, involuntary movement
and dyskinesia [1]. These medications, however, may also introduce in chronic
patients drug-induced movement disorders such as tremor dystonia, Parkin-
sonism (rigidity and bradykinesia), akathisia and tardive dyskinesia [5].

The diversity and specificity of motor symptoms throughout different
phases of the disorder and as a response to drugs, makes them good candi-
dates for patient monitoring and treatment outcome evaluation. Nonetheless,
to date, these symptoms are evaluated in a descriptive non etiological man-
ner based on subjective clinical scales such as the Unified Dyskinesia Rating
Scale (UDysRS) [6] and the Unified Parkinson’s Disease Rating Scale (MDS-
UPDRS) [7]. The lack of objective, quantitative methods to measure these
symptoms, and the insufficient conceptual clarity around it, causes multiple
interpretations of phenomenology, often entailing low reliability and validity
of the diagnosis. In addition, symptom evaluation process requires expert staff
and availability of resources, and it is not done frequently enough to capture
delicate changes in patients’ spontaneous and drug-induced conditions.

The last decade has seen a steep rise in the use of wearable devices in
medical fields ranging from human physiology [8] to movement disorders [9,10]
and mental health [11]. Accelerometers and gyroscopes, which are commonly
embedded in smart-watches and other wearable devices, are now used to assess
mobility, recognize activity, and context. In a clinical setting, these sensors
may be used in order to detect change in high-level movement parameters,
track their dynamics and correlate them with mental state.

The objective of the current study is to develop and evaluate a framework,
where wearable devices are used to facilitate continuous motor deficits mon-
itoring in schizophrenia patients in a natural setting. This is an important
step towards a detailed automatic evaluation system of symptom severity in
schizophrenia. Such a system has a great potential to help understand this
illusive disease. An additional goal would be to help with the overwhelming
need for detection and characterization of sub-types of the disease towards a
better understanding of underlying causes, and the development of better and
more personalized treatment.
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Fig. 1. Raw data as recorded by the smart-watches, including tri-axial accelerometer
(top panel), light sensor (middle), and temperature (bottom). This plot shows data
from a single patient, recorded on 28 Jan, 2017 at 5:00-5:05pm. Only accelerometer
data was used for further analysis.

2 Methods

2.1 Participants and clinical evaluation

Twenty seven inpatients from the closed wards at Shaar-Meashe MHC par-
ticipated in the study after signing appropriate Helsinki legal consents. Most
participants (21/27) were diagnosed with schizophrenia according to the DSM-
5, 3 with paranoid schizophrenia, 2 with schizoaffective disorder, and one with
psychotic state cannabinoids. Participants’ age varied from 21 to 58 (mean
of 37.48), with course of illness varying from 0 (first hospitalization) up to
37 years (mean of 16.9 years). Two of the patients dropped out of the study
after less than a day due to lack of cooperation. The rest (25 patients) were
followed for a period of three weeks on average (6-52 days).

The study was conducted in natural settings, where patients were not re-
quired to change any personal or medical procedure. In addition to routine
reports by nurses and physicians, every patient underwent an additional eval-
uation by a trained psychiatrist twice a week. The procedure included medica-
tion monitoring (type, dosage and frequency), as well as clinical evaluation of
positive and negative symptom severity (PANSS [12]) and neurological symp-
toms severity (NES [13]).

All procedures performed in the study were in accordance with the ethical
standards of the institutional research committee and with the 1964 Helsinki
declaration and its later amendments or comparable ethical standards.
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2.2 Data Acquisition

At study onset, each participant was given a smart-watch (GeneActiv5). The
devices included tri-axial accelerometers, light, and temperature sensors, the
high frequency output (50Hz) of which was stored on memory cards embedded
in the device (see Fig. 1). Data was collected by the aforementioned smart
watches worn continuously by patients throughout the experiment (for a total
of 489 days of data from 25 patients). The devices were placed and removed
by the medical staff, and the content of the memory card was uploaded to
a central storage location upon termination of the experiment for further
analysis.

In order to reduce noise introduced by the variability in patients activity
which is due to external circumstances rather than mental state, weekends
were excluded from the study and our analysis focused on fixed time windows
with regular departmental daily activity. These included occupational therapy
time slots (10am-11am), lunch (12pm-1pm), and indoor free time (4pm-5pm).
In addition, we calculated full day features (6am-10pm) and used night time
features (10pm-6am) to evaluate sleep quality.

2.3 Features

Features were computed on the basis of the accelerometer readings, analyzed
in 1 minute windows (see Table 1 and Fig. 2). Light and temperature data
were not used for the analysis. The point-wise sum of values and sum of
square values of the tri-axial accelerometer measurements (Energy Square
and Energy Sum respectively) were averaged over 1 minute intervals. The
variance of the sum of squares (Energy Variance) was also computed over
the same window. Stepping behavior (Step Detector) was detected as large
maxima of the smoothed square norm of the point-wise acceleration. Overall
Dynamic Body Acceleration (ODBA), a measure of energy expenditure, was
computed as the mean norm of the accelerometer signal after application of
a high-pass filter.

Table 1. List of features calculated on the basis of the tri-axial Accelerometers.
Average and variance was calculated on a 1 minute time window.

Feature Description

Step Detector Simple count of the number of steps per minute
Energy Square Averaged sum of point-wise square acceleration
Energy Sum Averaged sum of point-wise acceleration
Energy Variance Variance of point-wise square acceleration
ODBA Mean norm of a high-passed version of acceleration

5 https://www.geneactiv.org/
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Fig. 2. The daily features of a single subject (left): gray areas indicate the time win-
dows used for aggregated feature calculation. Monthly follow-up of a single patient
(right): top panel shows the clinical five-factor PANSS score given by a trained psy-
chiatrist on a bi-weekly basis; bottom panel shows the aggregated features calculated
based on the different time windows.

2.4 Clinical Assessments

The 30-item scale for positive and negative symptom assessment (PANSS)
was reduced to the following 5 literature-based factors: Positive, Negative,
Disorganized/Concrete, Excited and Depressed. The dimensionality reduction
was done according to the consensus model suggested by Wallwork et al. [14],
based on 25 previously published models and refined with confirmatory factor
analysis (CFA).

The negative and positive factors had low between-factor correlation (R =
0.399), indicating good separation of the symptomatology space. As expected,
the positive factor was in high correlation with the mean of all positive PANSS
items (R = .944), and likewise the negative factor was in high correlation with
the mean of all negative PANSS items (R = .972).

3 Results

We investigated two distinct ways by which wearable devices can be used for
patient monitoring, in order to assist physicians in understanding the state of
a patient. The first aspect of monitoring relates to the automatic assessment
of a patient’s condition, in order to provide automated, continuous, and ob-
jective measures of mental state. To this end we investigated the correlation
between the computed measures and assessments by physicians, as described
in Section 3.1. The second aspect of monitoring relates to the detection of
change (or anomalous behavior patterns) which warrants additional attention
from the medical staff, as described in Section 3.2.
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3.1 Movement patterns and mental state

In order to investigate the correspondence between patterns of movement and
mental state, multiple correlation analysis was computed between activity re-
lated features (described in Section 2.2) and PANSS factors. Results (Table 2)
indicate the predictive benefit of the computed activity-related features with
respect to the PANSS factors. When separately considering features computed
in each of the time-windows, it is evident that different time windows provide
varying predictive value for the 5 different PANSS factors.

Table 2. Percent Explained Variance based on Multiple Correlation between com-
puted features in each of the 5 time-windows and each of the 5 PANSS factors. (See
Section 2.2 for time-window specifications.)

free lunch occu day night all

Positive Factor 16.30% 11.14% 12.31% 19.80% 5.21% 53.77%
Negative Factor 19.74% 3.15% 2.06% 18.36% 9.77% 55.50%
Disorganized/Concrete Factor 22.73% 0.50% 15.13% 13.42% 5.82% 64.81%
Excited Factor 23.79% 8.75% 15.08% 10.35% 12.70% 57.10%
Depressed Factor 31.01% 9.23% 8.94% 5.78% 6.39% 58.33%

Specifically, the Depressed Factor is described relatively well using features
from the free time window, with 31.01% explained variance, while all other
time-windows are below 10%. Both Positive and Negative factors are described
well using features from the free time as well as all day time-windows. The
remaining factors are again best described using free time. Overall, the free
time window is the single most effective window, presumably since it imposes
less structure on the movement of the subjects, allowing for the manifesta-
tion of the underlying mental state. In all cases, combining all time windows
(rightmost column in Table 2) leads to substantially higher explained variance,
compared to any of the individual windows.

Interestingly, looking at individual variable correlations we see that step
count during free time was positively correlated with positive, disorganized
and exited factor (R = 0.37, 0.37 and 0.31 respectively), but not with the
negative and depressed factors. In addition, patients who had higher scores
in disorganized and exited factors tended to have lower Energy scores during
occupational time (R = −0.28 for Energy Sum and −0.22 for Energy Vari-
ance). This may indicate some motor retardation which is manifested only in
non-walking time.

3.2 Continuous Monitoring

Our measures can be used to track changes in the patient’s condition as com-
pared to some established normal baseline, and may identify external events
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Fig. 3. Mean daily steps of a single subject. The gray area corresponds to a short-
lasting change in medication regime.

which are correlated with the departure from normality. Fig. 3 demonstrates
such a case: daily step counts of a patient dramatically increased 5-fold, at
the same time as a significant change in medication dosage was introduced.
Whether the change in medication caused the rise in movement propensity or
they were both triggered by a change in mental state, this observation points
to the relevance of monitoring macro movement patterns as part of routine
patient monitoring.

4 Conclusions

We describe a study designed to evaluate the utility of wearable devices fit-
ted with accelerometer, light, and temperature sensors, for the monitoring
of schizophrenia patients in a closed ward mental health institution. Initial
results show correlations between features of activity in various daily time-
windows, and factors derived from the PANSS assessment.

Results indicate that movement features during free time are the most
indicative of mental state. This finding is somewhat counter-intuitive, since the
more structured activity during occupational therapy or lunch was expected
to highlight differences in the state of patients. However, our results clearly
show that the behavior of individuals when left to their own devices is better
correlated with the PANSS factors.

These findings points to the possibility of automatically and continuously
tracking Schizophrenia related symptoms and patient state, in a natural set-
ting hospital environment.The benefits of such a tracking system are twofold;
first, the continuous tracking will assist physicians in understanding the state
of a patient on an on-going basis, as opposed to specific points in time, when
assessed by the doctor. Second, long term monitoring of a large number of
patients will produce data which will allow us to develop more objective mea-
sures of the motor aspects of the illness, and facilitate a more personalized,
objective, and data driven approach which is much needed in the field of
mental health.

Future work will focus on measuring the utility of this approach as an
augmentation tool from a physicians perspective on the one hand, and the
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ability to predict physician assessments for automation of diagnosis on the
other.
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Abstract— Wearable devices fitted with various sensors are
increasingly being used for the automatic and continuous
tracking and monitoring of patients. Only first steps have been
taken in the field of psychiatric care, where long term tracking
of patient behavior holds the promise to help practitioners to
better understand both individual patients, and the disorders
in general. In this paper we use topic models for unsupervised
analysis of movement activity of schizophrenia patients in a
closed ward setting. Results demonstrate that features com-
puted on the basis of this analysis differentially characterize
interesting sub-populations of schizophrenia patients. Positive-
signs schizophrenia sub-population was found to have high
motor richness and low typicallity, while negative-signs patients
had low motor richness and lower typicality. In addition we
design a classifier which correctly classified up to 80% of the
clinical sub-population (f-score=0.774) based on motor features.

I. INTRODUCTION

Motor peculiarities are an integral part of the schizophre-
nia disorder, both as aspects of the more general symptom
repertoire, and in response to medications. To date, these
symptoms are typically evaluated in a descriptive manner
based on psychiatric rating scales such as the Positive and
Negative Syndrome Scale (PANSS) [1], or targeted specif-
ically using subjective clinical scales such as the Unified
Dyskinesia Rating Scale (UDysRS) [2] and the Unified
Parkinson’s Disease Rating Scale (MDS-UPDRS) [3]. The
lack of objective, quantitative methods for measuring these
symptoms, and the insufficient conceptual clarity around
them, may cause multiple interpretations of phenomenol-
ogy, leading to low reliability and validity of diagnosis. In
addition, the symptom evaluation process requires expert
staff and availability of resources, and is therefore not
done frequently enough to capture more subtle changes in
spontaneous and drug-induced conditions. Clearly there is an
urgent need for automatic monitoring and assessment tools.

The last decade has seen a steep rise in the use of wearable
devices for medical applications in a range of fields, from
human physiology [4] to movement disorders [5], [6] and
mental health [7]. Accelerometers and gyroscopes, which are
commonly embedded in smart-watches and other wearable
devices, are now used to assess mobility and recognize
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activity. In a clinical setting, these sensors may be used in
order to detect changes in high-level movement parameters,
track their dynamics and correlate them with mental state.

Measures of activity such as step counts and overall
activity, as well as changes thereof, have already been shown
to effectively provide insights into the state of patients in a
closed ward mental hospital setting [8]. Unsupervised be-
havioral mode analysis of sensor data, such as topic models,
have previously been used in other domains to provide a
high level description of behavior [9]. Here we combine
these ideas and use topic models for unsupervised analysis
of patient activity. These models allow a richer, qualitative
description of behavior than the aforementioned measures.
We demonstrate that features computed on the basis of topic
model analysis differentiate sub-populations of patients.

II. MATERIALS AND METHODS

A. Study Design

27 inpatients from the closed wards at Shaar-Meashe MHC
participated in the study. Most participants (21/27) were
diagnosed with schizophrenia according to the DSM-5, 3
with paranoid schizophrenia, 2 with schizoaffective disorder,
and one with psychotic state cannabinoids. Participants’ age
varied from 21 to 58 (mean 37.5), with course of illness
varying from 0 (first hospitalization) up to 37 years (mean
16.9 years). Two of the patients dropped out of the study after
less than a day due to lack of cooperation. The remaining
25 patients were followed for a period of three weeks on
average (6-52 days).

The study was conducted in natural settings, where pa-
tients were not required to change any personal or medical
procedure. On top of the normal care, every patient un-
derwent an additional evaluation by a trained psychiatrist
twice a week. The procedure included clinical evaluation
of symptom severity using PANSS; Neurological Evaluation
Scale (NES [10]) assessment was conducted as a control.
In addition, continuous medication monitoring (type, dosage
and frequency) by the clinical staff was observed.

All procedures performed in the study were in accordance
with the ethical standards of the institutional research com-
mittee and with the 1964 Helsinki declaration and its later
amendments or comparable ethical standards.

B. Data Acquisition

Each participant was fitted with a smart-watch (GeneAc-
tiv1) with tri-axial accelerometer embedded sensors, the high

1https://www.geneactiv.org/
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frequency output (50Hz) of which was stored on memory
cards. Data was collected continuously throughout the exper-
iment for a total of 489 days, from 25 patients. In order to
reduce noise introduced by the variability in patient activity,
the analysis focused on fixed time windows corresponding
to regular departmental daily activity: Occupational therapy
time slots (10am-11am), lunch (12pm-1pm), and indoor free
time (4pm-5pm). In addition, we calculated full day features
(6am-10pm) and used night time features (10pm-6am) to
evaluate sleep quality. Weekends were excluded from the
analysis.

III. ANALYSIS

A. Revising clinical assessment

The 30-item Positive and Negative Syndrome Scale
(PANSS) was reduced to a five-factor description (Positive,
Negative, Disorganized/Concrete, Excited and Depressed),
according to the consensus model suggested by Wallwork
et al. [11], based on 25 previously published models and
refined with confirmatory factor analysis (CFA). Only the
positive and negative factors were used for further analysis.

Clinical observations show that changes in a patient’s
symptoms occur continuously on a daily basis [12]. We
therefore interpolated the bi-weekly PANSS factor scores, to
achieve smooth daily scoring of symptoms. This was done
using the PCHIP 1-d monotonic cubic interpolation, resulting
in 494 data points (originally 118).

Interpolated data points were used to classify clinical sub-
populations of patients on a daily basis. Sub-populations
included patients with ”High positive” symptoms, ”High
negative”, ”High negative and positive”, and ”Low” level
symptoms. The remaining intermediate data points were
discarded from the classification. This sub-typing allowed
us to explore how different motor features are expressed in
different clinical manifestations. Clustering was done based
on the percentile of the positive and negative factors, each
axis separately (Fig. 1).

B. Online computation of ”patch features”

Topic model analysis requires the discretization of the
continuous accelerometer signal both in time and in intensity,
to produce word analogues – motor words. This mapping
involves the creation of a code-book. The patch feature
topic model procedure described in [9] contains a codebook
generation stage where clustering (k-means) is applied to
segments (a.k.a. patches) from the entire dataset. Given
the larger dataset at hand, we designed an online greedy
approximation to this procedure.

Specifically, the idea behind an online generation of code-
book is to follow the way a dictionary would be created for a
natural language corpus. The process proceeds with a single
pass over the data. Each word is considered sequentially, and
added to the dictionary on first encounter.

Since the words we are using describe the continuous
accelerometer signal, we must also define what we mean
by a word. Ideally, the dictionary should not be affected by
small random changes in the signal. Additionally, since many

Fig. 1. Clinical sub-populations. Each data point represents the severity
of the positive and negative factors for a specific patient in a specific day
(N=494) based on the interpolated PANSS factors data. In the ”Low” sub-
population (magenta, N=65) both negative and positive symptoms lie in the
bottom quartile, while in the ”High negative and positive” (blue, N=59) both
lie in the top quartile. The ”High negative” sub-population (cyan, N=53)
lies in the top vertical quartile with positive symptom values lower than
median, while the ”High positive” (red, N=57) lies in the top horizontal
quartile with lower than median negative symptom values. The remaining
data points (N=260) were classified as ”Intermediate” (green).

behavioral modes are periodic to some extent, we would
like the representation to allow wrap-around of patches. This
would imply that the sequences of patches ABC and BCA,
for example, have similar representation in the dictionary.

We achieve both these goals by using a discretized version
of the signal and wrap-around equivalence classes. We use
a SAX-like method [13] to encode each patch into a string.
The process is as follows: Each interval on the time-axis
is replaced by the mean value in the interval. Next, these
point-values are replaced by a letter (discretized) according
to their value. The output of this process is a string of length
patch−size

interval−size over a pre-determined alphabet.

Algorithm 1 Online codebook creation
1: codebook ← empty list
2: for each patch in the dataset do
3: patch word ← SAX representation(patch)
4: if patch word (or equivalent) not in codebook then
5: append patch word to the codebook
6: end if
7: end for
8: return codebook

The procedure resulted in 150K distinct words which
described the entire dataset, distributed much as would be
expected from a text corpus (see top panel in Fig. 2).

C. Topic Modeling over Motor Words

Latent Dirichlet Allocation (LDA) is a widely used topic
model, with origins in natural language processing, and
applications in many domains ranging from music modeling
to motion of cars. On top of their traditional purpose of
finding hidden semantic structures in data, these models have
been shown to be useful for detecting surprising (or novel)
events [14], [15].
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Fig. 2. Top - the motor-word frequency histogram for the entire dataset,
truncated after the most common 10K words. These pseudo-words demon-
strate the long-tail scale-free property characteristic of a natural language.
Bottom- the daily topic distribution vector averaged over all patients.

Data was divided into blocks of 15 minutes of continu-
ous signal; these serve as documents for the topic model,
each represented as a histogram over the motor words as
described above. The LDA process provides as output both
a distribution over topics for each of the documents, and a
distribution over words for each of the topics. Subsequently,
a specific time window of a specific patient is characterized
by a probability vector over the topics. The bottom panel in
Fig. 2 demonstrates the distribution of the 10 topics used here
over all patients and days. We can see that topic 6 (green)
and topic 10 (purple) are typically prominent during the day,
while other topics are more likely to occur during the night
or throughout.

D. Topic Features

The advantage of using a data-driven unsupervised rep-
resentation is that its features, unlike the supervised energy
and step-count measures [8], are not directly connected with
the intensity of the motor signal. Instead, this representation
captures the quality of motor behavior in a given period
of time. For example, a very repetitive behavior can be
expressed by a low number of unique ’motor-words’ in a
specific time window. This allows us to compare patients
behavior to themselves and to others in different activity
windows, and thus be able to measure ’typicality’ of the
behavior for instance. Three Features were calculated based
on topic models, separately for each data point (namely for
each patient on each day, and each of the predefined activity
windows described in section II-B):

1) Motor Richness: The normalized distinct word count
per activity window.

Motor Richness =
distinct word count in window

window length

This measure represents the range of motor activity reper-
toire. A low score implies that the patient repeatedly per-
formed similar movements, while a high score corresponds
to the use of many different movement patterns.

2) Consistency:

Consistency = 1−DKL(v ‖ v̄)

where v denotes the topic distribution over the time window,
and v̄ the mean topic distribution for the patient in the same
window over all measured days. DKL denotes the Kullback-
Leibler divergence. This score measures how regular the
patient’s motor behavior is in the given time window.

3) Typicality: the entropy of the topic distribution vector.

Typicality = H[v] = −
10∑

i=1

vi log(vi)

Low entropy implies that a small number of topics can
capture the activity. High entropy implies that the observed
activity is a mixture of many topics. We name this measure
typicality since typical activity should be captured by one (or
a few) topics, thus producing low-entropy topic distributions
[15].

The manifestation of each feature in clinical sub-
populations was tested using one-way ANOVA separately
for each of the activity windows. In addition, a learning
algorithm for automated sub-population classification was
designed and evaluated.

E. Classification Algorithm

Classification was carried out using a two-step algorithm
based on linear support vector machines (SVM) and decision
trees classifiers, in order to distinguish between different sub-
populations (described in III-A) based on motor features
(Algorithm 2). The algorithm was trained to discriminate
sub-populations, and specifically classify ”High positive” vs.
”High negative” and ”Low” vs. ”High positive and negative”.

In the first step, individual classifiers were trained for
each activity window separately (lunch, occupational therapy,
free-time, day, night, and all). In the second step, the prob-
abilistic output of the 6 time-specific first-stage classifiers
was used to train a second, daily-model, which determined
the clinical category.

Feature selection was done based on the ANOVA f-
values of each individual feature on train data. These were
calculated separately for each activity window, and the same
features were used also for testing.

Algorithm 2 Two stage algorithm for patient sub-type clas-
sification based on activity in time-windows.

1: for all time-windows wi do
2: train base classifier ci on wi and target y
3: end for
4: for all time-windows wi do
5: ŷi ← prediction of ci on wi

6: end for
7: train final classifier c on the set of first-stage predictions

ŷi and target y

The algorithm was evaluated in a leave-one-out frame-
work, where in each iteration a different observation (specific
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Fig. 3. ANOVA results for topic features in 3 clinical sub-populations
(see Fig. 1): ”High positive” (denoted Positive), ”High negative” (denoted
Negative), and ”Low”. The analysis was repeated separately for each time
window (X-axis). Motor richness was highest in the Positive sub-population
(cyan) and lowest in the Negative sub-population (magenta). This was most
significant during free time, but was also true for all other activity windows
(p-values between 0.05-0.07 are marked by half an asterisk). Typicality was
generally highest in the Low sub-population, and lowest in the Negative
sub-population, with the most significant difference during lunch time. No
significant group different was found for Consistency although it was lowest
in the Positive sub-population in all activity windows.

patient in a specific day) was left out and the model was
trained on the remaining data and tested on the left out sam-
ple. To avoid possible contamination of test data (leakage)
due to observation interpolation, when using an interpolated
point as the test, all actual observations it was based upon
were excluded from the train data.

IV. RESULTS

A. Motor Activity in different Clinical Sub-populations

Fig. 3 summarizes the results of subjecting all features to
ANOVA analysis. Motor richness is consistently highest for
the ”High positive” sub-population, and lowest for the ”High
negative” sub-population, with the ”Low” sub-population
somewhere in the middle. This indicates that patients with
active positive symptoms tend to have a higher variety of
motor activities, while negative symptoms are expressed in
poorer movement repertoire. The trend was evident in all
activity windows but was only found significant during free
time (F = 5.09, p = 0.0077).

As expected, typicality is highest for the ”Low” sub-
population, consistently over all activity windows. The
lowest typicality is observed in the ”High negative” sub-
population, indicating that the motor activity of these patients
is less similar to the common motor behavior. The biggest
group difference was found over lunch time (F = 7.48,
p = 0.00090) but it was also significant during occupational
therapy (F = 4.39, p = 0.015), free time (F = 3.38,
p = 0.037) and throughout the day (F = 3.78, p = 0.026).
No group difference was found for consistency, although
it was lower in the ”High positive” sub-population in all
activity windows.

B. Classification Results
For ”High positive” vs. ”High negative” classification, the

best results were achieved using linear SVM for the first
stage (window-based model, see Algorithm 2) with top-5
selected features, and decision tree for the second (daily)
stage. The algorithm correctly classified 78% of the”High
negative” observations, and 58% of the ”High positive”
observations. All together the mean precision was 0.651 and
mean recall was 0.654 on test data (f-score=0.652).

Slightly better results were achieved for the ”Low” vs.
”High positive and negative” classification, using linear SVM
for both stages and top-5 selected features. Here the algo-
rithm correctly classified 81% of the ”Low” observations and
70% of the ”High positive” observations. All together the
mean precision was 0.757 and mean recall was 0.748 on test
data (f-score=0.774).
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ARIMA-based Motor Anomaly Detection in Schizophrenia Inpatients

Talia Tron1,4 Yehezkel S. Resheff1,4 Mikhail Bazhmin2 Daphna Weinshall4 Abraham Peled2,3

Abstract— Motor alteration is an important aspect of the
elusive schizophrenia disorder, manifested both throughout the
various phases of the disease and as a response to treatment.
Tracking of patients’ movement, and especially in a closed ward
hospital setting, can therefore shed light on the dynamics of
the disease, and help alert staff to possible deterioration and
adverse effects of medication. In this paper we describe the use
of ARIMA-based anomaly detection for monitoring of patient
motor activity in a closed ward hospital setting. We demonstrate
the utility of the approach in several intriguing case studies.

I. INTRODUCTION

Monitoring of motor behavior is part of the regular as-
sessment of schizophrenia patients and is vital to diagnosis,
progress assessment and to the monitoring of medication
response. Various alterations of motor behavior are evident
throughout the phases of the disease, and as a response to
treatment. The psychotic acute phase of schizophrenia is
typically accompanied by restlessness, including occasional
bizarre movements and gestures, while post psychotic de-
ficiency negative symptoms are related to reduced activ-
ity, slowness and even freezing. Antypsychotic medications
may cause Parkinsonism, i.e., tremor, rigidity, and slowness,
which usually pass after the first week of treatment.

Despite its clinical and diagnostic value, to date, motor
monitoring is done in a descriptive non etiological manner
based on subjective clinical scales, which may result in
biased, inaccurate and typically non quantifiable assessments.
This kind of assessment requires expert staff and the avail-
ability of resources, and may not be frequent enough to
capture significant changes in spontaneous and drug-induced
conditions. These issues can be alleviated by carrying out
objective, continuous quantifiable monitoring [1], the inves-
tigation of which is the goal of this study. Accelerometers
and gyroscopes, commonly embedded in smart-watches and
other wearable devices, have been extensively used over
the last decades in medical applications ranging from hu-
man physiology [2] to movement disorders [3] and mental
healthcare [4]. These cheap and widely available sensors
may be used for continuous qualitative patient monitoring
in natural clinical settings. Accelerometer data have already
been shown to effectively provide insights into patients
clinical state, and motor features were successfully used for
clinical sub-typing in a closed ward mental hospital setting
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[5], [6]. Here we focus on detecting acute abnormal which
are either the result or the cause of drug modifications
or changes in patients’ clinical conditions. Our approach
employs forecasting models widely used in statistics and
econometrics, applied to step-count data. We demonstrate the
utility of this approach with 4 schizophrenia case studies, in
which we evaluate monitoring performance based on medical
and clinical records.

II. MATERIALS AND METHODS

A. Study Design

Four inpatients from the closed ward at Shaar-Menashe
mental health center, diagnosed with schizophrenia according
to the DSM-5, participated in the study. One patient (patient
B) was diagnosed with paranoid schizophrenia. Participants’
age varied from 24 to 54 (average 36.9), with course of ill-
ness varying from 7 to 35 years (average of 13.5 years). After
signing the appropriate Helsinki legal consents, participants
were tracked for a period of approximately one month (27-
31 days) in natural settings. During this period, patients were
monitored for medication use (type, dosage, and frequency)
by the nurses and the physicians. In addition, every patient
underwent a clinical evaluation of Positive and Negative
Syndrome Scale (PANSS [7]) and Neurological Evaluation
Scale (NES [8]) by a trained psychiatrist twice a week. The
neurological evaluation was only utilized to confirm that no
psycho-motor deficits were evident in any of the participants
during the experiment.

All procedures performed in the study were in accordance
with the ethical standards of the institutional research com-
mittee and with the 1964 Helsinki declaration and its later
amendments or comparable ethical standards.

B. Data Acquisition

At study onset, participants were given smart-watches
with embedded accelerometers (GeneActiv1). These watches
were worn on the wrist throughout the experiment. The
output (50Hz) of the sensors was stored on internal memory
cards. The study was conducted in natural settings, where
patients were not required to change any personal or medical
procedure. None of the patients expressed any discomfort or
disturbance from wearing the device.

III. DATA ANALYSIS

A. Building personal ARIMA Models

Analysis focused on the walking pattern of patients,
aiming to detect significant quantitative changes. Stepping

1https://www.activinsights.com/products/geneactiv/
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Fig. 1. Left- Decomposition of daily steps (top) of a single patient to trend (smoothed series calculated using centered moving average), seasonality
(regularly repeating data patterns calculated as the average of the smoothed series for each period) and noise. Right- Demonstration of the ARIMA model
for patient A. The model returns the predicted mean and a 95% confidence interval (CI) around it. Abnormal behavior is detected when (a) the observed
step count value lies outside the CI predicted by the model, (b) the residuals are higher than threshold (e.g. September 6), or (c) when certainty is lower
than threshold (e.g. September 15).

behavior was detected as large maxima of the smoothed
square norm of the 3-axial 50Hz point-wise acceleration,
and the number of steps (step count) was averaged over 1
minute intervals (see [5] for further details).

We used AutoRegressive Integrated Moving Average
(ARIMA) models to detect abnormal walking patterns. One
week of data was used to predict the step count for the
following day, together with the associated confidence inter-
val. Repeating this in a rolling window design produced the
predicted step count for the entire duration of available data,
around 3 weeks for each participant excluding the first week.
Predicted values were then compared to those observed in
practice for the purpose of anomaly detection [9].

We began by decomposing the step-count data into trend,
seasonality and noise components, as shown in the left side
of Fig. 1. As expected, strong daily seasonality was seen in
the data. It is interesting to note that the trend component,
to the extent that it exists, may potentially be used for direct
real-time monitoring of patients symptom severity over time.

Next, we aggregated each patient’s step-count data in
windows of 10-30 minutes (this was done to smooth the data
on the one hand, and reduce computation on the other). Both
regular and daily seasonal differentiation were computed to
obtain a stationary signal. We applied 4 different ARIMA
models to all patients, and evaluated them using AIC criteria
with mean and absolute errors. The emerging preferred
model was ARIMAX(1,1,1) seasonal (1,1,2), which had a
consistent lower error and lower AIC over all patients.

B. Abnormal behavior detection

For each patient separately, we ran an ARIMAX(1,1,1)
seasonal (1,1,2) model, which was based on 7 days of data
in order to predict the following day. The model provided the
predicted mean and a 95% confidence interval (CI) around
it. Model residuals were calculated as the squared difference

between the model predicted values and the observed values
during the test period.

A measure of prediction certainty was calculated based on
the normalized CI size (|CIz|) as follow:

Certainty = 0.95× 2× std(data)

|CIz|
(1)

This is a measure of model confidence, with low values in-
dicating that the model hasn’t been able to accurately predict
future values based on the patient’s history. The multiplier
of 0.95 sets the maximum certainty value to 0.95 (model
confidence level). Although certainty is somewhat correlated
with residuals size, this is an important independent measure.
Specifically, it covers cases where the observed value is lower
than the predicted value, which is not always expressed in
CI range or high residuals.

Abnormal behavior is defined as one the following (see
right side of Fig. 1): (a) The predicted value is not in the
model CI; (b) the residuals between model prediction and
observed values are higher than threshold (set to be 3 times
the mean residuals on train data); (c) the certainty of the
model is lower than threshold (0.3). In order to avoid trailing
errors and secure robustness, when abnormal behavior is
detected, the observed values of the training period are
replaced with predicted values. On repeated detections (more
than twice) the model is adjusted back to observed values.

C. Evaluating model performance

In order to evaluate our model we systematically studied
the patients clinical records and drug charts, and compared
them with model anomaly detections. No clear abnormal
event, such as an outburst of violence or riot, was recorded
during the experiment period. We therefore used the PANSS
clinical records in order to identify abnormal events, which
are time stamps corresponding with a steep increase or
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Fig. 2. Description of model prediction vs. clinical and medication records monitoring for all four patients. The direction of the white arrows in the
bottom part of each graph indicates whether increased activity (up) or decreased activity (down) has been detected. A cross under the arrow indicates
unexplained detection, while a cross without an arrow indicates an event that wasn’t detected by the model. The dashed rectangle marks the training period
of the model. In the line chart above, the mean severity of positive (red) and negative (blue) symptoms is shown. The black symbols indicate a change in
drug dosage (arrow) or a single administration (square). In case of dosage change, the top graph (in patients A and C) indicates its amount (in mg).

decrease in symptom severity (more than 2 degrees on the
PANSS scale) between two clinical sessions. Results are
summarized in Fig. 2.

In an effort to capture some larger scale dynamics, we
took note of the general positive and negative symptoms
trend. Every change in drug dosage was also considered an
abnormal event, since these changes are rare and usually
indicate a change in a patient’s clinical condition. It should be
noted that increased drug dosage may be either a response to
abnormal activity (when the detected event took place prior
to drug adjustment) or its trigger (when the detected event
followed a drug adjustment). Decreased dosage, on the other
hand, is usually followed by continuous improvement in
symptom severity, but may still cause side effects. Therefore,
in order to obtain a coherent picture, both timing and the
direction of the dosage change were taken into account.

For each abnormal event detected by our model, we looked
for an explanation (as defined above) in the clinical records
(drug dosage and PANSS scores); an event which did not
have a satisfactory explanation, was labeled as ’unexplained’.
Likewise, a drug change event or a steep change in the
clinical evaluation data which was not detected by our model
was labeled as ’undetected’. The number of unexplained and
undetected events was used to roughly estimate the accuracy
and sensitivity of our model. Events in consecutive days were
counted as one continuous event.

1) Patient A: Abnormal increased walking behavior was
detected on September 6th. On the same day, the dosage of

entumin (a.k.a clotiapine), an atypical anti-psychotic drug,
was increased from 40mg 1/day to 40mg 2/day.

On September 15th, and then again during September
20-22, our model detected lower than expected activity. In
the clinical records, we see a significant increase in both
positive and negative symptoms during September 5-12, with
a steep rise in active social avoidance, hostility and social
withdrawal. Possibly this behavioral change has resulted
from the increased entumin dosage, although we cannot rule
out other possible triggers.

Following this deterioration in the patient’s condition, on
September 11th the dosage of lithium was increased, and
again on the 13th. Both positive and negative symptoms
were reduced in subsequent days, with active social avoid-
ance and hostility returning to normal values. We also see
the emergence of increased negative symptoms, including
blunted affect and passive apathetic social withdrawal.

Lithium is known to take effect within 1-3 weeks, so the
lower activity found by our model during September 20-22
may be the result of the September 11th dosage increase.
The September 15th detection remains unexplained by drug
records but is congruent with clinical data.

In summary, 2/3 detected events for this patient had a
co-found explanation in the clinical and medication records.
One event had only a weak co-found in the clinical data. No
clinical trend or drug changes remained undetected.

2) Patient B: The model detected a period of extreme in-
creased activity during January 19-24, followed by decreased
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activity during January 25-31. On January 19th, this patient
was given prothiazine, a neuroleptic medication used as a
sedative and weak anti-psychotic, for a period of 4 days.
We found no significant change in symptom severity for
this patient prior to the sedative drug administration, with
only a small decrease in overall negative symptoms at that
time. This is probably because clinical evaluation was not
frequent enough to capture the change. The fact that our
model detected this event while the clinical data did not, can
be used as evidence for the potential benefit of continuous
automated monitoring.

On January 25th, two days after the patient has stopped
receiving the medication, we see a small improvement in his
clinical condition with normal level of motor activity. In the
model this is expressed by a detected ’lower than expected’
activity, based on the increased activity in the previous days.

In summary, for this patient all detected events (2) had a
co-found explanation in the medication records but no co-
found (or a minor one) in the clinical records. No clinical
trend or medication alteration remained undetected.

3) Patient C: Increased activity level was detected by the
model on August 17th. Clinical data together with medical
records clearly suggest that around this period there was
an aggravation in the patient’s condition. On August 17th,
he was injected with 100mg of clopenthixole acetate (anti-
psychotic and acute sedative medication), and once again in
the following days (August 20-25). The drug’s effect seems
to have been dimmed unsatisfactory, since during August 24-
25 the patient was also prescribed 200mg and then 400mg
of carbamazepine (CBZ), an off label medication used in
combination with anti-psychotics when the treatment with
anti-psychotics alone has failed [10]. In the clinical data
we see a decrease in both negative and positive symptoms
severity around August 18-22, with a steep decrease in
hallucinations, poor attention, and motor retardation. This
improvement is most probably the result of the massive
drug treatment. On August 27th, after the patients symptoms
were reduced and drug treatment was stabilized, the model
detected a significant reduction in patient’s activity.

In August 7 the patient received two types of typical anti-
psychotic medications (clopenthixole and haloperidol), and
then again in August 10 (only clopenthixole). Since these
drugs act on a short term basis, it is not probable that the
the worsening in the patient’s condition in subsequent days
was triggered by this medication change. The most probable
explanation is that there was some acute event at that time,
which was not detected by our model.

In summary, all detected events (2) had a co-found ex-
planation in the clinical and medication records, while one
likely clinical event remained undetected.

4) Patient D: The model reported a period of decreased
activity during October 12-18, with low certainty. No med-
ication change was registered in this time period, and no
substantial evidence was found in the clinical data (only
a steep increase in stereotyped thinking). The overall trend
of symptoms’ change around that period leaned towards in-
creased negative symptoms and reduced positive symptoms.

TABLE I
SUMMARY OF ANOMALY DETECTION RESULTS AND PATIENTS’ DATA.

Days Sessions Explained Missed
Patient A 31 10 2/3 0
Patient B 29 7 2/2 0
Patient C 31 11 2/2 1
Patient D 27 7 0/2 0

This happened following approximately a week of steep
decrease in negative symptoms.

In summary, the event detected by our model had no
co-found explanation in the medication records. No clinical
trend or medication alteration remained undetected.

As summarized in Table I, when aggregating data from
all patients, 6/8 anomaly events detected by our model
had a co-found explanation in the medication and clinical
records (precision of 75%). 6/7 events were detected by our
model, with one certain mis-detection in patient C (recall of
85%).Other detected events may have alternative explanation
not available to our experimental design.

IV. CONCLUSIONS

Our study demonstrates the benefits of using forecasting
models in conjunction with accelerometer data for the con-
tinuous monitoring of schizophrenia patients. In three out of
four case studies, we found a direct link between detected
behavioral events and changes in the patient’s clinical con-
dition or drug regime.
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Chapter 4

Discussion and Conclusions

This dissertation presents the work done on automatic analysis of nonverbal
behavior in schizophrenia patients. We offer innovative algorithmic and con-
ceptual approaches for analyzing this behavior in experimental and natural
settings. Our results demonstrated how the use of assistive technologies for
facial expression and motor behavior analysis can contribute to the important
process of diagnosis and monitoring in schizophrenia.

Although facial alterations and motor deficits have a clear diagnostic value
in schizophrenia, not many studies has attempted to assess these behaviors
in an objective automated manner. In the ones that do so, behavioral anal-
ysis is often restricted to general non ecologically relevant measurements,
leading to a substantial lack of applicable tools and knowledge in the field.
Our study objectives were thus as follows. First, we aimed to obtain impar-
tial, accurate, informative measurements of patients behavior to be used for
automated patients evaluation and monitoring. Second, we used these mea-
surements in order to refine the definition of behavioral clinical concepts and
to gain important insights regarding patients behavior.

We did so by focusing on automatic analysis of facial and motor activity,
each with its own advantages and disadvantages. While facial expression
data is very rich and informative, it is typically more difficult to obtain and
process. Placing a camera in front of a patient requires cooperation, and can
only be done under controlled conditions. In addition, facial tracking tech-
nology is still immature, and the leading tools in the field require individual
training to obtain a user-specific models. Other solutions are based on gen-
erative facial models which are less precise, and sometime sensitive to user
location and head rotation.

Actigraphy data on the other hand, has the clear advantages of being eas-
ily recorded using embedded sensors which can be worn continuously by pa-
tients. This allows one to gain information regarding subtle motor changes
over time and in natural settings. Nevertheless, the data is very noisy and
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not as informative as facial data regarding user’s emotional and mental state.
The commonly derived measures are of general motor activity level (number
of steps, amount and variability of movement) where for many usages and
application, in particular in the medical field, more precise and descriptive
motor behavioral measures are required. Deriving such measures and recog-
nizing specific activities (e.g. teeth brushing, stairs climbings) require prior
knowledge about signal structure or about behavioral context. Otherwise,
great amount of labeled data is needed to evaluate activity detection and
classification algorithms.

In addition to the inherent technological limitation of non-verbal mea-
sures extraction, the interpretation of such measures may be subjected to
theoretical misconceptions and biased. The most prominent example is the
widespread belief that facial expressions signal people’s emotion, which is
not always the case in schizophrenia patients. Also, the categorical division
of facial activity to a set of specific prototype emotions such as anger, sadness
and disgust may be an over simplified and imprecise, as discussed in detail
in the introduction (see 1.1.1).

Main Innovations

In order to achieve our research objectives, overcome the many technological
limitations and avoid possible biases, we explored in this work new algorith-
mic and theoretical approaches.

First, we expanded the commonly used activity level descriptors of non-
verbal behavior to a broader set of measures including variability, dynamics,
consistency and appropriateness. Dynamic measures describe the amount
and pace of change in non-verbal activity, and were calculated directly as the
variance of activity level descriptors over time. More specific dynamic mea-
sures were often calculated in facial data using transition matrix representa-
tion, counting the number of changes and their extent, as described in 2.1.
For motor data, steps counts can be seen as a dynamic measure, since it aver-
ages the number of steps over a period of one minute, somewhat correlated
with walking velocity, although not necessarily. The measures of intensity
and dynamics, seem to hold a great diagnostic and clinical promise. First,
they are independent of emotional value, and are therefore less subjected to
personal interpretation. In addition, they have the potential to be measured
in a precise continuous manner, enabling clinicians to detect subtle changes
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in patients’ behavior as well as general trends over time. Lastly, these mea-
sures may be directly associated with the motor aspect of the disorder, as
elaborated below.

Variability measures assess the diversity of non-verbal activity, beyond
mere intensity (more or less activity), and were calculated on our data using
unsupervised learning methods. Such measures include the facial-clusters
features described in 2.2, obtained by k-means clustering over all AUs. For
motor data, we discretized both the time and the intensity level of the ac-
celerometer data in order to generate a codebook of ’motor words’. This in
turn was used to obtain a topic-model based representation of motor richness
and consistency as described in 3.2. These variability measures allow for a
more qualitative description of facial and motor behavior without any prior
assumptions, making it easier to compare between different clinical popula-
tions and within the patients over time.

In our study we derived highly relevant measures of non-verbal consis-
tency and appropriateness, emphasizing the importance of taking into ac-
count behavioral context. In order to obtain such measures for facial activ-
ity, we used the well documented photo rating paradigm of the International
Affective Picture System (IAPS) database. This experimental paradigm gave
us information regarding patients emotional state (how did they feel while
watching the photos) as well as their emotional congruity (how similar were
their emotions to those occurring in the healthy population). However, it
was time consuming, and did not necessarily reflect patients facial response
in natural conditions. As for motor activity, here behavioral context was de-
rived using prior knowledge regarding the patients’ routine daily activities.
This method gives a good balance between the restrictions of applying pre-
designed experimental paradigm and the noise introduced in natural stud-
ies. It allowed us to compare patients behavior over days and retrieve con-
sistency and typicality measures. Another example of using contextual data
can be found in chapter 3.3, where we used seasonal autoregressive models
which take into account the 24 hours cycles in patients activity. Averaging
over these cycles, strengthens the behavioral signal against the overall noise
and considerably improved abnormal activity detection results.

Our work also offers some important novelties in the analysis of clini-
cal data. Similarly to other data-driven studies, facial and motor activity
measures were used as features for automated clinical classification and pre-
diction (adjusted versions of support vector machine (SVM), decision tree
and regularized regression were employed). However, instead of focusing
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merely on group comparison (patients vs. controls), we identified and char-
acterized clinical sub-populations. To our knowledge this is the first attempt
to separate positive-signs and negative-signs schizophrenia, characterize each
phase, and automatically discriminate between them. This sub-typing was
enabled due to some clinical prior knowledge. Fore example, the 5-factor
decomposition of PANSS clinical evaluation was based on literature review,
and the interpolation of patients’ clinical evaluation in 3.2 was based on the
clinical observation that changes in a patient’s symptoms occur continuously
on a daily basis.

An additional novelty is using accelerometer data for clinical anomaly
detection as done in 3.3. We demonstrated how time forecasting models can
be applied to detect possible deterioration in single patient’s behavior and
detect adverse effects of medication.

Finally our study offers some important conceptual innovations with added
diagnostic value when directly addressing the commonly used, yet often im-
precisely defined concepts of Affective Flatness and Affective incongruence, and
outpointing a possible confound.

Although our study focused on schizophrenia, the innovations it offers
can be implemented for other mental disorders such as anxiety, depression
and bi-polar disorder, where affect and movement are known to play a ma-
jor role. In addition, some of the concepts and tools we present here are of
high relevance in the healthy population, and may contribute to the affective
computing (AC) and social signal processing (SSP) communities.

Results overview and discussion

The results of the facial activity experiments, suggest that Affective flatness
is expressed not only as a reduction in the intensity of facial expressions,
but also as a slowdown in facial dynamics and a restriction of expressional
variability. In addition, our results point out a possible confusion between
flatness and inappropriateness, where the same facial behavior may be in-
terpreted as both, depending on the clinical context. When quantitatively
taking into account overall flatness, patients’ facial response to emotional
stimuli did not significantly differ from that of the healthy population, rather
it was somewhat less consistent. Namely, similar feelings were expressed in
a wider range of relative facial behaviors.

This observation should highlight the unique role facial expressions play
in schizophrenia and should be taken into consideration in the clinic. Whereas
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in healthy individuals we are used to referring to the face as reflecting the
mood, in schizophrenia this coupling seems to be disturbed. Our results rein-
forces the ’inhibition theory’, which claims that patients with schizophrenia
suffer from the inability to express the emotion they experience. Accordingly,
we did not find any evidence for impaired emotional experience in patients.
Namely, although facial activity in patients is less expressive, it does not nec-
essarily reflect any emotional deficit.

In the context of motor behavior, we demonstrate how various motor
alteration are manifested in different phases of the schizophrenia disorder.
Consistent with previous studies and clinical observations, we found positive-
signs schizophrenia to be associated with higher level of motor activity (step
counts, total energy), and vice-versa for negative-signs schizophrenia. Our work
further extended the discussion to more qualitative motor related features.
We found that the motor repertoire of positive-signs schizophrenia patients is
richer than that of controls, while negative-signs schizophrenia patients demon-
strate a poorer, non-diverse repertoire. Negative-signs schizophrenia was also
characterized by low typicality, namely their behavior was less similar to that
of the general inpatients population.

The machine learning algorithms we designed correctly classified patients
clinical condition with accuracy of over 80% (AUC=0.9) based on facial fea-
tures (for patients vs. controls discrimination) and up to 78% using motor
data (for clinical sub-population). The predictions were also in good cor-
relation with symptom severity assessments. In addition, the forecasting
seasonal models we developed used for personal patient’s monitoring and
abnormal behavior detection were demonstrated to be feasible on 4 patients
case studies.

A few caveats regarding the current study should be kept in mind. First,
most of the participating patients in the facial activity experiments had only
negative signs of schizophrenia, and were receiving anti-psychotic medica-
tions. In the motor behavior experiment on the other hand, all participants
were inpatients and comparison was made between clinical sub-populations,
where patients with low symptoms severity served as a control group. The
conclusions regarding motor activity, facial flatness and congruity should
therefore be restricted to the observed clinical population. Second, facial fea-
tures were extracted from a one-time 15-minute clinical session, and may
indicate subjects’ temporary state and not their overall condition. Although
motor data was collected for a considerable period of 3 weeks on average, it
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did not necessarily cover the full course of patients illness, and some drug-
induced behaviors may not have been recorded. Finally, our study only fo-
cused on the patient’s behavior, while taking into account care-giver non-
verbal behavior and the interaction between them may offer a great clinical
value.

To strengthen and validate our results there is a need for a larger, clin-
ically diverse sample with a drug-monitored population, carried out for a
longer period of time. In addition, future analysis should combine different
non-verbal features (including vocal expressions, heart rate and skin con-
ductance), comparing between them in order to gain a more holistic repre-
sentation of patients behavior. The derived measures may than be tested for
their relation with cognitive and neural mechanisms of schizophrenia disor-
der and other psychiatric and neurological conditions.

Before we conclude this discussion, it is important to take a step back con-
sidering the possible implications of automatic diagnostic systems in the field
of psychiatry. The ability to recognize and response to a diversity of human
behaviors was developed over thousands of years in the evolution process.
Mental disorders are deficits in the most high level functions of human be-
havior, and though objective tools are of great need, they may come with a
price. Treating psychiatric disorders the same as other medical conditions,
while looking for absolute objective measures for diagnosis and treatment,
may lessen the broader view of a person as a whole. Both empirical stud-
ies and clinical experience emphasize the importance of combining medical
treatment with social and clinical therapy. Automatic tools and algorithms
are as good as we train them to be, and though they might be very benefi-
cial for quantification and objectivization of certain clinical symptoms, they
can not replace a human care giver. Also, manners of privacy and voluntary
cooperation must be taken into account. Putting the full weight on such auto-
matic diagnostic tools without taking responsibility for the patient’s psycho-
logical and clinical condition would be at best unprofessional and at worst
malpractice.

Notwithstanding, this dissertation demonstrates the huge potential of
using assistive technology for behavioral and affective evaluation. We of-
fer a new way of thinking about facial expressions and motor behavior in
schizophrenia, and the concepts introduced here may be of great value in
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both clinical settings and future empirical developments. The measures de-
rived in this dissertation may shed light on other neurological and psychi-
atric conditions, and can be implemented in future diagnostic assisting sys-
tems. We believe that technology which puts emphasis on facial dynam-
ics and intensity, while taking into account behavioral and psychological
context, may facilitate monitoring of patients, advance detailed evaluation
of symptom severity and promote precise adjustments of pharmacological
treatment.



 

 

 

 ניתוח אוטומטי של התהגות

 סכיזופרניהב לא מילולית 
Automated Analysis of Nonverbal 

 Behavior in Schizophrenia 

 : פרופ' דפנה ויינשלמנחה      טליה טרון : מאת

 תקציר

פסיכיאטרי של הפרעות נפשיות בכלל וסכיזופרניה בפרט מתבסס ברובו על מדדים לא כמותיים ולא אבחון 

 מהווים דיבורהמאפייני פנים והוף, הבעות הגתנוחת  ת של המטופל כגוןולא מילולית יותנהגוהאובייקטיביים. 

 אינם מוגדרים היטבלהתנהגויות אלו המדדים הקיימים עם זאת, אינטגרלי ומשמעותי מתהליך האבחון.  חלק

שוות בין המטופלים לאורך זמן, ללנטר , דבר המקשה ומרבית האבחון מבוסס על אינטואיציה וניסיון המטפל

ניתוח בשנים האחרונות חלה התפתחות משמעותית בת הטיפול. ומטופלים שונים ולהעריך את השפע

ע זה באופן אמין יחסית מוידאו ומסנסורים תוך אוטומטי של תנוחות גוף והבעות פנים, וכיום ניתן לחלץ מיד

  שימוש בתוכנות ייעודיות.

לא מילולית של חולי סכיזופרניה, ולפתח כלים ההתנהגות את המטרת המחקר המפורט בתזה זו היא לאפיין 

אנו מתמקדים בהבעות פנים ובפעילות מוטורית, ומשלבים אוטומטיים לתיאור וניתוח כמותי של התנהגות זו. 

. באמצעות כלים אלו (machine learning)עם טכניקות של למידת מכונה  טטיסיות קלאסיותס שיטות

ת שלה, את עצמת ההבעה והפעילות המוטורית, הדינמיו יםלולכה, ילולייםמגוון רחב של מדדים לא מ פיתחנו

יותר את  תייקמדו צורהבתאר אותנו ל משמשיםהתאמה לסיטואציה. מדדים אלו קונסיסטנטיות לאורך זמן ו

 אפייןמילוליים השונים, ול-השינויים ההתנהגותיים אצל מטופלים, לבחון את הקשר בין הסימפטומים הלא

על מנת מילוליים -הלאבמצב הקליני. בנוסף, השתמשנו במדדים  החמרהשיפור או כיצד הם משתנים עם 

רועים חריגים זיהוי אילהערכה של חומרת סימפטומים ולאוכלוסיות קליניות, -תת אוטומטים לזיהוילפתח כלים 

 אצל מטופלים.

, יתרמו לתחום המחקר בתזה זו מוצגותהמילולית -אנו מאמינים כי השיטות והגישות לניתוח התנהגות לא

. בפרט לתחום האבחון הפסיכיאטריו, ככלל (affective computingהעוסק בחישוביות של הבעה רגשית )

קדם הן לולאורך זמן וניטור טוב יותר של מטופלים אפשר אפיון למהימנות האבחון, את  שפרלתקוותנו היא 

 .הקליני והתרופתי והן את הטיפול האמפירי את המחקר
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