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ABSTRACT

Overfit is a fundamental problem in machine learning in general, and in deep

learning in particular. In order to reduce overfit and improve generalization

in the classification of images, some employ invariance to a group of transfor-

mations that images of certain objects may inherently possess, such as rotations and

reflections. However, since not all objects exhibit necessarily the same invariance, it

seems desirable to allow the network to learn the useful level of invariance from the data.

To this end, motivated by self-supervision, we introduce an architecture enhancement

for existing neural network models based on input transformations, termed ’TransNet’,

together with a training algorithm suitable for it. Our model can be employed during

training time only and then pruned for prediction, resulting in an equivalent architec-

ture to the base model. Thus pruned, we show that our model improves performance on

various data-sets while exhibiting improved generalization, which is achieved in turn by

enforcing soft invariance on the convolutional kernels of the last layer in the base model.

Theoretical analysis is provided to support the proposed method.
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1
INTRODUCTION

Deep neural network models currently define the state of the art in many computer

vision tasks, as well as speech recognition and other areas. These expressive

models are able to model complicated input-output relations. At the same time,

models of such large capacity are often prone to overfit, i.e. performing significantly

better on the training set as compared to the test set. This phenomenon is also called the

generalization gap.

We propose a method to narrow this generalization gap. Our model, which is called

TransNet, is defined by a set of input transformations. It augments an existing Convolu-

tional Neural Network (CNN) architecture by allocating a specific head - a fully-connected

layer which receives as input the penultimate layer of the base CNN - for each input

transformation (see Fig. 1.1). The transformations associated with the model’s heads are

not restricted apriori.

The idea behind the proposed architecture is that each head can specialize in a

different yet related classification task. We note that any CNN model can be viewed as

a special case of the TransNet model, consisting of a single head associated with the

identity transformation. The overall task is typically harder when training TransNet, as

compared to the base CNN architecture. Yet by training multiple heads, which share

the convolutional backbone, we hope to reduce the model’s overfit by providing a form of

regularization.

Chapter 3 presents the approach. In Section 3.1 we define the basic model and

the training algorithm designed to train it (see Alg. 1). We then discuss the type of

1



CHAPTER 1. INTRODUCTION

Figure 1.1: An illustration of the TransNet architecture, which consists of 2 heads associated with
2 transformations, the identity and rotation by 90◦. Each head classifies images transformed
with its associated transformation, while both share the same convolutional layers.

transformations that can be useful when learning to classify images. We also discuss the

model’s variations: (i) pruned version that employs multiple heads during training and

then keeps only the head associated with the identity transformation for prediction; (ii)

the full version where all heads are used in both training and prediction.

Theoretical investigation of this model is provided in Section 3.2, using the dihedral

group of transformations (D4) that includes rotations by 90o and reflections. We first

prove that under certain mild assumptions, instead of applying each dihedral transfor-

mation to the input, one can compile it into the CNN model’s weights by applying the

inverse transformation to the convolutional kernels. In order to obtain intuition about

the inductive bias of the model’s training algorithm in complex realistic frameworks, we

analyze the model’s inductive bias using a simplified framework.

In Chapter 4 we describe our empirical results. We first introduce a novel invariance

score (IS), designed to measure the model’s kernel invariance under a given group of

transformations. IS effectively measures the inductive bias imposed on the model’s

weights by the training algorithm. To achieve a fair comparison, we compare a regular

CNN model traditionally trained, to the same model trained like a TransNet model

as follows: heads are added to the base model, it is trained as a TransNet model, and

then the extra heads are pruned. We then show that training as TransNet improves

test accuracy as compared to the base model. This improvement was achieved while

2



1.1. OUR CONTRIBUTION

keeping the optimized hyper-parameters of the base CNN model, suggesting that further

improvement by fine tuning may be possible. We demonstrate the increased invariance

of the model’s kernels when trained with TransNet.

1.1 Our Contribution

• Introduce TransNet - a self-supervised model for supervised learning that imposes

partial invariance to a group of transformations.

• Introduce an invariance score (IS) for CNN convolutional kernels.

• Theoretical investigation of the inductive bias implied by the TransNet training

algorithm.

• Demonstrate empirically how both the full and pruned versions of TransNet im-

prove accuracy.

3
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2
RELATED WORK & BACKGROUND

In this chapter we survey the various methods of the main topics related to our

work: overfit, self-supervised learning and equivariant CNNs. Next, we elaborate

on specifically related methods as well as providing the relevant background.

2.1 Related Work

2.1.1 Overfit

A fundamental and long-standing issue in machine learning, overfit occurs when a

learning algorithm minimizes the train loss, but generalizes poorly to the unseen test

set. Many methods were developed to mitigate this problem, including early stopping
- when training is halted as soon as the loss over a validation set starts to increase,

and regularization - when a penalty term is added to the optimization loss. Other

related ideas, which achieve similar goals, include dropout [27], batch normalization [14],

transfer learning [25, 29], and data augmentation [3, 33].

2.1.2 Self-Supervised Learning

A family of learning algorithms that train a model using self generated labels (e.g. the

orientation of an image), in order to exploit unlabeled data as well as extract more

information from labeled data. Self training algorithms are used for representation

learning, by training a deep network to solve pretext tasks where labels can be produced

5
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directly from the data. Such tasks include colorization [16, 32], placing image patches

in the right place [7, 22], inpainting [23] and orientation prediction [10]. Typically,

self-supervision is used in unsupervised learning [8], to impose some structure on the

data, or in semi-supervised learning [12, 31]. Our work is motivated by RotNet, an

orientation prediction method suggested by [10]. It differs from [12, 31], as we allocate

a specific classification head for each self-supervised label rather than predicting the

self-supervised label with a separate head.

2.1.3 Equivariant CNNs

Many computer vision algorithms are designed to exhibit some form of invariance to a

transformation of the input, including geometric transformations [20], transformations

of time [28], or changes in pose and illumination [24]. Equivariance is a more relaxed

property, exploited for example by CNN models when translation is concerned. Work

on CNN models that enforces strict equivariance includes [1, 2, 6, 9, 21, 26]. Like these

methods, our method seeks to achieve invariance by employing weight sharing of the

convolution layers between multiple heads. But unlike these methods, the invariance

constraint is soft. Soft equivariance is also seen in works like [5], which employs a

convolutional layer that simultaneously feeds rotated and flipped versions of the original

image to a CNN model, or [30] that appends rotation and reflection versions of each

convolutional kernel.

2.2 Background

2.2.1 Self-supervised learning

This field of research deals with training a model to solve a pretext task using self

generated labels, i.e. labels that can be derived directly from the input of the model.

Self-supervised learning is mainly used in an unsupervised framework for representation

learning. However, lately it was incorporated in semi-supervised and supervised learning

frameworks as discussed below.

2.2.1.1 Unsupervised learning

As mentioned earlier, there are many pretext tasks suggested in the context of self-

supervised learning. We will elaborate on the RotNet model, suggested by Gidaris et al.

6
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[10]. This method, randomly rotate the input image in multiples of 90◦ ([0◦,90◦,180◦,270◦]).
Then the model is trained to predict the rotation applied on the input image - a 4-way

classification problem (see Fig. 2.1).

Figure 2.1: Illustration of the self-supervised RotNet model which learns to predict the rotation
applied on the input image (Image source [10]).

2.2.1.2 Semi-supervised learning

Motivated by the quickly advancing field of self-supervised learning, Zhai et al. [31]

suggested to incorporate it to semi-supervised learning, yielding the S4L model. Their

model is a 2 headed CNN model - a classification head as well as a rotation prediction

head as suggested by Gidaris et al. [10], each head is a fully-connected layer which

receives as input the penultimate layer of the base CNN (see Fig. 2.2). During training -

the classification head receives the labeled images while the rotation prediction head is

receives all the images (including unlabeled) as it’s labels are self generated.

2.2.1.3 Supervised learning

Self-supervision was incorporated to a supervised framework by Hendrycks et al. [12],

they suggested a similar model to the S4L model (see Fig. 2.2) with a different loss

7
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Figure 2.2: Illustration of the S4L model, which incorporates self-supervised learning (manifested
by the rotation prediction head) in a semi-supervised learning framework (Image source [31]).

function defined by:

L (x, y;θ)=LCE(y, p(y|PGD(x);θ)+λL (PGD(x);θ)

where PGD stands for projected gradient descent, a white box attack algorithm which

adds a small perturbation to the input aiming to increase the model loss and thus make

it predict a wrong class. They show this model improves robustness (to adversarial

examples, label and input corruption) as well as out-of-distribution detection.

2.2.2 Equivariant CNNs

Throughout this thesis we use the the terms "invariance" and "equivariance", which can

be defined as follows.

Let G denote a group acting on a set X , and let f : X → X denote a function.

• x ∈ X is invariant under G if g ◦ x = x ∀g ∈G

8



2.2. BACKGROUND

• f is invariant under G if f (g ◦ x)= f (x) ∀x ∈ A ∀g ∈G

• f is equivariant under G if f (g ◦ x)= g ◦ f (x) ∀x ∈ A ∀g ∈G

We’ll demonstrate these concepts and their relation in the context of CNNs w.r.t. the

following framework: Let X be the set of all 3D tensors while f is a convolutional layer

represented by a convolutional kernel w f .

Example 1. A convolutional layer is equivariant under translation. In that case G is
the group of translations. Indeed, the equivariant condition is met - a translated image
convolved with a kernel is the same as the translation of that convolved image (up to the
added padding in the edges of the feature map).

Example 2. These two concepts (invariance and equivariance) share a special case
relation, an invariant convolution kernel under a sub-group of the dihedral group D4

represents an equivariant convolutional layer under that sub-group. E.g. let G be the group
of the identity and the horizontal reflection transformations, an invariant convolutional
kernel under G (i.e. w f is invariant under G) represents an equivariant convolutional
layer under G (i.e. f is equivariant under G).

2.2.2.1 Hard vs. soft equivariance

We distinguish between soft and hard equivariance models (where soft equivariance is

referred to an approximately equivariance model).

Hard equivariance. Group equivariant convolutional neural networks (G-CNNs), is

a representative model exhibiting (hard) equivariance to a specified group (a subgroup

of the dihedral group D4, e.g. rotations) was proposed by Cohen and Welling [2]. The

G-CNN model is based on G-convolution - a new layer which is equivariant to a specified

group, this layer extends the regular convolution layer which is translation equivariant.

The G-CNN model processes structured feature maps (this structure is defined by an

additional dimension corresponded to the specified group). The G-convolution layer

convolves transformed versions of its structured kernels with the structured input, and

computes the dot-product of each such convolution, thus resulting again in a structured

output (see Fig. 2.3).

Soft equivariance. Several works were proposed to encourage models to exhibit soft

equivariance, here we’ll mention 2 of them which are akin to our work.

9
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Figure 2.3: 2 structured output feature maps of the G-convolution layer. The right input was
rotated by 90◦, the right output is equal to the left output up to rotation of the structure (Image
source [2]).

Dieleman et al. [5] proposes a CNN architecture which simultaneously feeds cropped

rotated versions of the original image to a CNN model and concatenates the results to a

single head (see Fig. 2.4). This method encourages parameter sharing w.r.t. rotation and

translation which improves CNN’s performance on the galaxy morphology prediction

task.

Wu et al. [30] proposes 2 convolution layers: "rotate-pooling convolution" (RPC) and

"flip-rotate-pooling convolution" (FRPC). The RPC layer convolves the input with rotated

versions of each convolutional kernel, resulting in 8 feature maps, the multiple feature

maps are then max-pooled (channel wise) resulting in a single output feature map.

The FRPC layer is similar to the RPC layer except that the input is convolved with

16 versions (the previous 8 and their flip) of the convolutional kernel. The CNN model

consists of these layers shows increased robustness under rotations as well as slightly

improved accuracy.

10
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Figure 2.4: Illustration of the CNN architecture designed to exploit transitional and rotational
symmetry (Image source [5]).

11
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Figure 2.5: Illustration of the rotate-pooling convolution layer, this layer utilizes weight sharing
to produce multiple feature maps which are then pooled, resulting in a single output feature map
per kernel (Image source [30]).

12
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3
OUR METHOD

In this chapter, we present our novel CNN architecture as well as a suitable training

algorithm for it. We then analyze theoretically our model considering a simplified

framework.

3.1 TransNet

3.1.1 Notations and definitions

Let X= {(xi, yi)}n
i=1 denote the training data, where xi ∈Rd denotes the i-th data point

and yi ∈ [K] its corresponding label. Let D denote the data distribution from which the

samples are drawn. Let H denote the set of hypotheses, where hθ ∈H is defined by its

parameters θ (often we use h = hθ to simplify notations). Let `(h, x, y) denote the loss of

hypothesis h when given sample (x, y). The overall loss is:

(3.1) L (h,X)= E(x,y)∼D[`(h, x, y)]

Our objective is to find the optimal hypothesis:

(3.2) h∗ := argmin
h∈H

L (h,X)

For simplicity, whenever the underlying distribution of a random variable isn’t explicitly

defined we use the uniform distribution, e.g. Ea∈A[a]= 1/|A|∑|A|
i=1 a.

13
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3.1.2 Model architecture

The TransNet architecture is defined by a set of input transformations T= {t j}m
j=1, where

each transformation t ∈T operates on the inputs (t :Rd →Rd) and is associated with a

corresponding model’s head. Thus each transformation operates on datapoint x as t(x),

and the transformed data-set in defined as:

(3.3) t(X) := {(t(xi), yi)}n
i=1

Given an existing NN model h, henceforth called the base model, we can split it to

two components: all the layers except for the last one denoted f , and the last layer g
assumed to be a fully-connected layer. Thus h = g ◦ f . Next, we enhance model h by

replacing g with |T| = m heads, where each head is an independent fully connected layer

gt associated with a specific transformation t ∈ T. Formally, each head is defined by

ht = gt ◦ f , and it operates on the corresponding transformed input as ht(t(x)).

The full model, with its m heads, is denoted by hT := {ht}t∈T, and operates on the

input as follows:

hT(x) := Et∈T[ht(t(x))]

The corresponding loss of the full model is defined as:

(3.4) LT(hT,X) := Et∈T[L (ht, t(X))]

Note that the resulting model (see Fig. 1.1) essentially represents m models, which share

via f all the weights up to the last fully-connected layer. Each of these models can be

used separately, as we do later on.

3.1.3 Training algorithm

Our method uses SGD with a few modifications to minimize the transformation loss

(3.4), as detailed in Alg. 1. Relying on the fact that each batch is sampled i.i.d. from

D, we can prove (see Lemma 1) the desirable property that the sampled loss LB is an

unbiased estimator for the transformation loss LT(hT,X). This justifies the use of Alg. 1

14



3.1. TRANSNET

to optimize the transformation loss.
Algorithm 1: Training the TransNet model

input :TransNet model hT, batch size b, maximum iterations num

MAX_ITER
output : trained TransNet model

1 for i = 1 . . . MAX_ITER do
2 sample a batch B= {(xk, yk)}b

k=1
iid∼ Db

3 forward:

4 for t ∈T do
5 L (ht,B)= 1

b
∑b

k=1`(ht, t(xk), yk)

6 end
7 LT(hT,B)= 1

m
∑

t∈TL (ht,B)

8 backward (SGD):

9 update the model’s weights by differentiating the sampled loss LT(hT,B)

10 end

Lemma 1. Given batch B, the sampled transformation loss LT(hT,B) is an unbiased
estimator for the transformation loss LT(hT,X).

Proof.

EB∼Db [LT(hT,B)]

= EB∼Db [Et∈T[L (ht, t(B))]]

= Et∈T[EB∼Db [L (ht, t(B))]] (B iid∼ Db)

= Et∈T[L (ht, t(X))]

= LT(hT,X)

(3.5)

�

3.1.4 Transformations

Which transformations should we use? Given a specific data-set, we distinguish be-

tween transformations that occur naturally in the data-set versus such transformations

that do not. For example, horizontal flip can naturally occur in the CIFAR-10 data-set,

but not in the MNIST data-set. TransNet can only benefit from transformations that do

not occur naturally in the target data-set, in order for each head to learn a well defined

15
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and non-overlapping classification task. Transformations that occur naturally in the

data-set are often used for data augmentation, as by definition they do not change the

data domain.

Dihedral group D4. As mentioned earlier, the TransNet model is defined by a set of

input transformations T. We constrain T to be a subset of the dihedral group D4, which

includes reflections and rotations by multiplications of 90◦. We denote a horizontal

reflection by m and a counter-clockwise 90◦ rotation by r. Using these two elements we

can express all the D4 group elements as {ri,m◦ ri | i ∈ 0,1,2,3}. These transformations

were chosen because, as mentioned in [10], their application is relatively efficient and

does not leave artifacts in the image (unlike scaling or change of aspect ratio).

Note that these transformations can be applied to any 3D tensor while operating

on the height and width dimensions, including an input image as well as the model’s

kernels. When applying a transformation t to the model’s weights θ, denoted t(θ), the

notation implies that t operates on the model’s kernels separately, not affecting other

layers such as the fully-connected ones (see Fig. 3.1).

Figure 3.1: The transformed input convolved with a kernel (upper path) equals to the transforma-
tion applied on the output of the input convolved with the inversely transformed kernel (lower
path).

3.1.5 Model variations

Once trained, the full TransNet model can be viewed as an ensemble of m shared

classifiers. Its time complexity is linear with the number of heads, almost equivalent to

16
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an ensemble of the base CNN model, since the time needed to apply each one of the D4

transformations to the input is negligible as compared to the time needed for the model

to process the input. Differently, the space complexity is almost equivalent to the space

complexity of only one base CNN model1.

We note that one can prune each one of the model’s heads, thus leaving a smaller

ensemble of up to m classifiers. A useful reduction prunes all the model’s heads except

one, typically the one corresponding to the identity transformation, which yields a regular

CNN that is equivalent in terms of time and space complexity to the base architecture

used to build the TransNet model. Having done so, we can evaluate the effect of the

TransNet architecture’s and its training algorithm’s inductive bias solely on the training

procedure, by comparing the pruned TransNet to the base CNN model (see Section 4.1).

3.2 Theoretical Analysis

In this section we analyze theoretically the TransNet model. We consider the following

basic CNN architecture:

(3.6) hθ = g ◦ l inv ◦
k∏

i=1
ci

where g denotes a fully-connected layer, l inv denotes an invariant layer under the D4

transformations group (e.g. a global average pooling layer - GAP), and {ci}i∈[k] denote con-

volutional layers2. The TransNet model extends the basic model by appending additional

heads:

(3.7) hT,θ = {gt ◦ l inv ◦
k∏

i=1
ci}t∈T

We denote the parameters of a fully-connected or a convolutional layer by subscripts of

w (weight) and b (bias), e.g. g(x)= gw · x+ gb.

3.2.1 Transformation compilation

Transformations in the dihedral D4 group satisfy another important property, expressed

by the following proposition:
1Each additional head (another fully-connected layer) adds 102K (∼0.45%) and 513K (∼0.90%) extra

parameters to the basic ResNet18 model when training CIFAR-100 and ImageNet-200 respectively.
2While each convolutional layer may be followed by ReLU and Batch Normalization [14] layers, this

doesn’t change the analysis so we obviate the extra notation.
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Proposition 1. Let hθ denote a CNN model where the last convolutional layer is followed
by an invariant layer under the D4 group. Then any transformation t ∈ D4 applied to the
input image can be compiled into the model’s weights θ as follows:

(3.8) ∀t ∈ D4 ∀x ∈X : hθ(t(x))= ht−1(θ)(x)

Proof. By induction on k we can show that:

(3.9)
k∏

i=1
ci ◦ t(x)= t◦

k∏
i=1

t−1(ci)(x)

(see Fig. 3.1). Plugging (3.9) into (3.6), we get:

hθ(t(x))= g ◦ l inv ◦
k∏

i=1
ci ◦ t(x)

= g ◦ l inv ◦ t◦
k∏

i=1
t−1(ci)(x)

= g ◦ l inv ◦
k∏

i=1
t−1(ci)(x) (l inv ◦ t = l inv)

= ht−1(θ)(x)

�

Implication. The ResNet model [11] used in our experiments satisfies the pre-condition

in the proposition stated above, since it contains a GAP layer [19] after the last convolu-

tional layer, and GAP is invariant under D4.

3.2.2 Single vs. multiple headed model

In order to acquire intuition regarding the inductive bias implied by training algorithm

Alg. 1, we consider two cases, a single and a double headed model, trained with the

same training algorithm. A single headed model is a special case of the full multi-headed

model, where all the heads share weights ht(t(x))= h(t(x)) ∀t, and the loss in line 5 of

Alg. 1 becomes L (h,B)= 1
b
∑b

k=1`(h, t(xk), yk).

As it’s hard to analyze non-convex deep neural networks, we focus on a simplified

framework and consider a convex optimization problem where the loss function is convex

w.r.t. the model’s parameters θ. We also assume that the model’s transformations in T

form a group3.
3T being a group is a technical constraint needed for the analysis, not required by the algorithm.
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3.2. THEORETICAL ANALYSIS

Single Headed model Analysis. In this simplified case, we can prove the following

strict proposition:

Proposition 2. Let hθ denote a CNN model satisfying the pre-condition of Prop. 1, and
T⊂ D4 a transformations group. Then the optimal transformation loss LT (see Eq. 3.4) is
obtained by invariant model’s weights under the transformations T. Formally:

∃θ0 : (∀t ∈T : θ0 = t(θ0))∧ (θ0 ∈ argmin
θ

LT(θ,X))

Proof. To simplify the notations, henceforth we let θ denote the model hθ.

LT(θ,X)

= Et∈T[L (θ, t(X))]

= Et∈T[E(x,y)∼D[`(θ, t(x), y)]]

= Et∈T[E(x,y)∼D[`(t−1(θ), x, y)]] (by Prop. 1)

= E(x,y)∼D[Et∈T[`(t−1(θ), x, y)]]

≥ E(x,y)∼D[`(Et∈T[t−1(θ)], x, y)] (Jensen’s inequality)

= E(x,y)∼D[`(θ̄, x, y)] (θ̄ := Et∈T[t(θ))], T=T−1)

=L (θ̄,X)

= Et∈T[L (t−1(θ̄),X)] (θ̄ is invariant under T)

= Et∈T[L (θ̄, t(X))] (by Prop. 1)

= LT(θ̄,X)

Above we use the fact that θ̄ is invariant under T since T is a group and thus t0T=T,

hence:

t0(θ̄)= t0(Et∈T[t(θ)])= Et∈T[t0 ◦ t(θ)]= Et∈T[t(θ)]= θ̄

�

Double headed model. In light of Prop. 2 we now present a counter example, which

shows that Prop. 2 isn’t true for the general TransNet model.

Example 3. Let T= {t1 = r0, t2 = m◦r2}⊂ D4 denote the transformations group consisting
of the identity and the vertical reflection transformations. Let hT,θ = {hi = g i ◦GAP ◦ c}2i=1

denote a double headed TransNet model, which comprises a single convolutional layer
(1 channel in and 2 channels out), followed by a GAP layer and then 2 fully-connected
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layers {g i}2i=1, one for each head. Each g i outputs a vector of size 2. The data-set X =
{(x1, y1), (x2, y2)} consists of 2 examples:

x1 =


1 1 1

0 0 0

0 0 0

 , y1 = 1, x2 =


0 0 0

0 0 0

1 1 1

 , y2 = 2

Note that x2 = t2(x1) 4.
Now, assume the model’s convolutional layer c is composed of 2 invariant kernels

under T, and denote it by cinv. Let i ∈ 1,2, then:

hi(x2)= hi(t2(x1))= g i ◦GAP ◦ cinv ◦ t2(x1)

= g i ◦GAP ◦ cinv(x1)= hi(x1)
(3.10)

In this case both heads predict the same output for both inputs with different labels, thus:

L (hi, ti(X))> 0 =⇒ LT(hT,θ,X)> 0.

In contrast, by setting cw = (x1, x2), cb = (0,0), which isn’t invariant under T, as well as:

g1,w =
[

1 0

0 1

]
, g1,b =

[
0

0

]
g2,w =

[
0 1

1 0

]
, g2,b =

[
0

0

]
,

we obtain:
L (hi, ti(X))= 0 =⇒ LT(hT,θ,X)= 0.

We may conclude that the optimal model’s kernels aren’t invariant under T, as opposed to
the claim of Prop. 2.

Discussion. The intuition we derive from the analysis above is that the training algo-

rithm (Alg. 1) implies an invariant inductive bias on the model’s kernels as proved in

the single headed model, while not strictly enforcing invariance as shown by the counter

example of the double headed model.

4This example may seem rather artificial, but in fact this isn’t such a rare case. E.g. , the airplane
and the ship classes, both found in the CIFAR-10 data-set, that share similar vertically flipped blue
background.
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4
EXPERIMENTAL EVALUATION

In this chapter, we empirically evaluate our TransNet model performance as well

as its generalization capacity and its invariance level.

4.1 Experimental Results

Data-Sets. For evaluation we used the 5 image classification data-sets detailed in

Table 4.1. These diverse data-sets allow us to evaluate our method across different image

resolutions and number of predicted classes.

Name Classes Train/Test dim
Samples

CIFAR-10 [15] 10 50K/10K 32
CIFAR-100 [15] 100 50K/10K 32
ImageNette [13] 10 10K/4K 224
ImageWoof [13] 10 10K/4K 224
ImageNet-200 200 260K/10K 224

Table 4.1: The data-sets used in our experiments. The dimension of each example, a color image,
is dim×dim×3 pixels. ImageNette represents 10 easy to classify classes from ImageNet [4], while
ImageWoof represents 10 hard to classify classes of dog breeds from ImageNet. ImageNet-200
represents 200 classes from ImageNet (same classes as in [17]) of full size images.

Implementation Details. We employed the ResNet [11] architecture, specifically the

ResNet18 architecture for all the data-sets except for the ImageNet-200 which was
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MODEL CIFAR-10 CIFAR-100 ImageNette ImageWoof ImageNet-200
base-CNN 95.57 ± 0.08 76.56 ± 0.16 92.97 ± 0.16 87.27 ± 0.15 84.39 ± 0.07
PT2-CNN 95.99 ± 0.07 79.33 ± 0.15 93.84 ± 0.14 88.09 ± 0.30 85.17 ± 0.10
PT3-CNN 95.87 ± 0.04 79.08 ± 0.06 94.15 ± 0.16 87.79 ± 0.11 84.97 ± 0.95
PT4-CNN 95.73 ± 0.05 77.98 ± 0.17 93.94 ± 0.06 85.81 ± 0.79 84.02 ± 0.71

Table 4.2: Accuracy of models with the same space and time complexity, comparing the Base
CNN with pruned TransNet models "PTm-CNN", where m = 2,3,4 denotes the number of heads
in training. Mean and standard error for 3 repetitions are shown.

MODEL CIFAR-10 CIFAR-100 ImageNette ImageWoof ImageNet-200
base-CNN 95.57 ± 0.08 76.56 ± 0.16 92.97 ± 0.16 87.27 ± 0.15 84.39 ± 0.07
T2-CNN 96.22 ± 0.10 80.35 ± 0.06 94.02 ± 0.13 88.36 ± 0.33 85.47 ± 0.14
T3-CNN 96.33 ± 0.06 80.92 ± 0.08 94.39 ± 0.07 88.79 ± 0.25 85.68 ± 0.20
T4-CNN 96.17 ± 0.01 79.94 ± 0.16 94.67 ± 0.06 87.05 ± 0.75 85.54 ± 0.11

Table 4.3: Accuracy of models with similar space complexity and different time complexity,
comparing the Base CNN with full TransNet models. With m denoting the number of heads,
chosen to be 2,3 or 4, the prediction time complexity of the respective TransNet model "Tm-CNN"
is m times larger than the base CNN. Mean and standard error for 3 repetitions are shown.

evaluated using the ResNet50 architecture. It’s important to notice that we haven’t

changed the hyper-parameters used by the regular CNN architecture which TransNet is

based on. This may strengthen the results as one may fine tune these hyper-parameters

to suit best the TransNet model.

We used a weight decay of 0.0001 and momentum of 0.9. The model was trained with

a batch size of 64 for all the data-sets except for ImageNet-200 where we increased the

batch size to 128. We trained the model for 300 epochs, starting with a learning rate of

0.1, divided by 10 at the 150 and 225 epochs, except for the ImageNet-200 model which

was trained for 120 epochs, starting with a learning rate of 0.1, divided by 10 at the 40

and 80 epochs. We normalized the images as usual by subtracting the image’s mean and

dividing by the image’s standard deviation (color-wise).

We employed a mild data augmentation scheme - horizontal flip with probability

of 0.5. For the CIFAR data-sets we padded each dimension by 4 pixels and cropped

randomly (uniform) a 32×32 patch from the enlarged image [18] while for the ImageNet

family data-sets we cropped randomly (uniform) a 224×224 patch from the original

image.

In test time, we took the original image for the CIFAR data-sets and a center crop

for the ImageNet family data-sets. The prediction of each model is the mean of the

model’s output on the original image and a horizontally flipped version of it. Note that
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a horizontal flip occurs naturally in every data-set we use for evaluation and therefore

isn’t associated with any of the TransNet model’s heads that we evaluate.

Notations.

• "base CNN" - a regular convolutional neural network, identical to the TransNet
model with only the head corresponding to the identity transformation.

• "PTm-CNN" - a pruned TransNet model trained with m heads, where a single head

is left and used for prediction1. It has the same space and time complexity as the

base CNN.

• "Tm-CNN" - a full TransNet model trained with m heads, where all are used

for prediction. It has roughly the same space complexity1 and m times the time

complexity as compared to the base CNN.

4.1.1 Models accuracy, comparative results

We now compare the accuracy of the "base-CNN", "PTm-CNN" and "Tm-CNN" models,

where m = 2,3,4 denotes the number of heads of the TransNet model, and their ensembles,

across all the data-sets listed in Table 4.1.

Models with the same space and time complexity. First, we evaluate the pruned

TransNet model by comparing the "PTm-CNN" models with the "base-CNN" model, see

Table 4.2. Essentially, we evaluate the effect of using the TransNet model only for training,

as the final "PTm-CNN" models are identical to the "base-CNN" model regardless of m.

We can clearly see the inductive bias implied by the training procedure. We also see that

TransNet training improves the accuracy of the final "base-CNN" classifier across all the

evaluated data-sets.

Models with similar space complexity, different time complexity. Next, we eval-

uate the full TransNet model by comparing the "Tm-CNN" models with the "base-CNN"

model, see Table 4.3. Despite the fact that the full TransNet model processes the (trans-

formed) input m times more as compared to the "base-CNN" model, its architecture is

not significantly larger than the base-CNN’s. The full TransNet adds to the "base-CNN"

a negligible number of parameters, in the form of its multiple heads1. Clearly the full

TransNet model improves the accuracy as compared to the "base-CNN" model, and also
1In our experiments we chose the head associated with the identity (r0) transformation when evaluat-

ing a pruned TransNet. Note, however, that we could have chosen the best head in terms of accuracy, as it
follows from Prop. 1 that its transformation can be compiled into the model’s weights.
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as compared to the pruned TransNet model. Thus, if the additional runtime complexity

during test is not an issue, it is beneficial to employ the full TransNet model during

test time. In fact, one can process the input image once, and then choose whether to

continue processing it with the other heads to improve the prediction, all this while

keeping roughly the same space complexity.

Ensembles: models with similar time complexity, different space complexity.
Here we evaluate ensembles of pruned TransNet models, and compare them to a single

full TransNet model that can be seen as a space-efficient ensemble: full TransNet gener-

ates m predictions with only 1/m parameters, where m is the number of TransNet heads.

Results are shown in Fig. 4.1. Clearly an ensemble of pruned TransNet models is superior

to an ensemble of base CNN models, suggesting that the accuracy gain achieved by the

pruned TransNet model doesn’t overlap with the accuracy gain achieved by using an

ensemble of classifiers. Furthermore, we observe that the full TransNet model exhibits

competitive accuracy results, with 2 and 3 heads, as compared to an ensemble of 2 or

3 base CNN models respectively. This is achieved while utilizing 1/2 and 1/3 as many

parameters respectively.

Accuracy vs. generalization. In Fig. 4.1 we can see that 2 heads improve the model’s

performance across all data-sets, 3 heads improve it on most of the data-sets, and 4 heads

actually undermine performance on all the data-sets except ImageNette. We hypothesize

that too many heads impose too strict an inductive bias on the model’s kernels. Thus,

although generalization is improved, test accuracy is reduced due to insufficient variance.

Further analysis is presented in the next section.

4.1.2 Generalization

We’ve seen in Section 4.1.1 that the TransNet model, whether full or pruned, achieves

better test accuracy as compared to the base CNN model. This occurs despite the fact that

the transformation loss LT(hT,X) minimized by the TransNet model is more demanding

than the loss L (h,X) minimized by the base CNN, and appears harder to optimize. This

conjecture is justified by the following Lemma:

Lemma 2. Let hT denote a TransNet model that obtains transformation loss of a :=
LT(hT,X). Then there exists a reduction from hT to the base CNN model h that obtains a
loss of at most a, i.e. L (h,X)≤ a.
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Figure 4.1: Model accuracy as a function of the number of instances (X -axis) processed during
prediction. Each instance requires a full run from input to output. An ensemble of m instances
includes: m independent base CNN classifiers for "CNN"; m pruned TransNet trained with 2
heads for "PT2-CNN"; and a single TransNet model with m heads, where m is the ensemble size,
for "Tm-CNN".

Proof. a = LT(hT,X) = Et∈T[L (hθt , t(X))], so there must be a transformation t ∈ T s.t.

L (hθt , t(X))≤ a. Now, one can compile the transformation t into hθt (see Prop. 1) and get

a base CNN: h̃ = ht−1(θt) which obtains L (h̃,X)=L (ht−1(θt), t(X))=L (hθt , t(X))≤ a. �

Why is it, then, that the TransNet model achieves overall better accuracy than the

base CNN? The answer lies in its ability to achieve a better generalization.

In order to measure the generalization capability of a model w.r.t. a data-set, we

use the ratio between the test-set and train-set loss, where a lower ratio indicates

better generalization. As illustrated in Fig. 4.2, clearly the pruned TransNet models

exhibit better generalization when compared to the base CNN model. Furthermore, the

generalization improvement increases with the number of TransNet model heads, which

are only used for training and then pruned. The observed narrowing of the generalization

gap occurs because, although the TransNet model slightly increases the training loss, it
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more significantly decreases the test loss as compared to the base CNN.

Figure 4.2: CIFAR-100 results. Left panel: learning curve of the Base CNN model ("base-CNN")
and a pruned TransNet model ("PT2-CNN"). Right panel: generalization score, test-train loss
ratio, measured for the base-CNN model and various pruned TransNet models with a different
number of heads.

We note that better generalization does not necessarily imply a better model. The

"PT4-CNN" model generalizes better than any other model (see right panel of Fig. 4.2),

but its test accuracy is lower as seen in Table 4.2.

4.1.3 Kernel invariance

What characterizes the beneficial inductive bias implied by the TransNet model and

its training algorithm Alg. 1?. To answer this question, we investigate the emerging

invariance of kernels in the convolutional layers of the learned network, w.r.t. the

TransNet transformations set T.

We start by introducing the "Invariance Score" (IS), which measures how invariant

a 3D tensor is w.r.t. a transformations group. Specifically, given a convolutional kernel

denoted by w (3D tensor) and a set of transformations group T, the IS score is defined

as follows:

(4.1) IS(w,T) := min
u∈INVT

‖w−u‖
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where INVT is the set of invariant kernels (same shape as w) under T, i.e. (u ∈
INVT) ⇐⇒ (∀t ∈T : u = t(u)).

Lemma 3. argminu∈INVT ‖w−u‖ = Et∈T[t(w)]

Proof. Let u be an invariant tensor under T. Define f (u) := ‖w−u‖2. Note that

argminu∈INVT ‖w−u‖ = argminu∈INVT f (u).

f (u)= ‖w−u‖2

= Et∈T[‖w− t(u)‖2] (u is invariant under T)

= Et∈T[
∥∥t−1(w)−u

∥∥2
]

= Et∈T[‖t(w)−u‖2] (T=T−1)

= Et∈T[
size(w)∑

i=1
(t(w)i −ui)2]

where index i runs over all the tensors’ elements. Finally, we differentiate f to obtain its

minimum:

∂ f
∂ui

= Et∈T[−2(t(w)i −ui)]= 0

=⇒ ui = Et∈T[[t(w)i] =⇒ u = Et∈T[t(w)]

�

Lemma 3 gives a closed-form expression for the IS gauge:

(4.2) IS(w,T)= ‖w−Et∈T[t(w)]‖

Equipped with this gauge, we can inspect the invariance level of the model’s kernels

w.r.t. a transformations group. Note that this measure allows us to compare the full

TransNet model with the base CNN model, as both share the same convolution layers.

Since the transformations of the TransNet model don’t necessarily form a group, we use

the minimal group containing these transformations - the group of all rotations {ri}4i=1.

In Fig. 4.3 we can see that the full TransNet model "T2-CNN" and the base CNN

model demonstrate similar invariance level in all the convolutional layers but the last

one. In Fig. 4.4, where the distribution of the IS score over the last layer of 4 different

models is fully shown, we can more clearly see that the last convolutional layer of full

TransNet models exhibits much higher invariance level as compared to the base CNN.

This phenomenon is robust to the metric used in the IS definition: similar results can be
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obtained when using other metrics such as "Pearson Correlation" and "Cosine Similarity".

The increased invariance in the last convolutional layer is monotonically increasing with

the number of heads in the TransNet model, which is consistent with the generalization

capability of these models (see Fig 4.2).

Figure 4.3: CIFAR-100 results, plotting the distribution of the IS scores (mean and std) for the
kernels in each layer of the different models. Invariance is measured w.r.t. the group of 90◦

rotations.

The generalization improvement achieved by the TransNet model, as reported in

Section 4.1.2, may be explained by this increased level of invariance, as highly invariant

kernels have fewer degrees of freedom, and should therefore be less prone to overfit.
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Figure 4.4: CIFAR-100 results, plotting the full distribution of the IS scores for the kernels in the
last (17-th) layer of the different models. Invariance is measured w.r.t. the group of 90◦ rotations.
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5
SUMMARY AND DISCUSSION

We introduced a model inspired by self-supervision, which includes a base CNN

model attached to multiple heads, each corresponding to a different transfor-

mation from a fixed set of transformations. The self-supervised aspect of the

model is crucial, as the chosen transformations must not occur naturally in the data.

When the model is pruned back to match the base CNN, it achieves better test accuracy

and improved generalization, which is attributed to the increased invariance of the

model’s kernels in the last layer. We observed that excess invariance, while improving

generalization, eventually curtails the test accuracy.

We evaluated our model on various image data-sets, observing that each data-set

achieves its own optimal kernel’s invariance level, i.e. there’s no optimal number of

heads for all data-sets. Finally, we introduced an invariance score gauge (IS), which

measures the level of invariance achieved by the model’s kernels. IS may be leveraged to

determine the optimal invariance level, as well as potentially function as an independent

regularization term.

5.1 Future Work

We suggest 2 main research direction following this paper: The first is evaluating and

analyzing the TransNet model based on different self-supervision transformations rather

than the D4 group. The second is trying to regularize a regular CNN model by adding to

it a regularization term in the form of a scale factor multiplied by the IS score of the
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model’s kernels. This regularization technique would have 2 main considerations: which

group of transformations should we choose to define the IS score? and On which kernels

should we apply this regularization. An initial estimate to the aforementioned question

could be derived by analyzing the IS measures exhibited by the TransNet model.
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