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Abstract
Edmond and Lily Safra Center for Brain Sciences

Doctor of Philosophy

A Machine Learning Approach to Analysis of Biologger Data in
Movement Ecology

by Yehezkel S. Resheff

Recent technological advancements have dramatically increased the avail-
ability of wearable devices fitted with multiple sensors. Two fields have
greatly benefited from this revolution: animal tracking, and medical devices.
With ever-growing datasets becoming readily available, it has now become
necessary to develop methods to turn these data into insights.

In this research I studied and developed machine learning methods for
analysis of data from bio-logger wearable devices. The first chapter deals
with unsupervised analysis of accelerometer data, framing the problem as
topic modeling over short bursts of the accelerometer signal. This method is
applied to both focal domains, with results demonstrating the utility both for
animal understanding and continuous monitoring systems for hospitalized
patients.

The second chapter deals with the most common data type derived from
wearable sensors – GPS location data – and provides a method to deal with
and process the vast amounts of data that are accumulating, for purposes
such as visualization and further analysis.

In the third chapter methods are developed to tackle problems which typ-
ically arise in the context of movement and bio-logger data, but that are more
general in scope and appropriate for a somewhat wider audience of data-
science practitioners. The first such problem is the imputation of missing
data, for which a solution in the form of a single optimization problem is pro-
posed. The second problem is learning a multi-class classifier with arbitrary
cost assigned to each of the O(k2) types of error associated with confusing
one of the k labels with another.

Additional work on supervised learning methods for classification of be-
havioral modes from accelerometer data, behavioral anomaly detection from
smart-watch sensors, and predicting doctor assessments is presented in the
appendix.
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Chapter 1

Introduction

1.1 Wearable Devices

The term wearable devices refers to electronics designed to be worn on the
body or otherwise attached to it or embedded in it. While much of the
promise initially attributed to the concept has not come to fruition, in the
specific niches of health monitoring and animal tracking these devices have
proven to be invaluable sources of data and drivers of cutting edge scientific
research.

Wearable devices with various sensors are becoming increasingly pop-
ular, with ongoing research into applications to health monitoring [20] and
context detection [15]. Many fields of animal behavior and conservation have
also begun to utilize similar devices in order to remotely monitor the where-
abouts and behavior of their research subjects [23], and this has especially
been the case in the field of Movement Ecology.

The main narrative of this thesis is the improvement and utilization of
methods for analysis of sensor data from wearable devices, with specific ap-
plications to animal tracking and medical devices. In the following, I sur-
vey these fields, and outline the background and motivations for the current
work.

1.1.1 Wearable Devices in Movement Ecology – the Biolog-
ger

Movement ecology aims to unify organism movement research and aid in
the development of a general theory of whole-organism movements [18]. Re-
cent technological advances in tracking tools and especially the appearance
of cheap and small GPS devices [11], have driven the field into a period of
rapid growth in knowledge and insight [13], and have led to the emergence
of various methods of analyzing movement patterns [27].

These advances have motivated the development of integrative concep-
tual frameworks unifying cognitive, bio-mechanical, random and optimality
paradigms to study movements of all kinds by all types of organisms [18].
Nevertheless, movement data, however accurate, are unlikely to suffice for
inference on the links between behavioral, ecological, physiological, and evo-
lutionary processes driving the movement of individuals, and can’t by itself
link these subjects which have traditionally been researched separately in
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their respective fields. Thus, promoting movement ecology research and the
desirable unification across species and movement phenomena requires the
development of additional data sources: sensors and tools providing simul-
taneous information not only about the movement, but also about energy
expenditure and behavior of the focal organisms, together with the environ-
mental conditions they encounter en route [19].

The past few years have seen tremendous growth in the amounts of data
being collected with respect to the movement and behavior of wild animals.
Data which is the past would have seemed impossible to obtain, such as
high resolution life-tracks, and sub-second sensor data, are now routinely
collected by many research groups [6], and for an increasingly large number
and diverse group of species. Remote sensing and bio-logging affords us
an "eye on planet" [14], with respect to our non-human surroundings. With
these large and rich data accumulating in the research community, the need
for accompanying tools and methods to turn them into valuable insights is
pressing [3].

Surprisingly, research into methods of analysis of this data is somewhat
lagging behind the technical ability to collect it. Several reasons may con-
tribute to this phenomenon. First, Movement Ecology and animal tracking
are traditionally field-centric scientific fields, where intimate knowledge of
the focal animal is held in the highest regard. Arguably, methods always
come second. Furthermore, with the inevitable transition into a data-oriented
discipline, the necessary augmentation from relevant fields such as computer
science, data science, and machine learning, may necessitate a re-design of
the core education in Movement Ecology. This process is slow by nature, but
we are currently seeing the first steps in this direction.

That being said, the bio-logger is currently driving a data-revolution in
Movement Ecology. Even when the most rudimentary methods are applied,
the existence of this new data is opening up a vast array of research oppor-
tunities, and the low hanging fruit are definitely being picked. Going for-
ward, we will need to develop, popularize, and standardize methods to uti-
lize these data sources to the full extent possible.

1.1.2 Wearable Devices in Health

The second field heavily impacted by the advent of miniaturized sensors and
wearable devices is tracking for health and medical devices. Here, these de-
vices are used for continuous monitoring of various aspects of the physical,
mental, or behavioral state of patients, either for the purpose of advanced
analytics, or to facilitate immediate response (as in the case of fall detection
for the elderly).

The most popular application in health and wellbeing is for sports and
activity tracking. Wearable devices and smart-phones are routinely used
to track the extent of movement and exercise during a user’s day, features
of structured exercise such as running, and even help improve more com-
plicated body weight exercise. Other applications in the scientific research
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of sports and movement use devices such as smart shoes, or accelerometer-
embedded smart-watches, to measure gait and posture.

For movement disorder patients, such as Parkinson’s and Huntington
disease, wearable devices enable lifelong tracking driving novel research that
was not possible using traditional observational methods. Furthermore, on-
going tracking of symptoms and behavior provide an objective and reliable
augmentation to clinical evaluation, providing a longitudinal picture on the
progression of a patient’s state.

In this thesis I have applied (together with a number of colleagues) these
and similar methods for the continuous tracking of patients in a close ward
mental hospital. In the pilot study, 27 inpatients from the closed wards at
Shaar-Meashe MHC participated. Each participant was fitted with a smart-
watch (GeneActiv1) with tri-axial accelerometer embedded sensors. Prelim-
inary results indicate that a tracking system for ongoing patient monitoring
holds tremendous promise both for detecting of events that necessitate im-
mediate intervention, and for a longitudinal tracking and augmentation of
clinical evaluation with objective measures.

1.2 Behavioral Mode Learning

1.2.1 Supervised Learning

As discussed above, the field of Movement Ecology is being rapidly revi-
talized by tools and methods. More specifically, the accelerometer-biologger
(ACC). These sensors allow the determination of the acceleration of the tagged
animal’s body, and are used as a means of identifying moment-to-moment
behavioral modes [32], and estimating energy expenditure [31].

ACC loggers typically record in 1-3 dimensions, either continuously or in
short bouts in a constant window [23]. Their output is used to infer behavior
most commonly through supervised machine learning techniques, and en-
ergy expenditure using the Overall Dynamic Body Acceleration (ODBA) or
related metrics [9, 31]. Combined with GPS recordings, acceleration sensors
add fine-scale information on the variation in animal’s behavior and energy
expenditure in space and time (see [4] for a recent review).

ACC-based analysis has also been used to compute many measures of
interest, including behavior-specific body posture, movement and activity
budgets, measures of foraging effort, attempted food capture events, mor-
tality detection and classifying behavioral modes [4]. These measures have
facilitated movement-related research for a wide range of topics in ecology
and animal behavior [27, 4, 25, 28] as well as other fields of research such as
animal conservation and welfare [25, 7] and biomechanics [12, 26].

The protocol for using ACC data for supervised learning of behavioral
modes consists of several steps [23]. First, before deployment, the response
of each tag to ±1G on each axis is recorded in a controlled environment,
in order to calibrate the tag-specific linear transformation from the recorded

1https://www.geneactiv.org/
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values (mV) to the desired units of acceleration (G). Next, the calibrated tags
are given a recording schedule and mounted on the focal animals. The data is
later retrieved either by RF methods, or by physically reacquiring the device.

In order to train supervised machine learning models, a labeled dataset
is collected through field observations. This time and labor intensive stage
requires the researcher to observe the animal, either in its natural habitat or
in captivity, and relate the actual behavioral modes to the time-stamp of the
ACC recordings. Since some behavioral modes tend to be less common, or
be preformed predominantly at specific times, recording a sufficient number
of such behavior-measurement samples may be tricky. Furthermore, for noc-
turnal or cryptic species, observations may not be feasible. In the final stage,
models are trained using the labeled data, and the entire dataset is then la-
beled.

This process is described for animal behavioral mode labeling, but the
process is similar in nature when applied to humans for medical devices. The
main steps, which also limit the scope and feasibility of the method, are the
compilation of the set of relevant behavioral modes, and the collection of the
necessary annotated examples to train the models with. In the next section
we discuss unsupervised methods where these limitations are mitigated.

1.2.2 Unsupervised Learning

There are several drawbacks to the supervised learning approach in our set-
ting. Observations, even if perfectly accurate, may not adequately represent
the behavioral pattern throughout the period of the research (which is desir-
ably the lifetime of the animal or patient). This is true for several reasons: in
animal movement, the field work is inherently confined to a specific time and
place, and thus only some of the animals are observed. Also, the presence of
the observer may impact the behavior of the observed animals.

For patients, in many of the cases discussed the behavior of individuals
is expected to be highly variable. Especially when movement disorders or
mental illness is involved, the ability to specify the full repertoire of move-
ment is very doubtful. We then would want to rely on a data driven approach
instead, one which will enable us to discover the movement range in an au-
tomatic and case-by-case fashion.

Furthermore, the need for observations limits the scope of supervised
learning behavioral mode annotation projects to observable species, and re-
quires considerable efforts (both in terms of money and manpower). For this
reason, even when the supervised approach is technically feasible, it would
be beneficial on many occasions to have a simpler unsupervised approach in
the field’s toolkit.

In this thesis I describe a method for unsupervised analysis of behav-
ioral mode based on (possibly multiple) sensor streams. The method, in two
closely related variants, is applied both to animal movement data and to pa-
tients in a hospital setting. In both cases, the method is demonstrated to be
able to extract meaningful information regarding the movement and behav-
ior of individuals, and connections are drawn to supervised annotations.
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1.3 Trajectory Analysis

Another type of data collected by bio-loggers and wearable devices is loca-
tion GPS information. In the field of Ecology and Animal Tracking, move-
ment data is being collected at a global [24, 10] as well as a regional [2, 30]
scale. Car [17, 16] and ship [29] trajectories are recorded for control, opti-
mization, and safety purposes, and pedestrians are tracked for health, safety,
and navigation utilities [8, 1]. With this large amount of data rolling in, new
and more efficient methods must be developed in order to visualize, analyze,
and gain insight and knowledge.

One of the most fundamental computations associated with understand-
ing movement data is segmentation of trajectories. Traditionally, a segmenta-
tion proceeds by defining a feature of a single point, then dividing the entire
trajectory into sub-trajectories which are uniform (in some sense) with re-
spect to this feature [5]. Essentially, trajectory segmentation is the process
of subdividing a trajectory into parts either by grouping points similar with
respect to some measure of interest, or by minimizing a global objective func-
tion.

In this thesis I present a novel online algorithm for segmentation and
summary, based on point density along the trajectory, and based on the na-
ture of the naturally occurring structure of intermittent bouts of locomo-
tive and local activity. I show an application to visualization of trajectory
datasets, and discuss the use of the summary as an index allowing efficient
queries which are otherwise impossible or computationally expensive, over
very large datasets.

1.4 Missing Data

A central theme in this thesis is missing data. Several aspects of this are cov-
ered in various parts of this thesis. Missing data in the most common sense is
treated in the methods presented in Chapter 4 [22]. This work deals with im-
putation of missing data in the form of random entries in a matrix which are
not available. The structure of the data (information shared between columns
of the matrix in this case) is used to recover the missing entries.

In the context of supervised vs. unsupervised learning methods of be-
havioral modes, the term missing is used to denote the lack of observations
in some cases, and motivate methods that do not require a labeled dataset.
This should not be confused with the meaning of the word in the first line of
work. In the latter, all labels are "missing" and thus we must rely on external
structure in order to "recover" them. In fact, it would be more natural to say
that we are going to describe, rather than recover these labels.

The third context in which missing data is a key issue is in trajectory anal-
ysis (Chapter 3). In many data acquisition systems for trajectory data there
is an inherent problem of missing data. This is often the case due to data ac-
quisition limitations (coverage, reception, etc.), but may also stem from limit
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memory, or power constraints. Either way, methods for analysis of move-
ment data must often be resilient to a large extent to missing parts of a tra-
jectory. The method described in Chapter 3 [21] does not try to fill in missing
parts of a trajectory, but is by construction resistant to adverse effects of holy
trajectories, and able to adequately and efficiently represent them in the in-
terest of downstream processing.
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Chapter 2

Unsupervised Analysis of
Behavioral Modes from Sensor
Data

2.1 Movement Ecology

This paper [2] was published in the International Journal of Data Science and
Analytics. A short version [1] was presented at the 2015 IEEE International
Conference on Data Science and Advanced Analytics, which took place in
Paris, France, during October 19-21, 2015.
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Abstract The field of movement ecology is experiencing
a period of rapid growth in availability of data. As the vol-
ume rises, traditional methods are giving way to machine
learning and data science, which are playing an increasingly
large part in turning these data into science-driving insights.
One rich and interesting source is the biologger. These small
electronic wearable devices are attached to animals free to
roam in their natural habitats and report back readings from
multiple sensors, including GPS and accelerometer bursts. A
common use of accelerometer data is for supervised learn-
ing of behavioral modes. However, we need unsupervised
analysis tools as well, in order to overcome the inherent
difficulties of obtaining a labeled dataset, which in some
cases either is infeasible or does not successfully encompass
the full repertoire of behavioral modes of interest. Here, we
present a matrix factorization-based topic model method for
accelerometer bursts, derived using a linear mixture property
of patch features. Our method is validated via comparison
with a labeled dataset and is further compared to standard
clustering algorithms.
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1 Introduction

Wearable devices with various sensors are becoming increas-
ingly popular, with ongoing research into applications to
health monitoring [22] and context detection [13]. Many
fields of animal behavior and conservation have also begun
to utilize similar devices in order to remotely monitor the
whereabouts and behavior of their research subjects [25],
and this has especially been the case in the field of move-
ment ecology.

The aim of movement ecology is to unify research of
movement of organisms and aid in the development of a
general theory of whole-organism movement [18]. Recent
technological advances in tracking tools and especially the
appearance of cheap and small GPS devices [9] have driven
the field into a period of rapid growth in knowledge and
insight [11,12] and have led to the emergence of various
methods of analyzing movement patterns [29].

Nevertheless, movement data, however accurate, are
unlikely to suffice for inference on the links between behav-
ioral, ecological, physiological, and evolutionary processes
driving the movement of individuals, and link these subjects
which have traditionally been researched separately in their
respective fields. Thus, understandingmovement phenomena
across species requires the development of additional data
sources: sensors and tools providing simultaneous informa-
tion about the movement, energy expenditure and behavior
of the focal organisms, together with the environmental con-
ditions they encounter en route [19].

One such tool, which has been introduced into the field
of movement ecology, is the accelerometer biologger (ACC).
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These sensors allow the determination of the tagged animal’s
body acceleration and are used as a means of identifying
moment-to-moment behavioral modes [35] and estimating
energy expenditure [34].

ACC loggers typically record in 1–3 dimensions, either
continuously or in short bouts in a constant window [25].
Their output is used to infer behavior, most commonly
through supervised machine learning techniques, and energy
expenditure using the overall dynamic body acceleration
(ODBA) or relatedmetrics [8,34].When combinedwithGPS
recordings, acceleration sensors add fine scale information
on the variation in animal behavior in space and time (see [2]
for a recent review).

ACC-based analysis has been used to compute manymea-
sures of interest in the field of movement ecology, including
behavior-specific body posture, movement and activity bud-
gets, measures of foraging effort, attempted food capture
events, mortality detection, classifying behavioralmodes [2].
These measures have facilitated research for a wide range of
topics in ecology, animal behavior [2,29–31], animal conser-
vation and welfare [3,31], and biomechanics [10,28].

In recent years, there has been considerable interest in
the analysis of behavioral modes using ACC data and super-
vised learning techniques. The protocol for using ACC data
for supervised learning of behavioral modes consists of
several steps. First, a sensor calibration procedure is pre-
formed in a controlled environment: Before deployment, the
response of each tag to ±1G acceleration on each axis is
recorded, in order to fit the tag-specific linear transforma-
tion from the recorded values (mV) to the desired units of
acceleration. Next, the calibrated tags are given a record-
ing schedule and mounted on the focal animals, after these
are captured. Finally, the data are retrieved using RF (radio)
methods, cellular transmission, or physically reacquiring the
device.

Before supervised machine learning models can be used,
a labeled dataset is collected through field observations. This
time- and labor-intensive stage requires the researcher to
observe the animal, either in its natural habitat or in captivity
and relate the actual behavioral modes to the time stamp of
the ACC recordings. Since some behavioral modes tend to
be less common, or are performed predominantly at specific
times, recording a sufficient number of such behavior mea-
surement samples may be tricky. Furthermore, for aquatic
and nocturnal species, observations may not be feasible. In
the final stage, models are trained using the labeled data, and
the entire dataset is then classified.

Supervised machine learning methods have been applied
to ACC data from many species and for a diverse range
of behavioral modes. However, there are several drawbacks
to the supervised approach. Observations, even if perfectly
accurate, may not be adequately representative of the behav-
ioral pattern throughout the period of the research (which

is desirably the lifetime of the animal), for several reasons:
Field work is inherently confined to a specific time and place;
moreover, only some of the animals are observed, and the
presence of the observermay in some cases have an impact on
the behavior of the observed animals. Furthermore, the need
for observations limits the scope of such research projects
to observable species and to research laboratories with the
necessary resources (in money, manpower, and knowledge)
to carry out all the steps listed above.

In this paper, we present a framework for unsupervised
analysis of behavioral modes from ACC data. First, we sug-
gest a multi-scale bag of patches (MS-BoP) descriptor of
ACCsignals reminiscent of “bag of visualwords” descriptors
in computer vision (see [4,36]). Next, we present a sim-
ple topic model for behavioral modes incorporating a linear
mixture property of the MS-BoP features and demonstrate
how it can be used for unsupervised analysis of behavioral
modes.

The rest of the paper is organized as follows: The next
section describes relatedwork both inmovement ecology and
in matrix factorization for clustering and topic modeling. In
Sect. 3, we introduce the features and model. Finally, in Sect.
4 we present the results of an analysis on a large real-world
dataset and the comparison with other methods.

2 Previous work

Previous work on behavioral mode analysis using ACC data
in movement ecology focused predominantly on supervised
learning, with an emphasis on constructing useful features
and finding the right classifiers for a specific use, such as
monitoring dairy cows [6], or determining the flight type of
soaring birds [33].

While this line of work proved very successful, both in
terms of classifier performance and of scientific discovery
that it was able to drive, it still suffers from the inherent limi-
tations of supervised learning, compounded by the very high
cost of obtaining labeled data for behavioral observations of
wild animals. It remains the case that for some animals (noc-
turnal or sea species for instance), obtaining a labeled dataset
is currently infeasible. Thus, in order to use all availableACC
data for behavioral mode analysis in the field of movement
ecology, an unsupervised framework is essential.

To the best of our knowledge, there have been two attempts
at such an approach. In [27], K-means was applied to a
representation of the ACC data, to achieve behavior mode
clusters. In [7,16], a Gaussian mixture model (GMM) vari-
ant was used to cluster a low-dimensional representation of
ACC signals into a small number of useful behavioral modes.
Unsupervised techniques have also been used for discov-
ery of behavioral patterns in human subjects for logging and
medical purposes [17] and for detection of surprising events
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[20]. Our method goes one step further by allowing samples
to be a mixture (more precisely, a convex combination) of
behavioral modes, accounting for the observation that ACC
samples do indeed tend to be mixed this way (Fig. 1).

In wearable devices research on human behavioral analyt-
ics, topic models were often used to describe behavior on a
multiple-minute timescale, based on the moment-to-moment
behavioral annotation provided by sensor measurements
through supervised learning [21,24]. These methods enable
a long-range behavioral layer (such as going to work) which
is fundamental to understanding the context of the user.
While extremely relevant to the ecology community, these
methods cannot be transported to animal behavior since the
density of moment-to-moment behavior annotation (typi-
cally 1 per 5–10 minutes [25]) is insufficient for such an
analysis.

Nonnegative matrix factorization (NNMF) has exten-
sively been studied in the context of clustering [14,32] and
topic modeling [1]. Connections have been shown to various
popular clustering algorithms such as K-means and spec-
tral clustering [5]. Our proposed method is essentially topic
modeling with NNMF, based on theoretical justification that
incorporates the nature of our signals and the features under
consideration.

Our approach is novel in themodeling of a short-timescale
behavior (4 seconds in our experiments) as a sequential mix-
ture of behavioral modes. The features we suggest allow this
problem tobenaturally cast into a linearmixturemodelwhich
is then solved using standard optimization techniques.

3 Methodology

3.1 Feature generation

In thefield of natural languageprocessing (NLP), textual doc-
uments are commonly described as word-count histograms.
These descriptors are generally known as bag-of-word rep-
resentations (BoW), since during their creation all the words
in a document are (figuratively speaking) thrown into a bag,
losing all proximity information, and then eachword in a pre-
defined dictionary is assigned the number of times it repeats
in the bag. The final representation of the document is a vec-
tor of these counts.

The BoW representation was adopted in recent years
into computer vision for the representation of images. Since
images are not naturally divided into discrete elements (like
words in a document), the first step is to transform the image
into a series of word analogues which can then be thrown into
a bag. This discretization process is often achieved by clus-
tering patches of images, then assigning each patch the index
of its cluster. The resulting feature vector for a given image

is the histogram of the cluster associations of its patches. The
cluster centroids are often referred to as the codebook, and
the method as bag of visual words (BoVW).

Here, we adapt the BoVW method to be used with the
ACC signal. We start by defining the notion of a patch of an
ACC signal.

3.1.1 Definition: patch in an ACC signal

Let

s = [s1, . . . , sN ]

be an ACC signal of length N . The patch of length l starting
at index i of s is the subvector:

[si , . . . , si+l−1]

thus, there are N − l + 1 distinct patches in s.

3.1.2 Codebook generation

As in theBoVWcase,ACCsignals and patches do not consist
of discrete elements. In order to count and histogram types of
patches,wemust first construct a patch codebook.Wesuggest
the following construction: Given a codebook size k and a
patch length l, for each ACC signal in the dataset, extract and
pool all of the l-length patches. Next, using K-means clusters
the patches into k clusters. The resulting k centroids will be
called the codebook. The intuition behind using patches to
describe an ACC signal is that behavioral modes should be
definable by the distribution of short-timescale movements
that they are comprised of. Since different behavioral modes
occur at various characteristic timescales, we would like to
repeat the process for more than one patch length, in order to
efficiently capture all ACC patterns of relevance. Thus, we
generate a separate codebook for several timescales in the
appropriate range, depending on the behavioral modes we
are interested in (Algorithm 1).

3.1.3 Feature transformation

Once we have constructed the codebook for all of the scales,
we are ready to transform our ACC signals into the final
multi-scale bag of patches (MS-BoP) descriptor. For each
ACC record in the dataset, and for each scale, we extract
all patches of the signal at that scale and assign each one the
index of the nearest centroid in the appropriate codebook. For
each scale, we then histogram the index values to produce a
(typically sparse) vector of the length of the codebook. The
final representation is the concatenation of histograms for the
various scales (Algorithm 2).
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Algorithm 1 Multi Scale Codebook Generation
input:

{si }pi=1 the set of raw acceleration measurements
l1, .., lm list of scales to use
k1, . . . , km list of corresponding sizes per codebook

output:

CB1, . . . ,CBl the generated codebooks. CBi [ j] is the j − th word in
the i − th codebook (i = 1, . . . , l; j = 1, . . . , ki )

1: for scale := 1,…,l do
2: patches := list of all patches of scale lscale in {si }pi=1
3: CBi := K_means(patches, kscale).centroids
4: end for
5: return CB1, . . . ,CBl

3.2 Mixture property of patch features

In order to motivate the proposed model (next section), we
present the mixture property of patch features. We assume
that our signals have the property that a large enough part of
a sample from a certain behavioral mode will have distribu-
tion of patches that is the same as the distribution in the entire
sample. The meaning of this assumption is that each behav-
ioral mode has a distribution of patches that characterizes it
at each scale.

Intuitively, if a signal s is constructed by taking the first
half of a signal sa and the second half of an equal length signal
sb, then the distribution of patches in s will be approximately
an equal parts mixture of those in sa and in sb. The reason
for this is that a patch in s either (a) is completely contained
in sa and will then be distributed like patches in sa , or (b)
is completely in sb and will then be distributed like patches
in sb, or (c) starts in sa and continues into sb, in which case

Algorithm 2MS-BoP feature transformation
input:

CB1, . . . ,CBl The l codebooks, output of Algorithm 1.
l1, .., lm list of the patch scales that were used in Algorithm 1.
s an ACC signal to transform

output:

f The MS-BoP representation of signal s

1: for scale := 1,…,l do
2: fscale := a zeros vector of the same length as CBscale
3: patches := list of all patches of scale lscale in s
4: for each p in patches do
5: idx := index of the closest word to p in the codebook CBscale
6: increment fscale[idx] by 1
7: end for
8: end for
9: f := stack_vectors( f1, . . . , fl )
10: return: f

we know little about the patch distribution and consider it as
noise. The key point is that the number of patches of type (c)
is at most twice the length of the patch and thus can be made
small in relation to the total number of patches which is in
the order of the length of the signal. More formally:

Let s be an ACC signal composed of a concatenation of t1
consecutive samples during behavioralmodea and t2 consec-
utive samples during behavioral mode b (see Fig. 1). Denote
pmode(v) the probability of a patch v of length l in behav-
ioral mode ∈ {a, b}. Let v be a patch drawn uniformly from
s, then:

p(v) = Pr(A)p(v|A) + Pr(B)p(v|B) + Pr(C)p(v|C)

≥ Pr(A)pa(v) + Pr(B)pb(v)

= t1 − l

t1 + t2
pa(v) + t2 − l

t1 + t2
pb(v)

Fig. 1 Pure and mixed triaxial
ACC signals. Pure ACC signals
(a) are measured during a single
behavioral mode. However, in
most cases a single
measurement contains a mixture
of more than one behavioral
mode (b) and may be viewed as
a concatenation of the
beginning/end of two pure
signals. The colors represent
each of the three acceleration
dimensions (color figure online)
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= t1
t1 + t2

pa(v) + t2
t1 + t2

pb(v) − ε

where events A, B,C denote the patch being all in s1, all in
s2, and starting in s1 and ending in s2, respectively, and:

ε = l

t1 + t2
[pa(v) + pb(v)]

ε can be made arbitrarily small by making t1 + t2 large and
keeping l constant, meaning that for patches small enough
in relation to the length of the entire signal, the distribution
of patches of the concatenated signal is a mixture (convex
combination) of the distributions of the parts, with mixing
coefficients proportional to the part lengths. We note that
this result can easily be extended to a concatenation of any
finite number of signals, as long as each one is sufficiently
long in comparison with the patch width.

Since behaviors of real-world animals may start and stop
abruptly, and a recorded ACC signal is likely to be a con-
catenation of signals representing different behavioral modes
(typically 1–3), the above property inspires a model that is
able to capture such mixtures in an explicit fashion. Fur-
thermore, the resulting mixture coefficients may provide
some insight into the nature of the underlying behaviors and
the relationships between them— for example, which often
appear alongside each other, and which are more temporally
separated.

3.3 The proposed model

Let k denote the number of behavioral modes under consid-
eration and p the dimension of the representation of ACC
observations. Following the mixture property presented in
the previous section, we assume that every sample is a con-
vex combination of the representation of a “pure” signal of
the various behavioral modes. Further, we assume the exis-
tence of a matrix F ∈ Rpk , the factor matrix, such that the
i th column of F is the representation of a pure signal of the
i th behavioral mode, which we will call the factor associated
with the i th behavioral mode. Let s be an ACC sample, then:

s = Fα + ε (1)

where ε ∈ Rp is some random vector. In other words, we say
that the sample s is a linear combination of the factors associ-
ated with each of the behavioral modes with some remainder
term. For the full dataset, we then have:

S = FA + ε (2)

where F is the same matrix, A′s columns are the factor
loadings for each of the samples denoted α in (1), and

ε ∈ RpN is a random matrix. Since our features are non-
negative histograms, and we would like the factor loadings
to be nonnegative, we constrain the matrices F, A to have
nonnegative values. We solve for F, A using a least squares
criterion:

argmin
F,A

‖FA − S‖2F
subject to Fi, j , Ai, j ≥ 0 ∀i, j

(3)

This is by now a standard problem, which can be solved, for
instance, using alternating nonnegative least squares [32].
The idea behind the algorithm (Algorithm 3) is that while
the complete problem is not convex, and not easily solved,
for a set A it becomes a simple convex problem in F , and
vice versa. This inspires the simple block coordinate descent
algorithmwhichminimizes alternatelyw.r.t eachof thematri-
ces. Since this procedure generates a (weakly)monotonically
decreasing series of values of the objective (3), it is guaran-
teed to converge to a local minimum1.

Algorithm 3 Alternating Non-Negative Least Squares
input:

S the complete matrix S ∈ RpN

k factorization rank

output:

F, A matrices F ∈ Rpk , A ∈ RkN

1: F := random initialization
2: A := random initialization
3: while not converged do
4: F := argmin

F
‖FA − S‖2F s.t. Fi, j ≥ 0 ∀i, j

5: A := argmin
A

‖FA − S‖2F s.t. Ai, j ≥ 0 ∀i, j
6: end while
7: return F, A

3.4 Speedup via sampling

Since thismethodmay potentially be applied to large datasets
(containing at least hundreds of millions of records andmany
billions of patches), it is worthmentioning that all parameter-
learning steps of the algorithm can be processed (identically
to the original method) on a sample of the dataset. During
codebook generation, records in the dataset and/or patches
in each used record could be sampled to reduce the number
of resulting patches we have to cluster. Next, fitting F and A
on a sample of the records gives us the factor matrix, but not
the factor loadings per record of the dataset. However, once

1 The objective is bounded from below by 0.
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we have F the optimization problem (3) turns into:

argmin
A

‖FA − S‖2F
subject to Ai, j ≥ 0 ∀i, j

(4)

a simple convex problem in which the factor loadings per
record (columns of A) can be minimized independently for
each record s in the dataset, as follows:

argmin
α

‖Fα − s‖2

subject to αi ≥ 0 ∀i
(5)

3.5 Extension to the multi-sensor case

Thus far, we have constructed a topic model applicable
for data derived from a single (albeit possibly multi-
dimensional) sensor. Themulti-sensor (or sensor integration)
case is of particular interest in this case becausemany devices
containing accelerometers also include other sensors such as
gyroscopes and magnometers. Since each of these is record-
ing at different frequencies, we cannot simply consider them
to be extra dimensions in the same time series produced by
the 3D accelerometer. The integrative framework we suggest
assumes that the same behavioral modes are manifested in
distinct patterns for each of the sensors. Thus, we will have
separate factor matrices:

F1, . . . , Fl

for the l sensor types, and a single shared factor loading
matrix A. Denoting the features matrices of the MS-BoP
features for each of the l sensor types:

S1, . . . , Sl

we now look for matrices:

A, F1, . . . , Fl

such that:

∀i : Si ≈ Fi A

which we encode in the following optimization problem:

argmin
F1,...,Fl ,A

1

l

l∑

i=1

‖Fi A − Si‖2F

subject to Fk
i, j , Ai, j ≥ 0 ∀i, j, k

(6)

This problem is solvable using the same type of method.
Specifically, we will now show that this new problem can be

rewritten in the same form as (3), with both the sample and
factor matrices stacked. Denote:

F =
⎡

⎢⎣
[F1]

...

[Fl ]

⎤

⎥⎦

and:

S =
⎡

⎢⎣
[S1]

...

[Sl ]

⎤

⎥⎦

and then (6) becomes:

argmin
F,A

‖FA − S‖2F
subject to Fi, j , Ai, j ≥ 0 ∀i, j

since the 1
l scaling factor makes no difference to the argmin.

In summary, the multi-sensor case where a separate factor
matrix is allocated to each sensor, with a joint factor loading
matrix, is identical to the single-sensor case when the MS-
BoP features for each sensor are stacked vertically.

3.6 Extension to the supervised and semi-supervised
cases

Suppose that observation (or any other mechanism) allowed
us to obtain “pure” ACC signals for some (or all) of the
behavioral modes. Using the mean MS-BoP representation
of the signals in each of these modes for the corresponding
column of F , we are left with a convex problem similar to
(3), where the optimization is over the remaining elements
of F only.

In the extreme case, when we have labeled samples for
a pure ACC signal for all the behavioral modes under con-
sideration, and thus all of F is predetermined, the resulting
problem is equivalent to (4). Namely, we are left with the task
of obtaining the factor loadings for the remaining (unlabeled)
data.

3.7 Limitations

Consider a solution, matrices F, A that minimize objective
(3), so that:

S ≈ FA

Clearly, for any orthogonal matrix Q (of the appropriate
dimensions):

FA = FQQT A = (FQ)(AT Q)T
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thus, the solution:

F ′ = FQ

A′ = (AT Q)T

is also a minimizer of objective (3), iff the matrices F ′, A′
obey the constraints:

F ′
i, j , A

′
i, j ≥ 0 ∀i, j (7)

While this clearly holds if Q is a permutation matrix,
there are (always) orthogonal matrices Q which contain neg-
ative elements for which the constraints in (7) hold. From the
construction of F ′ and A′, we can interpret them as an entan-
glement of our factors and loadings (technically,whatwefind
is the span of the correct factors, but not the factors them-
selves). We note that while this property limits the ability to
recover factors that generate the data, in practice the factors
themselves are useful for analysis of behavioral topics, as
demonstrated in the section below.

We leave to future research the issue of the disentan-
glement, which should be achieved via regularization with
respect to A in the original optimization problem (3).

4 Results

In this section, we present experiments designed to compare
our method to alternatives and derive insights about the data.
Results are then discussed in the next section.

Data for these experiments consist of 3D acceleration
measurements from biologgers which were recorded during
2012. Each measurement consists of 4 seconds at 10Hz per
axis, giving a total of 120 values.

A ground truth partitioning of the data was obtained using
standard machine learning techniques (see [19,25] for more
details regarding the methodology), based on 3815 field
observations each of which was assigned one of 5 distinct
behavioral modes (walking, standing, sitting, flapping, glid-
ing). Experiments were conducted using stratified sampling
of 100,000 measurements (20,000 per behavioral mode).

Matrix factorization was preformed using the scikit-learn
[23] python software library (see [15] for method details).
In all experiments, the results were stable across repetitions,
leading to essentially zero standard deviation, and therefore
the reported results correspond to single repetitions.

The purpose of these experiments is to assess to what
extent the soft partitioning via our topicmodelmethod relates
to the hard, ground truth partitions. Our method is compared
to the following:

Random partitioning: each sample is assigned a value
drawn uniformly from the set of possible partitions
{1, 2, .., k}
Uniform partition: each sample is assigned the same
distribution of 1

k per partition, over the k partitions.
K-means: the sample are partitioned using K-means.
Gaussian mixture model (GMM): GMM is used to
assign samples k partition coefficients.

where (a) and (b) are used as controls, (c) and (d) are used as
representative hard and soft clusteringmethods, respectively.

The data are then divided randomly into two equal parts
designated train and test. Using the training set, we learn
the partitioning of the data for each of the methods (ran-
dom, uniform, K-means, GMM, and NNMF). Next, for each
method separately, we assign each of the partitions one of
the semantic labels (flapping, gliding, walking, standing, sit-
ting). In order to do this, we group the data in the training set
according to the semantic label it received (the supervised
annotation) and compute the average loading for each label
in the partition. The final assignment for the partition is the
label with the highest mean loading in it (see schematic in
Fig. 2).

The evaluation stage is performed on the test set only.
Resemblance to the ground truth is measured using log-loss
(Fig. 3) and 0−1 loss (Fig. 4), after partition values are con-
verted to soft label assignments using the mapping derived
from the training set (see schematic in Fig. 2). For an assign-
ment l1, . . . , l5 for the 5 behavior labels, where the ground
truth label is i , we use the 0 − 1 loss:

l0−1 =
{
0 i = argmax{l1, . . . , l5}
1 otherwise

(8)

and the log-loss:

llog = −log(li ) (9)

Table 1 shows the average distribution of supervised
(ground truth) behavioral modes for partitions assigned each
of the labels, in the form of a confusion matrix. Parti-
tions were obtained using nonnegative matrix factorization
(NNMF) with k = 30, and associations between partitions
and labels as described above. Data are presented after row
normalization to facilitate between-row comparison.

5 Discussion

As expected, both 0−1 and log-loss error plots are monoton-
ically decreasing in the number of clusters (we use the
term clusters here for cluster/partition/topic depending on
the method under consideration). The most striking result is
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Fig. 2 Schematic flow of partition evaluation

Fig. 3 Log-loss of soft
assignment to each of the ground
truth classes using each of the
methods under consideration.
(NNMF nonnegative matrix
factorization, GMM Gaussian
mixture model)

that while the matrix factorization topic model method per-
forms well compared to the other methods with respect to the
log-loss metric (Fig. 3), it is not quite as good with respect
to the 0–1 loss (Fig. 4).

In order to better understand these phenomena, we take
a closer look at the data. Consider an observation where the
animal takes a single step during the 4-s acceleration mea-
surement window and stands still for the rest of it. In order
not to dramatically underestimate the amount of walking,
an observer will label this sample as walking (in fact, most
samples are probably mixtures).

From the mixture property of the MS-BoP features (see
Sect. 3), when using the matrix factorization topic model
approach, we would expect to get a walking factor pro-
portional to the time spent doing so in the measurement
windows.Thus, for a samplewith somewalking (say,<50%)
we get a miss in the 0–1 loss metric, but a better score in the
log-loss which is more sensitive to assignment of low prob-
abilities to the correct class.

Table 1 sheds more light on the aforementioned result
by showing average assignment of factors for each of the
ground truth classes, in the form a confusion matrix. Flap-
ping samples indeed received the highest weight, on average,
onflapping factors (51.25%), but the gliding andwalking fac-
tors get over 13%each. Thismaybe due to the fact that Storks
indeed glide between wing flaps, and may have walked prior
to taking off during the observations which are inherently
biased to behavior close to the ground (where the observer
is). Conversely, none of the other behavioral modes include
a significant amount of flapping factors.

This result may also point to the tendency (or strategy) of
field observers to assign the more active behavior to mixed
samples (in which case a sample where the bird flaps for a
part of the duration of the measurement would be assigned to
flapping, in the same sense that a step or two would qualify
an otherwise stationary sample as walking).

We note that the sitting factors received factor weights
higher than expected in all other behavioral modes. It might
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Fig. 4 0–1 loss of hard
assignment to each of the ground
truth classes using each of the
methods under consideration.
For the soft assignment
partitioning methods, hard
assignment is achieved using
argmax. (NNMF nonnegative
matrix factorization, GMM
Gaussian mixture model)

Table 1 Mean label association per ground truth behavioral mode

Ground truth/assignment Flapping (%) Gliding (%) Walking (%) Standing (%) Sitting (%)

Flapping 51.25 13.66 13.37 4.33 17.39

Gliding 0.75 49.98 8.49 3.95 36.84

Walking 2.41 19.71 43.92 20.56 13.41

Standing 0.86 13.30 1.04 74.93 9.88

Sitting 0.01 30.88 0.15 10.46 58.50

NNMF with 30 factors. Normalized rows

be interesting to try and overcome this sort of systematic
error using a column normalization. We defer this to future
research.

6 Conclusions

In this paper, we describe a matrix factorization-based
topic model approach to behavioral mode analysis from
accelerometer data and demonstrate its qualities using a
large movement ecology dataset. While clustering and topic
modeling with matrix factorization is by no means a new
idea, the novelty here is in the integration with patch fea-
tures (MS-BoP) that theoretically motivate the method in the
context of time series sensor readings for behavioral mode
analysis.

The main contribution of this paper is in presenting a
framework that will allow for a widespread use of behav-
ioral mode analysis in movement ecology and related fields
where determining movement patterns from remote sensor
readings is necessary. Further, we introduce theMS-BoP fea-
tures, which may be applicable for many continuous sensor
readings, and show that a linear mixture model is justified
when using such features.
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Topic Models for Automated Motor Analysis in Schizophrenia Patients
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Abstract— Wearable devices fitted with various sensors are
increasingly being used for the automatic and continuous
tracking and monitoring of patients. Only first steps have been
taken in the field of psychiatric care, where long term tracking
of patient behavior holds the promise to help practitioners to
better understand both individual patients, and the disorders
in general. In this paper we use topic models for unsupervised
analysis of movement activity of schizophrenia patients in a
closed ward setting. Results demonstrate that features com-
puted on the basis of this analysis differentially characterize
interesting sub-populations of schizophrenia patients. Positive-
signs schizophrenia sub-population was found to have high
motor richness and low typicallity, while negative-signs patients
had low motor richness and lower typicality. In addition we
design a classifier which correctly classified up to 80% of the
clinical sub-population (f-score=0.774) based on motor features.

I. INTRODUCTION

Motor peculiarities are an integral part of the schizophre-
nia disorder, both as aspects of the more general symptom
repertoire, and in response to medications. To date, these
symptoms are typically evaluated in a descriptive manner
based on psychiatric rating scales such as the Positive and
Negative Syndrome Scale (PANSS) [1], or targeted specif-
ically using subjective clinical scales such as the Unified
Dyskinesia Rating Scale (UDysRS) [2] and the Unified
Parkinson’s Disease Rating Scale (MDS-UPDRS) [3]. The
lack of objective, quantitative methods for measuring these
symptoms, and the insufficient conceptual clarity around
them, may cause multiple interpretations of phenomenol-
ogy, leading to low reliability and validity of diagnosis. In
addition, the symptom evaluation process requires expert
staff and availability of resources, and is therefore not
done frequently enough to capture more subtle changes in
spontaneous and drug-induced conditions. Clearly there is an
urgent need for automatic monitoring and assessment tools.

The last decade has seen a steep rise in the use of wearable
devices for medical applications in a range of fields, from
human physiology [4] to movement disorders [5], [6] and
mental health [7]. Accelerometers and gyroscopes, which are
commonly embedded in smart-watches and other wearable
devices, are now used to assess mobility and recognize
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activity. In a clinical setting, these sensors may be used in
order to detect changes in high-level movement parameters,
track their dynamics and correlate them with mental state.

Measures of activity such as step counts and overall
activity, as well as changes thereof, have already been shown
to effectively provide insights into the state of patients in a
closed ward mental hospital setting [8]. Unsupervised be-
havioral mode analysis of sensor data, such as topic models,
have previously been used in other domains to provide a
high level description of behavior [9]. Here we combine
these ideas and use topic models for unsupervised analysis
of patient activity. These models allow a richer, qualitative
description of behavior than the aforementioned measures.
We demonstrate that features computed on the basis of topic
model analysis differentiate sub-populations of patients.

II. MATERIALS AND METHODS

A. Study Design

27 inpatients from the closed wards at Shaar-Meashe MHC
participated in the study. Most participants (21/27) were
diagnosed with schizophrenia according to the DSM-5, 3
with paranoid schizophrenia, 2 with schizoaffective disorder,
and one with psychotic state cannabinoids. Participants’ age
varied from 21 to 58 (mean 37.5), with course of illness
varying from 0 (first hospitalization) up to 37 years (mean
16.9 years). Two of the patients dropped out of the study after
less than a day due to lack of cooperation. The remaining
25 patients were followed for a period of three weeks on
average (6-52 days).

The study was conducted in natural settings, where pa-
tients were not required to change any personal or medical
procedure. On top of the normal care, every patient un-
derwent an additional evaluation by a trained psychiatrist
twice a week. The procedure included clinical evaluation
of symptom severity using PANSS; Neurological Evaluation
Scale (NES [10]) assessment was conducted as a control.
In addition, continuous medication monitoring (type, dosage
and frequency) by the clinical staff was observed.

All procedures performed in the study were in accordance
with the ethical standards of the institutional research com-
mittee and with the 1964 Helsinki declaration and its later
amendments or comparable ethical standards.

B. Data Acquisition

Each participant was fitted with a smart-watch (GeneAc-
tiv1) with tri-axial accelerometer embedded sensors, the high

1https://www.geneactiv.org/
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frequency output (50Hz) of which was stored on memory
cards. Data was collected continuously throughout the exper-
iment for a total of 489 days, from 25 patients. In order to
reduce noise introduced by the variability in patient activity,
the analysis focused on fixed time windows corresponding
to regular departmental daily activity: Occupational therapy
time slots (10am-11am), lunch (12pm-1pm), and indoor free
time (4pm-5pm). In addition, we calculated full day features
(6am-10pm) and used night time features (10pm-6am) to
evaluate sleep quality. Weekends were excluded from the
analysis.

III. ANALYSIS

A. Revising clinical assessment

The 30-item Positive and Negative Syndrome Scale
(PANSS) was reduced to a five-factor description (Positive,
Negative, Disorganized/Concrete, Excited and Depressed),
according to the consensus model suggested by Wallwork
et al. [11], based on 25 previously published models and
refined with confirmatory factor analysis (CFA). Only the
positive and negative factors were used for further analysis.

Clinical observations show that changes in a patient’s
symptoms occur continuously on a daily basis [12]. We
therefore interpolated the bi-weekly PANSS factor scores, to
achieve smooth daily scoring of symptoms. This was done
using the PCHIP 1-d monotonic cubic interpolation, resulting
in 494 data points (originally 118).

Interpolated data points were used to classify clinical sub-
populations of patients on a daily basis. Sub-populations
included patients with ”High positive” symptoms, ”High
negative”, ”High negative and positive”, and ”Low” level
symptoms. The remaining intermediate data points were
discarded from the classification. This sub-typing allowed
us to explore how different motor features are expressed in
different clinical manifestations. Clustering was done based
on the percentile of the positive and negative factors, each
axis separately (Fig. 1).

B. Online computation of ”patch features”

Topic model analysis requires the discretization of the
continuous accelerometer signal both in time and in intensity,
to produce word analogues – motor words. This mapping
involves the creation of a code-book. The patch feature
topic model procedure described in [9] contains a codebook
generation stage where clustering (k-means) is applied to
segments (a.k.a. patches) from the entire dataset. Given
the larger dataset at hand, we designed an online greedy
approximation to this procedure.

Specifically, the idea behind an online generation of code-
book is to follow the way a dictionary would be created for a
natural language corpus. The process proceeds with a single
pass over the data. Each word is considered sequentially, and
added to the dictionary on first encounter.

Since the words we are using describe the continuous
accelerometer signal, we must also define what we mean
by a word. Ideally, the dictionary should not be affected by
small random changes in the signal. Additionally, since many

Fig. 1. Clinical sub-populations. Each data point represents the severity
of the positive and negative factors for a specific patient in a specific day
(N=494) based on the interpolated PANSS factors data. In the ”Low” sub-
population (magenta, N=65) both negative and positive symptoms lie in the
bottom quartile, while in the ”High negative and positive” (blue, N=59) both
lie in the top quartile. The ”High negative” sub-population (cyan, N=53)
lies in the top vertical quartile with positive symptom values lower than
median, while the ”High positive” (red, N=57) lies in the top horizontal
quartile with lower than median negative symptom values. The remaining
data points (N=260) were classified as ”Intermediate” (green).

behavioral modes are periodic to some extent, we would
like the representation to allow wrap-around of patches. This
would imply that the sequences of patches ABC and BCA,
for example, have similar representation in the dictionary.

We achieve both these goals by using a discretized version
of the signal and wrap-around equivalence classes. We use
a SAX-like method [13] to encode each patch into a string.
The process is as follows: Each interval on the time-axis
is replaced by the mean value in the interval. Next, these
point-values are replaced by a letter (discretized) according
to their value. The output of this process is a string of length
patch−size

interval−size over a pre-determined alphabet.

Algorithm 1 Online codebook creation
1: codebook ← empty list
2: for each patch in the dataset do
3: patch word ← SAX representation(patch)
4: if patch word (or equivalent) not in codebook then
5: append patch word to the codebook
6: end if
7: end for
8: return codebook

The procedure resulted in 150K distinct words which
described the entire dataset, distributed much as would be
expected from a text corpus (see top panel in Fig. 2).

C. Topic Modeling over Motor Words

Latent Dirichlet Allocation (LDA) is a widely used topic
model, with origins in natural language processing, and
applications in many domains ranging from music modeling
to motion of cars. On top of their traditional purpose of
finding hidden semantic structures in data, these models have
been shown to be useful for detecting surprising (or novel)
events [14], [15].
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Fig. 2. Top - the motor-word frequency histogram for the entire dataset,
truncated after the most common 10K words. These pseudo-words demon-
strate the long-tail scale-free property characteristic of a natural language.
Bottom- the daily topic distribution vector averaged over all patients.

Data was divided into blocks of 15 minutes of continu-
ous signal; these serve as documents for the topic model,
each represented as a histogram over the motor words as
described above. The LDA process provides as output both
a distribution over topics for each of the documents, and a
distribution over words for each of the topics. Subsequently,
a specific time window of a specific patient is characterized
by a probability vector over the topics. The bottom panel in
Fig. 2 demonstrates the distribution of the 10 topics used here
over all patients and days. We can see that topic 6 (green)
and topic 10 (purple) are typically prominent during the day,
while other topics are more likely to occur during the night
or throughout.

D. Topic Features

The advantage of using a data-driven unsupervised rep-
resentation is that its features, unlike the supervised energy
and step-count measures [8], are not directly connected with
the intensity of the motor signal. Instead, this representation
captures the quality of motor behavior in a given period
of time. For example, a very repetitive behavior can be
expressed by a low number of unique ’motor-words’ in a
specific time window. This allows us to compare patients
behavior to themselves and to others in different activity
windows, and thus be able to measure ’typicality’ of the
behavior for instance. Three Features were calculated based
on topic models, separately for each data point (namely for
each patient on each day, and each of the predefined activity
windows described in section II-B):

1) Motor Richness: The normalized distinct word count
per activity window.

Motor Richness =
distinct word count in window

window length

This measure represents the range of motor activity reper-
toire. A low score implies that the patient repeatedly per-
formed similar movements, while a high score corresponds
to the use of many different movement patterns.

2) Consistency:

Consistency = 1−DKL(v ‖ v̄)

where v denotes the topic distribution over the time window,
and v̄ the mean topic distribution for the patient in the same
window over all measured days. DKL denotes the Kullback-
Leibler divergence. This score measures how regular the
patient’s motor behavior is in the given time window.

3) Typicality: the entropy of the topic distribution vector.

Typicality = H[v] = −
10∑

i=1

vi log(vi)

Low entropy implies that a small number of topics can
capture the activity. High entropy implies that the observed
activity is a mixture of many topics. We name this measure
typicality since typical activity should be captured by one (or
a few) topics, thus producing low-entropy topic distributions
[15].

The manifestation of each feature in clinical sub-
populations was tested using one-way ANOVA separately
for each of the activity windows. In addition, a learning
algorithm for automated sub-population classification was
designed and evaluated.

E. Classification Algorithm

Classification was carried out using a two-step algorithm
based on linear support vector machines (SVM) and decision
trees classifiers, in order to distinguish between different sub-
populations (described in III-A) based on motor features
(Algorithm 2). The algorithm was trained to discriminate
sub-populations, and specifically classify ”High positive” vs.
”High negative” and ”Low” vs. ”High positive and negative”.

In the first step, individual classifiers were trained for
each activity window separately (lunch, occupational therapy,
free-time, day, night, and all). In the second step, the prob-
abilistic output of the 6 time-specific first-stage classifiers
was used to train a second, daily-model, which determined
the clinical category.

Feature selection was done based on the ANOVA f-
values of each individual feature on train data. These were
calculated separately for each activity window, and the same
features were used also for testing.

Algorithm 2 Two stage algorithm for patient sub-type clas-
sification based on activity in time-windows.

1: for all time-windows wi do
2: train base classifier ci on wi and target y
3: end for
4: for all time-windows wi do
5: ŷi ← prediction of ci on wi

6: end for
7: train final classifier c on the set of first-stage predictions

ŷi and target y

The algorithm was evaluated in a leave-one-out frame-
work, where in each iteration a different observation (specific
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Fig. 3. ANOVA results for topic features in 3 clinical sub-populations
(see Fig. 1): ”High positive” (denoted Positive), ”High negative” (denoted
Negative), and ”Low”. The analysis was repeated separately for each time
window (X-axis). Motor richness was highest in the Positive sub-population
(cyan) and lowest in the Negative sub-population (magenta). This was most
significant during free time, but was also true for all other activity windows
(p-values between 0.05-0.07 are marked by half an asterisk). Typicality was
generally highest in the Low sub-population, and lowest in the Negative
sub-population, with the most significant difference during lunch time. No
significant group different was found for Consistency although it was lowest
in the Positive sub-population in all activity windows.

patient in a specific day) was left out and the model was
trained on the remaining data and tested on the left out sam-
ple. To avoid possible contamination of test data (leakage)
due to observation interpolation, when using an interpolated
point as the test, all actual observations it was based upon
were excluded from the train data.

IV. RESULTS

A. Motor Activity in different Clinical Sub-populations

Fig. 3 summarizes the results of subjecting all features to
ANOVA analysis. Motor richness is consistently highest for
the ”High positive” sub-population, and lowest for the ”High
negative” sub-population, with the ”Low” sub-population
somewhere in the middle. This indicates that patients with
active positive symptoms tend to have a higher variety of
motor activities, while negative symptoms are expressed in
poorer movement repertoire. The trend was evident in all
activity windows but was only found significant during free
time (F = 5.09, p = 0.0077).

As expected, typicality is highest for the ”Low” sub-
population, consistently over all activity windows. The
lowest typicality is observed in the ”High negative” sub-
population, indicating that the motor activity of these patients
is less similar to the common motor behavior. The biggest
group difference was found over lunch time (F = 7.48,
p = 0.00090) but it was also significant during occupational
therapy (F = 4.39, p = 0.015), free time (F = 3.38,
p = 0.037) and throughout the day (F = 3.78, p = 0.026).
No group difference was found for consistency, although
it was lower in the ”High positive” sub-population in all
activity windows.

B. Classification Results
For ”High positive” vs. ”High negative” classification, the

best results were achieved using linear SVM for the first
stage (window-based model, see Algorithm 2) with top-5
selected features, and decision tree for the second (daily)
stage. The algorithm correctly classified 78% of the”High
negative” observations, and 58% of the ”High positive”
observations. All together the mean precision was 0.651 and
mean recall was 0.654 on test data (f-score=0.652).

Slightly better results were achieved for the ”Low” vs.
”High positive and negative” classification, using linear SVM
for both stages and top-5 selected features. Here the algo-
rithm correctly classified 81% of the ”Low” observations and
70% of the ”High positive” observations. All together the
mean precision was 0.757 and mean recall was 0.748 on test
data (f-score=0.774).
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Abstract—Trajectory segmentation is the process of subdivid-
ing a trajectory into parts either by grouping points similar
with respect to some measure of interest, or by minimizing
a global objective function. Here we present a novel online
algorithm for segmentation and summary, based on point density
along the trajectory, and based on the nature of the naturally
occurring structure of intermittent bouts of locomotive and local
activity. We show an application to visualization of trajectory
datasets, and discuss the use of the summary as an index
allowing efficient queries which are otherwise impossible or
computationally expensive, over very large datasets.

Index Terms—trajectory analysis; visualization; retrieval;
data-management

I. INTRODUCTION

The steadily dropping cost of data collection and storage is
impacting both industry and science. This so-called ”data-era”
has not skipped movement data, which is now being acquired
at unprecedented rates. In the field of Ecology and Animal
Tracking, movement data is being collected at a global [25],
[13] as well as a regional [7], [29] scale. Car [16], [15] and
ship [26] trajectories are recorded for control, optimization,
and safety purposes, and pedestrians are tracked for health,
safety, and navigation utilities [12], [2]. With this large amount
of data rolling in, new and more efficient methods must be
developed in order to visualize, analyze, and gain insight and
knowledge.

One of the most fundamental computations associated with
understanding movement data is segmentation of trajectories.
Traditionally, a segmentation proceeds by defining a feature
of a single point, then dividing the entire trajectory into sub-
trajectories which are uniform (in some sense) with respect to
this feature [9].

Features used for this purpose include truly point-wise
metrics, such as speed and heading [9], as well as those
designed to capture the behavior in the vicinity of a point,
such as first passage time (FPT) [11] and residence time [5].

A slightly different approach to trajectory segmentation is
based on directly optimizing a cost function related to the
segments themselves. Warped K-Means [18] is a trajectory ori-
ented adaptation of the well-known K-Means algorithm, where
the regular (mean square distance from centroid) objective is
locally optimized, under the additional constraint that a cluster
may only contain consecutive points.

The method we propose here addresses two main limita-
tions of the warped K-Means algorithm. First, for very large

datasets it would be necessary to have an online algorithm
able to deal with an unknown number of segments. Second,
the optimization criterion used should depend on the local
trajectory density, allowing long-distance locomotion to be
segmented differently from dense local regions. These ideas
are formalized in section III.

We further present two main applications of the proposed
method, addressing major tasks related to large-scale trajectory
data. The first is the task of visualization of a large number
of possibly dense and overlapping trajectories. The challenge
arising in this context is that amounts of data are often
prohibitively large and can’t be rendered simply on a map.
Even if all points are plotted, the trajectories will be obscured
by the sheer number of points. We show that our method is
appropriate for descriptive visualization of a large number of
trajectories, and allows single paths to be easily resolved and
compared.

The second application which we briefly discuss is fast
querying and retrieval over a trajectory database. Here, the
proposed method serves as an index into the full trajectory
data, allowing various otherwise intractable queries. Combined
with the visualization component, we suggest a real-time
visual search engine for exploration of large scale trajectory
data.

Our main contributions are the online segmentation algo-
rithm, which is a fundamental pre-processing step and may
be used for a wide range of downstream processing, and
the visualization method based on it, allowing concurrent
visualization of many trajectories. The query engine initially
described here will be further developed in future research.

The rest of the paper is structured as follows: section II
briefly reviews related work in trajectory segmentation. In
section III, the algorithm is described and discussed. Finally,
section IV contains the proposed applications of the segmen-
tation method for visualization and data retrieval.

II. RELATED WORK

In the field of Ecology, Trajectory segmentation is widely
used in order to process the path of an animal into functionally
homogeneous units. The main approach used is to compute
a single point-wise feature along the trajectory and then
group similar points, with respect to the feature. For example,
a method of change-point analysis [17] has been used in
conjunction with Residence Time (a metric of the total amount
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of time spent in the vicinity of a point [5]). Another approach
is to segment a trajectory with respect to the momentary
behavior of an animal along a path [23].

A more general framework was also suggested [9], based
on finding the segmentation with the minimum number of
segments, such that a given metric will not differ within any
segment by more than a pre-defined factor. For a wide range
of metrics (such as speed, velocity, heading, curvature, etc.),
this can be achieved in O(nlogn).

Warped k-means [18] adopts a completely different view to
the segmentation problem. Since this is essentially a problem
of clustering similar points, the method attempts (as in the
well known K-means algorithm [20]) to find centroids and
assignments, in order to minimize the mean square distance of
each point to the centroid it is assigned to, under the additional
constraint that if two points are in the same cluster, so are all
the points between them along the trajectory.

As the volume of information increases, traditional methods
which were very useful for small to medium datasets are
no longer applicable, and fast (preferably linear time, online
methods) must be developed. In the next section we start
by introducing definitions and notation, then describe the
proposed algorithm. Then in section IV we continues with
two applications of the method, which are fundamental to
trajectory analysis. The first application we demonstrate is
concurrent visualization of many trajectories. Next, we discuss
the application of the method to the problem of data retrieval
over large datasets.

III. TRAJECTORY SEGMENTATION

Definition 1. A trajectory T is a continuous mapping from a
time interval to positions:

T : [a, b]→ Rk

where T (t) is the position at time t ∈ [a, b]

in most cases, since we are dealing with trajectories in the
physical world, we will have k ∈ {2, 3}. While all data
presented in this paper is 2D trajectory data, the concepts
and methods discussed are valid for trajectory in arbitrary
dimensional space.

Definition 2. A sampled trajectory is a set of time and position
tuples:

{(ti, pi)}ni=1

where for some trajectory T, and some set of timestamps t ∈
[a, b], p = T (t).

In practice, almost all trajectory data is obtained in the form
of a sampled trajectory. We note that this notation allows for
either equally or unequally spaced samples. We will always
assume that the samples are sorted by time, ascending.

Definition 3. A segmentation of a sampled trajectory
{(ti, pi)}pi=1 is a list of cutoff indexes:

1 = c0 < c1 < ... < ck = p

A

B

(a)

(b)

(c)

Figure 1: An outline of the segmentation method. (a) A raw
trajectory consisting of locomotive parts (a-A) and local parts
(a-B). (b) A segmentation overlayed over the raw trajectory.
During locomotive periods, a new point is added to the
segmentation only when a pre-defined distance is crossed from
the previous point. Local periods are represented by a single
point (c) the centroids of the segments form a condensed
representation of the trajectory, which is in itself a trajectory.
Red points correspond to local parts of the original trajectory.
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The i− th segment is then a subset of the sampled trajectory:

{(ti, pi)}cii=ci−1

Each segment, is itself a sampled trajectory.

Algorithm 1 Trajectory Segmentation
input:

• T - sampled trajectory
• min r- minimal radius for a segment
• min density - minimal density for a segment or radius

larger than min r

output:
• cutoffs - the cutoff values for the segmentation of T
• centroids - the list of centroids of each segment. By

adding a time-stamp this becomes a sampled trajectory.
Omitted for simplicity.

1: cutoffs← empty list
2: append 0 to cutoffs
3: centroids← empty list
4: current centroid← T [0]
5: n points← 1
6: radius← 0
7: for i = 1 to T.length do
8: n points← n points+ 1
9: radius← max(radius, dist(current centroid, T [i]))

10: if radius > min r then
11: density ← n points/(pi ∗ radius2)
12: if density < min density then
13: append i to cutoffs
14: append current centroid to centroids
15: current centroid← T [i]
16: n points← 1
17: radius← 0
18: continue
19: end if
20: end if
21: current centroid ← ((n − 1) ∗ current centroid +

T [i])/n
22: end for
23: append T.length to cutoffs
24: append current centroid to centroids
25: return cutoffs, centroids

A. Algorithm outline

The proposed method is based on the observation that for
many types of trajectories, there exist intermittent periods
of dense and sparse positions (Figure 1a). Consider for in-
stance the trajectory of a person throughout a day. Dense
local segments correspond to time spent at and around the
home, workplace, shopping mall etc. (sometimes called a stay-
point [33], [19], [32]), whereas between these segments we
might expect long and sparsely distributed locomotive activity.
The same pattern is seen for animals; foraging behavior is

characterized by dense usage of relatively small areas, whereas
long locomotive segments connect between such areas.

The spread of points during a period of local activity has
more than one source. When measuring the position of a
completely static entity, measurement noise will cause the
locations to be presented as a cloud around the actual location.
While this in itself can be overcome by averaging (neglecting
adverse boundary effects depending on the length of the filter),
for a locally moving entity, the measured spread of points will
be a sum of the actual movement and the noise. Furthermore,
when operating on a stream, it is not clear how to average
local periods while leaving locomotive periods intact.

The segmentation approach allows differential consideration
of local (or static) versus locomotion parts of a trajectory.
The proposed segmentation algorithm will average a full local
segment, reducing it to a single centroid, while maintaining
much of the structure of the other parts of the trajectory (up
to a pre-defined radius).
When constructing the algorithm, we require the following:

1) The segmentation must work on a trajectory stream (i.e.
O(n) and finite memory)

2) For a given trajectory, the segmentation should be in-
variant to sampling density. For instance, for a trajectory
derived from a drive from home to work, whether it is
a fast drive, or a constant traffic jam (corresponding to
dense or sparse sampling in space, assuming a constant
sampling rate in time), the size of the resulting segmen-
tation should be the same.

3) Dense regions corresponding to local activity (shopping
area for people, foraging for animals), should be placed
in a single segment irrespective of time or area.

In order to satisfy the first requirement, the algorithm
(Algorithm 1) proceeds in one pass over each trajectory. The
number of points, and the radius and density of the current
segment are constantly maintained. The second requirement
is satisfied by starting a new segment only after a pre-defined
radius is passed (i.e. there is a minimum radius for a segment).
As a result, denser sampling will have no effect on the
segments produced.

The third requirement is satisfied by letting a segment grow
past the pre-defined radius as long as the density in the
segment is large enough. See Algorithm 1 for the full account
of the method, and Figure 1b-c for a visualization.

The output of Algorithm 1 is both the segmentation and
the centroids of each of the segments. Recall a segmentation
(definition 3) is a list of the cutoff indexes, and thus does
not serve in itself as a (standalone) condensed representation
of the trajectory. The segment centroids however do serve as
such a representation, and the applications we suggest for this
method (section IV below), are all based on considering them
instead of the full data. We note that by adding a time-stamp
to the centroids, they become themselves a sampled trajectory.
This time-stamp, will in practice be either the mean time of
the points in the segment, or the time of the beginning of the
segment.
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B. Comments on the calculation of density of points in a
segment

A central component of Algorithm 1 is maintaining of the
measure of density of points in the current segment of the
trajectory. This is done by maintaining the centroid and radius
of the segment – effectively, the smallest circle (or sphere if
the trajectory is in higher dimension), in which the segment
is contained. The density is then the number of points divided
by the area (Algorithm 1; line 11).

The main limitation of this approach is that when the
segment is not a in the shape of a circle (as is often the
case with trajectory data), the circle may highly over-estimate
the volume in which the points are actually contained. In
this section we develop the idea of replacing the circle with
other means of calculation, to better estimate the density,
while maintaining the linear runtime and bounded memory
characteristics of the original algorithm.

Algorithm 2 Online Rectangular Approximation of Point
Density

input:
• stream - sampled trajectory in the form of a stream

1: maxx,maxy ← −∞
2: minx,miny ← +∞
3: n← 0
4: while stream.has next() do
5: x, y ← stream.next()
6: n← n+ 1
7: maxx← max(maxx, x)
8: maxy ← max(maxy, y)
9: minx← min(minx, x)

10: miny ← min(miny, y)
11: density ← n

(maxx−minx)(maxy−miny)
12: end while

We now formalize the above discussion and first point out
that both circles and rectangles are worst-case unbound under-
approximators of density. The choice of approximation is
dependent therefor on the nature of points expected. We further
show that the rectangular approximation can be computed on
a stream in linear time and bounded memory, as we require in
this setting. Finally, we discuss other more general approaches.

Definition 4. The density of a set of points is the number of
points divided by the volume of the convex hull of the points

Statement 1. The estimation of point density using the number
of points divided by the volume of the smallest (a) sphere or
(b) axis-aligned rectangle around the points is an unbound
under-estimation.

Proof. (part a) Consider the points (0, 0), (a, 0), (0, 4a ), (a,
4
a )

for some a ∈ R. These 4 points form a rectangle with an
area of 4 and therefor have a density of 1. The smallest circle
around the points has a circumference of at least a (since both
the points (0, 0) and (0, a) are inside the circle), and therefor

an area of at least π a
2

4 . The density estimate using the circle
is now at most:

4

π a
2

4

=
1

πa2
−−−→
a→∞

0

meaning the approximation is arbitrarily bad.
(part b) Consider the points (ε, 0), (0, ε), (1, 1−ε), (1−ε, 1)

for some ε ∈ R. These 4 points are enclosed in an axis-aligned
square of area 1, while forming themselves a rectangle of area:

1− (1− ε)2 − ε2 −−−→
ε→0

0

Statement 2. The rectangular estimation of density can be
computed on a stream with O(n) runtime and O(1) memory.

Proof. The computation proceeds by considering each point in
the stream at a time, and updating the maximal and minimal
coordinate encountered on each axis, the total count of points,
and the density (See Algorithm 2).

A more general approach is to directly compute the convex
hull of the points in the segment, and thus derive the density
as the ratio of the number of points and the area of the
convex hull. Exact convex hull computation is achieved in
O(nlogn) (even in the online setting [22]), although linear
time approximations exist [14].

The downside of this approach is that these methods use
O(n) memory. For segments that are expected not to be too
long, this may still be feasible. In such cases we are able to
compute the density in a more precises manner, by adapting
algorithm 1 to use the convex hull computation rather than the
circle approximation.

An alternative approach would be to define the density with
respect to a cover of the points with a given number of balls,
rather than the full convex hull. This area can be approximated
using streaming k-means [1].

C. The online algorithm

The method as described in Algorithm 1 is applied to the
entire trajectory (the algorithm is assumed to receive the entire
trajectory as input). However, since the algorithm iterates a
single time over the points, and keeps only a constant-size
summary of the current segment at each point, the adaptation
necessary for the application to a stream from many concurrent
trajectories is straightforward.

In the streaming version of the algorithm there needn’t be
an initialization phase, other than constructing an empty list of
known trajectories. The points arriving are considered each at
a time, together with a unique ID of the trajectory object they
belong to. If the ID is not in the list of known trajectories then
it is added, and a new centroid, point counter, and radius are
initialized for the new trajectory (as in lines 4-6 of algorithm
1). Then, the update step (rows 8-17) is conducted using the
three stored values belonging to the current trajectory ID. The
exceptions are rows 13-14 where the cutoff and centroid are
stored to a disk rather then maintained by the process.
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As a result, the amount of memory used by the process
is constant (and extremely small) per trajectory, and linear
in the number of trajectories being processed concurrently.
This property makes it feasible to construct a high throughput
mechanism when a very large number of trajectories are pro-
cessed either sequentially or in parallel with shared memory,
and then saved both in the raw and segmented formats to
separate storage components. This idea is further developed
in section IV-B below, in the context of data retrieval.

D. Selecting Hyper-parameters

The proposed algorithm uses two hyper-parameters (namely
the minimal radius of a segment, and minimal density of
the large local segments). The choice of the radius parameter
effectively controls the granularity of the locomotive parts of
trajectory which will be kept in the segmented representation
(see Fig. 1). The selection of this parameter is a trade-off
between the size and granularity of the result (the larger the
radius, the fewer points we keep, but the less precise the
information retained).

In some cases, it may be beneficial to apply the algorithm in
parallel with more than one radius parameter, thus constructing
more than one segmented representation at different levels of
granularity. Alternatively, and more interestingly, it is possible
to iteratively apply the method on the output of itself, thus
effectively constructing a hierarchy of segmentations. This is
especially applicable when movement has similar structure
regardless of scale [24].

The density parameter is chosen according the the minimal
density expected in local segments, and requires some trial
and error. When the density parameter is too high, dense
local regions will be split into more than one segment, thus
increasing the overall size of the output.

In order to compute the total size of the segmentation,
it is enough to consider a consecutive locomotive and local
region (since they appear intermittently). Consider a length
l locomotive part of a trajectory consisting of n1 points,
followed by a local region consisting of n2 points. Using a
radius r segmentation we will keep at most l

r point out of
the locomotive part, and a single point for the local part. In
total the ratio between the size of the segmentation and the
raw data is

d
r+1

n1+n2
, which can be made small by choosing a

large r, as discussed above.

IV. APPLICATIONS

A. Visualization

Simultaneous visualization of multiple trajectories is espe-
cially challenging because of the large amount of data to be
displayed all at once. Even when the actual points don’t cover
the entire display, visual clatter renders individual trajectories
indiscernible.

Several approaches exist for overcoming this problem. In
essence, all methods approach the inherent difficulty by pre-
senting a representation of the information [4], and differ from
each other in the aspect of the data that is to be maintained.

Trajectory stacking approaches [28], [27], [3] are used when
all (or most) trajectories in a set are expected to approximately
follow a common path. This is a natural state of affairs when
dealing with objects moving along a pre-defined path. Such
a path could be a road, shipping line, or convenient path for
pedestrians. Using the stacking approach, planar trajectories
are presented at varying heights on a virtual axis perpendicular
to the plane, thus forming a wall-like shape that enables to
see the general shape of the common trajectory as well as
deviations from it.

There are two main limitations of the stacking approach.
First, directly comparing two trajectories presented at different
heights is not visually easy (in order to do this one would
have to ”imagine” the projection of both onto the plane
simultaneously). In fact, to determine the exact position of a
trajectory (corresponding to a single projection) is not always
easy.

The second limitation is that while appropriate for visual-
ization of trajectories mostly following a common route, the
stacking approach is completely useless for a set of general
trajectories in a plane.

Another common visualization approach is the space-use
density map (see for example figure 3). This approach assumes
that the pertinent information in a large set of trajectories is
the density in space of points pooled over all the set. The
result is a visualization as a heatmap presenting the density in
a grid.

The density heatmap approach is mostly useful when single
trajectories are of no interest. Clearly, the heatmap does not
preserve any information regarding particular trajectories, and
thus comparing trajectories is also not possible.

The assumption made by the visualization method presented
here is regarding the nature of the trajectories under considera-
tion, rather than the information needed by the viewer. Namely,
we assume that trajectories have the property and consistency
of intermittent locomotive and local periods. The locomotive
periods are characterized by a directional movement forming
a path, while the local periods present a dense use of space,
often for extended periods of time. Measurement noise, and
small-scale local movement or the order of the noise level turn
these periods in to a perceived ”cloud” when presenting the
full trajectory.

The proposed method then represents such a trajectory by
a decimation in space of the locomotive periods, and a single
point for local periods (see algorithm 1). This representation
preserves the entire pertinent information in the trajectory,
since locomotive paths are maintained (in the chosen spatial
resolution), and local periods are naturally replaced by a single
point representing them, without loosing much information.

The extreme reduction in volume of points to be presented
allows simultaneous visualization of many trajectories, while
maintaining the ability to resolve single trajectories and com-
pare nearby ones.

Figure 2 presents 20 synthetic trajectories, constructed to
have a varying number of locomotive and local segments,
and some overlap between them. When presenting the entire
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(a) Full data; 20 trajectories

(b) Segmented data; 20 trajectories

Figure 2: A set of 20 trajectories with a varying number of locomotive and local periods, presented as raw data (a) or the
segmented representation (b).
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Figure 3: A heatmap representation of 100 trajectories. Areas
with intense local activity show up while other parts of
the trajectory remain invisible. Individual trajectories are not
resolvable.

raw data (top panel), single trajectories are not easy to trace
and compare to each other. Much of the pertinent information
is lost by trajectories occluding each-other, and the general
clutter. The segmented representation of the same trajectories
(bottom panel) does however expose all the aforementioned
information in an intuitive and effortless way.

In a dynamic setting where an analyst is able to zoom
into interesting parts of a trajectory dataset, the segmented
representation allows a very large number of trajectories to be
examined and compared, in a way not possible with other types
of visualization. In the next section we describe a more general
storage and analytics mechanism, in which such a visualization
capability will serve as one component.

B. Fast Trajectory Query

With the growing volume of trajectory data collected and
stored, the need for new methods of exploring and analyzing
such data becomes eminent [8]. Indeed, there has been some
recent interest in querying abilities over trajectory data, stem-
ming from multiple domains, as part of the emerging field of
trajectory data mining [31], [34], [21].

In the field of video analysis, several approaches have
been presented for the task of querying using semantics of
object trajectories in the video [10], [6], [30]. Trajectories
embedded in Geographic Information Systems (GIS) have also
been addressed, with query methods that take into account a
trajectory and its background geographical information [8].

So far, none of the proposed methods are able to deal
in real-time with truly massive amounts of trajectory data,

Trajectory
stream

Large distributed 
DWH 

Small 
segmentation data Fast query

Slow query

Hybrid query

Real-time 
visualization

Figure 4: The proposed architecture. The trajectory data man-
agement system feeds the input stream into a large distributed
Data Warehouse (DWH) and also into the small data segmenta-
tion representation. Three types of queries are then defined on
the bases of the data source they use. Real-time visualization
is fed from the small segmentation data.

necessitating large parallel systems. The reason for this is that
the size of the index is approximately the size of the raw data.
Searching for similarities and patterns over big trajectory data
is particularly challenging, since the relevant semantics often
stem from large pieces of each single trajectory, which may
often be naturally distributed over multiple machines. For this
reason, there must be a global index to direct the search.

The method we propose here is based on the use of compact
representation of the segmented trajectories (algorithm 1) as
an index into the full trajectory data, allowing many useful and
interesting queries over this small representation. Thus, using
segmentation as an index, we are able to convert a hard big-
data problem into a tractable small-medium data computation.

Furthermore, this method allows to preform many trajectory
oriented queries without considering actual locations. Using
only the segmentation index, without keeping the actual data,
may be useful in cases where some computations are neces-
sary, but privacy considerations do not allow storage of full
trajectory, or exact location information. (For instance, one
could find entities with similar movement patters, or frequent
encounters, with only the aggregated segmentations, without
any actual exact locations. Another privacy maintaining appli-
cation would be to determine the context of a user, without
storing any locations whatsoever. To this end it would be
necessary to assert whether the user is at home, work etc.
The details of the method are outside the scope of the current
paper.)

The sort of queries for which we can directly use the index
comprise most of the typical trajectory based queries:

1) Range queries: this sort of query retrieves the identity of
entities which were in a certain spatial area, possibly at
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a certain time. Withing the granularity of the segmenta-
tion, this can be preformed without considering the full
data.

2) KNN queries: this common sort of query retrieves the
top K trajectories similar in a given metric to an example
trajectory. There are many commonly used options for
trajectory similarity metrics [31], most of which can be
used on the segmented representation.

3) pairwise queries: many queries over trajectories consider
two (or a small set of) trajectories, rather than the
entire dataset. Such queries include finding meeting
or intersecting points; the point in time where two
trajectories come closest to each-other; detecting periods
where a small set of trajectories are moving together.
All such queries may be computed directly using the
segmented representation (where the spatial scale under
consideration is no finer than the segmentation radius,
otherwise a two-stage method is needed, as is described
below).

Another sort of query are the hybrid queries. These queries
can be preformed by first narrowing down the search using
the segmentation representation, and then diving into the full
data only where necessary. For instance, in order to find all
trajectories that meet (or intersect) exactly (within a tolerance
such smaller than the granularity of the segmentation) with a
given trajectory, it is possible to first find all trajectories that
pass near the given trajectory, using the course segmentation
data. Next, the full data is used only in times and places where
such proximity was detected, in order to check whether or
nor the trajectories actually meet. When access to a specific
trajectory at a specific time in the full data is fast (as is
typically the case), this combined method will allow this real-
time query in a manner that otherwise may not possible.

A data management system supporting such queries consists
of several building blocks (see Figure 4 for a schematic of a
possible system). First, the input data is received via a stream
of locations along a trajectory, for many (or a huge number
of) trajectories simultaneously. These locations are processed
in parallel into both a main large Data Warehouse (DWH)
and a much smaller database of segmentation data, which is
derived from the stream (algorithm 2).

A real-time component then allows visualization and fast
querying on the small segmentation data. An additional re-
trieval layer preforms queries either on the full data (slow
queries) or hybrid queries where the segmentation data is able
to drastically narrow the search in the full data. We defer
the full characterization and testing of the system to future
research.

V. CONCLUSION

In this paper we describe an online algorithm for segmen-
tation and summary of trajectory data. We then demonstrate
the application of the method to visualization of parts of large
trajectory datasets, and discuss the potential use as an index
into big trajectory data allowing fast queries.

Visualization of large trajectory datasets is particularly
challenging because of the need to represent simultaneously
a tremendous number of data-points, in a way the allows
single trajectories to be resolved on the one hand, and the
big picture of all movement to be discernible of the other
hand. Previous methods used either stacked representations
which are suitable for the description of many trajectories
on the same approximate route (such as a shipping line), or
space-use-density based visualizations which are appropriate
for describing aggregate behavior over many trajectories.

The novelty in the proposed approach is in the generation
of trajectory summaries, allowing visualization of all the
pertinent information across many trajectories at once. The
resulting visualization keeps the identity of single trajectories
clear and comparable, while at the same time presenting the
entire movement in the dataset in a way that is accessible at
first glance.

The second application we discuss for the segmentation
algorithm is in the field of data retrieval, for indexing of large
trajectory data for fast queries. Thus far, the literature contains
several trajectory specific indexing and querying frameworks
with varying degrees of complexity. However, the size of the
index produced is similar to the size of the raw data. The
method we propose here utilizes the segmented representation
of the trajectory data as a small index allowing fast queries
that are otherwise prohibitively slow over large datasets.

Together with the proposed visualization, we then describe
an end-to-end system for ingestion, retention, and real-time
visualization and analysis over big trajectory data. Such a
system will allow an analyst to utilize both real-time and his-
torical data. Future research will concentrate on building such
a system with direct applications to research in Movement
Ecology, traffic, and pedestrian movement.

We note that in addition to the applications of the segmen-
tation method for visualization and data retrieval, the method
may be of interest for the sake of the segmentation itself.
In many trajectory oriented computations, this is a first step
which serves to reduce noise and data volume. The proposed
online method is well suited for this purpose, especially when
the volume of the data prohibits retention of large parts at the
same time, and thus a method must be applied on the stream.

For example, downstream processing may require differen-
tial treatment of locomotive and local segments of trajectories.
This is desirably the case for smoothing, where when used on
the entire raw data, local segments will tend to get smudged
along the locomotive segments leading to and from them. This
adverse effect if overcome when preforming the smoothing
only on the locomotive segments.

Another target for future research is the combination of
data-structure based trajectory indexing with the current ap-
proach. Since the segmentation is in itself a (albeit much
smaller) trajectory, methods for efficient representation of
complete trajectories which are not suitable for the large-
scale data at hand, can be applied to the small segmentation
trajectory in order to further improve the approach. In this
sense, using the segmentation as an index may serve as a a
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general framework which can be used in synergy with most
existing methods.
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General Methods

4.1 Optimized Linear Imputation
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Abstract. It is a common occurrence in the field of data science that real-world
datasets, especially when they are high dimensional, contain missing entries.
Since most machine learning, data analysis, and statistical methods are not able
to handle missing values gracefully, these must be filled in prior to the application
of these methods. It is no surprise therefore that there has been a long standing
interest in methods for imputation of missing values. One recent, popular, and ef-
fective approach, the IRMI stepwise regression imputation method, models each
feature as a linear combination of all other features. A linear regression model is
then computed for each real-valued feature on the basis of all other features in the
dataset, and subsequent predictions are used as imputation values. However, the
proposed iterative formulation lacks a convergence guarantee. Here we propose
a closely related method, stated as a single optimization problem, and a block
coordinate-descent solution which is guaranteed to converge to a local minimum.
Experiment results on both synthetic and benchmark datasets are comparable to
the results of the IRMI method whenever it converges. However, while in the
set of experiments described here IRMI often diverges, the performance of our
methods is shown to be markedly superior in comparison to other methods.

1 Introduction

The typical modus operandi in the field of data science evolves a wrangling stage where
either the raw data or features computed on the basis of the raw data are organized in
the form of a table. Indeed, the vast majority of data analysis, machine learning, and
statistical methods rely on complete data [9], mostly structured in a tabular or relational
form.

Since in real-world datasets more often than not some of the entries are missing,
imputation is an important part of data preprocessing and cleansing [13,24]. Naturally,
this topic has has been of long-standing interest in many fields associated with data
analysis.

As is often the case, simple and elegant linear methods with interpretable results
have gained a special place in the heart of the field, and are used in practice whenever
applicable. More advanced methods (see Section 3 for a brief review) are typically
reserved for special cases.
? Invited extension of [29] – presented at the 6th International Conference on Pattern

Recognition Applications and Methods (ICPRAM2017).
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The trivial option for many application domains is to discard complete records in
which there are any missing values. Clearly this method is sub-optimal, for several
reasons: first and foremost, when missing values are not missing at random [20,11],
discarding these records may bias the resulting analysis [21] (consider for instance a
classification task where many of the examples from one of the classes have some miss-
ing features. Discarding these entire examples will lead to a very unbalanced problem,
with a potentially detrimental effect on the final results).

Other limitations include the needless loss of information when discarding entire
records which may actually include valuable information for the down-stream task.
Furthermore, when dealing with datasets with either a small number of records or a
large number of features, omitting complete records when any feature value is missing
may result in discarding a large proportion of the records (or in the extreme case – all
of them), and insufficient data for the required analysis.

Early methods for data imputation include procedures for replacing each missing
value by the mean or median of the feature value across records [7,5]. While per-feature
summary statistics may indeed provide a “good guess” when there is no other informa-
tion present, this is often not the case we are dealing with. Namely, for each missing
feature value there are other non-missing values in the same record. It is likely there-
fore (or in fact we assume) that other features contain information regarding the value
of the missing feature, and imputation should therefore take into account known feature
values in the same record. This is done by all subsequent methods.

Multiple imputation (see [31] for a detailed review) imputes several sets of missing
values, drawn from the posterior distribution of the missing values under a given model,
given the data. Subsequent processing is then to be performed on each version of the
imputed data, and the resulting multiple sets of model parameters are finally combined
to produce a single result.

While extremely useful in traditional statistical analysis and heavily utilized in anal-
ysis of public survey data, this may not be feasible in a machine learning and modern
statistical setting. First, the run-time cost of performing the analysis on several copies
of the full-data may be prohibitive. Second, being a model-based approach it depends
heavily on the type and nature of the data, and can’t be used as an out-of-the-box pre-
processing step. More importantly though, while traditional model parameters may (for
the most part) be combined between versions of the imputed data (regression coeffi-
cients for instance), many modern machine learning methods do not produce a repre-
sentation that is straightforward to combine (consider the parameters of an Artificial
Neural Network or a Random Forest for example 3).

In [25], a method for imputation on the basis of a sequence of regression models
is introduced. The method, popularized under the acronym MICE [1,36], uses a non-
empty set of complete features (i.e. features with values which are known in all the
records) as its base, and iteratively imputes one feature at a time on the basis of the
completed features up to that point.

3 In this case it would be perhaps more natural to train the model using data pooled over the
various copies of the completed data rather than train separate models and average the resulting
parameters and structure. This is indeed done artificially in methods such as denoinsing neural
nets [37], and has been known to be useful for data imputation [6].
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Since each step of this method produces a single complete feature, the number of
iterations needed to impute the entire table is exactly the number of features that have
a missing value in at least one record. The drawbacks of this method are twofold. First,
there must be at least one complete feature to be used as the base (however if there is
no complete feature then the feature with fewest missing values may be imputed using
the a feature-wise summary statistic). More importantly though, the values imputed at
the i − th step can only use a regression model that includes the features which were
originally full or those imputed in the first i − 1 steps. Ideally, the regression model
for each feature should be able to use all other feature values, thus not discarding any
available information.

The IRMI method [34] goes one step further by again building a sequence of re-
gression models for each feature, this time utilizing the values in all other features. This
iterative method initially uses a simple imputation method such as median imputation,
to produce temporary imputation values. In each subsequent iteration it computes for
each feature the linear regression model based on all other feature values, and then
re-imputes the missing values based on these regression models. The process is termi-
nated upon convergence or after a per-determined number of iterations (Algorithm 1).
The authors state that although they do not have a proof of convergence, experiments
show fast convergence in most cases (However, in our experiments the method often
failed to converge. See Section 4.2).

In this paper we present a method similar in spirit to IRMI, formulated as a sin-
gle optimization problem, and provide an optimization procedure with a guarantee of
convergence. This method of Optimized Linear Imputation (OLI) is related in spirit to
IRMI in that it performs a linear regression imputation for the missing values of each
feature, on the basis of all other features. Our method is defined by a single optimiza-
tion objective which we then solve using a block coordinate-descent method. Thus our
method is guaranteed to converge, which is its most important advantage over IRMI.
The OLI method is then compared to IRMI as well as other methods using both syn-
thetic, benchmark, and real world datasets.

The rest of the paper is organized as follows: In Section 2 we present the novel
method of Optimized Linear Imputation (OLI), and a method of optimization which
guarantees convergence. We discuss and analyze the relationship to previous methods,
and further show that our algorithm may be easily extended to use any form of regular-
ized linear regression.

In Section 4 we compare the OLI method to the IRMI, MICE and Median Imputa-
tion (MI) methods. Using the same simulation studies as appear in the original IRMI
paper, we show that the results of OLI are rather similar to the results of IRMI. With
benchmark and real-world datasets we show that our method usually outperforms the
alternatives MI and MICE in accuracy, while providing comparable results to IRMI.
However, IRMI did not converge in many of these experiments, while our method al-
ways provided good results.
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Algorithm 1 the IRMI method for imputation of real-valued features (see [34] for more
details)
input:

– X - data matrix of sizeN × (d+1) containingN samples and d features. Zeros in locations
of missing values.

– m - missing data mask
– max iter - maximal number of iterations

output:

– Imputation values

1: X̃ := median impute(X) {assigns each missing value the median of its column}
2: while not converged and under max iter iterations do
3: for i := 1...d do
4: regression = linear regression(X̃−i[!mi], X̃i[!mi])
5: X̃i[mi] = regression.predict(X̃−i[mi])
6: end for
7: end while
8: return X̃ −X

2 The Optimized Linear Imputation method

2.1 Notation

We start by listing the notation used throughout the paper.

N Number of samples
d Number of features
xi,j The value of the j − th feature in the i− th sample
mi,j Missing value indicators:

mi,j =

{
1 xi,j is missing

0 otherwise

mi Indicator vector of missing values for for the i− th feature

The following notation is used in the algorithms’ pseudo-code:

A[m] The rows of a matrix (or column vector) A where the boolean mask vector
m is True

A[!m] The rows of a matrix (or column vector) A where the boolean mask vector
m is False

linear regression(X , y) A linear regression from the columns of the matrix X to the
target vector y, having the following fields:
.parameters: parameters of the fitted model.
.predict(X): the target column y as predicted by the fitted model.
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2.2 Optimization problem

We formulate the linear imputation objective as a single optimization problem. We start
by constructing a design matrix:

X =




1

[xi,j(1−mi,j)]
...
1


 (1)

where the constant-1 rightmost column is a convenience used for the intercept terms in
the subsequent regression models. Multiplying the data values xi,j by (1−mi,j) simply
sets all missing values to zero, keeping non-missing values as they are.

Our approach essentially aims to find consistent missing value imputations and re-
gression coefficients at once, as a single optimization problem. By consistent we mean
that (a) the imputation values are the values obtained by the regression formulas, and (b)
the regression coefficients are the values that would be computed after the imputations
if the another iteration of the algorithm was to be applied (i.e. a stationary point of the
algorithm). We propose the following optimization formulation:





min
A,M

||(X +M)A− (X +M)||2F
s.t. mi,j = 0⇒Mi,j = 0

Mi,d+1 = 0 ∀i
Ai,i = 0 i = 1...d

Ai,d+1 = δi,d+1 ∀i

(2)

where ||. ||F denotes the Frobenius norm.
Intuitively, the objective that we minimize measures the square error of reconstruc-

tion of the imputed data (X +M), where each feature (column) is approximated by a
linear combination of all other features plus a constant (that is, linear regression of the
remaining imputed data). The imputation process by which M is defined is guaranteed
to leave the non-missing values in X intact, by the first and second constraints which
make sure that only missing entries in X have a corresponding non-zero value in M .
Therefore:

(X +M) =

{
M for missing values

X for non missing values

The regression for each feature is further constrained to use only other features,
by setting the diagonal values of A to zero (the third constraint). The forth constraint
makes sure that the constant-1 rightmost column of the design matrix is copied as-is
and therefore does not impact the objective.

We note that all the constraints set variables to constant values, and therefore this
can be seen as an unconstrained optimization problem on the remaining set of variables.
This set includes the non-diagonal elements of A and the elements of M corresponding
to missing values in X . We further note that this is not a convex problem in A,M since
it contains the MA factor. In the next section we show a solution to this problem that
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is guaranteed to converge to a local minimum. This convergence guarantee is the major
advantage of the proposed formulation over the prior IRMI method.

2.3 Block coordinate descent solution

We now develop a coordinate descent solution for the proposed optimization problem.
Coordinate descent (and more specifically alternating least squares; see for example
[33,18,2,17]) algorithms are extremely common in machine learning and statistics, and
while don’t guarantee convergence to a global optimum (but only to a local optimum),
they often preform well in practice.

As stated above, our problem is an unconstrained optimization problem over the
following set of variables:

{Ai,j |i, j = 1, .., d; i 6= j} ∪ {Mi,j |mi,j = 1}

Algorithm 2 Optimized Linear Imputation (OLI)
input:

– X0 - data matrix of size N × d containing N samples and d features
– m- missing data mask

output:

– Imputation values

1: X := median impute(X0)
2: M := zeros(N, d)
3: A := zeros(d, d)
4: while not converged do
5: for i := 1...d do
6: β := linear regression(X−i, Xi).parameters
7: Ai := [β1, ..., βi−1, 0, βi, ..., βd]

T

8: end for‘
9: while not converged do

10: M :=M − α[(X +M)A− (X +M)](A− I)T
11: M [!m] := 0
12: end while
13: X := X +M
14: end while
15: return M

Keeping this in mind, we re-write the objective function in a form that will facilitate
subsequent derivation:
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L(A,M) = ||(X +M)A− (X +M)||2F (3)

=
d∑

i=1

||(X +M)−iβi − (X +M)i||2F (4)

where C−i denotes the matrix C without its i− th column, Ci the i− th column, and
βi the i− th column of A without the i− th element (recall that the i− th element of
the i − th column of A is always zero). The term (X +M)−iβi is therefore a linear
combination of all but the i − th column of the matrix (X +M). The sum in (4) is
over the first d columns only, since the term added by the rightmost column is zero (see
fourth constraint in (2) which enforces the exact copy of the rightmost column).

We now suggest the following coordinate descent algorithm for the minimization of
the objective (3) (the method is summarized in Algorithm 2):

1. Fill in missing values using median/mean (or any other) imputation
2. Repeat until convergence:

(a) Minimize the objective (3) w.r.t. A (compute the columns of the matrix A)
(b) Minimize the objective (3) w.r.t. M (compute the missing values entries in ma-

trix M)
3. Return M 4

As we will show shortly, step (a) in the iterative part of the proposed algorithm
reduces to calculating the linear regression for each feature on the basis of all other
features, essentially the same as the first step in the IRMI algorithm [34] Algorithm 1.

Step (b) can be solved either as a system of linear equations or in itself as an iterative
procedure, by gradient descent on (3) w.r.t M using (5).

We now begin by briefly showing that step (a) indeed reduces to linear regression.
Taking the derivatives of (4) w.r.t the non-diagonal elements of column i of the matrix
A we have:

∂L

∂βi
= 2(X +M)T−i[(X +M)−iβi − (X +M)i]

Setting the partial derivatives to zero gives:

(X +M)T−i[(X +M)−iβi − (X +M)i]=0

⇒βi = ((X +M)T−i(X +M)−i)
−1(X +M)T−i(X +M)i

which is exactly the linear regression coefficients for the i − th feature from all other
(imputed) features, as claimed.

4 Alternatively, in order to stay close in spirit to the linear IRMI method, we may prefer to use
(X +M)A as the imputed data, meaning the imputed values are in fact derived from the all
other features using a linear model. Clearly, at the point of convergence of the algorithm the
two are identical.

44



8 Yehezkel S. Resheff and Daphna Weinshall

Next, we obtain the derivatives of the objective function w.r.t M :

∇M =
∂L

∂M
= 2[(X +M)A− (X +M)](A− I)T (5)

leading to the following gradient descent algorithm for step (b), the minimization of the
objective w.r.t M :
Repeat until convergence:

(i) M :=M − α∇ML(A,M)
(ii) ∀i,j : Mi,j =Mi,jmi,j

where α is a predefined step size and the gradient is given by (5). Step (ii) above makes
sure that only missing values are assigned imputation values 5.

Our proposed algorithm uses a gradient descent procedure for the minimization of
the objective (3) w.r.tM . Alternatively, one could use a closed form solution by directly
setting the partial derivative to zero. More specifically, let

∂L

∂M
=0 (6)

Substituting (5) into (6), we get

M(A− I)(A− I)T = −X(A− I)(A− I)T

which we rewrite as:

MP = Q (7)

with the appropriate matrices P,Q. Now, since only elements of M corresponding to
missing values of X are optimization variables, only these elements must be set to zero
in the derivative (6), and hence only these elements must obey the equality (7). Thus,
we have:

(MP )i,j = Qi,j ∀i, j|mi,j = 1

which is a system of
∑
i,j

mi,j linear equations in
∑
i,j

mi,j variables.

2.4 Discussion

In order to better understand the difference between the IRMI and OLI methods, we
rewrite the IRMI iterative method [34] using the same notation as used for our OLI
method. We start by defining an error matrix:

E = (X +M)A− (X +M)

5 Note that this is not a projection step. Recall that the optimization problem is only over ele-
ments Mij where xij is a missing value, encoded by mij = 1. The element-wise multipli-
cation of M by m guarantees that all other elements of M are assigned 0. Effectively, the
gradient descent procedure does not treat them as independent variables, as required.
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In the following, E is the error matrix of the linear regression models on the basis of
the imputed data. Unlike our method, however, IRMI considers the error only in the
non-missing values of the data, leading to the following objective function:

L(M,A) =
∑

i,j|mi,j=0

E2
i,j

In order to minimize this loss function, at each step the IRMI method (Algorithm 1)
optimizes over a single column of A (which in effect reduces to fitting a single linear
regression model), and then assigns as the missing values in the corresponding column
of M the values predicted for it by the regression model.

While this heuristic for choosing M is quite effective, it is not a gradient descent
step and consequently leads to a process with unknown convergence properties. The
main motivation for proposing our method was to fix this undesired property within the
same general conceptual framework of linear imputation; namely, propose a method
that is similar in spirit, with a convergence guarantee.

Another advantage of the proposed OLI formulation is the ability to easily extend it
to any regularized linear regression. This can be done by re-writing the itemized form
of the objective (4) as follows:

L(A,M) =
∑

i

[||(X +M)−iβi − (X +M)i||2F +Ω(βi)]

where Ω(βi) is the regularization term.
Now, assuming that the resulting regression problem can be solved (that is, mini-

mizing each of the summands in the new objective with a constant M ), and since step
(b) of our method remains exactly the same (the derivative w.r.t M does not change
as the extra term does not depend on M ), we can use the same method to solve this
problem as well.

Another possible extension is to use kernelized linear regression. In this case the
imputation is preformed in an implicit feature space:

L(A,M) = ||φ((X +M)A)− φ(X +M)||2F

This may be useful in cases when the dependencies between the features are not
linear (see a further discussion of this case in Section 3).

The method of initialization is another issue deserving further investigation. Since
our procedure converges to a local minimum of the objective, it may be advantageous to
start the procedure from several random initial points, and choose the best final result.
However, since the direct target (missing values) are obviously unknown, we would
need an alternative measure of the ”goodness” of a result. The missing values are usu-
ally assumed to be missing at random, so it would make sense to use the distance
between the distributions of known and imputed values (per feature) as a measure of
appropriateness of an imputation.
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3 Non-linear Imputation Methods

Linear imputation methods are the family of methods which model a missing value as
a linear combination of other values in the same record (either only non-missing or
both missing and non-missing). Using these methods makes sense when a notion of
a record exists in the data, in the sense that a set of measurements refers to the same
entity in some way. This is often the case in tabular (or relational) data, where each row
represents information about a specific entity. In this case, redundancy in the structure
of the record often allow linear data imputation.

However, the structure of the data is often such that non-linear relationships ex-
ist between columns, and thus non-linear methods are required in order to model and
impute missing data.

One of the most utilized non-linear imputation methods uses the method of Expec-
tation Maximization in order to obtain maximum likelihood estimates for the missing
data [4]. A major advantage of this approach is the convergence guarantee, and a vast
literature regarding statistical properties in various settings and under different assump-
tions regarding the underlying model.

Deep learning techniques have become overwhelmingly popular in recent years for
many machine learning tasks. Indeed, this shift has not skipped the very important task
of data imputation.

Stacked Denoising Autoencoders [37] (SDA) is a training method for deep learning
models where noise is added to the training examples and fed into the network. The ob-
jective is then to recover the original version of the data (prior to having the noise added
to it). The main use of the SDA method is for learning representations (see for instance
[16,23,40,22]), however in [6] this method is proposed as a means for imputation of
traffic data.

In order to use SDA for data imputation, during the training stage a ”missing data”
mask is randomly selected for each sample, and the corresponding values are zeroed-
out or replaced with noise values. The objective function the network is trained with
respect to, as in the case of denoising, is the reconstruction error of the output versus
the original data. When the trained model is used for imputation, the actual missing
data is treated like the mask during training, and the output of the network is used as
the imputed data.

The most straightforward version of this method would require a substantial amount
of data without any missing elements, since these are used for the training process
described above. However, one might use training data which does contain missing
elements, and use a loss which takes this into account (essentially by requiring the
reconstruction error to be low only for true data).

In image processing, the task of image denoising is to clean up noise in a digital
image, which appears either due to noise in the acquisition process (dust, rain, etc.),
or as the result of some intentional post-processing (such as overlayed text). Although
often treated differently, image denoising is essentially an imputation problem. Here
too, denoising autoencoders have been employed successfully [39] to achieve state of
the art results.

In the recently proposed learning setting of Ballpark Learning [12], an entire col-
umn is imputed (or estimated) based on rough group comparisons. In this setting, rather
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than having column-wise partial information, upper and lower bounds on the propor-
tions of labels in so-called “bags” are used together with constraints on bag differences
to obtain an optimization problem yielding the desired imputations of the target column.

Non-linear imputation methods are potentially superior to linear methods, when the
linear structure assumption the latter are based on is good description of the data. How-
ever, when applicable, linear methods have the very desirable advantages of simplicity
and interpretability, which arguably is what makes them so popular in practice.

In the next section we present an in-depth evaluation of the OLI method proposed
in this paper, and compare it to other linear imputation methods. We start of using
synthetic data, them move on to some benchmark datasets.

4 Evaluation

In order to evaluate our method, we compared its performance to other imputation
methods using various types of data. We used complete datasets (real or synthetic),
and randomly eliminated entries in order to simulate the missing data case. To evalu-
ate the success of each imputation method, we used the mean square error (MSE) of
the imputed values as a measure of error. MSE is computed as the mean square dis-
tance between stored values (the correct values for the simulated missing values) and
the imputed ones.

In Section 4.1 we repeat the experimental evaluation from [34] using synthetic data,
in order to compare the results of our method to the results of IRMI. In Section 4.2 we
compare our method to 3 other methods - IRMI, MI (median imputation), and MICE
- using standard benchmark datasets from the UCI repository [19] . In Section 4.3 we
augment the comparisons with an addition new real-life dataset of behavioral modes of
migrating storks [30].

For some real datasets in the experiments described below we report that the IRMI
method did not converge (and therefore did not return any result). This decision was
reached when the MSE of the IRMI method rose at least 6 orders of magnitude through-
out the allocated 50 iterations, or (when tested with unlimited iterations) when it rose
above the maximum valid number in the system of approximately 1e+ 308.

4.1 Synthetic data

The following simulation studies follow [34] and compare OLI to IRMI. All simula-
tions are repeated 20 times with 10, 000 samples. 5% of all values across records are
selected at random and marked as missing. Values are stored for comparison with im-
puted values. Simulation data is multivariate normal with mean of 1 in all dimensions.
Unless stated otherwise, the covariance matrix has 1 in its diagonal entries and 0.7 in
the off-diagonal entries.

The aim of the first experiment is to test the relationship between the actual values
imputed by the IRMI and OLI methods. The simulation is based on multivariate normal
data with 5 dimensions. Results show that the values imputed by the two methods are
very near (Fig. 1), with the vast majority of values imputed by the two methods with
an absolute difference of up to .02 (compared to the standard deviation of 1.0 in the
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Fig. 1. Distribution of imputation error (imputed− actual) for the IRMI method lLeft). Distribu-
tion of imputation error for the OLI method (center). Distribution of the difference in the imputed
value between the IRMI and OLI methods (right). Data is 10, 000 samples from a 5-dimensional
multivariate normal distribution. All columns have a standard deviation of 1.0 and all pairs of
columns have a correlation of 0.7, 5.0% of the data was randomly selected and designated as
missing.

data. Furthermore, the distribution of imputation error derived from the two methods is
identical. Together, these findings point to the similarity in the results these two methods
produce.

In the next simulation we test the performance of the two methods as we vary the
number of features. The simulation is based on multivariate normal data with 3 − 20
dimensions. The results (Fig. 2b) show almost identical behavior of the IRMI and OLI
algorithms, which also coincides with the results presented for IRMI in [34]. Median
imputation (MI) is also shown for comparison as baseline. Fig 3 shows a zoom into a
small segment of figure 2.

As expected, imputing the median (which is also the mean) of each feature for all
missing values results in an MSE equal to the standard deviation of the features (i.e.,
1). While very close, the IRMI and the OLI methods do not return the exact same
imputation values and errors, with an average absolute deviation of 0.053

Next we test the performance of the two methods as we vary the covariance between
the features. The simulation is based on multivariate normal data with 5 dimensions.
Non-diagonal elements of the covariance matrix are set to values in the range 0.1−0.9.
The results (Fig. 2a) show again almost identical behavior of the IRMI and OLI algo-
rithms. As expected, when the dependency between the feature columns is increased,
which is measure by the covariance between the columns (X-axis in Fig. 2a), the per-
formance of the regression-based methods IRMI and OLI is monotonically improving,
while the performance of the MI method remain unaltered.
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Fig. 2. (a) MSE of the IRMI, OLI and MI methods as a function of the covariance. Data is 5
dimensional multivariate normal. (b) MSE of the IRMI, OLI and MI methods as a function of the
dimensionality, with a constant covariance of 0.7 between pairs of features. In both cases error
bars represent standard deviation over 20 repetitions.

4.2 UCI datasets

The UCI machine learning repository [19] contains several popular benchmark datasets,
some of which have been previously used to compare methods of data imputation [32].
In the current experiment we used the following datasets: iris [8], wine (white) [3], Ecoli
[14], Boston housing [10], and power [35]. Each feature of each dataset was normalized
to have mean 0 and standard deviation of 1, in order to make error values comparable
between datasets. Categorical features were dropped. For each dataset, 5% of the values
were chosen at random and replaced with a missing value indicator. The procedure was
repeated 10 times. For these datasets we also consider the MICE method [1] using the
winMice [15] software.

Fig. 3. Zoom into a small part of figure 2

50



14 Yehezkel S. Resheff and Daphna Weinshall

Table 1. Comparison of the imputation results of the IRMI, OLI, MICE and MI methods with
5% missing data. The converged column indicates the number of runs in which the IRMI method
converged during testing; the MSE of IRMI was calculated for converged repetitions only.

Dataset # Features correlation IRMI OLI MI MICE
converged MSE

Iris 4 0.59 9/10 0.20 0.20 1.00 0.33
Ecoli 7 0.18 9/10 8.26 5.75 1.72 1.20
Wine 11 0.18 0/10 - 0.87 1.05 1.10
Housing 11 0.45 10/10 0.28 0.30 1.14 0.56
Power 4 0.45 3/10 0.44 0.47 1.02 0.88
Storks 20 0.24 0/10 - 0.31 1.07 0.42

Overall, the results are quite good, demonstrating the superior ability of the lin-
ear methods to impute missing data in these datasets (Table 1, rows 1-5). In the Iris
dataset our OLI method achieved an average error identical to IRMI, which success-
fully converged only 9 out of the 10 runs. Both outperformed the MI and MICE stan-
dard methods. In the Ecoli dataset both the IRMI and OLI methods performed worse
than the alternative methods, with MICE achieving the lowest MSE. In the Wine dataset
the IRMI failed to converge in all 10 repetitions, while the OLI method outperformed
the MI and MICE methods. The IRMI method outperformed all other methods in the
Housing dataset, but failed to converge 7 out of 10 times for the Power dataset.

In summary, in cases where the linear methods were appropriate, with sufficient
correlation between the different features (shown in the second column of Table 1), the
proposed OLI method was comparable to the IRMI method with regard to mean square
error of the imputed values when the latter converged, and superior in that it always
converges and therefore always returns a result.

While the IRMI method achieved slightly better results than OLI in some cases, its
failure to converge in others gives the OLI method the edge. Overall, better results were
achieved for datasets with high mean correlation between features, as expected when
using methods utilizing the linear relationships between features.

4.3 Storks behavioral modes dataset

In the field of Movement Ecology, readings from accelerometers placed on migrating
birds are used for both supervised [26] and unsupervised [27,28] learning of behavioral
modes. In the following experiment we used a dataset of features extracted from 3815
such measurements. As with the UCI datasets, 10 repetitions were performed, each
with 5% of the values randomly selected and marked as missing. Results (Table 1, final
row) of this experiment highlight the relative advantage of the OLI method. While the
IRMI method failed to converge in all 10 repetitions, OLI achieved an average MSE
considerably lower than the MI baseline, and also outperformed the MICE method.
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5 Conclusion

Since the problem of missing values often haunts real-word datasets, while most data
analysis methods are not designed to deal with this problem, imputation is a necessary
pre-processing step whenever discarding entire records is not a viable option. Here we
proposed an optimization-based linear imputation method that augments the IRMI [34]
method with the property of guaranteed convergence, while staying close in spirit to the
original method. Since our method converges to a local optimum of a different objective
function, the two methods should not be expected to converge to the same value exactly.
However, simulation results show that the results of the proposed method are generally
similar (nearly identical) to IRMI when the latter does indeed converge.

The contribution of our paper is two-fold. First, we suggest an optimization problem
based method for linear imputation and an algorithm that is guaranteed to converge.
Second, we show how this method can be extended to use any number of methods of
regularized linear regression. Unlike matrix completion methods [38], we do not have a
low rank assumption. Thus, OLI should be preferred when data is expected to have some
linear relationships between features and when IRMI fails to converge, or alternatively,
when a guarantee of convergence is important (for instance in automated processes).
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35. Tüfekci, P.: Prediction of full load electrical power output of a base load operated combined
cycle power plant using machine learning methods. International Journal of Electrical Power
& Energy Systems 60, 126–140 (2014)

36. Van Buuren, S., Oudshoorn, K.: Flexible multivariate imputation by mice. Leiden, The
Netherlands: TNO Prevention Center (1999)

37. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoen-
coders: Learning useful representations in a deep network with a local denoising criterion.
The Journal of Machine Learning Research 11, 3371–3408 (2010)

38. Wagner, A., Zuk, O.: Low-rank matrix recovery from row-and-column affine measurements.
arXiv preprint arXiv:1505.06292 (2015)

39. Xie, J., Xu, L., Chen, E.: Image denoising and inpainting with deep neural networks. In:
Advances in Neural Information Processing Systems. pp. 341–349 (2012)

40. Zhou, G., Sohn, K., Lee, H.: Online incremental feature learning with denoising autoen-
coders. Ann Arbor 1001, 48109 (2012)

54



4.2. Controlling Imbalanced Error in Deep Learning 55

4.2 Controlling Imbalanced Error in Deep Learn-
ing

This paper is an extended version of [1] which was presented at the First
International Workshop on Learning with Imbalanced Domains: Theory and Appli-
cations, held at the European Conference on Machine Learning, 18-22 September
2017, Skopje, Macedonia.
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Abstract. Deep learning has become the method of choice in many
application domains of machine learning in recent years, especially for
multi-class classification tasks. The most common loss function used in
this context is the cross-entropy loss, which reduces to the log loss in
the typical case when there is a single correct response label. While this
loss is insensitive to the identity of the assigned class in the case of
misclassification, in practice it is often the case that some errors may
be more detrimental than others. Here we present the bilinear-loss (and
related log-bilinear-loss) which differentially penalizes the different wrong
assignments of the model. We thoroughly test this method using standard
models and benchmark image datasets. As one application, we show the
ability of this method to better contain error within the correct super-
class, in the hierarchically labeled CIFAR100 dataset, without affecting
the overall performance of the classifier.

1 Introduction

Multi-class classification may well be the most studied machine learning problem,
from both the theoretical and the practical aspects. The problem is often phrased
as an optimization problem, where we seek a classifier (or algorithm) which
minimizes some loss function [9]. To begin with we may phrase the problem
using the 0-1 loss, which effectively counts the number of misclassified points.
Most methods then replace this function by a surrogate loss due to various
computational reasons (often just to achieve a tractable problem), or by the
design of a more specific goal-oriented or application motivated loss function.

In this paper we go back to basics, and question the use of the 0-1 loss function
in multi-class classification. Already in the binary scenario, we see the need for
a more subtle loss function, which distinguishes between the 2 different types
of possible errors: false negative - when a point of class 1 is wrongly classified
as class 2, and false positive - when a point of class 2 is wrongly classified as
class 1. When class 1 symbolizes the diagnosis of some serious illness while class
2 refers to the lack of findings, differential treatment of the two errors may be
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a matter of life and death. In most applications this distinction doesn’t make it
into the definition of the loss function (but see review of related work below),
and it is usually approached post-hoc by such means as the ROC curve, which
essentially describes the behavior of the classifier as a trade-off between the two
types of error.

These days the field of applied machine learning is swept by deep learning
[12], and we customary solve very large multi-class classification problems with
a growing number of classes. Now the question becomes more acute, and the
0-1 loss function does not seem to provide a good model for the real world
anymore. In most application domains, different misclassification errors are likely
to have different detrimental implications, and should be penalized accordingly
to achieve an appropriate classifier. For example, the consequence of diagnosing
a certain illness wrongly by coming up with a related illness may be considered
less harmful to the patient than missing it altogether.

Unlike binary classification, with multi-class problems we don’t have only
two types of errors to worry about, but rather O(k2) errors if there are k labels
to choose from. We can no longer postpone the resolution of the problem to
some post-hoc stage, and the choice of a single threshold. Furthermore, when
considering deep learning, encoding the desired trade-off between types of er-
rors will hopefully lead to a representation more suitable to make the necessary
distinctions.

Yet in practice, the basic loss function one uses in the training of neural
network classifiers has changed little, revealing its deep roots in the world of
binary classification and the 0-1 loss function. Specifically, the categorical cross-
entropy (which when using a single correct response reduces simply to log-loss),
has the property of invariance to the division of the output weight among the
erroneous labels, and therefore it is also invariant to the identity of the class an
example is assigned to, in case of misclassification.

This is the problem addressed in this paper. We propose two loss functions,
which provide the means for distinguishing between different misclassification
errors by penalizing each error differently, while maintaining good performance
in terms of overall accuracy. Specifically, in Section 2 we develop the bilinear
loss (and related log-bilinear loss) which directly penalize a deep learning model
differentially for weights assigned in the output layer, depending on both the
correct label and the identity of the wrong labels which have weight assigned to
them.

In Section 3 we describe the empirical evaluation of training deep networks
with these loss functions, using standard deep learning models and benchmark
multi-class datasets. Thus we empirically show the ability of these methods to
maintain good overall performance while redistributing the error differently be-
tween the possible wrong assignments.

In Section 4 we show an application of the proposed method for control-
ling error within the correct super-class in the hierarchically labeled CIFAR100
dataset, without significant reduction in the total accuracy of the final classifier
(in fact, slight improvement is observed in our empirical evaluation).
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The contribution of this paper is twofold. First, we introduce the bilinear/log-
bilinear loss functions and show their utility for controlling error location in deep
learning models. Second, we suggest the task of confining error to the correct
super-class in a hierarchical settings, and show how these loss functions can
achieve this goal.

Related Work Asymmetric loss functions have been studied extensively in the
context of binary classification, both theoretically and algorithmically, see e.g.
[2,15,18,17]. Thus asymmetric loss functions have been shown to improve clas-
sification performance with asymmetrical error costs or imbalanced data. In a
related approach, boosting methods (e.g. [5]) are based on the asymmetric treat-
ment of training points, and can naturally be modified to include cost sensitive
loss functions [20]. The optimal selection (with respect to a differential cost of
the two types of error) of the final classifier’s threshold has been discussed in
[8,10], for example. This question also received specific attention in the context
of the design of cascades of detectors [23,22], since as part of the construction of
the cascade one must give the different errors - miss the event or detect it when
it is absent - different weights in the different levels of the cascade.

In the context of multiclass classification, proper rescaling methods are dis-
cussed in [25] in order to address the issue of imbalanced datasets; rescaling
methods, however, typically penalize error based on the identify of the wrong
label only. [4] describes a wrapper method to transform every multi-class classi-
fier to a cost-sensitive one, while [16] shows how multi-class decision trees can be
trained to approximate a general loss matrix. A truly asymmetric cost-sensitive
loss function is used in [14], employing a generalized cost matrix somewhat sim-
ilar to matrix A defined in Section 2, while [24] offers a formulation which is
based on the Bayes-decision theory and the k-nearest neighbor classifier.

In the context of deep learning, the purpose of a cost sensitive objective is
not only to change the output of the model, but first and foremost to learn a
representation in intermediate layers of the network that is able to better capture
the aspects of the data that are important according to the relative cost of the
different types of error. This is demonstrated in the hierarchical experiments
below (Section 3).

2 The [Log] Bilinear-loss

We assume a model with k non-negative output units, such that the output for
the i− th example is:

ŷ(i) = ŷ
(i)
1 , . . . , ŷ

(i)
k

and further assume a per-example normalized output, i.e.: ∀i :
∑k

j=1 ŷ
(i)
j = 1

In most cases in practice, the training set is labeled with a single correct re-

sponse per example. Thus, the common cross-entropy loss reduces to −log(y
(i)
li

),
where li is the correct label for the i’th example. This loss essentially represents
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an implicit policy of rewarding for weight placed on the correct answer, while
being indifferent to the identity of the wrong labels which have weight assigned
to them.

Arguably, this common practice is often in direct opposition to the goal of the
process of learning; in many real world scenarios, some mistakes are extremely
costly while others are of little consequence. In this section we develop alternative
loss functions which address this issue directly.

We start by modifying the loss function used for training the classifier. We
augment the usual loss function with a term where a non-negative cost is assigned
to any wrong classification, and where the cost is based on both the correct
label and the identity of the misclassified label in an asymmetrical manner.
Specifically, let ai,j denote the relative cost associated with assigning the label
j to an example whose correct label is i, and let A = {ai,j} ∈ Rk×k denote the
penalty matrix.

Using A we define two related loss functions: The Bilinear loss is defined as:

LB = yTAŷ (1)

where y denotes the correct output (y is a probability vector). Similarly, the
log-Bilinear loss is defined as:

LLB = −yTAlog(1− ŷ) (2)

where log(·) operates element-wise.
Finally, we combine the regular cross-entropy loss with (1) and (2) to achieve

a loss function with the known benefits of cross-entropy, and which also provides
the deferential treatment of errors:

LCE+B = (1− α)LCE + αyTAŷ (3)

LCE+LB = (1− α)LCE − αyTAlog(1− ŷ) (4)

where LCE = −∑
yilog(ŷi) is the regular cross-entropy loss.

The fundamental difference between the bilinear and log-bilinear loss formu-
lations is the implied view on what in the output of the model is to be penalized
(and thus controlled). The bilinear formulation adds a constant cost aij∆pj for
each ∆pj increase in the j’th normalized output unit, for a training example
from the i’th class. The log-bilinear formulation on the other hand is insensitive
to this sort of increase as long as the overall value in the j’th output is small,
but picks up sharply as pj approaches 1.

Furthermore, for two equally penalized mistakes j, k for an example from
class i (meaning aij = aik), the bilinear loss is insensitive to the division of error
between the two classes, since α1aij + α2aik = (α1 + α2)aij , so only the sum
of the assignments to these two classes matters. The log-bilinear loss however
amounts to α1log(1−aij)+α2log(1−aik), which for a constant sum is maximized
when all the weight is placed on one of the errors.
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The meaning of this property is that the bilinear loss is penalizing for the
total weight placed on erroneous classes weighted by the relative importance (as
measured by the penalty matrix A). The log-bilinear loss is penalizing peakiness
of the wrong assignment, again weighted by importance. Thus, the bilinear loss
is a more likely candidate when we would like to control the locations where
erroneous weights concentrate, and the log-bilinear loss when we would like to
control which errors the model is confident about.

We note that while we naturally apply the method to deep learning models
in our experiments (section 3), these loss functions are applicable to any gradient
based model with outputs as described above.

3 Empirical evaluation of the loss functions

In this section we evaluate and compare the efficacy of the two loss functions
defined in (3) and (4), in terms of two measures and the trade-off between them:
(i) the total un-weighted error in the original classification task; (ii) the error
distribution as measured by the different elements of the confusion matrix at
train and test time.

Specifically, the purpose of the following experiments is: (a) to evaluate and
compare the ability of the proposed formulation to control the location of error,
using standard deep learning methods and benchmark datasets; (b) test the
influence of the trade-off parameter α in the above formulations (3) and (4); and
(c) evaluate the trade-off between control of error location, and overall accuracy
of the model.

3.1 Methods

In order to test the ability to control the location of error, we randomly select a
varying number n of specific errors to be avoided. Each such error is defined by
the identity of both the correct label and the wrong label (such as for example:
”don’t mistake a 2 for an 8”). In practice, this is done by sampling a random
mask (Boolean matrix) of size k2, with exactly n positive off-diagonal elements,
where k is the number of classes. These n locations are henceforth called the
masked zone.

The datasets we use for empirical evaluation in this section are MNIST and
CIFAR10, where k = 10. For each combination of n in {10, 20, 30, 40, 50} and
the trade-off parameter α in {0, .1, .5, .9, .95, .99}, we trained 50 and 10 models
(MNIST and CIFAR10 respectively). Thus we trained a total of 1500 MNIST
models, and 300 CIFAR10 models. This design was repeated for the Bilinear and
Log-Bilinear loss functions, leading to a total of 3600 models.

All models were trained using the open source Keras and TensorFLow [1]
software packages 3. In order to facilitate the training of a large number of
models, MNIST models were each trained for only 10 epochs, and CIFAR10
models for 300 epochs with an early stopping criterion.

3 Materials available at: https://github.com/Hezi-Resheff/paper-log-bilinear-loss
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3.2 MNIST dataset: results

The MNIST dataset [13] is an old benchmark dataset of small images (28 × 28
pixels) of hand-written digits. The data is divided into 55, 000 images in the
training set, 5, 000 for validation, and 10, 000 images in the test set. In recent
years, deep learning methods have been used successfully to reach almost perfect
classification when using the MNIST dataset (see for example [3,7]).

Table 1. The model used in all MNIST experiments

Layer #params

1 convolution (20; 5X5) 520
2 max-pooling(2X2)
3 dropout(20%)

4 convolution(50; 5X5) 25,050
5 max-pooling(2X2)
6 dropout(20%)

7 fully-connected(500) 1,225,500
8 fully-connected(10) 5,010

total: 1,256,080

The model we use in our experiments (detailed in Table 1) is a typical small
model with two convolutional layers, followed by a single fully-connected layer.
Max-pooling and dropout [19] are used following each convolutional layer. This
model was selected for the current experiments primarily because of the small
training time required to achieve satisfactory results (approx. 99.2% correct after
10 epochs), which allowed us to generate a very large number of models, as
discussed in the methods section above.

Bilinear Loss. Results are shown in Fig. 1. Clearly the number of test errors in
the selected mask spots (the ’masked zone’) is dramatically reduced when using
our proposed loss function (3) with α > 0, as compared to the baseline models
(α = 0). As expected, the total number of errors increases linearly with the size
of the mask. At the same time the reduction in error count in the masked zone
is attenuated by the value of the trade-off parameter α, with higher values of
α leading to fewer errors in this zone. Noticeably, as the number n of selected
spots in the mask is increased, a larger value of α is necessary in order to retain
the 82 reduction in the number of errors relative to the baseline.

The overall model accuracy (Fig. 2) changes very little for all but the largest
value of α. However, for α = .99 we see a substantial increase in overall error.
This value of α was also responsible for the most dramatic decrease in errors in
the masked zone. Thus in this parameter value regime the network achieves an
inferior overall solution, but succeeds in pushing most of the errors outside the
masked zone.
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Fig. 1. MNIST, Bilinear loss. We plot the number of erroneous test examples in the
masked zone (y-axis) as a function of the zone’s size (x-axis), mean over the 50 repe-
titions per configuration with error bars showing the 95% confidence interval.

Fig. 2. MNIST, Bilinear loss. We plot the percent of overall model error, mean over the
50 repetitions per configuration with error bars showing the 95% confidence interval.

Overall, for intermediate values of the trade-off parameter α, the number
of errors in the masked zone is reduced dramatically, even for relatively large
masks with as many as 40−50 points, without an appreciable increase in overall
error. This result demonstrates the feasibility of the proposed bilinear loss (when
added to the regular cross-entropy loss), as a means of controlling the location
of error without harming overall accuracy in deep learning models.
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Fig. 3. MNIST, Log Bilinear loss; see caption of Fig. 1.

Fig. 4. MNIST, Log Bilinear loss; see caption of Fig. 2.

Log-Bilinear Loss. The results for the log-bilinear loss are qualitatively similar
to the bilinear loss presented above. The reduction in the number of errors in
the masked zone (Fig. 3) relative to the baseline is larger than with the bilinear
loss for small mask sizes (n = 10 − 20), and comparable for the larger masks.
The overall model accuracy (Fig. 4) is, however, significantly worse than in the
linear case, with small adverse effects showing already for small α values.

Overall, the log-bilinear loss, much like the linear version, is able to reduce the
number of errors in an MNIST model in a selected zone. However, the reduction
in error in the masked zone when using the log-bilinear loss is more substantial,
at a price of a worse model overall; this harmful effect is slight for small values
of α.
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3.3 CIFAR-10: results

The CIFAR-10 dataset [11] is made up of 60, 000 small images (32 × 32 color
pixels), each belonging to one of 10 classes (airplane, car, bird, cat, deer, dog,
frog, horse, ship, truck). The data is divided into a training set of 50, 000 images,
and a test set of the remaining 10, 000 images.

As in the MNIST case, the model we use (Table 2) is selected on the basis
of typicality, accuracy, and relatively short training time to allow many models
to be computed. Here, the model consists of three blocks of convolutional layers
(each containing two convolutional layers, followed by max-pooling and dropout
layers), and two fully-connected layers. Overall accuracy is approximately 92%
after 300 epochs at most. (300 was set to be the maximal number of epochs;
early stopping was employed when convergence was achieved earlier, which was
often the case.)

Table 2. The model used in all CIFAR10/100 experiments

Layer #params

1 convolution (64; 3X3) 1,792
2 convolution (64; 3X3) 36,928
3 max-pooling(2X2)
4 dropout

5 convolution(128; 3X3) 73,856
6 convolution(128; 3X3) 147,584
7 max-pooling(2X2)
8 dropout

9 convolution(256; 3X3) 295,168
10 convolution(256; 3X3) 590,080
11 max-pooling(2X2)
12 dropout

13 fully-connected(1000) 257,000
14 dropout (CIFAR100 only)
15 fully-connected(1000) 1,001,000
16 dropout (CIFAR100 only)
17 fully-connected(10/100) 10,010/100,100

total: 2,413,418 (CFIAR-10)
2,503,508(CIFAR-100)

Bilinear Loss. Results are shown in Fig. 5. Like before, the number of test
errors in the masked zone is dramatically reduced when using our proposed loss
function (3) with α > 0, as compared to the baseline models (α = 0).

Compared to the MNIST results, for a small mask of 10 locations, the reduc-
tion in error in the masked zone is appreciably larger for CIFAR-10. We attribute
this to compulsory errors – errors which stem from true class overlap, and thus
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Fig. 5. CIFAR-10, Bilinear loss. We plot the number of erroneous test examples in
the masked zone (y-axis) as a function of the zone’s size (x-axis), mean over the 10
repetitions per configuration with error bars showing the 95% confidence interval.

Fig. 6. CIFAR-10, Bilinear loss. We plot the percent of overall model error, mean
over the 10 repetitions per configuration with error bars showing the 95% confidence
interval.

can’t be overcome by changing the objective. Arguably, the MNIST dataset has
a higher volume of these, explaining the better ability to control the error away
from the mask when using the CIFAR-10 dataset.

The overall model accuracy (Fig. 6) changes very little for all but the largest
value of α. Unlike the MNIST case, however, we see a real (albeit small) increase
in overall error even for lower values of α. For α = .99 we again see a substantial
increase in overall error. This value of α was also responsible for the most dra-
matic decrease in errors in the masked zone. Thus in this regime of parameter
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values the network achieves an inferior overall solution, but succeeds in pushing
most of the errors outside the masked zone.

Overall, for intermediate values of the trade-off parameter α, the number
of errors in the masked zone is reduced dramatically, even for relatively large
masks with as many as 40 − 50 points, without drastically harming the overall
performance of the model.

Log-Bilinear Loss. The log-bilinear loss results show a large reduction in the
error in the masked zone (Fig. 7), but at the same time an increase in overall
model error (Fig. 8) already for small masks and smaller values of α.

We show data in this case (Fig. 7 and 8) for masks of size up to 30, and α
values of up to 0.95. The log-bilinear loss is less effective than the bilinear loss
already in this regime, and is not of practical use for this dataset with larger
masks. It would seem that for this dataset the bilinear loss produces better
results overall in terms of control of error on the one hand, while maintaining
reasonable overall model accuracy on the other.

Fig. 7. CIFAR-10, Log Bilinear loss; see caption of Fig. 5.

4 Hierarchical classification: empirical evaluation

When the data is organized hierarchically in a tree, a natural order in imposed
on the errors that the classifier can make. In some domains it may be beneficial
to penalize for errors based on the distance between the node of the true label
and the node corresponding to the erroneous label, where the distance reflects
the lowest node in the tree that is ancestral to both nodes, since the detrimental
effect of errors may be proportional to this distance.
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Fig. 8. CIFAR-10, Log Bilinear loss; see caption of Fig. 6.

In this section we investigate this scenario using the hierarchical CIFAR100
dataset [11]; this dataset contains 100 classes, which are grouped into 20 coarse-
grained super-classes (for example, the reptile super-class contains: crocodile,
dinosaur, lizard, snake, and turtle; the insects super-class contains: bee, beetle,
butterfly, caterpillar, and cockroach).

Hierarchical structure is often utilized by classifiers in order to improve the
regular notion of classification [21,6]. The objective here is to generate a classifier
that, when wrong, will be more likely to err by choosing another class from the
same super-class containing the true label.

We achieve this goal by using the bilinear and log-bilinear loss functions
defined in (3) and (4), where the elements of the penalty matrix A = {ai,j} are
defined as follows:

ai,j =





0 i = j

1 i and j are in the same super-class

5 o.w.

This penalty matrix reflects the notion that we would much rather err within
the correct super-class.

As in the above experiments, we test multiple values of the trade-off param-
eter α for each of the bilinear and log-bilinear models, and 10 repetitions of
each combination. The results show that when using either the bilinear (Table
3) or the log-bilinear (Table 4) loss functions, we are able to reduce the error for
coarse-grained classification (into super-classes) without hindering the overall
model accuracy.

Specifically, the coarse-grained overall error is reduced from 25.45% to 24.01%
when using the bilinear loss with α = 0.5, and to 24.52% when using the log-
bilinear loss with the same values of α. Interestingly, in the latter case the overall
model accuracy is slightly (but significantly) reduced as well.
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Table 3. CIFAR-100, Bilinear loss. α: the trade-off parameter (see (3)). Total error:
the mean overall test set error. Total error coarse: the mean overall test set error when
using the coarse classification into the 20 super-classes. Relative error with correct
super-class label: the mean percent of errors which are assigned a label in the correct
super-class.

α total error total error coarse relative error
with correct

super-class label

0 37.36 25.45 30.88

0.05 37.41 25.33 31.22

0.10 37.33 25.27 31.63

0.25 37.13 24.62 32.92

0.50 36.93 24.01 34.61

0.75 38.33 24.52 35.76

0.90 41.41 26.45 35.98

0.95 44.57 28.82 35.27

Table 4. CIFAR-100, Log-Bilinear loss. See caption in Table 3.

α total error total error coarse relative error
with correct

super-class label

0 37.30 25.43 30.88

0.05 37.23 25.12 31.55

0.10 37.25 24.92 32.20

0.25 37.61 24.71 33.60

0.50 38.52 24.52 36.58

0.75 41.53 25.73 38.32

0.90 46.18 28.26 38.87

0.95 48.98 30.31 38.21

In the baseline model (α = 0), 30.88% of all mislabeled examples are misla-
beled into the correct super-class (i.e. assigned one of the other 4 classes that
form the same super-class as the correct label). 4 When using the bilinear loss, the
percent of erroneous classification labels that fall within the correct super-class
in increased to 34.61% with α = 0.5. Likewise, the value increases to 36.58%
with the log-bilinear loss. However, in the latter case the total error both in
the regular (100 classes) and coarse classification (20 super-classes) is somewhat
higher.

It seems that for this task the bilinear loss is more effective than the log-
bilinear loss. The reason for this may be that the many misclassification errors
are evaluated with low confidence, which gives a relatively flat response for the

4 This value, rather than the expected 4
99

reflects the hierarchical structure that exists
in this dataset, as captured in the super-class labels.
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100 classes. Thus, while the bilinear loss accumulates these errors, the log-bilinear
loss adds up values which are very small (the sum of log(1− ε)).

We note that while in the MNIST/CIFAR10 experiments we generate masks
to direct the error away from as many as 50 out of the 90 possible error types,
here only 400 out of the possible 9, 900 possible errors are within super-class
errors (each super-class is of size 5). Remarkably, even in this extreme case we
see a clear effect of the error being controlled as defined in the bilinear loss.

Small sample In the final experiment presented here, we test the effect of the
bilinear loss in the small-sample case. From each of the 20 super-classes of the
CIFAR-100 dataset, we select a class based on the highest super-class-typicality,
which we define as the percent of the errors for each class that are assigned to
another class within the same super-class, in the baseline model.

Each of the 20 selected classes is down-sampled to 0, 10, or 50 training ex-
amples. In the 10 and 50 cases, the small sample is then duplicated back to the
original sample size. Models are then trained using the bilinear loss, using the
matrix described above (penalizing differentially errors in the correct and wrong
super-class), with values of the trade-off parameter α in {0, 0.25, 0.5}.

The results (Table 5) show a small improvement in model accuracy - the
accuracy of the small-sample classes, and small improvement in the assignment of
the small-sample classes to the correct super-class for samples of size N = 10, 50.
Interestingly, even when the selected classes are not seen at at all during training
(N = 0), and even for the baseline model (α = 0), almost half (49.42%) of the
test examples from the selected classes are assigned to the correct super-class.
While somewhat expected, since the most typical classes are used, this again
mostly reflects the visually informative super-class structure in the CIFAR-100
dataset.

5 Conclusions

Often in real-world classification tasks, the cost of an error depends on the
identity of the correct label as well as that of the misclassification target. The
cross-entropy objective most commonly used in classification with deep learning
models does not accommodate this in a natural way.

In this paper we present the bilinear and log-bilinear loss functions, which
directly add to the regular cross-entropy loss a component that depends on the
true and wrongly assigned labels. We evaluate these formulations extensively
using standard models and benchmark datasets.

First, we show that with the MNIST/CIFAR-10 datasets we are able to direct
error away from a randomly chosen mask of up to 50 out of the 90 possible errors
(the non-diagonal elements of the 10 by 10 confusion matrix), while preserving
the overall model accuracy.

Next, we show that in the hierarchically annotated CIFAR-100 dataset, these
methods are able to help contain error to within the correct super-class, thus
producing models with the same overall accuracy as the baseline model, but
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Table 5. CIFAR-100 with selected small-sample classes. N: the number of samples
in each of the 20 small-sample classes. alpha: the value of the trade-off parameter α.
model accuracy: the overall accuracy of the model. small sample accuracy: the mean
accuracy for the 20 small sample classes. small sample super-class accuracy: the percent
of test examples from the small-sample classes that are assigned a class in the correct
super-class

N α model accuracy small sample
accuracy

small sample
super-class
accuracy

0 0 54.92 0.00 49.42
0.25 54.94 0.00 49.24
0.50 54.91 0.00 50.54

10 0 51.76 4.23 47.82
0.25 52.33 4.45 49.20
0.50 52.72 6.02 50.14

50 0 56.88 21.98 56.43
0.25 56.87 22.43 56.85
0.50 57.11 23.47 58.52

with a higher inclination to choose a label from sibling classes (as defined by the
super-class) when mistakes occur.

Future work will focus on extending this ”hierarchical learning” by coercing
the layers of a deep model to gradually focus on higher and higher levels of a
fuzzy hierarchy.
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Chapter 5

Discussion

The aim of this study was to investigate and develop machine learning tech-
niques for analysis of wearable device derived data, in the fields of Move-
ment Ecology and Medical Devices. Results indicate the usefulness of Iner-
tial Measurement Unit (IMU) sensor data for supervised as well as unsuper-
vised scenarios for both applications (Chapter 2, and Appendix A+B). In this
thesis we go on to show that smart aggregations allow us to analyze huge
amounts of trajectory data, while keeping pertinent information (Chapter 3).
Finally, some more general machine learning methods are developed, with
insights and motivations from the problems at hand, and wider applicability
to various data-science domains (Chapter 4).

Supervised learning has long been used for automatic annotation of be-
havioral modes from IMU stream data [6, 1]. In Movement Ecology, behav-
ioral annotation from accelerometer data, overlayed on animal trajectories,
has led to many otherwise insurmountable discoveries. In the field of med-
ical devices, smart-watches and other wearable devices have been used to
track symptoms of Parkinson’s patients [10]. Activity recognition based on
supervised methods has also been used extensively for tracking and moni-
toring of general wellbeing using smart-watches and smart-phone devices.

The application of supervised learning is however inherently limited to
research projects where labeled data is obtainable (Chapter 2). The availabil-
ity of such labeled data is subject to a number of resources, both financial and
technical. It is infeasible when collecting a sufficiently large labeled dataset
is too expensive to be practical, or when the knowledge and technical ability
is in question (this is the case for instance for nocturnal animals, which are
often extremely hard to track and observe in their natural habitats, as well as
for mental health where between-patient variation renders annotation of spe-
cific behaviors all but useless). As a corollary, it is evident that for successful
application of this technique one must have a full anthology of all pertinent
behavioral modes. This is often not the case.

For these reasons, unsupervised machine learning techniques are an in-
dispensable part of the wearable devices analytics toolkit. Surprisingly, very
little work has previously been done on adapting and building such tools
for this intriguing field. Existing methods were limited to simple cluster-
ing on snippets from sensor streams. Although these rudimentary methods
were able to produce some results, it is evident that such general tools luck
a unique perspective and insights into the particularities of the wearable de-
vice data.
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The method proposed in this thesis (Chapter 2) is built from the ground
up, in a principled manner, taking into account the nature and relevant as-
sumptions regarding the data. After an initial representation stage, the prob-
lem is framed as a topic modeling over motor words, allowing a plethora of
existing methods to be used in conjunction with the idiosyncratic represen-
tation phase. This is exploited in the second paper in Chapter 2, where the
Latent Dirichlet Allocation (LDA) topic modeling method is used following
an online codebook generation.

The wearable device sensor unsupervised analysis with topic models de-
veloped in Chapter 2 is used both for analysis of data from a large migrating
bird (White Stork, Ciconia ciconia), and to help gain insights in a pilot study
examining the behavior and mental state of patients in a closed ward men-
tal institution. Together, this demonstrates the general applicability of the
method when considering sensor data of this sort.

In the first study [7, 8], up to several years of data was collected from mi-
grating White Storks (Ciconia ciconia), using mounted bio-loggers fitted with
GPS and accelerometers. In addition, field observations allowed to annotate
a small portion (several thousand) of the accelerometer readings with be-
havioral modes (for example: Active and Passive Flight, Walking, Standing,
Sitting). Results show that using the topic-modeling unsupervised approach
we are able to recover to a large extent the labels that are obtained from a su-
pervised learning based labeling. Thus, this method could be applied when
field observations are not possible, as discussed above.

We point out that utilizing this method would allow for a wide spread use
of behavioral mode analysis in the field of Movement Ecology. The impor-
tance of this issue is ever-growing, with huge amounts of rich sensor tracking
data becoming increasingly easy to collect, whereas annotation and observa-
tion remain illusive for the most part. Standardization, consolidations, and
enrichment of the general purpose toolbox in this field are thus paramount
to the successful utilization of these data to their full potential.

In the second study in Chapter 2, 27 inpatients from the closed wards at
Shaar-Meashe MHC fitted with a smart-watch (GeneActiv1) with tri-axial ac-
celerometer embedded sensors, the high frequency output (50Hz) of which
was stored on memory cards. Data was collected continuously throughout
the experiment for a total of 489 days. Subpopulations of patients were de-
fined on the basis of clinical assessment scores, and general behavioral fea-
tures were calculated on the basis of an LDA topic model, computed over
motor-words.

Results indicate that clinically interesting sub-populations can be distin-
guished on the basis of the motor-behavioral features. This result holds much
promise for the use of smart watches or other wearable devices in a clinical
setting for monitoring of patients. In a follow-up study (Appendix B) we fur-
ther demonstrate that anomaly detection over the time-series of such motor-
behavioral features may shed light on abrupt changes in the mental state of
patients, as shown by tracking change in medication regime and ongoing
clinical assessments.

1https://www.geneactiv.org/
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Ideally, such a monitoring system would transmit real-time continuous
sensor data to be analyzed in the cloud. The psychiatrist would then have
a report available, summarizing the behavior of the patient over time, as
a decision support system. Additionally, specific alerts would be pushed
when an abrupt change in behavior is detected, which is believed to cor-
relate to a change in mental state of an adverse reaction to medication (for
instance, a sharp increase or decrease in mobility following change in medi-
cation regime).

In the next chapter (Chapter 3) we turn our gaze toward the location data
obtained routinely by bio-loggers mounted on animals in the field of Move-
ment Ecology. Unlike tracking of humans which often relies heavily on the
the known underlying structure of the physical world (i.e. roads, buildings,
coffee-shops etc.), when tracking wild animals one must rely to a much larger
extent on the structure in the GPS (or other movement data) itself. Indeed, it
is an interesting problem to infer real-world place semantics from raw move-
ment data (see for instance [11]).

Trajectory segmentation is the process of subdividing a trajectory into
parts either by grouping points similar with respect to some measure of in-
terest, or by minimizing a global objective function. The aim of the trajectory
analysis method developed in Chapter 3 is to provide a smart segmentation
and summary, based on point density along the trajectory, and based on the
nature of the naturally occurring structure of intermittent bouts of locomo-
tive and local activity. We show an application to visualization of trajectory
datasets, and discuss the use of the summary as an index allowing efficient
queries which are otherwise impossible or computationally expensive, over
very large datasets [2].

In Chapter 4 more general methods are developed. While these draw
insight from, and are originally motivated by the problems revolving around
analysis of sensor data from wearable devices, they are more general in scope
and applicable in a wide range of applications and tasks (and as such should
be regarded as basic research in the field of statistics, machine learning, or
data science).

The first problem addressed is that of data imputation [5]. More often
than not, and especially in high dimensional real-world data, some feature
values are missing. Since most data analysis and statistical methods are not
graceful in handling missing values, the first step in the analysis requires
imputation. Indeed, many methods have been developed for the imputation
of missing values as a pre-processing step, with research into the implications
for downstream analysis.

One recent and effective approach, the IRMI stepwise regression imputa-
tion method [9], uses a linear regression model for each real-valued feature
on the basis of all other features in the dataset. However, the proposed iter-
ative formulation lacks convergence guarantee. In this paper we propose a
closely related method, stated as a single optimization problem and a block
coordinate-descent solution which is guaranteed to converge to a local mini-
mum.

Experiments show results on both synthetic and benchmark datasets, which
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are comparable to the results of the IRMI method whenever it converges.
However, while in the set of experiments described here IRMI often does not
converge, the performance of our methods is shown to be markedly superior
in comparison with other methods. We conclude that especially for auto-
matic analytics engines, where guaranteed convergence is paramount, our
method should be preferred.

The second problem we address is a fundamental problem in multi-class
classification with specific implication for supervised behavioral mode clas-
sification in the field of Movement Ecology. Suppose we are annotating a
dataset with behavioral modes such as Active and Passive Flight, Standing
and Sitting etc., and derive a confusion matrix summarizing the performance
of our system (as in [6]). It is highly probable, depending on the research
questions, that confusing some behavior (say Standing) with some specific
other behavior (say Passive Flight) is far more detrimental than with another
(say Sitting). This asymmetry in the actual loss is not reflected in the natural
formulation of general purpose classifiers.

In this work [4, 3] we concentrate on deep learning based classifiers. Deep
learning has become the method of choice in many application domains of
machine learning in recent years, especially for multi-class classification tasks.
The most common loss function used in this context is the categorical cross
entropy loss, which reduces to the log loss in the typical case when there is a
single correct response label.

We present the bilinear-loss (and related log-bilinear-loss) which differen-
tially penalizes the different wrong assignments of the model. We thoroughly
test this method using standard models and benchmark image datasets. As
one application, we show the ability of this method to better contain error
within the correct super-class, in the hierarchically labeled CIFAR100 dataset,
without affecting the overall performance of the classifier.

In summary, this plug-in addition to the regular loss function is able to
encode the differential sensitivity toward wrongly labeling examples, based
on the true class and the wrong assignment. As such, this method has a wide
range of applications, way beyond Movement Ecology and classification of
behavioral modes. Indeed, in almost any real-word system this fine-grained
determination of the loss, many be of help to practitioners, in order to better
tailor the general suit of deep learning methods to the problem at hand.

Several directions for future research arise from this study, in the respec-
tive sub-fields which are touched upon in each of the three chapters. In the
context of unsupervised analysis of behavioral modes, there is much work
still to be done, for instance in order to extend the current methodology to
include external information such as location type (field, water, residential
etc.), as well as weather and other local information which give behavior
along a trajectory extra meaning, and could help derive deeper insights into
the drivers of behavior.

In the field of medical devices, much work is needed in order to bring
the insights we already know are accessible in the data to physicians in order
to promote a better understanding of mental and physical state of patients,
and the development thereof following change of medication, and as time
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passes. Our pilot study already shows there is a lot of available information
that could potentially be used both on an ongoing basis, and to troubleshoot
specific issues as they arise.

In conclusion, this study promoted our understanding of the correspon-
dence between movement on the sub-second level as measured by IMUs, and
the underlying higher-level behavioral modes, and all the way up to cogni-
tive state. In addition, general methods were developed to solve specific
problems with a more general applicability throughout the data fields.
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AcceleRater: a web application for supervised
learning of behavioral modes from acceleration
measurements
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Abstract

Background: The study of animal movement is experiencing rapid progress in recent years, forcefully driven by
technological advancement. Biologgers with Acceleration (ACC) recordings are becoming increasingly popular in
the fields of animal behavior and movement ecology, for estimating energy expenditure and identifying behavior,
with prospects for other potential uses as well. Supervised learning of behavioral modes from acceleration data
has shown promising results in many species, and for a diverse range of behaviors. However, broad implementation
of this technique in movement ecology research has been limited due to technical difficulties and complicated
analysis, deterring many practitioners from applying this approach. This highlights the need to develop a broadly
applicable tool for classifying behavior from acceleration data.

Description: Here we present a free-access python-based web application called AcceleRater, for rapidly training,
visualizing and using models for supervised learning of behavioral modes from ACC measurements. We introduce
AcceleRater, and illustrate its successful application for classifying vulture behavioral modes from acceleration data
obtained from free-ranging vultures. The seven models offered in the AcceleRater application achieved overall
accuracy of between 77.68% (Decision Tree) and 84.84% (Artificial Neural Network), with a mean overall accuracy
of 81.51% and standard deviation of 3.95%. Notably, variation in performance was larger between behavioral
modes than between models.

Conclusions: AcceleRater provides the means to identify animal behavior, offering a user-friendly tool for ACC-based
behavioral annotation, which will be dynamically upgraded and maintained.

Keywords: AcceleRater, Animal behavior, Biologging, Classification, Ethology, Movement ecology, Supervised learning,
Tri-axial acceleration, Web application

Background
Movement ecology aims to unify organismal movement
research and to aid in the development of a general theory
of whole-organism movements [1]. The field has recently
experienced a period of rapid growth in knowledge and
insights [2], triggered by the advent of movement tracking
tools and GPS devices in particular [3], as well as various
methods of analyzing movement patterns [4]. These

advances have motivated the development of integrative
conceptual frameworks unifying cognitive, biomechanical,
random and optimality paradigms to study movements
of all kinds by all types of organisms [1]. Nevertheless,
movement data, however accurate, are unlikely to suffice
for inference on the links between behavioral, ecological,
physiological, and evolutionary processes driving the
movement of individuals, which have traditionally been
studied in isolation in each of the movement research
paradigms. Thus, promoting movement ecology research
and the desirable unification across species and movement
phenomena requires developing additional sensors and
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tools providing simultaneous information about the
movement, energy expenditure and behavior of the focal
organisms, and the environmental conditions they
encounter en route [5].
To help bridge this gap, accelerometers were intro-

duced as a means of identifying moment-to-moment
behavioral modes [6] and estimating energy expend-
iture [7] of tagged animals. These sensors record body
acceleration either in short bouts or continuously,
along one, two or three orthogonal axes. Their output
is used to infer behavior, most commonly through
supervised machine learning techniques, and energy
expenditure using the Overall Dynamic Body Acceler-
ation (ODBA) or related metrics [7,8]. Combined with
GPS recordings, acceleration sensors add fine scale
information on the variation in animal’s behavior and
energy expenditure in space and time (see [9] for a
recent review). ACC-based analysis allows us to compute
many measures of interest, including behavior-specific
body posture, movement and activity budgets, measures
of foraging effort, attempted food capture events, mor-
tality detection, classifying behavioral modes and more
[9]. These measures have facilitated movement-related
research for a wide range of topics in ecology and ani-
mal behavior [5,9-11] as well as other fields of research
such as animal conservation and welfare [10,12] and
biomechanics [13,14].
An ACC dataset typically consists of anywhere between

tens of thousands to millions of records, together with
a small subset of hundreds or thousands of records
corresponding to field observations which have known
behavioral modes attached to them. A variety of machine
learning algorithms have recently been applied for ACC-
based supervised learning of behavioral modes [5,15-20].
These methods require a calibration set for ground-
truthing, which associates behavioral classes to ACC
measurements, by time-matching behavioral observa-
tions of tagged individuals to the recorded ACC. This
calibration set is generally collected through field obser-
vations of free-ranging animals [5,9], but can also be
obtained by observing animals in captivity [9,21]. In
principle, the calibration dataset can also be generated
from a biomechanical model, by generating the acceler-
ation patterns expected in each behavioral mode using
a model of an animal, though we are not aware of a
published example of this alternative option. The entire
calibration set, or its sub-set (called training set, see
cross validation below), is used to learn how to classify
ACC measurements to behavioral classes. An under-
lying assumption here is that during each measurement,
the animal is engaged in a single behavioral mode. To
assess classification performance, measures like accur-
acy, precision and recall are calculated, as illustrated in
the Results section below. Typically, the calibration set

constitutes only a (very) small sample of the recorded
dataset; hence, in the final stage of ACC-based behav-
ioral analysis, the classifier is used to assign behavioral
modes to the whole dataset which may span the lifetime
of many animals.
ACC-based behavioral data can inform “what” the

study animal is doing in addition to the more conven-
tional data on “where” the animal is located, acquired
by the GPS units. However, in spite of this and the
above-mentioned advantages of ACC data, many ecolo-
gists do not utilize this option even when they have
acceleration sensors in their tracking devices. In part,
this is due to the fact that some elusive species are very
difficult to observe in order to obtain the above men-
tioned calibration set. However, in many other cases we
believe that the computational procedures, and the
technical challenges involved, deter researchers from
using ACC-based behavioral data.
AcceleRater was developed to provide a user-friendly

free-access tool for choosing, validating and using
models for supervised learning of behavioral modes
from ACC data. We hope that this tool will encourage
the use of ACC-behavioral data with the promising
insights it can provide.

Implementation
AcceleRater is a python-based web application, using the
sci-kit learn library [22] for fitting models and for most
pre-processing operations. AcceleRater aims to facilitate
broad use of ACC-based behavioral classification by
including detailed explanations, a variety of models, model
reconstruction options, alternative tests, and informative
outputs, and by allowing the user to control many aspects
of the processing, while setting typical values as default
options.

Input data format
AcceleRater requires the user to prepare the input data
file in advance. Although the package can be designed to
obtain data directly from default output formats of some
commercially-available ACC loggers, supervised methods
require coupling ACC records with observed behaviors,
necessitating some processing of the default ACC file in
any case. In addition, accelerometers provide hardware-
unit-specific measurements which require calibration
for each tag, thereby typically requiring another pre-
processing stage. Furthermore, the raw ACC data can
be measured along one, two or three axes, and some
devices provide some summary statistics rather than
the raw data (see Additional file 1: Table S3 in supple-
mentary material). To accommodate these needs and
varieties, the user first indicates some basic attributes
of the input dataset, including contents (summary sta-
tistics or raw data), and, for raw data files, the number
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of axes (1, 2 or 3) for which ACC data was measured. For
any selection, the user is offered several input file struc-
tures, all should be formatted as comma separated values
(csv) files, with ACC measurements in rows, and behavior
labels in the last column. Example data files can be found
on the demo page of the application website.

The computing and feature selection protocol

1. Selecting and calculating summary statistics: For
input files with raw ACC data, the user needs to
select summary statistics to be calculated from the
raw data. The list of summary statistics currently
implemented in the program is given in Additional
file 2: Table S1 (supplementary material). Additional
statistics will be added upon user requests.

2. Processing summary statistics: The program calculates
and then normalizes (to zero mean and unit standard
deviation) all summary statistics selected in step (1).

3. Selecting the cross validation method: Cross-validation
methods [23] separate the calibration dataset to
training and validation subsets, the former is used
to build the model, and the latter enables the user
to quantify how well the calibrated model matches
independent observations. We offer three options
for performing validation: (a) k-fold cross-validation,
the dataset is randomly split into k equal-size parts,
k-1 parts are used for training and 1 for validation.
The procedure is repeated k times until all parts
have been used for validation; (b) a special case of
(a), with k = 2, known as train-split method. This is
the fastest and most commonly used option, taken
here as the default; (c) another special case of (a),
known as Leave-One-Out method, with k = n where
n is the number of labeled samples available. For
large n, this option is computationally expensive, as
well as unnecessary; hence the use of this option
should be limited to rather small datasets (currently
hundreds of samples).

4. Selecting and computing the models, and presentation
of the results: the user selects one or more classifiers,
listed in Table 1 and briefly outlined in (Additional file 3:
Table S2. Once the selection is completed, the
normalized statistics are fed into the chosen classifiers.
Then, the cross-validation and some other results are
displayed in the form of summary tables, confusion
matrices, and accuracy, recall and precision tables
(see examples in Results section below).

5. Using the calibrated model to label new data, see
“Labeling new data” below.

Using the application
The minimal requirement is to upload the labeled (ground-
truthed) ACC data file and run the program with default

selection of its various options. Alternatively, the user
can select the summary statistics, the cross validation
method and the models.

Main features
Manual - the manual contains an extensive documenta-
tion of the application, and should be referred to for
further information.
Upload form - The “gateway” to the application. See

Input data format above.
Models view - Here the models are summarized. This

view contains:

� A page for each model with a confusion matrix in
both graphical and tabular form, as well as overall
accuracy and recall/precision/accuracy tables.

� A graph comparing the overall accuracy for each of
the models

� A precision-recall graph comparing the models.
� A table containing the specific accuracy/recall/

precision for every behavior in each model. This
may be important when some of the behaviors are
of more significance for the purpose at hand, and it
is therefore desirable to select a model that does
best on these behaviors.

Labeling new data – Beyond its use for assessing the
feasibility and reliability of ACC-based behavioral classi-
fication for a given dataset, arguably the main purpose
of using AcceleRater is to annotate (label) a large set of
ACC recordings for which behavioral information is not
available. The user should upload a file for annotation in
an acceptable format (see Input data format above). The
output csv file is the same as the input file, with an added
last column providing the assigned behavioral labels.
Annotating a trajectory on a map – To visualize a

trajectory of an animal on a map, annotated with the
ACC-based behavioral labels, the program allows the
user to upload a raw data file with both location (e.g.
from GPS) and ACC data. The trajectory is then shown

Table 1 A list of classification models currently
implemented in AcceleRater, with representative
published applications for classifying animal behavior

Model Sources

Artificial Neural Network (ANN) [5]

Decision tree [5]

Linear support vector machine (L-SVM) [5]

Linear/Quadratic Discriminant Analysis (LDA/QDA) [5,16,17]

Nearest neighbors [19]

Radial basis function kernel for support vector
machine (RBF-SVM)

This paper

Random forest [5,16,20]
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on a Google Map with different colors indicating differ-
ent behaviors. Currently, the program supports raw data
file format of only one manufacturer (E-Obs GmbH;
Munich, Germany), but other formats will be imple-
mented upon users’ requests.

Results
To test AcceleRater, we used ACC data collected by E-Obs
transmitters on Griffon Vultures (Gyps fulvus). Acceleration
was measured at 10Hz per axis and segments corre-
sponding to single behavioral modes were obtained by
field observations. For more details on this dataset see
Refs. [5] and [11]. We used a dataset comprising of 488
samples and 6 behavior classes: Lying down (3.5%),
Standing (43.6%), Walking (13.7%), Eating (22.3%), Soaring
(6.6%), Flapping (10.2%). Typical acceleration signatures of
the different behaviors are shown in Figure 1.
The main variation in the overall accuracy (Table 2),

and in specific accuracy, precision and recall of assign-
ment in the cross validation tests was attributed to
different behaviors rather than different models (Additional
file 4: Table S4, Figure 2). The specific accuracy of assign-
ment to a particular behavior – the probability of a sample
in the test-set to be assigned correctly to the specific
behavior (True Positive; TP) or to another behavior
(True Negative; TN) – was on average 91-94% for each
model and 90-97% for each behavior across models
(Additional file 4: Table S4b). The precision of assign-
ment – the probability that an assigned behavior in the
test-set is indeed this particular behavior – was medium

to high (78-85%) for the different models, very high (92%)
for Standing, high (80-86%) for both flying types and lower
(59-75%) for the other three behaviors (Additional file 4:
Table S4c). The recall – the probability that a sample
with a particular behavior in the test-set will be cor-
rectly classified as this behavior – was relatively high
(77-85%) for the different models, extremely high (95%)
on average for Standing (the most common behavior in
the training set), medium (80%) for Soaring and for Eating
and lower (51-66%) for Walking, Flapping and Lying down
(Additional file 4: Table S4d). These results are effectively
summarized by the Precision-Recall plot (Figure 2). Note
that overall accuracy, recall and precision of the ANN
model were slightly better compared to other models
(Table 2 & Additional file 4: Table S4), but in general all
models preformed reasonably well (Table 2).

Discussion
The use of accelerometers in movement ecology has
become popular in recent years, partly due to improve-
ments in the underlying technologies and the advent of
analysis tools [5]. Nevertheless, the non-trivial process
of supervised learning of behavioral modes from accel-
eration data has hindered much more widespread use
of this technique. Towards this end, we developed
AcceleRater as a specialized web application for rapidly
training, visualizing and using models for supervised
learning of behavior modes from ACC measurements.
AccleRater was tested with 488 ACC segments

collected by GPS-ACC transmitters (E-Obs GmbH; Munich,

Figure 1 Representative acceleration plots for the six different behavioral modes obtained by AcceleRater from the vulture dataset.
Each plot represents a single behavioral segment. Acceleration was sampled at 10Hz per axis.
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Germany) on Griffon Vultures (Gyps fulvus). We ran
stratified random selection on a roughly twofold larger
dataset [5] to reduce over-dominance of commonly
observed behaviors. For this dataset, we found that model
selection is a less critical consideration, compared to
highly variable results for different behaviors. This might
complicate analyses requiring reliable classification of
many behaviors, whereas studies focusing a single or
few behaviors could choose the best fitted model for
their study system. AcceleRater yielded comparable
results to those we previously reported for this dataset
[5], extending our previous analysis by including add-
itional models (RBF-SVM) and more informative output
(e.g., precision and recall, rather than only accuracy).
Most importantly, whereas previous contributions from
our group as well as others [5,11,9,15,20] have provided
guidelines for such analyses, AcceleRater practically
implements and extends these guidelines, making this
technique available for a broad range of users. It allows

a thorough analysis that can be carried out quickly and
effectively, yielding informative results within minutes.

Usage considerations
The online nature of the application requires transfer of
data files over the internet. This inherently limits the size
of the data files to be labeled. When labeling a large data-
set with this application, the data should be broken down
into manageable size parts, with ≤100,000 rows each.

Future work
The supervised learning framework is based upon obser-
vations being sampled from the distribution of the
process in question. This sample, however, might not
adequately reflect the true distribution of these behaviors
throughout the time frame relevant to the research
question, due to practical constraints of field observa-
tions, for example. Consequently, behavioral modes that
are rare in the observation sample, and as such discarded
or have weak classifiers, may in fact be more common
and/or more influential for the study system. This concern
motivates refinement of field observations on the one
hand, and development of data-driven methods for
unsupervised learning of behavior modes from ACC
data on the other hand.
The segmentation of movement tracks has been iden-

tified as one of the greatest methodological challenges in
movement ecology research [1]. By providing behavioral
information highly relevant for distinguishing different
movement phases, ACC-based behavioral classification
can facilitate addressing this challenge [20]. AcceleRater

Figure 2 Precision-recall plot generated by accelerater for the vulture dataset (see Additional file 4: Table S4).

Table 2 Model accuracy

Model name % correct Std

ANN 84.84 2.76

Decision tree 77.68 5.76

LDA 80.75 4.89

Linear SVM 80.13 4.18

Nearest neighbors 80.54 3.18

Random forest 84.02 2.98

RBF SVM 82.58 3.91

Mean 81.51 3.95

Standard deviation computed using a 10-fold cross validation procedure.

Resheff et al. Movement Ecology  (2014) 2:27 Page 5 of 7
84



can therefore be extended to suggest segmentation pattern
for movement tracks based on behavioral classification.
A key limitation of AcceleRater, like other web appli-

cations, is the need to upload and download large data
files for labeling after a model is trained and chosen.
This limitation might prohibit the use of the application
on large datasets, with many millions of data points. We
plan to address this limitation in future versions by
allowing the user to select a model using the web appli-
cation, and then download a stand-alone program con-
figured to classify new data using the selected model
offline, on the user’s computer.

Conclusions
We present here a new tool, AcceleRater, allowing fast
and intuitive tool for ACC-based behavioral classification,
designed to be both flexible and general, with user-friendly
interface and informative results displayed in tables and
graphs. We demonstrate high performance of this tool in
classifying behaviors of free-ranging birds. We encourage
broad use and foresee further developments of Accele-
Rater for advancing more informative analysis of the
ecology and behavior of animals in the wild.

Availability and requirements
Project name: AcceleRater.
Project home page: http://accapp.move-ecol-minerva.
huji.ac.il/.
Operating system(s): Platform independent.
Programming language: Python, JavaScript.
License: The program was developed by YR and owned by
the Minerva Center for Movement Ecology. We encourage
its free use, no permission or license is required. The
current paper should be cited in resulting publications.
Any restrictions to use by non-academics: none.

Additional files

Additional file 1: Table S3. Examples of ACC tag manufacturers and
the type of supported output.

Additional file 2: Table S1. The statistics computed by the application.

Additional file 3: Table S2. The classification models currently (April 2014)
implemented in AcceleRater. For updates, please visit the web site
of the Minerva Center for Movement Ecology (http://accapp.move-ecol-
minerva.huji.ac.il/).

Additional file 4: Table S4. Recall, Precision and Accuracy for each of
the models and behaviors.
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Appendix B

Studies in Wearable Devices for
Mental Health

The following papers are part of a collaboration with Talia Tron, Mikkail
Bazmin, Abraham Peld, as well as my advisor Daphna Weinshall. While
not a core part of the thesis, these publications contain research using some
of the tools developed in the previous papers, and demonstrate the success
of the Shaar Menashe project that was driven to a large extent by these tools.



Real-time Schizophrenia Monitoring using
Wearable Motion Sensitive Devices

Talia Tron1, Yehezkel S. Resheff1, Mikhail Bazhmin2, Abraham Peled2,3,
and Daphna Weinshall4

1 The Edmond and Lily Safra center (ELSC) for Brain Science, Hebrew University
of Jerusalem (HUJI), Israel

2 Sha’ar Menashe Mental Health Center, Hadera Israel
3 Rappaport Faculty of Medicine, Technion Institute of Technology, Haifa Israel
4 The Rachel and Selim Benin School of Computer Science and Engineering, HUJI

Summary. Motor peculiarity is an integral part of the schizophrenia disorder, hav-
ing various manifestations both throughout the phases of the disease, and as a re-
sponse to treatment. The current subjective non-quantitative evaluation of these
traits leads to multiple interpretations of phenomenology, which impairs the reli-
ability and validity of psychiatric diagnosis. Our long-term objective is to quanti-
tatively measure motor behavior in schizophrenia patients, and develop automatic
tools and methods for patient monitoring and treatment adjustment. In the present
study, wearable devices were distributed among 25 inpatients in the closed wards of
a Mental Health Center. Motor activity was measured using embedded accelerome-
ters, as well as light and temperature sensors. The devices were worn continuously by
participants throughout the duration of the experiment, approximately one month.
During this period participants were also clinically evaluated twice weekly, includ-
ing patients’ mental, motor, and neurological symptom severity. Medication regimes
and outstanding events were also recorded by hospital staff. Below we discuss the
general framework for monitoring psychiatric patients with wearable devices. We
then present results showing significant correlations between features of activity in
various daily time-windows, and measures derived from the psychiatrist’s clinical
assessment or abnormal events in the patients’ routine.

1 Introduction

The relevant clinical literature describes a wide range of motor pattern alter-
nations, manifested in different phases of the schizophrenia disorder. Positive-
signs schizophrenia patients are typically psychotic and disorganized, char-
acterized mainly by positive symptoms (e.g. auditory hallucinations, delu-
sions and paranoid thoughts). In clinical settings, these patients show invol-
untary movements, dyskinesia and catatonic symptoms [9]. In negative-signs
schizophrenia, there is usually an observed motor retardation, psycho-motor
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poverty, decreased spontaneous movements, psycho-motor slowing and flat-
tened affect [8, 14]. Some patients demonstrate both types simultaneously or
during different phases of the illness.

Neurological Soft Symptoms (NSS) can manifest early and during the pro-
gression of the disorder, and include deficits in coordination, sensory integra-
tion, and sequential motor behaviors [1]. Medical treatment was found to
improve some of the motor symptoms, including NSS, involuntary movement
and dyskinesia [9]. These medications, however, may also introduce in chronic
patients drug-induced movement disorders such as tremor dystonia, Parkin-
sonism (rigidity and bradykinesia), akathisia and tardive dyskinesia [5].

The diversity and specificity of motor symptoms throughout different
phases of the disorder and as a response to drugs, makes them good candi-
dates for patient monitoring and treatment outcome evaluation. Nonetheless,
to date, these symptoms are evaluated in a descriptive non etiological man-
ner based on subjective clinical scales such as the Unified Dyskinesia Rating
Scale (UDysRS) [3] and the Unified Parkinson’s Disease Rating Scale (MDS-
UPDRS) [4]. The lack of objective, quantitative methods to measure these
symptoms, and the insufficient conceptual clarity around it, causes multiple
interpretations of phenomenology, often entailing low reliability and validity
of the diagnosis. In addition, symptom evaluation process requires expert staff
and availability of resources, and it is not done frequently enough to capture
delicate changes in patients’ spontaneous and drug-induced conditions.

The last decade has seen a steep rise in the use of wearable devices in med-
ical fields ranging from human physiology [10] to movement disorders [7, 11]
and mental health [13]. Accelerometers and gyroscopes, which are commonly
embedded in smart-watches and other wearable devices, are now used to as-
sess mobility, recognize activity, and context. In a clinical setting, these sensors
may be used in order to detect change in high-level movement parameters,
track their dynamics and correlate them with mental state.

The objective of the current study is to develop and evaluate a framework,
where wearable devices are used to facilitate continuous motor deficits mon-
itoring in schizophrenia patients in a natural setting. This is an important
step towards a detailed automatic evaluation system of symptom severity in
schizophrenia. Such a system has a great potential to help understand this
illusive disease. An additional goal would be to help with the overwhelming
need for detection and characterization of sub-types of the disease towards a
better understanding of underlying causes, and the development of better and
more personalized treatment.

2 Methods

2.1 Participants and clinical evaluation

Twenty seven inpatients from the closed wards at Shaar-Meashe MHC par-
ticipated in the study after signing appropriate Helsinki legal consents. Most
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Real-time Monitoring of Schizophrenia 3

Fig. 1. Raw data as recorded by the smart-watches, including tri-axial accelerometer
(top panel), light sensor (middle), and temperature (bottom). This plot shows data
from a single patient, recorded on 28 Jan, 2017 at 5:00-5:05pm.

participants (21/27) were diagnosed with schizophrenia according to the DSM-
5, 3 with paranoid schizophrenia, 2 with schizoaffective disorder, and one with
psychotic state cannabinoids. Participants’ age varied from 21 to 58 (mean
of 37.48), with course of illness varying from 0 (first hospitalization) up to
37 years (mean of 16.9 years). Two of the patients dropped out of the study
after less than a day due to lack of cooperation. The rest (25 patients) were
followed for a period of three weeks on average (6-52 days).

The study was conducted in natural settings, where patients were not
required to change any personal or medical procedure. In addition to rou-
tine reports by nurses and physicians, every patient underwent an additional
evaluation by a trained psychiatrist twice a week. The procedure included
medication monitoring (type, dosage and frequency), as well as clinical evalu-
ation of positive and negative symptom severity (PANSS [6]) and neurological
symptoms severity (NES [2]).

All procedures performed in the study were in accordance with the ethical
standards of the institutional research committee and with the 1964 Helsinki
declaration and its later amendments or comparable ethical standards.

2.2 Data Acquisition

At study onset, each participant was given a smart-watch (GeneActiv5). The
devices included tri-axial accelerometers, light, and temperature sensors, the
high frequency output (50Hz) of which was stored on memory cards embedded
in the device (see Fig. 1). Data was collected by the aforementioned smart
watches worn continuously by patients throughout the experiment (for a total
of 489 days of data from 25 patients). The devices were placed and removed

5 https://www.geneactiv.org/
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by the medical staff, and the content of the memory card was uploaded to
a central storage location upon termination of the experiment for further
analysis.

In order to reduce noise introduced by the variability in patients activity
which is due to external circumstances rather than mental state, weekends
were excluded from the study and our analysis focused on fixed time windows
with regular departmental daily activity. These included occupational therapy
time slots (10am-11am), lunch (12pm-1pm), and indoor free time (4pm-5pm).
In addition, we calculated full day features (6am-10pm) and used night time
features (10pm-6am) to evaluate sleep quality.

2.3 Features

Features were computed on the basis of the accelerometer readings, analyzed
in 1 minute windows (see Table 1 and Fig. 2). The point-wise sum of values
and sum of square values of the tri-axial accelerometer measurements (Energy
Square and Energy Sum respectively) were averaged over 1 minute intervals.
The variance of the sum of squares (Energy Variance) was also computed over
the same window. Stepping behavior (Step Detector) was detected as large
maxima of the smoothed square norm of the point-wise acceleration. Overall
Dynamic Body Acceleration (ODBA), a measure of energy expenditure, was
computed as the mean norm of the signal after application of a high-pass
filter.

Table 1. List of features calculated on the basis of the tri-axial Accelerometers.
Average and variance was calculated on a 1 minute time window.

Feature Description

Step Detector Simple count of the number of steps per minute.
Energy Square Averaged sum of point-wise square acceleration.
Energy Sum Averaged sum of point-wise acceleration.
Energy Variance Variance of point-wise square acceleration
ODBA mean norm of a high-passed version of the signal.

2.4 Clinical Assessments

The 30-item scale for positive and negative symptom assessment (PANSS)
was reduced to the follwoing 5 literature-based factors: Positive, Negative,
Disorganized/Concrete, Excited and Depressed. The dimensionality reduction
was done according to the consensus model suggested by Wallwork et al. [12],
based on 25 previously published models and refined with confirmatory factor
analysis (CFA).

The negative and positive factors had low between-factor correlation (R =
0.399), indicating good separation of the symptomatology space. As expected,
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Fig. 2. The daily features of a single subject (left): gray areas indicate the time win-
dows used for aggregated feature calculation. Monthly follow-up of a single patient
(right): top panel shows the clinical five-factor PANSS score given by a trained psy-
chiatrist on a bi-weekly basis; bottom panel shows the aggregated features calculated
based on the different time windows.

the positive factor was in high correlation with the mean of all positive PANSS
items (R = .944), and likewise the negative factor was in high correlation with
the mean of all negative PANSS items (R = .972).

3 Results

We investigated two distinct ways by which wearable devices can be used for
patient monitoring, in order to assist physicians in understanding the state of
a patient. The first aspect of monitoring relates to the automatic assessment
of a patient’s condition, in order to provide automated, continuous, and ob-
jective measures of mental state. To this end we investigated the correlation
between the computed measures and assessments by physicians, as described
in Section 3.1. The second aspect of monitoring relates to the detection of
change (or anomalous behavior patterns) which warrants additional attention
from the medical staff, as described in Section 3.2.

3.1 Movement patterns and mental state

In order to investigate the correspondence between patterns of movement and
mental state, multiple correlation analysis was computed between activity re-
lated features (described in Section 2.2) and PANSS factors. Results (Table 2)
indicate the predictive benefit of the computed activity-related features with
respect to the PANSS factors. When separately considering features computed
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Table 2. Percent Explained Variance based on Multiple Correlation between com-
puted features in each of the 5 time-windows and each of the 5 PANSS factors. (See
Section 2.2 for time-window specifications.)

free lunch occu day night all

Positive Factor 16.30% 11.14% 12.31% 19.80% 5.21% 53.77%
Negative Factor 19.74% 3.15% 2.06% 18.36% 9.77% 55.50%
Disorganized Concrete Factor 22.73% 0.50% 15.13% 13.42% 5.82% 64.81%
Excited Factor 23.79% 8.75% 15.08% 10.35% 12.70% 57.10%
Depressed Factor 31.01% 9.23% 8.94% 5.78% 6.39% 58.33%

in each of the time-windows, it is evident that different time windows provide
varying predictive value for the 5 different PANSS factors.

Specifically, the Depressed Factor is described relatively well using features
from the free time window, with 31.01% explained variance, while all other
time-windows are below 10%. Both Positive and Negative factors are described
well using features from the free time as well as all day time-windows. The
remaining factors are again best described using free time. Overall, the free
time window is the single most effective window, presumably since it imposes
less structure on the movement of the subjects, allowing for the manifesta-
tion of the underlying mental state. In all cases, combining all time windows
(rightmost column in Table 2) leads to substantially higher explained variance,
compared to any of the individual windows.

Interestingly, looking at individual variable correlations we see that step
count during free time was positively correlated with positive, disorganized
and exited factor (R = 0.37, 0.37 and 0.31 respectively), but not with the
negative and depressed factors. In addition, patients who had higher scores
in disorganized and exited factors tended to have lower Energy scores during
occupational time (R = −0.28 for Energy Sum and −0.22 for Energy Vari-
ance). This may indicate some motor retardation which is manifested only in
non-walking time.

3.2 Continuous Monitoring

Our measures can be used to track changes in the patient’s condition as com-
pared to some established normal baseline, and may identify external events
which are correlated with the departure from normality. Fig. 3 demonstrates
such a case: daily step counts of a patient dramatically increased 5-fold, at
the same time as a significant change in medication dosage was introduced.
Whether the change in medication caused the rise in movement propensity or
they were both triggered by a change in mental state, this observation points
to the relevance of monitoring macro movement patterns as part of routine
patient monitoring.
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Fig. 3. Mean daily steps of a single subject. The gray area corresponds to a short-
lasting change in medication regime.

4 Conclusions

We describe a study designed to evaluate the utility of wearable devices fit-
ted with accelerometer, light, and temperature sensors, for the monitoring
of schizophrenia patients in a closed ward mental health institution. Initial
results show correlations between features of activity in various daily time-
windows, and factors derived from the PANSS assessment.

Results indicate that movement features during free time are the most
indicative of mental state. This finding is somewhat counter-intuitive, since the
more structured activity during occupational therapy or lunch was expected
to highlight differences in the state of patients. However, our results clearly
show that the behavior of individuals when left to their own devices is better
correlated with the PANSS factors.

These findings points to the possibility of automatically and continuously
tracking Schizophrenia related symptoms and patient state, in a natural set-
ting hospital environment.The benefits of such a tracking system are twofold;
first, the continuous tracking will assist physicians in understanding the state
of a patient on an on-going basis, as opposed to specific points in time, when
assessed by the doctor. Second, long term monitoring of a large number of
patients will produce data which will allow us to develop more objective mea-
sures of the motor aspects of the illness, and facilitate a more personalized,
objective, and data driven approach which is much needed in the field of
mental health.

Future work will focus on measuring the utility of this approach as an
augmentation tool from a physicians perspective on the one hand, and the
ability to predict physician assessments for automation of diagnosis on the
other.
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ARIMA-based Motor Anomaly Detection in Schizophrenia Inpatients

Talia Tron1,4 Yehezkel S. Resheff1,4 Mikhail Bazhmin2 Daphna Weinshall4 Abraham Peled2,3

Abstract— Motor alteration is an important aspect of the
elusive schizophrenia disorder, manifested both throughout the
various phases of the disease and as a response to treatment.
Tracking of patients’ movement, and especially in a closed ward
hospital setting, can therefore shed light on the dynamics of
the disease, and help alert staff to possible deterioration and
adverse effects of medication. In this paper we describe the use
of ARIMA-based anomaly detection for monitoring of patient
motor activity in a closed ward hospital setting. We demonstrate
the utility of the approach in several intriguing case studies.

I. INTRODUCTION

Monitoring of motor behavior is part of the regular as-
sessment of schizophrenia patients and is vital to diagnosis,
progress assessment and to the monitoring of medication
response. Various alterations of motor behavior are evident
throughout the phases of the disease, and as a response to
treatment. The psychotic acute phase of schizophrenia is
typically accompanied by restlessness, including occasional
bizarre movements and gestures, while post psychotic de-
ficiency negative symptoms are related to reduced activ-
ity, slowness and even freezing. Antypsychotic medications
may cause Parkinsonism, i.e., tremor, rigidity, and slowness,
which usually pass after the first week of treatment.

Despite its clinical and diagnostic value, to date, motor
monitoring is done in a descriptive non etiological manner
based on subjective clinical scales, which may result in
biased, inaccurate and typically non quantifiable assessments.
This kind of assessment requires expert staff and the avail-
ability of resources, and may not be frequent enough to
capture significant changes in spontaneous and drug-induced
conditions. These issues can be alleviated by carrying out
objective, continuous quantifiable monitoring [1], the inves-
tigation of which is the goal of this study. Accelerometers
and gyroscopes, commonly embedded in smart-watches and
other wearable devices, have been extensively used over
the last decades in medical applications ranging from hu-
man physiology [2] to movement disorders [3] and mental
healthcare [4]. These cheap and widely available sensors
may be used for continuous qualitative patient monitoring
in natural clinical settings. Accelerometer data have already
been shown to effectively provide insights into patients
clinical state, and motor features were successfully used for
clinical sub-typing in a closed ward mental hospital setting
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4The Rachel and Selim Benin School of Computer Science and Engi-
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[5], [6]. Here we focus on detecting acute abnormal which
are either the result or the cause of drug modifications
or changes in patients’ clinical conditions. Our approach
employs forecasting models widely used in statistics and
econometrics, applied to step-count data. We demonstrate the
utility of this approach with 4 schizophrenia case studies, in
which we evaluate monitoring performance based on medical
and clinical records.

II. MATERIALS AND METHODS

A. Study Design

Four inpatients from the closed ward at Shaar-Menashe
mental health center, diagnosed with schizophrenia according
to the DSM-5, participated in the study. One patient (patient
B) was diagnosed with paranoid schizophrenia. Participants’
age varied from 24 to 54 (average 36.9), with course of ill-
ness varying from 7 to 35 years (average of 13.5 years). After
signing the appropriate Helsinki legal consents, participants
were tracked for a period of approximately one month (27-
31 days) in natural settings. During this period, patients were
monitored for medication use (type, dosage, and frequency)
by the nurses and the physicians. In addition, every patient
underwent a clinical evaluation of Positive and Negative
Syndrome Scale (PANSS [7]) and Neurological Evaluation
Scale (NES [8]) by a trained psychiatrist twice a week. The
neurological evaluation was only utilized to confirm that no
psycho-motor deficits were evident in any of the participants
during the experiment.

All procedures performed in the study were in accordance
with the ethical standards of the institutional research com-
mittee and with the 1964 Helsinki declaration and its later
amendments or comparable ethical standards.

B. Data Acquisition

At study onset, participants were given smart-watches
with embedded accelerometers (GeneActiv1). These watches
were worn on the wrist throughout the experiment. The
output (50Hz) of the sensors was stored on internal memory
cards. The study was conducted in natural settings, where
patients were not required to change any personal or medical
procedure. None of the patients expressed any discomfort or
disturbance from wearing the device.

III. DATA ANALYSIS

A. Building personal ARIMA Models

Analysis focused on the walking pattern of patients,
aiming to detect significant quantitative changes. Stepping

1https://www.activinsights.com/products/geneactiv/
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Fig. 1. Left- Decomposition of daily steps (top) of a single patient to trend (smoothed series calculated using centered moving average), seasonality
(regularly repeating data patterns calculated as the average of the smoothed series for each period) and noise. Right- Demonstration of the ARIMA model
for patient A. The model returns the predicted mean and a 95% confidence interval (CI) around it. Abnormal behavior is detected when (a) the observed
step count value lies outside the CI predicted by the model, (b) the residuals are higher than threshold (e.g. September 6), or (c) when certainty is lower
than threshold (e.g. September 15).

behavior was detected as large maxima of the smoothed
square norm of the 3-axial 50Hz point-wise acceleration,
and the number of steps (step count) was averaged over 1
minute intervals (see [5] for further details).

We used AutoRegressive Integrated Moving Average
(ARIMA) models to detect abnormal walking patterns. One
week of data was used to predict the step count for the
following day, together with the associated confidence inter-
val. Repeating this in a rolling window design produced the
predicted step count for the entire duration of available data,
around 3 weeks for each participant excluding the first week.
Predicted values were then compared to those observed in
practice for the purpose of anomaly detection [9].

We began by decomposing the step-count data into trend,
seasonality and noise components, as shown in the left side
of Fig. 1. As expected, strong daily seasonality was seen in
the data. It is interesting to note that the trend component,
to the extent that it exists, may potentially be used for direct
real-time monitoring of patients symptom severity over time.

Next, we aggregated each patient’s step-count data in
windows of 10-30 minutes (this was done to smooth the data
on the one hand, and reduce computation on the other). Both
regular and daily seasonal differentiation were computed to
obtain a stationary signal. We applied 4 different ARIMA
models to all patients, and evaluated them using AIC criteria
with mean and absolute errors. The emerging preferred
model was ARIMAX(1,1,1) seasonal (1,1,2), which had a
consistent lower error and lower AIC over all patients.

B. Abnormal behavior detection

For each patient separately, we ran an ARIMAX(1,1,1)
seasonal (1,1,2) model, which was based on 7 days of data
in order to predict the following day. The model provided the
predicted mean and a 95% confidence interval (CI) around
it. Model residuals were calculated as the squared difference

between the model predicted values and the observed values
during the test period.

A measure of prediction certainty was calculated based on
the normalized CI size (|CIz|) as follow:

Certainty = 0.95× 2× std(data)

|CIz|
(1)

This is a measure of model confidence, with low values in-
dicating that the model hasn’t been able to accurately predict
future values based on the patient’s history. The multiplier
of 0.95 sets the maximum certainty value to 0.95 (model
confidence level). Although certainty is somewhat correlated
with residuals size, this is an important independent measure.
Specifically, it covers cases where the observed value is lower
than the predicted value, which is not always expressed in
CI range or high residuals.

Abnormal behavior is defined as one the following (see
right side of Fig. 1): (a) The predicted value is not in the
model CI; (b) the residuals between model prediction and
observed values are higher than threshold (set to be 3 times
the mean residuals on train data); (c) the certainty of the
model is lower than threshold (0.3). In order to avoid trailing
errors and secure robustness, when abnormal behavior is
detected, the observed values of the training period are
replaced with predicted values. On repeated detections (more
than twice) the model is adjusted back to observed values.

C. Evaluating model performance

In order to evaluate our model we systematically studied
the patients clinical records and drug charts, and compared
them with model anomaly detections. No clear abnormal
event, such as an outburst of violence or riot, was recorded
during the experiment period. We therefore used the PANSS
clinical records in order to identify abnormal events, which
are time stamps corresponding with a steep increase or
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Fig. 2. Description of model prediction vs. clinical and medication records monitoring for all four patients. The direction of the white arrows in the
bottom part of each graph indicates whether increased activity (up) or decreased activity (down) has been detected. A cross under the arrow indicates
unexplained detection, while a cross without an arrow indicates an event that wasn’t detected by the model. The dashed rectangle marks the training period
of the model. In the line chart above, the mean severity of positive (red) and negative (blue) symptoms is shown. The black symbols indicate a change in
drug dosage (arrow) or a single administration (square). In case of dosage change, the top graph (in patients A and C) indicates its amount (in mg).

decrease in symptom severity (more than 2 degrees on the
PANSS scale) between two clinical sessions. Results are
summarized in Fig. 2.

In an effort to capture some larger scale dynamics, we
took note of the general positive and negative symptoms
trend. Every change in drug dosage was also considered an
abnormal event, since these changes are rare and usually
indicate a change in a patient’s clinical condition. It should be
noted that increased drug dosage may be either a response to
abnormal activity (when the detected event took place prior
to drug adjustment) or its trigger (when the detected event
followed a drug adjustment). Decreased dosage, on the other
hand, is usually followed by continuous improvement in
symptom severity, but may still cause side effects. Therefore,
in order to obtain a coherent picture, both timing and the
direction of the dosage change were taken into account.

For each abnormal event detected by our model, we looked
for an explanation (as defined above) in the clinical records
(drug dosage and PANSS scores); an event which did not
have a satisfactory explanation, was labeled as ’unexplained’.
Likewise, a drug change event or a steep change in the
clinical evaluation data which was not detected by our model
was labeled as ’undetected’. The number of unexplained and
undetected events was used to roughly estimate the accuracy
and sensitivity of our model. Events in consecutive days were
counted as one continuous event.

1) Patient A: Abnormal increased walking behavior was
detected on September 6th. On the same day, the dosage of

entumin (a.k.a clotiapine), an atypical anti-psychotic drug,
was increased from 40mg 1/day to 40mg 2/day.

On September 15th, and then again during September
20-22, our model detected lower than expected activity. In
the clinical records, we see a significant increase in both
positive and negative symptoms during September 5-12, with
a steep rise in active social avoidance, hostility and social
withdrawal. Possibly this behavioral change has resulted
from the increased entumin dosage, although we cannot rule
out other possible triggers.

Following this deterioration in the patient’s condition, on
September 11th the dosage of lithium was increased, and
again on the 13th. Both positive and negative symptoms
were reduced in subsequent days, with active social avoid-
ance and hostility returning to normal values. We also see
the emergence of increased negative symptoms, including
blunted affect and passive apathetic social withdrawal.

Lithium is known to take effect within 1-3 weeks, so the
lower activity found by our model during September 20-22
may be the result of the September 11th dosage increase.
The September 15th detection remains unexplained by drug
records but is congruent with clinical data.

In summary, 2/3 detected events for this patient had a
co-found explanation in the clinical and medication records.
One event had only a weak co-found in the clinical data. No
clinical trend or drug changes remained undetected.

2) Patient B: The model detected a period of extreme in-
creased activity during January 19-24, followed by decreased
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activity during January 25-31. On January 19th, this patient
was given prothiazine, a neuroleptic medication used as a
sedative and weak anti-psychotic, for a period of 4 days.
We found no significant change in symptom severity for
this patient prior to the sedative drug administration, with
only a small decrease in overall negative symptoms at that
time. This is probably because clinical evaluation was not
frequent enough to capture the change. The fact that our
model detected this event while the clinical data did not, can
be used as evidence for the potential benefit of continuous
automated monitoring.

On January 25th, two days after the patient has stopped
receiving the medication, we see a small improvement in his
clinical condition with normal level of motor activity. In the
model this is expressed by a detected ’lower than expected’
activity, based on the increased activity in the previous days.

In summary, for this patient all detected events (2) had a
co-found explanation in the medication records but no co-
found (or a minor one) in the clinical records. No clinical
trend or medication alteration remained undetected.

3) Patient C: Increased activity level was detected by the
model on August 17th. Clinical data together with medical
records clearly suggest that around this period there was
an aggravation in the patient’s condition. On August 17th,
he was injected with 100mg of clopenthixole acetate (anti-
psychotic and acute sedative medication), and once again in
the following days (August 20-25). The drug’s effect seems
to have been dimmed unsatisfactory, since during August 24-
25 the patient was also prescribed 200mg and then 400mg
of carbamazepine (CBZ), an off label medication used in
combination with anti-psychotics when the treatment with
anti-psychotics alone has failed [10]. In the clinical data
we see a decrease in both negative and positive symptoms
severity around August 18-22, with a steep decrease in
hallucinations, poor attention, and motor retardation. This
improvement is most probably the result of the massive
drug treatment. On August 27th, after the patients symptoms
were reduced and drug treatment was stabilized, the model
detected a significant reduction in patient’s activity.

In August 7 the patient received two types of typical anti-
psychotic medications (clopenthixole and haloperidol), and
then again in August 10 (only clopenthixole). Since these
drugs act on a short term basis, it is not probable that the
the worsening in the patient’s condition in subsequent days
was triggered by this medication change. The most probable
explanation is that there was some acute event at that time,
which was not detected by our model.

In summary, all detected events (2) had a co-found ex-
planation in the clinical and medication records, while one
likely clinical event remained undetected.

4) Patient D: The model reported a period of decreased
activity during October 12-18, with low certainty. No med-
ication change was registered in this time period, and no
substantial evidence was found in the clinical data (only
a steep increase in stereotyped thinking). The overall trend
of symptoms’ change around that period leaned towards in-
creased negative symptoms and reduced positive symptoms.

TABLE I
SUMMARY OF ANOMALY DETECTION RESULTS AND PATIENTS’ DATA.

Days Sessions Explained Missed
Patient A 31 10 2/3 0
Patient B 29 7 2/2 0
Patient C 31 11 2/2 1
Patient D 27 7 0/2 0

This happened following approximately a week of steep
decrease in negative symptoms.

In summary, the event detected by our model had no
co-found explanation in the medication records. No clinical
trend or medication alteration remained undetected.

As summarized in Table I, when aggregating data from
all patients, 6/8 anomaly events detected by our model
had a co-found explanation in the medication and clinical
records (precision of 75%). 6/7 events were detected by our
model, with one certain mis-detection in patient C (recall of
85%).Other detected events may have alternative explanation
not available to our experimental design.

IV. CONCLUSIONS

Our study demonstrates the benefits of using forecasting
models in conjunction with accelerometer data for the con-
tinuous monitoring of schizophrenia patients. In three out of
four case studies, we found a direct link between detected
behavioral events and changes in the patient’s clinical con-
dition or drug regime.
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	תקציר
לוגרים באקולוגיה -גישת למידה חישובית לאנליזה של דאטה ביו

	של תנועה
A	Machine	Learning	Approach	to	Analysis	of	Biologger	
Data	in	Movement	Ecology	

 מנחים:
 דפנה ווינשל

 רן נתן
 

פריצות דרך טכנולוגיות של העת האחרונה שיפרו במידה ניכרת את הזמינות 
של מחשוב לביש הכולל סנסורים רבים. שני תחומים נהנו במיוחד מפריחה זו: 

מעקב אחרי בעלי חיים ומכשור רפואי. עם כמויות דאטה הולכות וגדלות, יש 
 צורך כעת בפיתוח שיטות להפיכת מידע לתובנות.

-בעבודה זו חקרתי ופיתחתי שיטות למידה חישובית לאנליזה של דאטה ביו
לוגרים. הפרק הראשון דן בשיטות לא מונחות לניתוח דאטה אקסלרומטרים, 
כאשר הבעיה מנוסחת כטופיק מודלינג מעל ברסטים של סיגנל אקסלרומטר. 
 השיטה מיושמת בשני התחומים הנדונים, עם תוצאות שממחישות את התועלת

 שבשימוש במכשור לביש הן להבנת בעלי חיים והן למעקב אחרי חולים.
מידע מיקום  –הפרק השני דן בסוג הדאטה הנפוץ ביותר שמגיע ממכשור לביש 

ובו מפותחת שיטה לניתוח של כמויות מידע גדולות לצרכים של וויזואיזציה  –
 ואנליזה. 

ל אקולוגיה של הפרק השלישי דן בשיטות כלליות שאמנם עולות בהקשר ש
תנועה, אבל בעלות השלכות רחבות למגוון תחומים של אנליזה של נתונים. 
הבעייה הראשונה הנדונה היא מילוי מידע חסר והשנייה בניית מסווגים עם 

 פונקציות הפסד שלוקחות בחשבון הן את המחלקה הנכונה והן את המנובאת. 
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