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Abstract

Deep active learning aims to reduce the annotation cost for the training of deep
models, which is notoriously data-hungry. Until recently, deep active learning
methods were ineffectual in the low-budget regime, where only a small number
of examples are annotated. The situation has been alleviated by recent advances
in representation and self-supervised learning, which impart the geometry of the
data representation with rich information about the points. Taking advantage of
this progress, we study the problem of subset selection for annotation through a
“covering” lens, proposing ProbCover – a new active learning algorithm for the
low budget regime, which seeks to maximize Probability Coverage. We then de-
scribe a dual way to view the proposed formulation, from which one can derive
strategies suitable for the high budget regime of active learning, related to exist-
ing methods like Coreset. We conclude with extensive experiments, evaluating
ProbCover in the low-budget regime. We show that our principled active learn-
ing strategy improves the state-of-the-art in the low-budget regime in several
image recognition benchmarks. This method is especially beneficial in the semi-
supervised setting, allowing state-of-the-art semi-supervised methods to match
the performance of fully supervised methods, while using much fewer labels.
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Summary of notation

Notation Description
X Input domain
Y Target domain
P Probability distribution over X

f True labeling function
f̂ Hypothesis for labeling function
Loss( f̂ ) Generalization error
X Unlabeled dataset
L Labeled dataset
b annotation budget
Bδ(x) Open ball of radius δ centered around x
δ Ball radius
C(L, δ) The covered region. Abbreviated to C
π(δ) The purity of δ
[k] The natural numbers {1, . . . , k}
pθ(y|x) The model’s label prediction distribution

Table 1: Notation Table
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1 Introduction

For the most part, deep learning technology critically depends on access to large
amounts of annotated data. Yet annotations are costly and remain so even in
the era of Big Data. Deep active learning (AL) aims to alleviate this problem by
improving the utility of the annotated data. Specifically, given a fixed budget b
of examples that can be annotated, and some deep learner, AL algorithms aim to
query those b examples that will most benefit this learner.

In order to optimally choose unlabeled examples to be annotated, most deep AL
strategies follow some combination of two main principles: 1) Uncertainty sam-
pling [e.g., 26, 49, 3, 13, 14, 36, 25], in which examples that the learner is most
uncertain about are picked, to maximize the added value of the new annotations.
2) Diversity Sampling [e.g., 1, 21, 15, 40, 17, 42, 37, 16, 48, 45, 47], in which ex-
amples are chosen from diverse regions of the data distribution, to represent it
wholly and reduce redundancy in the annotation.

Most AL methods fail to improve over random selection when the annotation
budget is very small [35, 41, 7, 32, 55, 20, 2], a phenomenon sometimes termed
"cold start" [8, 50, 15, 51, 23]. When the budget contains only a few examples,
they struggle to improve the model’s performance, and even fail to reach the ac-
curacy of the random baseline. Recently, it was shown that uncertainty sampling
is inherently unsuited for the low-budget regime, which may explain the cold
start phenomenon [18]. The low-budget scenario is relevant in many applica-
tions, especially those requiring an expert tagger whose time is expensive (e.g.,
a radiologist tagger for tumor detection). If we want to expand deep learning to
new domains, overcoming the cold start problem is an ever-important task.

In this work, we focus on understanding the very low budget regime of AL,
where the budget of b examples cannot dependably represent the annotated data
distribution. To face up to this challenge, in Sections 3.1-3.2 we model the prob-
lem as Max Probability Cover, defined as follows: given some data distribution,
and a radius δ, select the b examples that maximize the probability of the union
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CHAPTER 1. INTRODUCTION 2

of balls with radius δ around each example. We further show that under a sepa-
ration assumption that is realistic in semantic embedding spaces, Max Probability
Cover is befitting the nearest-neighbor classification model, in that it minimizes
an upper bound on its generalization error.

In Section 3.3 we show a connection with existing deep AL methods, like Core-
set [37], and explain why those methods are more suitable for the high-budget
regime than the low-budget regime. This phenomenon is visualized in Fig. 3.4,
where we see that with only a few examples to choose, Coreset – an AL strat-
egy that employs the principle of diversity sampling – chooses distant and often
abnormal points, while ProbCover chooses representative examples.

When using the empirical data distribution, we further show that Max Probabil-
ity Cover can be reduced to Max Coverage – a known classical NP-hard problem
[34] (see Section 3.2). To obtain a practical AL strategy, in Chapter 4 we adapt a
greedy algorithm for the selection of b examples from a fixed finite training set of
unlabeled examples (the training set), which guarantees 1− 1

e approximation to
the problem. We call this new method ProbCover.

In Chapter 5 we empirically evaluate the performance of ProbCover on several
computer vision datasets, including CIFAR-10, CIFAR-100, Tiny-ImageNet, Im-
ageNet and its subsets. ProbCover is thus shown to significantly outperform
all alternative deep AL methods in the very low-budget regime. Additionally,
ProbCover improves the performance of state-of-the-art semi-supervised meth-
ods, which were thought until recently to make AL redundant [6], allowing for
the learning of computer vision tasks with very few annotated examples.



2 Background and Related Work

2.1 Statistical Learning

2.1.1 Supervised Learning

We review the basic definitions of statistical learning [39]. We let X be the input
domain, where the data samples reside, and Y be the label space, which in the
classification setting is taken to be Y = [k]. We assume there exists a distribu-
tion P over the input space X. Usually, we are interested in some relationship
between the input X and the labels Y. That relationship can either be formulated
as a function f : X → Y, the labeling function, or more generally as a conditional
distribution p(y|x). Either way, we wish to capture that relationship, and to that
end we have access to a dataset D = {xi, yi}n

i=1, which we assume is indepen-
dently identically distributed (iid) as P. Given the data, a learning algorithm will
produce a hypothesis f̂ : X → Y, which is supposed to approximate the true re-
lationship between the inputs and the labels. Success is often measured by the
misclassification error, the 0-1 loss, which in the deterministic case is

Loss( f̂ ) = E
[

f̂ (x) ̸= f (x)
]

As we don’t assume to have access to the data distribution, the empirical risk min-
imization (ERM) principle is employed, meaning the learning algorithm seeks to
minimize the empirical loss on the training set

Lossemp( f̂ ) =
1
n ∑

i
1 f̂ (xi) ̸=yi

3



CHAPTER 2. BACKGROUND AND RELATED WORK 4

Often, the output of the learning algorithm is not a predictor but a parametrized
probability distribution over the possible labels pθ(y|x). The predictor is then set
to output the label with the highest probability

f̂ (x) = argmaxy pθ(y|x)

An example of a model which produces such such distribution is logistic regress-
sion.

2.1.2 Semi-Supervised learning

In the semi-supervised learning scenario, the learner has access to a large unlabeled
pool of data X, and a small pool of labeled data L. The aim is then to leverage the
unlabeled pool X to improve upon the performance possible when using only la-
beled data. Semi-supervised learning is one learning formulation for the scenario
where labeled data is scarce but unlabeled data is abundant.

Deep semi-supervised learning is a subfield with methods designed specifically
for use with neural network models. In our benchmarks we use a semi-supervised
algorithm called FlexMatch [52], which is an elaboration on a semi-supervised al-
gorithm called FixMatch[43].

In FixMatch, the idea is to generate pseudolabels for part of the unlabeled data,
and then train a classifier pθ(y|x) to predict them as well as the labeled data. In
a sense, it tries to increase the size of the labeled pool by turning unlabeled data
into labeled data.

To generate a pseudolabel for a given unlabeled sample x, the algorithm cre-
ates two augmentations of the sample: a weak augmentation ωw(x) and a strong
augmentation ωs(x) (the weak/strong terminology refers to how different the re-
sulting augmentation is from the original sample). The classifier then predicts a
label for the weak augmentation, and this prediction becomes the pseudolabel.

ỹ = argmaxy pθ(y|ωw(x))

The authors observed that generating pseudolabels for the entire unlabeled pool
was detrimental to the performance, so they added a filtering mechanism to im-
prove the quality of the pseudolabels. A sample only gets a pseudolabel if the
classifier is confident about its prediction from the weak augmentation. Specif-
ically, the pseudolabel is only generated if the prediction probability from the
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Figure 2.1: Illustration of FixMatch pseudolabel creation and auxiliary loss.

weak augmentation is greater than a fixed threshold T (which is a hyperparame-
ter determining the required confidence level):

pθ(ỹ|ωw(x)) ≥ T

The unlabeled training loss is then the cross entropy

∑
x∈U

1pθ(ỹ|ωw(x))≥T H(1ỹ, pθ(·|ωs(x))

In the FlexMatch paper, the authors improved upon FixMatch by adding an adap-
tive class specific threshold. This alleviates some of the problem FixMatch suffers
from, like imbalanced distribution of pseudolabels, and unstable training.

2.1.3 Unsupervised and Self-Supervised learning

In the unsupervised learning framework, the only data available is unlabeled data
X. Without the guidance of labels, it is often used to find structure or patterns in
the data. Unsupervised learning algorithms are often applied to problems such
as dimensionality reduction, clustering and anomaly detection.

Self-supervised learning (SSL) is a form of unsupervised learning. It generates and
trains on auxiliary tasks from unlabeled data. The network can be pretrained on
these tasks in a supervised manner, and can later be used as a learned represen-
tation, or further fine-tuned on a smaller amount of labeled data. SSL techniques
have been shown to be effective in learning useful representations for text and im-
age data. For representation learning, one of the final layers of the trained model
is taken to be the input’s representation, usually after some sort of normalization.
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In our experiments we make use of two SSL techniques: SimCLR[9] and DINO[5].
SimCLR defines a contrastive auxiliary task, where the goal is to maximize simi-
larity between different views of the same data point, while minimizing similar-
ity to views from other data points. The views are generated using augmenta-
tions: positive pairs are two augmentations from the same sample, and negative
pairs are augmentations from other samples. During training, the model predicts
which of the samples presented is the positive pair. The contrastive loss encour-
ages the representation of positive pairs to be similar while encouraging negative
pairs representation to be dissimilar.

DINO is another method inspired by the concept of knowledge distillation. It in-
volves training a student network to mimic the output of a teacher network. To
generate the training data, a set of crop augmentations is generated from an im-
age. Two of the augmentations are global, comprising most of the image, and are
passed through the teacher. The remaining crops are local and passed through
the student. A cross-entropy loss is employed between the student and teacher’s
output. This encourages the student network to learn features discriminating
local and global properties of images.

In knowledge distillation, the teacher network is a pretrained model, so the stu-
dent’s task of predicting the teacher’s outputs can be seen as "distilling" the
teacher. In the SSL scenario, the teacher has to be bootstrapped during training.
In DINO the teacher’s parameters are periodically updated from an exponen-
tially moving average of the student’s parameters. To prevent the phenomena of
"model collapse", where all the outputs are trivially mapped to the same vector,
two measures are taken: The teacher’s outputs are mean-centered over the batch,
and the outputs are "sharpened" using low-temperature softmax. This measures
help ensure the stability and success of the training.

2.1.4 Active Learning

In the previous sections, the learning framework was static, with the unlabeled
and labeled data a fixed part of the learning problem. Active learning adds an
interactive element to the learning process, by letting the learner query for ad-
ditional labels during the learning process. This is similar to how a student can
ask a teacher a question to improve their understanding.This way, the learner
can adaptively select the most informative samples, instead of relying on a fixed
set of labeled samples, as in unsupervised learning, with the hope that this will
result in accelerated learning.

The training process in active learning is iterative. First, the learner is supplied
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Figure 2.2: Illustration of the active learning loop [38].

with an unlabeled pool and a smaller pool of labeled examples (which may be
empty). It then trains on the available data and uses the resulting predictor to
query additional samples from the unlabeled pool. The process is repeated for a
number of rounds determined by the budget b available. In the end, the learner
produces a predictor trained on the final unlabeled and labeled pools. Figure 2.2
visualizes the process.

A distinction between "high" and "low" budget scenarios has been made in the
context of deep learning. Informally, the budget is low when it is in the similar
order of magnitude to the number of classes. As deep learning requires large
amounts of data, Hacohen et al. [18] observed that most active learning strategies
failed to improve deep models over the random baseline when the budget was
low. They provided an analysis of this distinction and showed that the differ-
ent scenarios require different approaches. While uncertainty based approaches
work well in the high budget, geometry-based approaches, such as clustering,
are more effective in the low budget.

Active learning has been a field of study since the 1990s and includes a wide
variety of works, ranging from theoretical analysis under the statistical learn-
ing framework to more practical, heuristic-based methods. We next describe
the prominent active learning methods against which we compare in our experi-
ments.
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Uncertainty sampling methods

Uncertainty based methods query samples that the model is least certain about,
based on various criteria. These include least confidence, max-margin and entropy.
They each measure prediction uncertainty in a different way. For a sample x with
predicted label ŷ = argmaxy pθ(y|x), the scores are:

• Least confidence - 1− pθ(ŷ|x)

• Max-margin - pθ(ŷ|x)−maxy ̸=ŷ pθ(y|x)

• Entropy - H(pθ(·|x))

BADGE [1] is a method designed for deep learning models. It is an uncertainty
sampling based method, with some consideration of diversity. The idea behind
the method is to use the weights’ gradient of the loss for each sample as the source
of information for uncertainty. They compute a pseudolabel ŷ(x) for each sample
x and calculate the gradient gθ(x) of the last layer with respect to the loss on the
pseudolabel − log pθ(ŷ|x). This gradient is then taken as an embedding vector.
Furthermore, this embedding can be thought of as an uncertainty embedding:
uncertain predictions results in larger gradient norms. The k-means++ algorithm
is then used to select samples from the gradient embedding space. This algorithm
is an initialization scheme for k-means, so it naturally favors diverse and large
norm embeddings.

The uncertainty approach can also be used in the Bayesian framework. DBAL [14]
(Deep Bayesian Active Learning) is a method for doing Bayesian uncertainty es-
timation on CNNs. In the paper the authors show that dropout layers are equiva-
lent to doing Monte-Carlo approximations of the posterior uncertainty and other
bayesian measures. In our experiments DBAL refers to the use of the method for
approximating the Bayesian entropy measure

H(y|x, L)

We also use the method to approximate and compare against BALD [22] (Bayesian
Active Learning by Disagreement), another aquisition function defined as

I[y, θ|x, L] = H(y|x, L)−Eθ[H(y|x, θ)]

This quantity is maximized when H(y|x, L) is high, so the prediction of y from
x given the labeled data L is uncertain, and Eθ[H(y|x, θ)] is low, so individual
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parameter produce confident predictions of y. Thus it maximizes disagreement
between different parameters/models.

Diversity sampling methods and batch queries

When it comes to deep learning, the single point query setting is unrealistic, as
training is performed by gradient descent on minibatches of data, and adding
one sample has little effect on performance, while the training is costly. Therefore,
some strategies choose a batch of points to query at once. Querying in batches in-
troduces the problem of redundancy, where many points are informative on their
own but overlapping in information. As an example, consider the case where un-
certainty sampling is used. All the queried points in the batch might have a high
uncertainty, but if they are extremely similar then the added value of the batch
is diminished. Hence, there must be some consideration for the diversity of the
queried batch.

Coreset [37] is a diversity-based method: it aim to select a labeled set L that mini-
mize the maximum facility location distance

max
u∈X

min
l∈L

d(u, l)

which intuitively causes selected samples to come from diverse regions of the
space. Since it is a NP-hard goal the actual method uses a greedy approximation.
Since distances in high-dimensional input spaces are are often non-informative,
the method uses as an embedding the activations of the last few layers of the
trained model.

TypiClust [18] is a method intended for the low-budget active learning scenario.
It uses learned self-supervised representation, and clusters the embeddings into
b different clusters, choosing from each cluster the densest example.

W-Dist [30] is another low-budget active learning method, that aims to choose a
labeled set L that minimizes the Wasserstein distance to the unlabeled set. As the
objective is a MIP optimization problem, the authors derive and use an iterative
approximation scheme.
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2.2 Maximum Coverage

In this work we refer to Max Coverage, a known NP-hard problem. We recapitu-
late its definition as follows:

Definition 2.2.1 (Max Coverage). Let b ∈ N denote an integer, U denote a set of

elements, and let S = {S1, . . . , Sm} denote a collection of subsets of U. In the

problem of Max Coverage we wish to find b subsets in S with union of maximum

cardinality

argmax
S′⊆S;|S′|=b

∣∣∣∣∣∣ ⋃Si∈S′
Si

∣∣∣∣∣∣



3 Theory

There is already a large body of work analysing active learning algorithms through
the lens of statistical learning, but similarly to the case with deep learning in gen-
eral, there is still a large gap between theory and practice. In light of that, we
choose in this work a different, geometrical and distribution-based approach to
motivate our suggested active learning method. We also incorporate the exis-
tence of semantic embedding spaces through assumptions on the "niceness" of
the label distribution.

Nearest-Neighbor models are often used to compare the quality of supervised
and self-supervised representations, based on the intuition that a good represen-
tation allows classification with simple models. We extend this notion further,
and consider the accuracy of 1-NN models as a proxy for the labeled examples’
informativeness. With this assumption we can mathematically analyse the effect
of different sample sets on performance, and suggest a theoretically-motivated
AL method.

3.1 Bounding the Generalization Error

We restate some of the notation, and lay a few definitions. Most important is the
assumption of δ-purity, which states that most of the time, points that are less
than δ apart have the same label. We then prove a lemma, showing that given
a labeled set L and the coverage it achieves, and given the δ-purity assumption,
the probability of a point being inside this cover and still being falsely labeled is
small. From this, we finally derive a bound on the generalization error, which is
stated in Thm. 1.

11
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Notations Let X denote the input domain whose underlying probability func-
tion is denoted P, and let Y = [k] denote the target domain. Assume that a
true labeling function f : X → Y exists. The Generalization Error of a hypothesis
f̂ : X → Y is defined as Loss( f̂ ) = E

[
f̂ (x) ̸= f (x)

]
. Let X = {xi}m

i=1 denote an
unlabeled set of points, and b ≤ m the annotation budget. Let L ⊆ X denote the
labeled set, where |L| = b. Let Bδ (x) = {x′ : ∥x′ − x∥2 ≤ δ} denote a ball cen-
tered at x of radius δ. Let C ≡ C(L, δ) =

⋃
x∈L Bδ(x) denote the region covered

by δ-balls centered at the labeled examples in L. We call C(L, δ) the covered region
and P (C) the coverage.

Definition 3.1.1. We say that a ball Bδ(x) is pure if ∀x′ ∈ Bδ(x) : f (x′) = f (x).

Figure 3.1: Pure and impure balls. On the left is a pure ball, containing labels from only
one class. On the right is an impure ball, with labels from two classes.

Definition 3.1.2. We define the purity of δ as: π (δ) = P ({x : Bδ (x) is pure}).

Remark. π(δ) is monotonically decreasing.

Let f̂ denote the 1-NN classifier based on L. We split the covered region C(L, δ)
into two sets:

Ctrue = {x ∈ C : f̂ (x) = f (x)}, C f alse = C \ Ctrue.

Lemma 1. C f alse ⊆ {x : Bδ(x) is not pure}.

Proof. Let x ∈ C f alse. Let c ∈ L denote the nearest neighbor to x. Then they have

the same predicted label, f̂ (x) = f̂ (c). Furthermore, since c is labeled f (c) =
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f̂ (c). x ∈ C f alse, meaning it is wrongly labeled by f̂ ,

f (c) = f̂ (c) = f̂ (x) ̸= f (x).

Finally, since x ∈ C f alse ⊆ C is in the coverage, d(x, c) < δ, which means that

c ∈ Bδ(x) with a different label and so Bδ(x) is not pure.

x

x̃

d

δ

Figure 3.2: Proof illustration for lemma 1. x̃ ∈ C f alse while x is its closest labeled neighbor.
Both have different labels (indicated by the colors), and their distance d is smaller than δ,
so the ball Bδ(x̃) is not pure.

Corollary 1.

P(C f alse) ≤ P({x : Bδ(x) is not pure}) = 1− π(δ).

Theorem 1. The generalization error of the 1-NN classifier f̂ is bounded by

Loss( f̂ ) ≤ (1− P(C(L, δ))) + (1− π(δ)). (3.1)
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Proof.

Loss( f̂ ) = E[1 f (x) ̸= f̂ (x)] = E[1 f (x) ̸= f̂ (x)1x/∈C] + E[1 f (x) ̸= f̂ (x)1x∈C]

≤ P(x /∈ C) + E[1 f ̸= f̂1x∈Ctrue ] + E[1 f (x) ̸= f̂ (x)1x∈C f alse ]

≤ P(x /∈ C) + 0 + P(x ∈ C f alse)

≤ (1− P(C(L, δ))) + (1− π(δ)).

Note that (1) gives us a different bound for different δ values, and also depends
on the labeled set L. This bound introduces a trade-off: as δ increases, the coverage
increases, but the purity decreases. Therefore, we wish to find the pair δ, L that
gives the tightest bound.

We can interpret (3.1) in the context of two boundary conditions of AL: high-
budget and low-budget. In the high-budget regime, achieving full coverage
P(C) = 1 is easy as we have many points, and the remaining challenge is to
reduce 1− π(δ). Since π(δ) is monotonically decreasing, we can seek to mini-
mize δ subject to the constraint P(C) = 1. This is similar to Coreset [37]. In the
low-budget regime, full coverage entails very low purity, which (if sufficiently
low) makes the bound trivially 1. Thus, instead of insisting on full coverage, we
can fix a δ that yields "large enough" purity π(δ) > 0, and then seek a labeled set
L that maximizes the coverage P(C). We call this problem Max Probability Cover.

3.2 Max Probability Cover

Definition 3.2.1 (Max Probability Cover). Fix δ > 0, and obtain a subset L ⊂

X, |L| = b, that maximizes the probability of the covered space

argmax
L⊆X;|L|=b

P(
⋃
x∈L

Bδ(x)) (3.2)

An optimal solution to (3.2) would minimize the bound in (3.1), when δ is fixed
(thus fixing 1− π(δ)).

Unfortunately, when moving to practical settings, there are two obstacles. The
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first is complexity:

Theorem 2. Max Probability Cover is NP-hard.

The second problem is that the data distribution is hardly ever known apriori,
and even if it were, the probability computation would likely be intractable and
hard to approximate. Instead, we may use the empirical distribution P̃(A) =
1
n ∑n

i=1 1xi∈A as an approximation, to get the following result:

Proposition. When P is taken to be the empirical distribution P̃, the Max Prob-

ability Cover objective function is equivalent to the Max Coverage 2.2.1 objective,

with {Bδ(xi) ∩ X}n
i=1 as the collection of subsets.

Proof. Given a labeled set L = {xi}b
i=1, we show equality of objectives up to

constant 1
|X| =

1
b

P

(
b⋃

i=1

Bδ(xi)

)
= P

(
{y ∈ Rd | ∃i ∥xi − y∥ < δ}

)
=

1
|X| |{x ∈ X | ∃i ∥xi − x∥ < δ}|

=
1
b

∣∣∣∣∣ b⋃
i=1

(Bδ(xi) ∩ X)

∣∣∣∣∣

3.2.1 Max Probability Cover is NP-Hard

We first describe a constructive procedure to generate a collection of balls in Rm

with a property we call exhaustive intersection (Def. 3.2.3). We then use this collec-
tion in order to construct a reduction from Max Coverage to Max Probability Cover.

Exhaustive Intersection: Constructive Procedure

Let {ei}m
i=1 denote the natural basis of Rm. Let Br(p) denote the open ball of

radius r around p, and Let Br[p] similarly denote the closed ball.



CHAPTER 3. THEORY 16

Definition 3.2.2 (Inversion mapping). We define the inversion mapping ι : Rm \

{0} → Rm \ {0} as

ι(p) =
p
∥p∥2

2

(a) (b) (c)

Figure 3.3: (a) Visualization of Lemma 2. The blue points above the plane y = 1 are
mapped by ι(·) to the red points inside B 1

2
( 1

2 e2). Points below y = 1 are mapped outside

the ball. (b) The exhaustive intersection in R2. (c) Visualization of the induced distribu-
tion for m = 2. Points 1, 3 are mapped to disjoint parts of the two balls, while point 2
is mapped to their intersection B 1

2
( 1

2 e1) ∩ B 1
2
( 1

2 e2). Each point is then assigned a Dirac
measure and the distribution is the normalized sum, as a result of which we get that
P(B 1

2
( 1

2 e1)) = P(B 1
2
( 1

2 e2)) =
2
3 .

Lemma 2. Let HSi = {x ⊆ Rm | x · ei > 1} denote a halfspace. Then ι(HSi) ⊆

B 1
2
(1

2 ei).

Proof. Let x ∈ HSi. Membership in the two sets is defined by satisfying the

equations x · ei > 1 and d(ι(x), 1
2 ei) < 1

2 . We will show that they are equivalent

(see visualization in Fig. 3.3a). We use the polarization identity a · b = 1
2(∥a∥2 +

∥b∥2 − d(a, b)2)
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1 < x · ei

1
2∥x∥2 <

(
x
∥x∥2

)
·
(

1
2

ei

)
1

2∥x∥2 <
1
2

(
1
∥x∥2 +

1
4
− d
( x
∥x∥2 ,

1
2

ei

)2
)

d
(

x
∥x∥2 ,

1
2

ei

)2

<
1
4

d
(

ι(x),
1
2

ei

)
<

1
2

Corollary 2. x ̸= 0, x · ei < 1 ⇐⇒ ι(x) /∈ B 1
2
[1

2 ei].

Definition 3.2.3 (Exhaustive intersection). A collection of sets (A1, . . . , Am) is

said to have the exhaustive intersection property if for any subset of indices I ⊂ [m]

there exists a point xI with

1. xI ∈
⋂

i∈I Ai

2. xI /∈ ⋃j∈[m]\I Aj

Put differently, xI ∈ Ai ⇐⇒ i ∈ I (see the Venn diagram example in Fig. 3.3b).

Lemma 3. The collection of balls {B1
2
(1

2 ei)}m
i=1 in Rm satisfies the exhaustive inter-

section property.

Proof. Let I ⊆ [m] denote a subset of indices and define x̃I = ∑j∈I 2ej, xI = ι(x̃I).

From Lemma 2, for any j ∈ I, x̃I · ej = 2 ⇒ xI ∈ B 1
2
(1

2 ej), which proves the first

part of Def. 3.2.3. From Cor. 2, any j /∈ I, x̃I · ej = 0⇒ xI /∈ B 1
2
(1

2 ej), which proves

the second part.
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Reduction from Max Coverage to Max Probability Cover

Before we start, we note that in order for Max Probability Cover to be computable
and not be trivially polynomial, we must assume that the encoding of the input
distribution to Max Probability Cover is of polynomial size in the number of points.

Theorem 2. Max Probability Cover is NP-hard.

Proof. We construct a polynomial-time reduction from any Max Coverage problem

P to another problem P̃, which is an instance of Max Probability Cover. Let In =

(S1, . . . , Sm, b) be the input to P, and let U =
⋃m

i=1 Si.

We define a mapping from the input of P to the input of P̃: First, we fix the

input space of P̃ to Rm, where m is the number of sets in P, and fix the set of m

points X in P̃ to {1
2 ei}m

i=1 ⊆ Rm. We let b remain the same, and fix the radius

δ = 1
2 . We abbreviate Bi = B 1

2
(1

2 ei). Next, we define a mapping T : U → Rm as

T (u) = ι(∑m
i=1 2 · 1u∈Si ei). From the proof of Lemma 3 we conclude that

T (u) ∈ Bi ⇐⇒ u ∈ Si

Finally, we define the probability distribution P as P(A) = 1
|U| ∑u∈U 1T (u)∈A (see

visualization in Fig. 3.3c).

Lemma 4. P is a valid probability distribution.

Proof. P is a finite sum of Dirac measures 1T (u)∈A, and as such it is a measure

itself. Hence we only need to show that it is normalized, ie P(Rm) = 1:

P(Rm) =
1
|U| ∑

u∈U
1T (u)∈Rm =

1
|U| ∑

u∈U
1 = 1

In summary, the input of P̃ is the following:
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• Dataset: X(In) = { 1
2 ei}m

i=1 ⊆ Rm.

• Budget: b(In) = b.

• Ball radius: δ(In) = 1
2 .

• Distribution: (P(In))(A) = 1
|U| ∑u∈U 1T (u)∈A

Before we continue, we require another short lemma:

Lemma 5. For all u ∈ U, I ⊆ [m], 1T (u)∈⋃i∈I Bi
= 1u∈⋃i∈I Si

Proof. We prove the conditions are equivalent:

T (u) ∈
⋃
i∈I

Bi ⇐⇒ ∃i ∈ I T (u) ∈ Bi ⇐⇒ ∃i ∈ I u ∈ Si ⇐⇒ u ∈
⋃
i∈I

Si

To show that a reduction is valid for an optimization problem, we need to show

that the objectives are equivalent. The objective in Max Coverage is the size of the

union, whereas in Max Probability Cover it is the probability of the δ-ball union.

P(
⋃
i∈I

Bi) =
1
|U| ∑

u∈U
1T (u)∈⋃i∈I Bi

=
1
|U| ∑

u∈U
1u∈⋃i∈I Si

=
1
|U|

∣∣∣∣∣⋃
i∈I

Si

∣∣∣∣∣

Since |U| is constant the optimization is equivalent.

Finally, we show that the induced probability can be specified in polynomial

space: as |U| is polynomial in the size of the input, it follows that the distri-

bution as a normalized sum of indicator functions can be specified as a table of
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the embedding of size |U| ·m, which is polynomial.

3.3 The "Duality" of Max Probability Cover and Core-

set

The Coreset AL method by Sener et al. [37] minimizes the objective

δ(L) = max
x∈X

min
c∈L

d(x, c) = min{δ ∈ R+ : X ⊆
⋃
c∈L

Bδ(c)}

We can rewrite the above in the language of distributions as

δ′(L) = min{δ ∈ R+ : P(
⋃
c∈L

Bδ(c)) = 1}

If we use the empirical distribution then δ(L) = δ′(L). In this framework we can
say that Max Probability Cover and Coreset are dual problems (in a loose sense) as
follows:

1. Max Probability Cover minimizes the generalization error bound (3.1) when we
fix δ and seek to maximize the coverage, which is suitable for the low budget
regime.

2. Coreset minimizes the generalization error bound (3.1) when we fix the cover-
age to 1 and minimize δ, which is suitable for the high budget regime because
only then can we fix the coverage to 1.

This duality is visualized in Fig. 3.4.
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(a) 5 Samples

ProbCover selection

Coreset selection

(b) 20 Samples (c) 50 Samples

Figure 3.4: ProbCover selection (top) vs Coreset selection (bottom) of 5/20/50 samples (out
of 600). Selected points are marked by x, which is color-coded by density (see color code
bar to the right). Density is measured using Gaussian Kernel Density Estimation, and the
covered area is marked in light blue. Coreset attempts to minimize ball size, constrained
by complete coverage, while ProbCover attempts to maximize coverage, constrained by
a fixed ball size. Note that especially in low budgets, such as 5 samples, Coreset only
selects outliers of the distribution (yellow), while ProbCover selects from dense regions of
the distribution (red).



4 Methods

To deliver a practical method, we first note that our approach implicitly relies on
the existence of a good embedding space [4, 10, 54], where distance is correlated
with semantic similarity, and where similar points are likely to bunch together in
high-density regions. As is now customary [e.g., 30, 18], we use an embedding
space derived by training a self-supervised task over the large unlabeled pool.
In such a space similar labels often correspond to short distances, making 1-NN
classification suitable, and also providing for the existence of large enough δ balls
with good purity and coverage properties.

Secondly, we note that Max Coverage is NP-hard and cannot be solved efficiently.
Instead, as its objective is submodular and monotone [27], we use the greedy
approximate algorithm that achieves

(
1− 1

e

)
-approximation [27]. A better ap-

proximation is impractical, as shown in App. B.1.

Below, we describe the greedy algorithm in Section 4.1, and the estimation of ball
size δ in 4.1.2.

4.1 Greedy Algorithm

The algorithm (see Alg. 1 for pseudo-code) proceeds as follows: First, construct a
directed graph G = (V, E), with V = X being the embedding of the dataset, and
(x, x′) ∈ E ⇐⇒ x′ ∈ Bδ (x). In G, each vertex represents a specific example,
and there is an edge between two vertices (x, x′) if x′ is covered by the δ-ball
centered at x (distances are measured in the embedding space). The algorithm
then performs b iterations of the following two steps: (i) pick the vertex xmax with
the highest out-degree for annotation; (ii) remove all incoming edges to xmax and
its neighbors.

22
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Algorithm 1 ProbCover

Input: unlabeled pool X, labeled pool L, budget b, ball-size δ
Output: a set of points to query
X← Embedding of representation learning algorithm on X ∪ L
G = (V = X, E = {(x, x′) : x′ ∈ Bδ (x)})
for all c ∈ L do

Remove the incoming edges to covered vertices, {(x′, x) ∈ E : (c, x) ∈ E}, from E
end for
Queries← ∅
for all i=1,. . . ,b do

Add c ∈ X with the highest out-degree in G to Queries
Remove the incoming edges to covered vertices, {(x′, x) ∈ E : (c, x) ∈ E}, from E

end for
return Queries

4.1.1 Time and Space complexity

ProbCover is run once before the training loop begins. It selects the best subset to
be labeled by humans, which is then used to train the model.

For the complexity calculation below, let n denote the number of examples in
the unlabeled and labeled pools |X ∪ L|, d the dimension of the data embedding
space, and b the query budget. ProbCover can be split into two steps:

Adjacency graph

Constructing the adjacency graph requires computing pairwise distances in the
embedding space.

Time Complexity: O(n2d) time. In practice, it takes roughly 10 minutes on a
single NVIDIA A4000 GPU even on the largest dataset we consider – ImageNet
with DINO embedding, where n = 1281167, d = 384.

Space Complexity: naively we have O(n2), which is impractical for large datasets
like ImageNet. However, we only need to save edges whose distance is smaller
than δ. We store the edges using a sparse matrix in coordinate list (COO) format,
so the space complexity is O(|E|), where E is the set of edges in the graph.

Although O(|E|) is still O(n2) in the worst case, in practice, the average degree of
each vertex in the graph using radius δ is a few orders of magnitude smaller than
n, resulting in manageable space complexity. For example, When selecting sam-
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ples from ImageNet with δ = 0.55, the average degree was 24 and the algorithm
total memory consumption was 12GB.

Sample selection

We iteratively select samples from the current sparse graph, removing incoming
edges to newly covered samples. We note that unlike the adjacency graph cre-
ation, the sample selection cannot be parallelized, as each selection step depends
on the previous step.

Time Complexity

Breaking down the steps in the selection of a single sample:

• Calculating node degrees – O(|E|) time.
• Finding node with a maximal degree – O(n) time.
• Removing covered points’ incoming edges from the graph – O(|E|) time.

All in all, the complexity is O(|E|+ n) for selecting a sample, and O(n2k) in the
worst case. As we select more and more points, more edges are removed, making
the selection of later samples faster. In practice, thanks to the vectorization of
these steps it takes roughly 15 minutes to select k = 1000 samples from ImageNet
on a single CPU, and a couple of seconds from CIFAR-10/100.

4.1.2 Estimating δ

Our algorithm requires the specification of hyper-parameter δ, the ball radius,
whose value depends on details of the embedding space (see App. A.1 for em-
beddings used). In choosing δ, we need to consider the trade-off between large
coverage P(C) and high purity π(δ). We resolve this trade-off with the following
heuristic, where we pick the largest δ possible, while maintaining purity above a
certain threshold α ∈ (0, 1). Specifically,

δ∗ = max {δ : π (δ) ≥ α}

Importantly, α is more intuitive to tune, and is kept constant across different
datasets (unlike δ). We still need to estimate the purity π (δ), which depends
on the labels, from unlabeled data. To this end, we estimate purity using unsu-
pervised representation learning and clustering. First, we cluster self-supervised
features using k-means with k equal to the number of classes. For a given δ, we



CHAPTER 4. METHODS 25

compute the purity π(δ) using the clustering labels as pseudo-labels for each ex-
ample. Searching for the best δ, we repeat the process and pick the largest δ so
that at least α = 0.95 of the balls are pure.

In Fig. 4.1, we plot the percentage of pure balls across different datasets as a
function of δ, where the dashed line represents the δ∗ chosen by our method.

(a) CIFAR-10 (b) CIFAR-100 (c) Tiny-ImageNet (d) ImageNet

Figure 4.1: Ball purity, as a function of δ, estimated from the unlabeled data (see text).
The dashed line marks the highest δ, after which purity drops below α = 0.95.



5 Results

In this chapter we present the results of our empirical study, comparing ProbCover
to other AL strategies in a variety of settings. We focus on the very low budget
regime, where the budget size b is of a similar order of magnitude as the number
of classes. It is worth noting that in this scenario, the initial labeled set is likely
going to be unbalanced across classes, as the data is picked from an unlabeled
pool, so in the early stages of training some classes will almost always be miss-
ing. Despite this hurdle, ProbCover consistently outperforms the competitors and
demonstrates its robustness, as seen below.

5.1 Methodology

The following three deep active learning frameworks are evaluated:

(i) Fully supervised: A fully supervised DNN with the ResNet-18 architecture is
trained using only annotated data.

(ii) Semi-supervised by transfer learning: A representation of the data is created
by training with a self-supervised task on the unlabeled data, and then
a 1-NN classifier is constructed using this representation in a supervised
manner. This framework is intended to capture the basic benefits of semi-
supervised learning, regardless of the added benefits provided by modern
semi-supervised learning methods or the more sophisticated derivation of
pseudo-labels.

(iii) Fully semi-supervised: A competitive semi-supervised model is trained on
both the annotated and unlabeled data. In our experiments we use Flex-
Match by Zhang et al. [52].

In frameworks (i) and (ii) we adopt the evaluation kit created by Munjal et al.
[33], in which we can compare multiple deep AL strategies in a principled way.

26
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In framework (iii), we adopt the code and hyper-parameters provided by Flex-
Match.

When evaluating frameworks (i) and (ii), we compare ProbCover to 9 deep AL
strategies as baselines. (1) Random query uniformly. (2)-(4) query examples
with the lowest score, using the following basic scores: (2) Uncertainty – max
softmax output, (3) Margin – margin between the two highest softmax outputs,
(4) Entropy – inverse entropy of softmax outputs. (5) BADGE [1]. (6) DBAL [14].
(7) TypiClust [18]. (8) BALD [26]. (9) W-Dist [30], see also App. B.4. (10) Coreset
[37]. We note that while most baseline methods are suitable for the high budget
regime, TypiClust and W-Dist are also suitable for the low budget regime. Simi-
larly to ProbCover, TypiClust requires a good embedding space to work properly.
When comparing ProbCover and TypiClust, and in order to avoid possible con-
founds, we use the same embedding space for both methods.

These AL methods are evaluated on the following classification datasets: CIFAR-
10/100 [28], TinyImageNet, [29], ImageNet [12] and its subsets (following Van
Gansbeke et al. [44]). When considering CIFAR-10/100 and TinyImageNet, we
use as input the embedding of SimCLR [9] across all methods. When considering
ImageNet we use as input the embedding of DINO [5] throughout. Results on
ImageNet-50/100 are deferred to App. B. Details concerning specific networks
and hyper-parameters can be found in App. A, and in the attached code in the
supplementary material. When evaluating frameworks (i) and (ii), we perform 5
active learning rounds, querying a fixed budget of b examples in each round. In
framework (iii), as FlexMatch is computationally demanding, we only evaluate
methods on their initial pool selection capabilities.

5.2 Main Results

(i) Fully supervised framework. We evaluate different AL methods based on the
performance of a deep neural network trained directly on the raw queried data.
In each round, we query b samples where b is equal to the number of classes in
each dataset, and train a ResNet-18 on the accumulated queried set. We repeat
this for 5 active learning rounds, and plot the mean accuracy of 5 repetitions (3
for ImageNet) in Fig. 5.1 (see App. B for additional results).

(ii) Semi-supervised by transfer learning. In this framework, we make use of
pretrained self-supervised features, and measure classification performance us-
ing the 1-NN classifier. Accordingly, each point is classified by the label of its
nearest neighbor (within the selected labeled set L) in the self-supervised features
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(a) CIFAR-10 (b) CIFAR-100 (c) Tiny-ImageNet (d) ImageNet

Figure 5.1: Framework (i), fully supervised: The performance of ProbCover is compared
with baseline AL strategies in image classification tasks in the low budget regime. Budget
b guarantees on average 1 sample per class, thus the initial sample may be imbalanced.
The final average test accuracy in each iteration is reported, using 5 repetitions (3 for
ImageNet). The shaded area reflects the standard error across repetitions.

space. In low budgets, this framework outperforms the fully-supervised frame-
work (i), though it is not as effective as the full-blown semi-supervised learning
framework (iii). This supports the generality of our findings, not limited to any
specific semi-supervised method. Similarly to Fig. 5.1, in Fig. 5.2 we plot the
mean accuracy of 5 repetitions for the different tasks.

(a) CIFAR-10 (b) CIFAR-100 (c) Tiny-ImageNet (d) ImageNet

Figure 5.2: Comparative evaluation of framework (ii) - semi-supervised by transfer learn-
ing, see caption of Fig. 5.1.

(iii) Semi-supervised framework. We compare the performance of different AL
strategies used prior to running FlexMatch, a state-of-the-art semi-supervised
method. In Fig. 5.3 we show results with 3 repetitions of FlexMatch, using the
labeled sets provided by different AL strategies and budget b equal to the num-
ber of classes. We see that ProbCover outperforms random sampling and other
AL baselines by a large margin. We note that in agreement with previous works
[6, 18], AL strategies that are suited for high budgets do not improve the results
of random sampling, while AL strategies that are suited for low budgets achieve
large improvements.
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(a) CIFAR-10 (b) CIFAR-100 (c) Tiny-ImageNet

Figure 5.3: Framework (iii) Semi-supervised: comparison of AL strategies in a semi-
supervised task. Each bar shows the mean test accuracy after 3 repetitions of FlexMatch
trained using b labeled examples, where b is equal to the number of classes in each task.
Error bars denote the standard error.

5.3 Ablation Study

We report a set of ablation studies, evaluating the added value of each step of
ProbCover.

Random initial selection Any method that follows the uncertainty sampling
principle requires the model to be minimally trained, which in turn requires a
non-empty initial pool of labeled examples. Of all the methods evaluated in the
study (see Section 5.1), only two - ProbCover and TypiClust - are not affected by
this limitation. This can be seen in Fig. 5.1, noting that only these two methods
do better than random in the initial step. How much of an advantage is conferred
by this difference?

To address this question, we repeat the experiments reported in Fig. 5.1a-5.1b,
using an initial random set of annotated examples across the board and by all
methods. Results are reported in Fig. 5.4. When comparing Fig. 5.1a-5.1b and
Fig. 5.4, we see that the advantage of ProbCover and TypiClust goes beyond the
initial set selection, and remains in effect even if this factor is eliminated.

RGB space distances As discussed in Chapter 4, our approach relies on the ex-
istence of a good embedding space, where distance is correlated with semantic
similarity. We now verify this claim by repeating the basic fully-supervised ex-
periments (Fig. 5.1) with one difference: ProbCover can only use the original RGB
space representation to compute distances. Results are shown in Fig. 5.5. When
comparing the original ProbCover with its variant using RGB space, a significant
drop in performance is seen as expected, demonstrating the importance of the
semantic embedding space.
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(a) CIFAR-10 (b) CIFAR-100

Figure 5.4: Random Initial pool in the su-
pervised framework, an average of 1 sam-
ple per class.

(a) CIFAR-10 (b) CIFAR-100

Figure 5.5: Comparison of ProbCover when
applied to the raw data vs the embedding
space.

The interaction between δ and budget size To understand the interaction be-
tween the hyper-parameter δ and budget b, we repeat our basic experiments
(Fig. 5.1) with different choices of δ and b using CIFAR-10. For each pair (δ, b),
we select an initial pool of b examples using ProbCover with δ balls, and report
the difference in accuracy from the selection of b random points. Average results
across 3 repetitions are shown in Fig. 5.6 as a function of b. We see that as the
budget b increases, smaller δ’s are preferred.

Figure 5.6: The accuracy
difference between Prob-
Cover when using different
δ values, and the outcome
of b random samples (aver-
age over 3 repetitions).

(a) Low budget (b) Mid budget (c) High Budget

Figure 5.7: Comparing the performance under the super-
vised framework of ProbCover and Coreset on different bud-
get regimes. The low budget shows an initial pool selection
of 100 samples. Mid/High budget start with 1K/5K samples
and query additional 1K/5K samples (see text).

Coreset vs. ProbCover. In Section 3.3 we argue that ProbCover is suitable for
low budgets, while Coreset is suitable for high budgets. To verify this claim, we
compare their performance under the following 3 setups while using the same
embedding space, and report results on CIFAR-10:

• Low budget - Select an initial pool of 100 samples using the SimCLR repre-
sentation.

• High budget - Train a model on 5K randomly selected examples. Then select
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an additional set of 5K examples using the learner’s latent representation.
This is the setup used by Sener et al. [37].

• Mid budget - Same as high budget, except the initial pool size and added
budget are 1K.

Results are reported in Fig. 5.7. In the low budget regime, ProbCover outperforms
Coreset as would be expected. In the mid-budget regime, where the feature space
of the learner is informative, only ProbCover achieves significant improvement
over random selection. In the high budget regime, Coreset improves over random
selection, while ProbCover is least effective.



6 Summary and Discussion

We study the problem of deep active learning in the low-budget regime. We
model the problem as Max Probability Cover, showing that under certain assump-
tions on the data distribution, which are likely to hold in self-supervised embed-
ding spaces, it optimizes an upper-bound on the generalization error of a 1-NN
classifier. We devise an AL strategy termed ProbCover which approximates the
optimal solution in a computationally efficient manner.

We empirically evaluate ProbCover in supervised and semi-supervised frame-
works on the datasets CIFAR-10/100, Tiny-ImageNet and ImageNet. On all datasets,
ProbCover outperforms the competing strategies, with an improvement of 25-
100% over strategies not designed for low budget. This result further underscores
the fact that the low-budget regime requires different strategies and approaches.

One drawback of ProbCover is the presence of the hyperparameter δ, the radius
of the balls. The performance of the method is significantly affected by a good
choice of δ, which balances between the notions of purity and coverage. The choice
of δ depends on the label distribution of the data, which is not available in our
setting, and is hard to estimate in the low-budget regime. In our experiments,
we use a heuristic to sidestep this issue, but there may exist more principled
approaches. A better choice of δ will increase the method’s performance and
robustness on new data and different budget constraints. To that end, we propose
several possible avenues of research:

• Inferring a score for δ through the topology of the resulting covering graph.
The challenge here is to establish a connection between the graph topology
and the label distribution.

• Modifying δ throughout the selection process: currently, ProbCover does not
fully utilize the "active" aspect of AL. By making use of already known la-
bels, δ can be dynamically adjusted as the querying process progresses.

• Extending the current formulation of ProbCover, by making δ sample-dependent
rather than uniform. Of course, this turns the problem of settling on one δ

32
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into choosing multiple δs.
• Doing away with δ altogether by considering soft-coverage approaches,

where the covering notion is not binary but some continuous measure. The
challenges here are choosing an appropriate continuous extension, and ad-
dressing the loss of sparsity that binary coverage offers.

Another unrelated line of research is the extension of ProbCover to different modal-
ities. Though the research in this thesis was conducted in the context of computer
vision, the method we propose requires only a semantic embedding space for the
unlabeled samples, so it could be extended to different modalities such as text,
where unlabeled data is readily available while labeled data may vary in cost.
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Appendices

A Implementation Details

Source code used in this work is available at the following url:

https://github.com/avihu111/TypiClust

A.1 Selection Method

Representation Learning: CIFAR10, CIFAR100, TinyImageNet. To extract se-
mantically meaningful features, we trained SimCLR using the code provided by
Van Gansbeke et al. [44] for CIFAR-10, CIFAR-100 and TinyImageNet. Specifi-
cally, we used ResNet-18 [19] with an MLP projection layer to a 128-dim vector,
trained for 500 epochs. All the training hyper-parameters were identical to those
used by SCAN (all details can be found in Van Gansbeke et al. [44]). After train-
ing, we used the 512 dimensional penultimate layer as the representation space.

Representation Learning: ImageNet. We extracted features from the official
(ViT-S/16) DINO weights pre-trained on ImageNet. We used the L2 normal-
ized penultimate layer for the embedding. All the exact hyper-parameters can be
found at Caron et al. [5].

Randomness in ProbCover Selections. In order to reduce the correlation be-
tween different repetitions using ProbCover, we added the following modification
to the selection algorithm: instead of taking the node with the highest degree at
each iteration, we selected randomly one of the 5 nodes with the highest degree.
We verified that both algorithms achieved similar performance, where the deter-
ministic version has slightly better results.
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A.2 Fully Supervised Evaluation

We trained a ResNet18 on the labeled set, using the AL comparison framework
created by Munjal et al. [33], and following the protocol described in [18] (see
details in [18] and the shared code).

A.3 1-NN Classification with Self-Supervised Embeddings

In these experiments, we also used the framework by Munjal et al. [33]. We ex-
tracted an embedding similar to § A.1, with which we trained a 1-NN classifier
using the default parameters of scikit-learn.

A.4 Semi-Supervised Classification

When training FlexMatch [53], we used the AL framework by Zhang et al. [52].
All experiments involved 3 repetitions.

CIFAR-10. We used the standard hyper-parameters used by FlexMatch [53].
Specifically, we trained WideResNet-28 for 400k iterations using the SGD opti-
mizer, with 0.03 learning rate, 64 batch size, 0.9 momentum, 0.0005 weight decay,
2 widen factor, and 0.1 leaky slope. The weak augmentations used are identical
to those used in FlexMatch and include random crops and horizontal flips, while
the strong augmentations were generated by RandAugment [11].

CIFAR-100. Similar to CIFAR-10, but increasing the widen factor to 8.

TinyImageNet. We trained ResNet-50, for 1.1m iterations. We used an SGD op-
timizer, with a 0.03 learning rate, 32 batch size, 0.9 momentum, 0.0003 weight
decay, and 0.1 leaky slope. The augmentations were similar to those used in Flex-
Match.
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B Additional Empirical Results

B.1 Improving the greedy approximation

The greedy approximation used in ProbCover guarantees 1− 1
e approximation to

the maximum cover problem. Hunt et al. [24] showed that a polynomial time
approximation scheme (PTAS) exists for this problem, suggesting the possibility
of better polynomial approximations. However, Marx [31] proved that there is no
efficient PTAS to this problem, implying that such polynomial approximations
may not be practical. For example, to achieve a 1− 1

e approximation using the
PTAS suggested in Marx [31] would require O(n100) time. Thus, a significantly
better approximation than the greedy solution is left for future work. Instead, we
improved the greedy algorithm by choosing at each iteration the optimal 2 balls
in a greedy way. While this greedy solution achieves a better approximation in
theory, in practice we did not see any improvement over the single-ball greedy
solution.

B.2 ImageNet subsets

When evaluating ProbCover on ImageNet-50 and ImageNet-100, we report a sim-
ilar qualitative behavior as seen in other datasets: ProbCover performs better than
all baselines in the very low-budget regime, using 5 AL rounds with a budget
equal to b = 50 examples. More concretely, in Fig. 1 we show results correspond-
ing to Figs. 4.1-5.2 when using ImageNet-50.

B.3 TypiClust vs ProbCover on SCAN feature space

Both ProbCover and TypiClust use a unsupervised self-representation embed-
ding as part of an active learning query selection algorithm. In Section 5.2, when
comparing ProbCover to TypiClust, we used the same embedding in both of them,
to avoid possible confounds relating to the choice of the specific representation
algorithm.

As TypiClust reached the best performance using SimCLR representation in most
budgets and frameworks on CIFAR-10 and CIFAR-100, we chose that embedding
space to compare to ProbCover. However, in the fully-supervised framework,



BIBLIOGRAPHY 44

(a) (b) (c)

Figure 1: A Comparative evaluation of ProbCover on ImageNet-50 (top row) and
ImageNet-100 (bottom row). (a) Similar to Fig 4.1, in which we estimate δ. (b) Simi-
lar to Fig. 5.1, trained in the fully supervised framework. (c) Similar to Fig. 5.2, trained in
the semi-supervised by transfer learning framework.

with a budget of 10 examples, TypiClust yields better results using the embedding
space of SCAN.

In Fig. 2, we plot comparison between ProbCover and TypiClust in this budget,
when both are using the embedding space of SCAN. We find a similar trend to the
results reported in Section 5.2: ProbCover achieves higher accuracy than TypiClust,
and both surpass random sampling in this budget.

B.4 Comparison with W-Dist

In Chapter 5, we compare ProbCover to several other active learning baselines,
including W-Dist [30]. As this method is computationally demanding, we are
only able to evauate its performance on the CIFAR-10 and CIFAR-100 datasets,
which are the smallest datasets we consider.

We note that the results differ from the results reported in the original paper.
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Figure 2: Comparison of ProbCover and TypiClust using the SCAN feature space. (δ = 0.8)

This stems from several things: firstly, we use 1-NN classification instead of linear
classification in the self-supervised scenario. Secondly, the implementation of the
Wasserstein method is ours, based on the pseudo-code published in the original
work, as no official implementation is available, though we did our best to follow
the instructions of the original paper. Thirdly, the method is unique in that it
requires a long time to select samples (the original version set a 3 hours timeout
for the selection of every 10-20 samples). Instead of the long timeouts suggested
in the original work, we used 20 minutes timeouts per round, which reached
similar results.
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