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תקציר

את לשפר מנת על מתויג הלא והמידע המתויג המידע את מנצלת סמי־מפוקחת למידה

חולקים שהם היא מתויג הלא והמידע המתויג המידע על מההנחות אחת כלל בדרך הביצועים.

קטנה, המתויג המידע כמות כאשר במיוחד האמיתי, בעולם כן, פי על אף מחלקות. אותם את

לדחות מנסים קיימים אלגוריתמים באימון. הנראים מתויגות דוגמאות בלי מחלקות סוגי יש

בלי מחלקות בין הפרדה או OPEN SET SSL באימון מתויגות דוגמאות בלי ההמחלקות כל את

בונים אנחנו זו בעבודה OPEN WORLD SSL באימון מתויג הלא המידע על רק תמויגות דוגמאות

על מבוססת שלנו הגישה באימון. מתויגות דוגמאות ובלי עם מהמחלקות לדוגמאות מסווג

אנטרופיה שגיאת של הוספה ידי על ,FLEXMATCH כמו סמי־מפוקחת, למידה אלגוריתם שדרוג

לסווג מסוגלים להיות הקיימים האלגוריתמים את לשדרג מאפשר זו תוספת האימון. במהלך

מול אל מביאים שאנחנו המשמעותי השיפור את מדגימים אנחנו נראות. ולא נראות מחלקות

שני גבי על OPEN WORLD SSL ו OPEN SET SSL סמי־מפוקחת, למידה של עדכניים אלגוריתמים

של מוגבלת כמות יש כאשר ביותר משמעותי השיפור .STL 10 ו CIFAR 100 תמונות מאגר סוגי

למחלקה). מתויגות דוגמאות 25 ־ 1) באימון מתויג מידע
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Abstract

Semi-Supervised Learning (SSL) leverages both labeled and unlabeled data to improve model

performance. Traditional SSL methods assume that labeled and unlabeled data share the

same label space. However, in real-world applications, especially when the labeled training

set is small, there may be classes that are missing from the labeled set. Existing frameworks

aim to either reject all unseen classes (open-set SSL) or to discover unseen classes by par-

titioning an unlabeled set during training (open-world SSL). In our work, we construct a

classifier for points from both seen and unseen classes. Our approach is based on extending

an existing SSL method, such as FlexMatch, by incorporating an additional entropy loss. This

enhancement allows our method to improve the performance of any existing SSL method in

the classification of both seen and unseen classes. We demonstrate large improvement gains

over state-of-the-art SSL, open-set SSL, and open-world SSL methods, on two benchmark

image classification data sets, CIFAR-100 and STL-10. The gains are most pronounced when

the labeled data is severely limited (1-25 labeled examples per class).

ii



Acknowledgements

I would first like to thank my supervisor, Prof. Daphna Weinshall, for helping, guiding and

encouraging me during the research. I would also like to thank Guy Hacohen for researching

and assisting me with countless technical problems along the way. Finally I thank all of my

lab members that were there during my research.

iii



Contents

1 Introduction 1

1.1 Our proposed approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Previous Work 4

2.1 Closed and Open Semi-Supervised Learning . . . . . . . . . . . . . . . . . . . 4

2.2 Open-World SSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Summary of contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Methods 9

3.1 Notations and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Evaluation scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Our Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.4 Baseline methods for comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Empirical Results 14

4.1 Methodology and technical details . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.3 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Conclusion 20

iv



List of Figures

3.1 The combined SSL loss used in our approach. . . . . . . . . . . . . . . . . . . . 11

4.1 CIFAR-100: balanced labeled set and few-shot for seen classes . . . . . . . . . 16

4.2 CIFAR-100: non-uniform labeled set . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3 CIFAR-100: balanced labeled set and many-shot for seen classes . . . . . . . . 17

4.4 STL-10: balanced labeled set and few-shot for seen classes . . . . . . . . . . . 18

4.5 Comparison of Combined Score with and without K-means Adaptation . . . 18

v



List of Tables

2.1 Overview of related frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4.1 Overview of convergence time . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

vi



1 Introduction

As the collection of data becomes increasingly widespread, new scenarios that pose chal-

lenges to the traditional supervised machine learning framework are continuously emerg-

ing. Consider, for instance, a scenario where data can be easily collected at a low cost.

However, acquiring accurate labels for this data requires specialized expertise or expensive

machinery, all while adhering to strict budget constraints. Such scenarios may occur more

frequently in fields like medical research or genomics. In this scenario, the unlabeled dataset

comprises a vast amount of data, but due to limited resources, only a small portion of it can

be selected in an unsupervised manner to be further processed for labeling1. In the end, we

are left with a substantial unlabeled dataset and a relatively limited number of labeled data

points.

In this scenario, we encounter a unique challenge where certain classes are missing from the

labeled set, to be denoted “zero-shot” or “unseen” classes. Note also that the small labeled

set is unlikely to accurately represent the prior probability distribution of the classes. These

remaining classes are called “imbalanced few-shot” or “seen”. As a result, in the proposed

scenario, the labeled set is constructed of classes with only few-shot and zero-shot examples.

Additionally, due to the random selection of points to be processed for labeling, the class

distribution of the labeled points may deviate widely from the true class distribution.

Nevertheless, we identify valuable constraints in this scenario, that can be leveraged for the

successful handling of zero-shot classes. Specifically, by assumption the unlabeled training

set is derived from the same distribution as the test dataset, which consists of new samples

obtained under similar conditions. Thus there are no Out-Of-Distribution (OOD) samples

to consider, Additionally, the set of possible labels is fixed throughout.

While Semi-Supervised Learning (SSL) appears to be a suitable framework to address the

1We note that active learning in the low budget domain aims to replace the random selection of the set of

points to be labeled by a more effective selection methodology.

1



CHAPTER 1. INTRODUCTION 2

problem at hand, it is important to note that most SSL methods assume the presence of all

classes in the labeled set, namely, that there are no zero-shot classes. A step in the right direc-

tion is taken in the open-set SSL (OSSL) framework, where the data contains points sampled

from either unseen classes or OOD (or both). However, open-set techniques are designed

to reject test samples that do not belong to any seen class and do not predict missing class

labels. Nevertheless, we compare our proposed method to state-of-the-art SSL and OSSL

methods adapted to identify unseen classes (see details in Section 3.4), showing large gains

in performance for our approach.

A closely related scenario is addressed in the open-world SSL framework, which aims to

classify seen classes and to discover unseen classes in an unlabeled set. Typically in this

framework, a learner is given substantial labeled and unlabeled sets for training, where

both sets are sampled from the same distribution. Originally, the aim of such methods was

to partition the unlabeled set in a transductive manner. Such methods can be extended to

our inductive scenario by providing the partitioned unlabeled set as input to a regular SSL

method, see discussion of related work below.

In our work we address the inductive problem of unseen class classification. It is important

to appreciate the difference between unseen class discovery and unseen class classification.

In discovery, the obtained structure is not universal, and only applies to the given unlabeled

set. Consequently, when given two different test sets possibly at two different time points,

the whole pipeline needs to be run again, and the outcome may be inconsistent in the sense

that different data partitions are not always easy to consolidate into a single coherent parti-

tion.

In contrast, our method provides a universal partition of the data, and a classifier that can

identify the cluster identity of each future test-point in a consistent manner and irrespective

of other test points. The only uncertainty remains in the naming of clusters: if our unseen

classes are dogs and cats, for example, a classifier of unseen examples may identify dogs as

cluster 1, and cats as cluster 2. Without labels it cannot decide which cluster to call dogs and

which one cats. Nevertheless, if the algorithm is successful, from now on all future images

of dogs will be assigned to cluster 1, and images of cats to cluster 2.

Another related methodology is Zero-Shot Learning (ZSL). Traditionally, ZSL methods are

designed to train models that can classify objects from unseen classes by utilizing semantic

side-information and knowledge acquired from seen classes [see survey by 15]. Differently,

in our scenario, we lack access to any supplementary semantic information. Another dif-
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ficulty with adopting this framework to our scenario stems from the fact that ZSL usually

assumes that seen classes are adequately sampled, i.e., they are not “few-shot” but “many-

shot”.

1.1 Our proposed approach

We describe a simple end-to-end framework that tackles the above scenario, offering a gen-

eral solution that can be used to enhance any semi-supervised learning (SSL) method. The

approach consists of two main steps. (i) Modify the last layer of a given SSL architecture

to incorporate both seen and unseen classes. By doing so, the model is capable of handling

and classifying instances from both types of classes. (ii) Introduce an additional term into the

loss function, which penalizes discrepancies between the output distribution of the trained

model and the expected class distribution.

As the field of semi-supervised learning continues to evolve, the proposed approach can be

used to adapt future SSL methods to our scenario. When compared to zero-shot learning,

instead of relying on hard-to-collect semantic side information, we exploit the fact that the

unlabeled set accurately represents the underlying class distribution and contains classes

that are not present in the labeled set. By doing so, we are able to transfer knowledge from

few-shot to zero-shot classes without auxiliary information.

We assess the performance of our method on standard image classification datasets, re-

constructing training sets where labels are obtained as described above. While varying the

number of unseen classes, we also vary the conditions under which seen classes are sam-

pled, including both balanced and imbalanced scenarios. Current SSL methods, after being

adapted to identify unseen classes (see details in Section 3.4), are unable to successfully

classify them. Our methodology, when incorporated with the same SSL methods, greatly

improves their performance on unseen classes, while usually matching or even surpassing

their performance on seen classes. Additionally, our method surpasses the overall perfor-

mance of both open-set and open-world SSL methods, see Section 4.2. The improvement is

especially high when the labeled set is small.



2 Previous Work

A number of related frameworks have been investigated in the machine learning com-

munity, motivated by problems that also inflict our scenario. Table 2.1 summarizes the

main characteristics of the most relevant frameworks, highlighting the differences between

them. Next, we discuss each one in more detail.

Train labeled data Train unlabeled data Test data Expected output

Settings seen unseen seen unseen seen unseen seen unseen

†zero-shot learning Y N - - Y/N Y classify classify

*Semi-Supervised Learning (SSL) Y - Y Y/N Y - classify -

*Open set SSL (OSSL) Y N Y Y Y Y classify reject

Open world SSL (OWSSL) Y N Y Y Y Y classify classify

Our settings few-shot N Y Y Y Y classify classify

Table 2.1: Catalogue of different relevant frameworks as discussed in the text. The train-

ing set is divided into seen and unseen classes, a distinction not made in all frameworks.

For each framework, the symbols ’Y’ and ’N’ denote that such data as specified in the

column is permitted in the framework; ’Y’ indicates that such data exists, and ’N’ that it

doesn’t. ’*’ indicates frameworks in which unseen classes may be replaced with OOD data

(see text). † indicates that additional semantic side-information such as attributes is needed.

Expected output: Open-set SSL methods are not designed to classify new examples from

unseen classes, only to reject them.

2.1 Closed and Open Semi-Supervised Learning

Closed and Open Semi-Supervised Learning , denoted SSL and OSSL respectively. SSL

has made remarkable progress in recent years, see the comprehensive survey by Chen et al.

4



CHAPTER 2. PREVIOUS WORK 5

[4]. It involves leveraging sparsely labeled data and a considerable amount of additional

unlabeled data, often sampled from the same underlying data distribution as the labeled

data. In more general settings, Out Of Distribution (OOD) data may also be present in the

unlabeled set.

In the original SSL settings [3], both the labeled and unlabeled data share a label set within

the same domain. It is not, however, suitable for our scenario because it does not allow for

unseen classes. Going a step further, open-set SSL (OSSL) permits the presence of unseen

classes or OOD data in the unlabeled set. However, this framework is only designed to

identify and reject data points that do not belong to the classes in the labeled set and is not

tailored to classify unseen classes.

Some of the most effective SSL methods at present time combine ideas from self-supervised

learning (e.g., consistency regularization), data augmentation, and the assignment of pseudo-

labels to unlabeled data points, in order to utilize unlabeled data [e.g., 5, 18, 22, 28]. The field

of Open-set SSL (OSSL) is also rapidly developing [8, 10, 14, 19, 26]. For comparison, we use

the competitive OSSL method proposed by Saito et al. [17], which accomplishes the task by

uniting the SSL and novelty detection frameworks.

Fixmatch [18] is a SSL algorithm often serving as a foundational framework for the devel-

opment of various other algorithms in the field. The algorithm initially constructs a classifier

using the available labeled data. It subsequently introduces an additional loss component

based on data augmentation, specifically implementing a Consistency Regularization tech-

nique under input variation. This loss is computed using pseudo labels generated from the

unlabeled data. The assignment of these pseudo labels is determined by applying a fixed

confidence level threshold throughout the training process

Flexmatch [29] is a commonly utilized SSL algorithm that not only forms the core frame-

work for our method but also serves as a reference baseline for comparison. In contrast to

its predecessor, FixMatch, it’s approach represents an advancement with dynamic threshold

adjustments for assigning pseudo labels. These adjustments are executed at each step for

each class, guided by the model’s performance relative to other classes.

Freematch [22] is a SSL algorithm that serves as a reference baseline for our compara-

tive analysis. In a specific scenario, Freematch forms the foundational framework for our
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method. It bears a resemblance to Flexmatch, with a distinguishing feature — Freematch

calculates the dynamic threshold through an exponential moving average method that en-

compasses both a dynamic global threshold and a local, per-class dynamic threshold, the

latter of which is intricately linked to the global threshold. Furthermore, a noteworthy aug-

mentation to Freematch is the incorporation of a self-adaptive fairness loss component. This

addition aids in aligning the algorithm’s predictions with distributions akin to those ob-

served in prior predictions

OpenMatch [17] is an OSSL algorithm, that serves as a reference baseline for our compara-

tive analysis. This algorithm is designed to distinguish between seen and unseen classes us-

ing a novelty detection approach, facilitated by one-versus-all classifiers, with each classifier

dedicated to distinguishing a specific seen class. It leverages the maximum confidence score

for each sample to determine whether it belongs to one of the known seen classes or falls

into the category of unseen classes. Additionally, Openmatch periodically generates pseudo

labels for Fixmatch, a mechanism applied in the classification of samples determined by the

algorithm to be seen classes. Another noteworthy aspect of Openmatch is its application

of soft consistency regularization specifically for the one-versus-all classifiers on unlabeled

data, integrating data augmentations similar to those employed in the Fixmatch framework.

2.2 Open-World SSL

Open-World SSL, denoted OWSSL. This paradigm is related to Novel Class Discovery,

which aims to discover unseen classes within unlabeled data [9, 23, 24]. Joining SSL with

this paradigm, OWSSL [2, 7, 16, 30] aims to discover unseen classes in an unlabeled set and

to classify seen classes. Initially, OWSSL methods were transductive, in the sense that the

test set is processed as a single batch, and classes are discovered by partitioning this set.

Typically this is accomplished by learning pairwise similarities between the points in the

unlabeled set.

In OpenLDN, Rizve et al. [16] extended the scope of the open-world methodology to our

scenario. Specifically, they proposed to use the outcome, both seen classes and the parti-

tioned unlabeled set, as input to an SSL method, thus obtaining a classifier for both seen and

unseen classes. Our method differs from OpenLDA in that it solves the problem in an end-

to-end fashion, and is thus more suitable for the low-budget regime with very few labeled
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examples. This methodology is not designed to receive a single test point and evaluate its

class. Additionally, when given two sets of test data possibly at two different time points, its

outcome may be inconsistent in the sense that different data partitions are not always easy to

consolidate into a single coherent partition. When clustering is based on pairwise similarity,

the resulting partition may be quite different when two groups of points are combined.

In contrast, our method provides a stable partition of the data, and a classifier that can

identify the class (or cluster) of individual datapoints in a consistent manner and irrespective

of other test points. In particular, it produces coherent results when given two separate test

batches. The only uncertainty remains in the naming of clusters: if our unseen classes are

dogs and cats, in the end our classifies identifies dogs as cluster 1 and cats as cluster 2

consistently, but without labels it cannot decide which cluster to call dogs and which one

cats. To highlight this distinction, in Table 2.1 the first task (the partitioning of test data) is

called ’class discovery’, and the second ’classification’.

OpendLDN [16] is an OWSSL algorithm that serves as a reference baseline for our compar-

ative analysis. OpenLDN utilizes a pairwise similarity loss to discover novel classes. Using

a bi-level optimization rule this pairwise similarity loss exploits the information available

in the labeled training data to implicitly cluster novel class samples, while simultaneously

recognizing samples from known classes. After discovering novel classes, OpenLDN trans-

forms the open-world SSL problem into a standard SSL problem by creating pseudo labels

for the unseen classes and refer them as part of the labeled training data.

Zero-Shot Learning, denoted ZSL. Work on ZSL often involves the computation of a sep-

arate label embedding space and assumes access to semantic data that may be difficult to

obtain. Some recent work aims to expand the scope of this methodology to domains where

the seen classes are only sparsely sampled. For example, Li et al. [12], Xu et al. [25] leverage

SSL in order to aid the computation of label embedding, in a two-step manner.

2.3 Summary of contribution

We present and justify a novel SSL variation, characterized by classes that are present in both

the unlabeled set and the test set, yet absent from the labeled set. Addressing this variant,

we offer a solution that:
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i. Outperforms all current baselines by a large margin.

ii. Can be assimilated into any state-of-the-art SSL method.

iii. In few-shot settings, the combined solution converges significantly faster than its un-

derlying SSL method.



3 Methods

Traditionally, different metrics are used to evaluate performance when dealing with labeled

or unlabeled data. With labeled data, metrics that measure classification accuracy are appro-

priate. With unlabeled data, the outcome is essentially a partition of the data – no specific

labels are assigned to specific clusters. Here, the appropriate metrics measure the partition

accuracy, as used to evaluate clustering algorithms. These scores are detailed in Section 3.2.

In Section 3.3 we describe our method, designed to learn a classifier for the Semi-Supervised

Learning scenario with few-shot and zero-shot classes. In Section 3.4 we discuss how base-

line methods can be used for comparison. Since most of the relevant frameworks (see dis-

cussion above) are not designed to classify unseen classes, we describe an adaptation step,

which allows us to obtain unseen class classification from SSL and open-set SSL methods.

3.1 Notations and definitions

Let X denote the set of all possible examples, and C the set of possible classes. We consider

a learner denoted as f : X → C, which has access to a labeled set of examples L ⊆ X × C

and an unlabeled set of examples U ⊆ X . In our scenario, the labeled examples in L do not

contain all possible classes of C. Let Cseen ⊆ C denote the set of classes that appears in L,

and Cunseen ⊆ C the set of classes that do not appear in L. Note that Cseen ∩ Cunseen = ∅,

and Cseen ∪ Cunseen = C. For evaluation purposes, we assume the existence of a test set

T ⊆ X × C, which is disjoint from both U and L. T contains examples from all classes. We

denote the examples from seen classes in the test set as Tseen and the examples from unseen

classes as Tunseen.

9
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3.2 Evaluation scores

Open-world SSL scores. As customary in novel class discovery and OWSSL, the following

scores are used:

1. seen classes accuracy

accseen =
1

|Tseen| ∑
xi∈Tseen

1[ f (xi)=yi]

2. unseen classes accuracy

accunseen =
1

|Tunseen| ∑
xi∈Tunseen

1[ f (xi)=yi]

This score is based on the best permutation of the unseen classes – similarly to what is

done in clustering accuracy.

3. combined score

|Cseen|
C

· accseen +
|Cunseen|

C
· accunseen

Open-set SSL scores. In OSSL, where the goal is only to reject unseen classes and not to

classify them, different scores are used. For a fair comparison, we report these scores below

in cases suitable for the OSSL framework, with many missing classes and sufficient labels

for each seen class.

1. closed accuracy
1

|Tseen| ∑
xi∈Tseen

1[ f |seen(xi)=yi]

Here, f |seen is the prediction of f when forced to choose a class out of Cseen. Thus an

OSSL method is not allowed to reject. Other methods are not allowed to classify points

for labels in Cunseen.

2. unknown accuracy

1
|Tunseen| ∑

xi∈Tunseen

1[ f (xi)∈Cunseen]

This score captures the rejection accuracy.

3. AUROC – Area under ROC curve of ’reject’ classifier.
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Note the difference between seen classes accuracy and closed accuracy: the first penalizes for

seen points recognized as unseen, while the second doesn’t, and therefore seen classes accuracy

is always lower than closed accuracy.

3.3 Our Method

Figure 3.1: The combined SSL loss used in our approach.

We denote as B the batch size of the learner. Let pi denote the empirical probability of class

i ∈ C across all the classes, in a specific batch:

pi =
1
B

B

∑
b=1

fi(xb)

Where fi is the confidence of f on class i ∈ C. We define the following entropy loss:

ℓe = − ∑
i∈Cseen∪Cunseen

pi log(pi)

This choice assumes that all classes are roughly equally distributed in the data. If the prior

distribution of class frequencies is known to be the vector {gi}i, we will use instead the KL

divergence between the probability vectors:

ℓe = ∑
i∈Cseen∪Cunseen

pi [log(gi)− log(pi)]

Most SSL methods optimize a loss function which is essentially the sum of an unsupervised

term ℓu and supervised term ℓs. In our approach, we adopt the full pipeline of the method,

while optimizing the following objective function:

ℓ = ℓs + ℓu + λℓe

This design is illustrated in Fig. 3.1.
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Model Collapse

During the training of our algorithm, we sometimes encounter a phenomenon in which the

confidence of the model’s predictions falls drastically, especially the confidence of points

from unseen classes. This phenomenon results in the model being essentially unable to

generate pseudo labels, and therefore the scores show a sharp sudden decline. This may

happen relatively early in the training as there are fewer labels per class.

Our solution is to look at the entropy loss during training and to identify any sharp decline

(using a threshold on the gradient graph). Once identified, a stopping point is fixed a few

epochs before the sudden decline. An Interesting outcome is that our algorithm converges

much faster than its original SSL variant. For example, with 4 labels per class and 40 un-

seen classes in CIFAR-100, our method converges after 523.0 ± 24.61 epochs, while the SSL

methods of FlexMatch and FreeMatch require 1024 epochs, OpenMatch - 512, and OpenLDN -

1024.

3.4 Baseline methods for comparison

Semi-Supervised Learning in the Few-Shot Zero-Shot Scenario is a somewhat new setting,

and there are no ready-to-use baseline methods that are designed to solve it effectively. Con-

sequently, we extend methods designed to deal with closely related problems, as discussed

in the introduction (see Table 2.1), and report their results. It should be kept in mind that

since the methods are designed for other scenarios, their inferior results here should not be

taken as evidence that they are not suited for their original task, where they are likely to

achieve state-of-the-art results.

More specifically, we adapt methods designed to deal with the following scenarios: (i) semi-

supervised learning (SSL), (ii) open-set SSL (OSSL), (iii) open-world SSL (OWSSL). We start

by describing how to extend SSL and OSSL methods to the OWSSL scenario, similarly to

how it’s done by Cao et al. [2]. We then conclude by discussing the adaptation of the OWSSL

scenario.

Traditional SSL methods are designed to classify seen classes, but they do not expect to

encounter unseen classes in the test set. In order to extend them to the OSSL scenario, we

adopt a common way to add a reject option to classifiers [e.g., 20], by applying a threshold
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test to the softmax confidence score of the model. To compensate for the simplicity of the

approach, we choose for each method its optimal threshold based on ground truth infor-

mation. In the end, we have a set of points classified into seen classes, and a set of rejected

points, similar to the OSSL scenario to be discussed next.

Open-set SSL methods are designed to classify seen classes and reject unseen classes, but

can’t classify unseen classes. In order to extend these methods to our scenario, an additional

step is employed to partition the rejected points to |Cunseen| parts. This is accomplished with

K-means clustering, performed over the model’s feature space.

As customary for unlabeled data, and for the purpose of evaluation only, the set of cluster

labels is matched to the set of unseen labels Cunseen using the best permutation. Note that

the unseen classes accuracy score above employs a similar procedure. As a result, the set of

test points is now classified to all the labels in C.

Open-world SSL methods are designed to process the labeled and unlabeled training sets

and output a partition of the unlabeled set. This partition is matched to Cunseen as described

above. Finally, in order to generate a classifier for future unseen points, we follow the pro-

cedure suggested by Rizve et al. [16]: use the labeled training set as is and the unlabeled set

with its inferred labels to train another classifier, whose domain of output labels is C.



4 Empirical Results

We now describe the empirical settings used to evaluate our method in comparison to es-

tablished baselines.

4.1 Methodology and technical details

Datasets. We use two benchmark image datasets in the experiments below: CIFAR-100

[11] and STL-10 [6]. When using STL-10, we omitted the unlabeled split due to its inclusion

of out-of-distribution examples.

Baselines. We compare our method to the following baselines: (i) SSL - FreeMatch [22]

which performs well in the few-shot regime, and FlexMatch [28] which is the backbone of

our own method. (ii) Open-set SSL - OpenMatch [17]. (iii) Open-world SSL: OpenLDN [16],

which includes its own adaptation to our scenario using MixMatch [1]. For FlexMatch and

FreeMatch we employ the SSL evaluation framework established by [21], ensuring a fair com-

parison. For OpenMatch and OpenLDN algorithms, we used the source code provided with

the original papers. The methods were adapted to our scenario as detailed in Section 3.4.

Architectures and Hyper-parameters. When training FlexMatch, FreeMatch, and OpenMatch,

we considered a Wide-ResNet-28 (WRN) [27], trained with stochastic gradient descent op-

timizer, 64 batch size, 0.03 learning rate, 0.9 momentum and 5e-4 weight decay. In Fig 4.1

we used 8 width factor, as was done in the original papers. Due to its heavy computational

cost, in all other experiments, we reduced the width factor to 2. We note that the qualitative

results remained the same.

When training OpenLDN , we used the official code, composed of a basic model and a Mix-

Match model. Both models use ResNet-18, trained with Adam optimzier. The base model

14
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uses a 200 batch size and a 5e-4 learning rate. MixMatch uses 64 batch size and 0.002 learning

rate.

The λ for ℓe was set to 1.5 in all experiments. We used NVIDIA GeForce RTX 2080 GPUs for

all experiments.

Split of classes to seen and unseen. When training on CIFAR-100, the split of the 100

classes into seen and unseen classes was done randomly, repeating the exact same partition

for all models. It’s important to note that in the empirical evaluation of OpenMatch, outlined

in [17], the choice of unseen classes was determined by their super-class membership, intro-

ducing a potential bias. This may explain the differences in accuracy between the results we

report below for OpenMatch, and those reported in the paper. To validate this point, we used

their split method in a subset of our experiments, those involving the many-shot scenarios

with 100 or 250 examples per class.

4.2 Main Results

Balanced labeled set, few-shot for seen classes. We begin by comparing the performance

of our method, combined with FlexMatch, with two SSL methods – FlexMatch and FreeMatch,

one OSSL method – OpenMatch, and one OWSSL method – OpenLDN. FlexMatch, FreeMatch,

and OpenMatch are adapted with k-means to our scenario, as described in Section 3.4. All

methods are trained on CIFAR-100, with 40 unseen classes (similar qualitative results are

obtained when the number of classes is varied, see ablation study). The number of labeled

points in each seen class varies, from one-shot with 1 example, few-shot with 4 examples

and mid-shot with 25 labels, which can be found in Figs. 4.1a,4.1b,4.1c, respectively.

Inspecting the combined accuracy score in Fig. 4.1, we observe that our method outperforms

the other baselines by large margins. In each case, we also plot the seen and unseen classes

accuracy for each method. Evidently, the improvement over other SSL algorithms is caused

primarily by their poor performance on unseen classes, which in turn is caused by their

overconfidence in their erroneous classification of seen classes. This is a well-known prob-

lem [13] when attempting to add a reject option to deep models, which can be further ap-

preciated from the comparison in the ablation study, Fig. 4.5.

It’s worth noting that the subpar performance of OpenMatch and OpenLDN can be primarily

attributed to their intended focus on scenarios with considerably higher availability of la-
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(a) 1 label per class, 35 unseen

classes

(b) 4 labels per class, 40 unseen

classes

(c) 25 labels per class, 40 unseen

classes

Figure 4.1: Comparison of our method to the baselines discussed in Section 4.1. All methods

are trained on CIFAR-100, where (a),(b), and (c) differ in the size of the labeled set and the

number of unseen classes. In the top row, we show the combined score of each method. In the

bottom row, we show the seen and unseen accuracy of each method. We clearly see that our

method outperforms all baselines by significant margins. When compared to SSL methods

- FreeMatch and FlexMatch, we see that while the performance on the seen classes is compa-

rable, our method improves the performance on the unseen classes quite drastically. Both

OpenMatch and OpenLDN are not suitable for the few-shot regime, and their performance is

therefore low.

beled data. Their under-performance stems from being tailored to suit different tasks, which

are evaluated using different metrics as discussed in Section 3.2.

Non-uniform labeled set, approximately one-shot We now get back to the original sce-

nario, where the labels are obtained as follows: To begin with, the learner is given a large

set of unlabeled data cheaply collected. Additionally, there is a fixed budget that allows

for the labeling of only n examples. The learner randomly chooses n examples from the

unlabeled set to be labeled, thus obtaining the labeled training set. The labeled set is quite

imbalanced, with a range of examples for each seen class, from 1 up to 3 or even 4. The

remaining examples compose the unlabeled training set.

Results of this setup are shown in Fig. 4.2, for CIFAR-100 and n = 100 labeled examples.

Once again, when inspecting the combined score, our method outperforms all other baselines.

Given the technical difficulties that this unusual setup poses, we could not obtain reliable
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(a) Combined score (b) Seen and unseen accuracy

Figure 4.2: CIFAR-100, 100 labeled examples sampled at random (see text). On average,

there are 36.61 ± 1.38 unseen classes, and 1.58 ± 0.03 labeled examples per seen class.

results with OpenLDN. Nevertheless, we expect OpenLDN to perform poorly in these condi-

tions, as seen with 1 labeled example per seen class in Fig. 4.1a.

Balanced labeled set, many-shot for seen classes. In our final setting, we increase the

number of labeled examples per class, thus obtaining scenarios that are more favorable to the

alternative methods, especially OpenMatch and OpenLDN. To shapren the comparison with

these methods, we add the 3 valuation scores discussed in Section 3.2, which are sometimes

used to evaluate open-set SSL methods. Results1 of this setup with 5 repetitions are shown in

Fig. 4.3. Our method significantly outperforms all baselines, though the gap with OpenLDN

is smaller.

(a) Combined score (b) Seen and unseen accuracy (c) OSSL scores

Figure 4.3: Top: CIFAR-100, 100 labels per class, 45 unseen classes. Bottom: CIFAR-100, 250

labels per class, 50 unseen classes. Split is based on super-classes, as explained in Section 4.1.

The various scores, including the additional OSSL scores, are described in Section 3.2.
1Since FlexMatch and FreeMatch perform similarly in the many-shot case, we only show results using Flex-

Match.
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4.3 Ablation Study

(a) Combined score (b) Seen and unseen accuracy

Figure 4.4: STL-10, 4 labels per class, 4 unseen classes.

Balanced labeled set, few-shot for seen classes, STL-10. To verify that the results reported

above are not unique to a single dataset, we repeated some of the experiments with an

inherently different image dataset - STL-10, showing similar qualitative results. We evaluate

a case with very few labeled examples - 4 labeled examples for each of 6 seen classes, and

4 unseen classes. Since OpenMatch and OpenLDN are not natively adapted to STL-10, we

limited the comparison of our method, which is based on FlexMatch, to that of FlexMatch

without out method. The results are shown in Fig. 4.4.

(a) 25 labels per class, 40 unseen classes (b) 1 label per class, 35 unseen classes

Figure 4.5: Combined score of FlexMatch and FreeMatch with and without the K-means adap-

tation (see Section 3.4), on CIFAR-100. With K-means - dark blue, Without K-means - light

blue.

SSL adaptation. To adapt the SSL methods to our scenario, we introduced in Section 3.4 a

two-step adaptation process: (i) Points with low classification confidence are rejected from
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the classifier trained on seen classes. (ii) K-means clustering is used to partition the rejected

points within the feature space. This partitioning is then matched to unseen classes. Without

this adaptation, SSL methods would not identify anything as unseen, and would therefore

erroneously match all points from unseen classes to some seen class. In each case, the rejec-

tion threshold was optimized to give each method its best possible combined score.

Here we evaluate the added value of this adaptation, as shown in Fig. 4.5. Evidently, the

impact is minor (especially in the mid-shot regime). The reason is that the optimal thresh-

old tends to be relatively low, resulting in a relatively modest count of predicted unseen

instances. This count often pales in comparison to the actual prevalence of unseen classes

within the test data. The underlying reason for this failure is the known property of deep

models to be over-confident in their predictions. It is therefore hard to distinguish between

seen and unseen classes based on the confidence threshold.

Convergence time As described in detail in Section 3.3, sometimes the SSL training, per-

formed by our method, is stopped relatively early. This happens when the entropy loss

suddenly declines sharply, and is usually correlated with small numbers of labeled exam-

ples per seen class. As a result, it so happens that our model needs much fewer epochs to

converge, as compared to the original model that serves as its backbone, FlexMatch. This

result is shown in Table 4.1.

Labels per Unseen Convergence

class classes epoch

1 35 224.6 ± 44.19

4 40 523.0 ± 24.61

25 40 726.6 ± 8.85

Table 4.1: The mean number of epochs to convergence, in a scenario where FlexMatch needs

1024 epochs to converge.



5 Conclusion

We investigated Semi-Supervised Learning (SSL) in a small sample framework with few-

shot and zero-shot classes, thereby unveiling an unexplored real-life challenge. To address

this challenge, we proposed to integrate an entropy loss into established state-of-the-art SSL

frameworks, exemplified by FlexMatch. This strategic enhancement serves as a potent rem-

edy for the absence of labeled instances corresponding to unseen classes. This method will

enable us to convert any state-of-the-art SSL algorithm to readily face this challenge.

Our extensive empirical evaluation substantiates the efficacy of our approach in resolving

the aforementioned challenge when juxtaposed against alternative baselines, including SSL

and open-set SSL (adapted to suit our scenario as discussed in Section 3.4), as well as open-

world SSL. Notably, our algorithm emerges as a standout performer, particularly within the

realm of limited labeled data scenarios.

In future work, we will investigate the dynamic incorporation of the entropy loss throughout

the training process. This adaptive integration holds promise for enhancing the robustness

and versatility of our approach.
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