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ABSTRACT

Generative Adversarial Networks [11] (GANs) have been shown to produce realistically

looking synthetic images with remarkable success, yet their performance seems less

impressive when the training set is highly diverse. In order to provide a better fit to the

target data distribution when the dataset includes many different classes, we propose a variant

of the basic GAN model, called Multi-Modal-GAN (MM-GAN), where the probability distribution

over the latent space is a mixture of Gaussians. We also propose a supervised variant which is

capable of conditional sample synthesis. In order to evaluate the model’s performance, we propose

a new scoring method which separately takes into account two (typically conflicting) measures -

diversity vs. quality of the generated data. Through a series of empirical experiments, using both

synthetic and real-world datasets, we quantitatively show that MM-GANs outperform baselines,

both when evaluated using the commonly used Inception Score [32], and when evaluated using our

own alternative scoring method. In addition, we qualitatively demonstrate how the unsupervised

variant of MM-GAN tends to map latent vectors sampled from different Gaussians in the latent

space to samples of different classes in the data space. We show how this phenomenon can be

exploited for the task of unsupervised clustering, and provide quantitative evaluation showing

the superiority of our method for the unsupervised clustering of image datasets. Finally, we

demonstrate a feature which further sets our model apart from other GAN models: the option to

control the quality-diversity trade-off by altering, post training, the probability distribution of

the latent space. This allows one to sample higher quality and lower diversity samples, or vice

versa, according to one’s needs.
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1
INTRODUCTION

Generative models have long been an important and active field of research in machine-

learning. Such models take as input a training set of data points from an unknown data

distribution, and return an estimate of that distribution. By learning to capture the

statistical distribution of the training data, this family of models allows one to generate additional

data points by sampling from the learned distribution. Well-known families of generative methods

include the Naïve Bayes model, Hidden Markov models, Deep Belief Networks, Variational Auto-

Encoders [19] (VAEs) and Generative Adversarial Networks (GANs) [11]; this thesis focuses on

the latter family.

Generative Adversarial Networks include a family of methods for learning generative models

where the computational approach is based on game theory. The goal of a GAN is to learn a

Generator (G) capable of generating samples from the data distribution (pX ), by converting latent

vectors from a lower-dimension latent space (Z) to samples in a higher-dimension data space (X ).

Usually, latent vectors are sampled from Z using the uniform or the normal distribution. In order

to train G, a Discriminator (D) is trained to distinguish real training samples from fake samples

generated by G. Thus D returns a value D(x) ∈ [0,1] which can be interpreted as the probability

that the input sample (x) is a real sample from the data distribution. In this configuration, G is

trained to obstruct D by generating samples which better resemble the real training samples,

while D is continuously trained to tell apart real from fake samples.

Crucially, G has no direct access to real samples from the training set, as it learns solely

through its interaction with D. If G is able to perfectly match the real data distribution pX ,

then D will be maximally confused, predicting 0.5 for all input samples. Such a state is known

as a Nash equilibrium, and has been shown in [11] to be the optimal solution for this learning

framework. Both D and G are implemented by deep differentiable networks, typically consisting

1



CHAPTER 1. INTRODUCTION

of multiple convolutional and fully-connected layers. They are alternately trained using the

Stochastic Gradient Descent algorithm. Figure 1.1 illustrates the structure of a GAN.

Figure 1.1: Illustration of a GAN’s structure.

GANs have been extensively used in the domain of computer-vision, where their applications

include super resolution from a single image [22], text-to-image translation [31], image-to-image

translation [15, 17, 43], image in-painting [41] and video completion [25]. Aside from their usages

in the computer-vision domain, GANs have been used for other tasks such as semi-supervised

learning [18, 33], music generation [10, 40], text generation [42] and speech enhancement [29].

1.1 Motivation For This Work

In the short period of time since their introduction, many different enhancement methods and

training variants have been suggested to improve their performance (see brief review in Sec-

tion 1.2 below). Despite these efforts, often a large proportion of the generated sample is, arguably,

not satisfactorily realistic. In some cases the generated sample does not resemble any of the

real samples from the training set, and human observers find it difficult to classify synthetically

generated samples to one of the classes which compose the training set (see illustration in

Figure 1.2).

The problem described above worsens with the increased complexity of the training set, and

specifically when the training set is characterized by large inter-class and intra-class diversity. The

inter-class and the intra-class diversity of a dataset can, informally, be defined as the variability

among samples belonging to different classes, and the variability among samples belonging to

the same class, respectively. Figure 1.3 illustrates these terms.

In this work we focus on this problem, aiming to improve the performance of GANs when the

training dataset has large inter-class and intra-class diversity.

2



CHAPTER 1. INTRODUCTION

(a) (b)

(c) (d)

Figure 1.2: Images generated by different GANs trained on (a) MNIST, (b) CelebA, (c) LSUN
Bedrooms, (d) STL-10. Images marked with a red square are, arguably, of low quality.

(a)

(b)

Figure 1.3: Samples from the STL-10 dataset which demonstrate the complexity of this dataset.
(a) Different samples belonging to 10 different classes which demonstrate a large inter-class
diversity. (b) Different samples belonging to the same class (birds) which demonstrate a large
intra-class diversity.

3



CHAPTER 1. INTRODUCTION

1.2 Related Work

In an attempt to improve the performance of the original GAN model [11], many variants and

extensions have been proposed in the past few years. Much effort was directed at improving GANs

through architectural changes to G and D. Thus [30] proposed a family of GAN architectures

called Deep Convolutional GANs (DCGANs), which replaced the traditional fully-connected

layers with strided and fractionally-strided convolutional and transposed convolutional layers.

This allows the spatial down-sampling and up-sampling operators to be learned during training.

DCGANs, and other variants of these models, are widely used for many applications involving

computer vision and images. LAPGAN [8] offers higher-quality image synthesis by generating

images in a multi-scale coarse-to-fine fashion: training images are converted to a Laplacian

pyramid, and a cascade of convolutional GANs is tasked with the generation of each layer of the

pyramid, conditioned on the one above it.

The loss function used in GANs’ training process was also an important point of focus in

previous works: [24] found that the loss function used in regular GANs may lead to the vanishing

gradients problem during the learning process. To overcome this problem, they adopted the

least squares loss function for the discriminator, which resulted in higher image quality, and

stabler training of this model. [2] Argued that the divergences which GANs typically minimize

are potentially not continuous with respect to the generator’s parameters, leading to training

difficulty. Instead of minimizing the Jensen-Shannon divergence between the generated data

and the real data distributions, as proposed in [11], they proposed to minimize the Earth-Mover

distance between these two distributions. Further building upon this direction, [12] proposed to

penalize the norm of the discriminator’s gradient with respect to its input, instead of clipping its

weights, as performed in [2].

Other improvements to the original model were achieved by introducing supervision into the

training setting: [26] suggested a variant of GANs called conditional GANs [26] (CGANs), where

the Generator and the Discriminator are both conditioned on some side information, e.g. a class

label, which is fed to them in addition to a random latent vector. [28] took this idea further and

proposed a variant of the conditional GAN where the discriminator acts as a multi-class classifier

and outputs a probability distribution over class labels, in addition to the probability that a given

input sample is real. Conditional variants of GANs have proved to enhance the sample quality,

while also improving the stability of the notorious training process of these models.

Another branch of related works, which perhaps more closely relates to our work, involves the

learning of a meaningfully structured latent space: Info-GAN [7] decomposes the input noise into

an incompressible source and a "latent code", attempting to discover latent factors of variation by

maximizing the mutual information between the latent code and the Generator’s output. This

latent code can be used to discover object classes in a purely unsupervised fashion, although

it is not strictly necessary that the latent code be categorical. Adversarial Auto-Encoders [23]

employ GANs to perform variational inference by matching the aggregated posterior of the

4



CHAPTER 1. INTRODUCTION

auto-encoder’s hidden latent vector with an arbitrary prior distribution. As a result, the decoder

of the adversarial auto-encoder learns a deep generative model that maps the imposed prior to

the data distribution. [5] Combined a Variational Auto-Encoder with a Generative Adversarial

Network in order to use the learned feature representations in the GAN’s discriminator as basis

for the VAE reconstruction objective. As a result, this hybrid model is capable of learning a latent

space in which high-level abstract visual features (e.g. wearing glasses) can be modified using

simple arithmetic of latent vectors.

1.3 Our Approach

Although modifications to the structure of the latent space have been investigated before as

described above, the significance of the probability distribution used for sampling latent vectors

was rarely investigated. A common practice today is to use a standard normal (e.g. N(0, I)) or

uniform (e.g. U[0,1]) probability distribution when sampling latent vectors from the latent space.

We wish to challenge this common practice, and investigate the beneficial effects of modifying the

distribution used to sample latent vectors in accordance with properties of the target dataset.

Specifically, many datasets, especially those of natural images, are quite diverse, with high

inter-class and intra-class variability. At the same time, the representations of these datasets

usually span high dimensional spaces, which naturally makes them very sparse. Intuitively, this

implies that the underlying data distribution, which we try to learn using a GAN, is also sparse,

i.e. it mostly consists of low-density areas with relatively few areas of high-density.

Our approach is to incorporate this prior-knowledge into the model, by sampling latent vectors

using a multi-modal probability distribution which better matches these characteristics of the

data space. It is important to emphasize that this architectural modification is orthogonal to, and

can be used in conjunction with other architectural improvements, such as those reviewed above.

Supervision can be incorporated into this model by adding a correspondence (not necessarily

injective) between labels and mixture components. This family of models is described in Section 2.

5



CHAPTER 1. INTRODUCTION

1.4 Contributions

The main contributions of this thesis are:

• In Chapter 2, we propose a novel family of GANs which we call Multi-Modal GANs (MM-

GANs). We further extend this family and provide a supervised variant of MM-GANs which

is capable of conditional sample synthesis.

• In Chapter 3, we discuss the shortcomings of the popular Inception Score [32], and further

show that GANs offer a trade-off between sample quality and diversity. We propose an

alternative evaluation score which is, arguably, better suited to the task of image synthesis

using GANs, and which can quantify the quality-diversity trade-off.

• In Chapter 4, we empirically evaluate our proposed model on the task of sample synthesis,

when trained with various diverse datasets. We show that MM-GANs outperform baselines

and achieve better scores.

• In Chapter 5, we describe a method for clustering datasets using MM-GANs, and provide

qualitative and quantitative evaluation using various datasets of real images.

6
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2
MULTI-MODAL GAN

We next describe our proposed model, and describe its training schema. We then de-

scribe an extension to this model, and discuss the possible benefits introduced by this

extension.

2.1 Unsupervised Multi-Modal GAN

The target function which we usually optimize for, when training a GAN composed of a Generator

G and a Discriminator D, can be written as follows:

(2.1) min
G

max
D

V (D,G)= E
x∼pX (x)

[logD(x)]+ E
z∼pZ (z)

[log(1−D(G(z)))]

Above pX denotes the distribution of real training samples, and pZ denotes some d-dimensional

prior distribution which is used as a source of stochasticity for the Generator. The corresponding

loss functions of G and D can be written as follows:

L(G)=− E
z∼pZ (z)

[logD(G(z))](2.2)

L(D)=− E
x∼pX (x)

[logD(x)]− E
z∼pZ (z)

[log(1−D(G(z)))](2.3)

Usually, a multivariate uniform distribution (e.g. U[−1,1]d), or a multivariate normal distri-

bution (e.g. N(0, Id×d)) is used as pZ when training GANs. In our proposed model, we optimize

for the same target function as in 2.1, but instead of using a unimodal random distribution for

the prior pZ , we propose to use a multi-modal distribution which can better suit the inherent

7



CHAPTER 2. MULTI-MODAL GAN

multi-modality of the real training data distribution, pX . In this work, we propose to use a

mixture of Gaussians as a multi-modal prior distribution. Formally, we have:

(2.4) pZ(z)=
K∑

k=1
αk ∗ pk(z)

where K denotes the number of Gaussians in the mixture, {αk}K
k=1 denotes the elements of a

categorical random variable, and pk(z) denotes the multivariate Normal distribution N(µk,Σk),

defined by the mean vector µk, and the covariance matrix Σk. In the absence of prior knowledge

we assume a uniform mixture of Gaussians, that is, ∀k ∈ [K] αk = 1
K .

The parameters µk,Σk of each Gaussian in the mixture can be fixed or learned. One may be

able to choose these parameters by using prior knowledge, or pick them randomly. Perhaps a more

robust solution is to learn the parameters of the Gaussian Mixture along with the parameters of

the GAN in an "end-to-end" fashion. This should, intuitively, allow for a more flexible, and perhaps

better performing model. We therefore investigated two variants of the new model - one (static)

where the the parameters of the Gaussians mixture are fixed throughout the model’s training

process, and one (dynamic) where these parameters are allowed to change during the training

process in order to potentially converge to a better a solution. These variants are described in

detail next:

2.1.1 Static MM-GAN

In the basic MM-GAN model, which we call Static Multi-Modal GAN (Static MM-GAN), we

assume that the parameters of the mixture of Gaussians distribution are fixed before training the

model, and cannot change during the model’s training process. More specifically, each of the mean

vectors µk is uniformly sampled from the multivariate uniform distribution U[−c, c]d, and each of

the covariance matrices Σk has the form of σ∗ Id×d, where c ∈R and σ ∈R are hyper-parameters

left to be determined by the user.

2.1.2 Dynamic MM-GAN

We extend our basic model in order to allow for the dynamic tuning of parameters for each of

the Gaussians in the mixture. We start by initializing the mean vectors and covariance matrices

as in the static case, but we include them in the set of learnable parameters that are optimized

during the GAN’s training process. This modification allows the Gaussians’ means to wander to

new locations, and lets each Gaussian have a unique covariance matrix. This potentially allows

the model to converge to a better local optimum, and achieve better performance.

The architecture of the Dynamic MM-GAN is modified so that G receives as input a categorical

random variable k, which determines from which Gaussian the latent vector should be sampled.

This vector is fed into a stochastic node used for sampling latent vectors given the Gaussian’s

index, i.e. z|k ∼ N(µk,Σk). In order to optimize the parameters of each Gaussian in the training

8
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phase, back-propagation would have to be performed through this stochastic node, which is not

possible. To overcome this obstacle, we use the re-parameterization trick as suggested by [19]:

Instead of sampling z∼ N(µk,Σk) we sample ε∼ N(0, I) and define z= Akε+µk, where A ∈Rd×d

and µk ∈Rd are parameters of the model, and d is the dimension of the latent space. We thus get

µ(z)=µk and Σ(z)= Ak AT
k .

We note that when training either the static or dynamic variants of our model, we optimize

for the same loss functions as in (2.2) and (2.3). Clearly other loss functions can be used in

conjunction with the suggested architectural modifications, as those changes are independent.

We also note that the dynamic variant of our model includes additional K ∗ (d2 +d) trainable

parameters, as compared the static model. In cases where K and d are sufficiently large, this

can introduce significant computational overhead to the optimization procedure. To mitigate this

issue, one can reduce the number of degrees of freedom in Σk, e.g. by assuming a diagonal matrix,

in which case the number of additional trainable parameters is reduced to 2∗K ∗d.

2.2 Supervised MM-GAN

It has been previously shown ([26, 28]) that training GANs with class labels supervision has

several benefits which include better sample quality, as well as improved training stability. We

therefore investigated a further extension to both variants of our proposed model, in order to

support training with label supervision when labels are available.

In the supervised setting, we change the MM-GAN’s discriminator so that instead of returning

a single scalar, it returns a vector o ∈RN where N is the number of classes in the dataset. Each

element oi in this vector lies in the range of [0,1], and can be interpreted as the probability that

the given sample is a real sample of class i. Informally, this modification can be thought of as

having N binary discriminators, where each discriminator i is trained to separate real samples

of class i from fake samples of class i and from real samples of classes other than class i.

The Generator’s purpose in this setting is, given a latent vector z sampled from the k’th

Gaussian in the mixture, to generate a sample which will be classified by the discriminator as a

real sample of class f (k); where f : [K]→ [N] is a discrete function mapping identity of Gaussians

to class labels. When K = N, f is bijective and the model is trained to map each Gaussian to

a unique class in the data space. When K > N f is surjective, and multiple Gaussians can be

mapped to the same class. This can be useful in cases where the training set is characterized

by high intra-class diversity and when single classes can be broken down to multiple, visually

distinct, sub-classes. When K < N f is injective, and multiple classes can be mapped to the same

Gaussian achieving the clustering of class labels.

We modify both loss functions of G and D to accommodate the class labels. The modified loss

functions become the following:

9
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L(G)=− E
z∼pZ (z)

[
logD(G(z)) f (y(z)) +

N∑
m=1,m 6= f (y(z))

log(1−D(G(z))m)

]
(2.5)

L(D)=− E
z∼pZ (z)

[
N∑

m=1
log(1−D(G(z))m)

]
− E

x∼pX (x)

[
logD(x)y(x) +

N∑
m=1,m 6=y(x)

log(1−D(x)m)

]
(2.6)

where y(x) denotes the class label of sample x, and y(z) denotes the index of the Gaussian

from which the latent vector z was sampled.

The training procedure for MM-GANs is fully described in algorithm 1.

10
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Algorithm 1 Training procedure of the MM-GAN model. Most of our experiments are conducted
with the default values d = 100, c = 0.1, σ= 0.15, bD = 64, bG = 128, γ= 0.0002. K and iters vary
with different experiments.
Require:

K - the number of Gaussians in the mixture.
d - the dimension of the latent space (Z).
c - defines the range from which the Gaussians’ means are sampled.
σ - scaling factor for the covariance matrices.
iters - the number of training iterations.
bD - the batch size for training the discriminator.
bG - the batch size for training the Generator.
γ - the learning-rate.
f - a mapping from Gaussian indices to class indices (in a supervised setting only).

1: for k = 1...K do
2: Sample µk ∼U[−c, c]d . init the mean vector of Gaussian k
3: Σk ←σ∗ Idxd . init the covariance matrix of Gaussian k
4: for i = 1...iters do
5: for j = 1...bD do
6: Sample xj ∼ pX . get a real sample from the training-set.
7: Sample k ∼ Categ( 1

K , ..., 1
K ) . uniformly sample a Gaussian index.

8: Sample zj ∼ N(µk,Σk) . sample from the k’th Gaussian
9: x̂j ←G(zj) . generate a fake sample using the Generator

10: if supervised then . compute the loss of D
11: Lreal(D)( j) ←− logD(xj)y(xj) −

∑N
m=1,m 6=y(xj)

log(1−D(xj)m)

12: L f ake(D)( j) ←−∑N
m=1 log(1−D(x̂j)m)

13: else
14: Lreal(D)( j) ←− logD(xj)
15: L f ake(D)( j) ←− log(1−D(x̂j))

16: L(D)← 1
2∗bD

bD∑
j=1

Lreal(D)( j) +L f ake(D)( j)

17: θD ← Adam(∇θD ,L(D),θD ,γ) . update the weights of D by a single GD step.
18: for j = 1...bG do
19: Sample k ∼ Categ( 1

K , ..., 1
K ) . uniformly sample a Gaussian index.

20: Sample zj ∼ N(µk,Σk) . sample from the k’th Gaussian
21: x̂j ←G(zj) . generate a fake sample using the Generator
22: if supervised then . compute the loss of G
23: L(G)( j) ←− logD(x̂j) f (y(z j)) −

∑N
m=1,m 6= f (y(zj))

log(1−D(x̂j)m)
24: else
25: L(G)( j) ←− logD(x̂j)

26: L(G)← 1
bG

bG∑
j=1

L(G)( j)

27: θG ← Adam(∇θG ,L(G),θG ,γ) . update the weights of G by a single GD step.

11
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3
GAN EVALUATION SCORE

We describe in this chapter a new scoring method for GANs, proposed as an alternative

to existing scoring methods. In particular, we argue that this new scoring method is

better suited for the task than the commonly used Inception Score [32].

3.1 Inception Score, Definition and Shortcomings

[32] proposed a method to evaluate generative models for natural image synthesis, such as VAEs

and GANs, using a pre-trained classifier. It is based on the fact that good samples, i.e. images

that look like images from the true data distribution, are expected to yield: (i) low entropy p(y|x),

implying high prediction confidence; (ii) high entropy p(y), implying highly varied predictions.

Here x denotes an image sampled from the Generator, p(y|x) denotes the inferred class label

probability given x by the Inception network [35] pre-trained on the ImageNet dataset, and p(y)

denotes the marginal distribution over all images sampled from the Generator.

The Inception Score [32] is therefore defined as:

(3.1) exp
(
Ex∼pG [DKL(p(y|x)||p(y))]

)
This score has been used extensively over the last few years. However, it has a number of

drawbacks which we found to be rather limiting::

1. The Inception Score is based on the Inception network [35], which was pre-trained on

the ImageNet dataset. This dataset contains ∼ 1.2 million natural images belonging to

1,000 different classes. As a result the use of the Inception Score is limited to cases where

the dataset consists of natural images. For example, we cannot use the Inception Score

12
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to evaluate the performance of a GAN trained on the MNIST dataset, which contains

gray-scale images of hand-written digits.

2. Even in cases where the dataset on which we train a GAN consists of natural images, the

distribution of these images is likely to be very different from that of ImageNet. In which

case, the confidence of the Inception network’s prediction on such images may not correlate

well with their actual quality.

3. The Inception Score only measures the samples’ inter-class diversity, namely, the distribu-

tion of these samples across different classes p(y). Another equally important measure,

which must be taken into account, is the intra-class diversity of samples, namely, the

variance of different samples which all belong to the same class.

4. The Inception Score combines together a measure of quality and a measure of diversity into

a single score. When evaluating the qualities of a GAN using solely this combined score, one

cannot asses the true trade-off between the quality and the diversity of generated images.

Thus a given Inception Score can be achieved by a GAN which generates very diverse, but

poor quality images, and also by a GAN which generates similarly looking but high quality

images. Different Inception Scores can also be achieved by the same GAN, when sampling

latent vectors with different parameters of the source probability distribution (e.g. σ), as

illustrated in Figure 3.1.

(a) (b)

Figure 3.1: Inception Scores of Static MM-GAN models trained on (a) CIFAR-10 and (b) STL-10,
when latent vectors are sampled using different values of σ. In both cases, the same model
achieves very different Inception Scores when different values of σ are used. Both models were
trained using σ= 1. Note that the best score is obtained for σ< 1, far from the training value
σ= 1.
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3.2 Alternative Score: Measuring the Quality-Diversity
Trade-off

A GAN’s Generator can be thought of as a model which maps a probability distribution of a

source domain Z (the latent space), to a probability distribution of a target domain X (the data

space). The source probability distribution is known, and can be easily sampled, while the target

probability distribution is the one we are interested in estimating by training a GAN. In cases

where the source probability distribution’s PDF is not constant (i.e. it is not uniform), it would

be reasonable to expect that a well trained Generator will map samples of high probability in

the source domain to samples of high probability in the target domain, and vice versa. In other

words, we expect that such a Generator, G, will support the following: ∀z ∈ Z, pZ(z)≈ pX (G(z)),

where pZ(z) is the probability of a sample z in the source domain, and pX (G(z)) is the probability

of the sample G(z) in the target domain.

Following this intuition, If we measure the quality of a sample x ∈X in the target domain by

its probability pX (x), then we can expect samples drawn from dense areas in the source domain

(i.e. close to the modals of the distribution) to be mapped to high quality samples in the target

domain, and vice versa. Therefore, we can increase the expected quality of generated samples

in the target domain by sampling with high probability from dense areas of the source domain,

and with low probability from sparse areas of the source domain. While increasing the expected

quality of generated samples, this procedure also reduces the sample diversity 1.

This fundamental trade-off between quality and diversity must be quantified if we want to

compare the performance different GAN models.

We therefore propose a new scoring system which can be used to measure the trade-off

between quality and diversity offered by GAN models. The details of this method are provided in

Section 3.3 below. We use this scoring method to quantitatively demonstrate the benefits of our

proposed model over other baselines, as presented in Section 4.3.

3.3 Quality-Diversity Trade-off Score

Next we propose a new scoring method for GANs, which allows one to evaluate the trade-off

between samples’ quality and diversity. This scoring method also relies on a pre-trained classifier,

but unlike the Inception Score, this classifier is trained on the same training set on which the

GAN is trained on. This classifier is used to measure both the quality and the diversity of

generated samples, as explained below.

1In our experiments, we were able to control this quality-diversity trade-off by modifying the probability distribu-
tion which is used for sampling latent vectors from the latent space Z (see Figs. 4.2, 4.4). We further elaborate on this
matter in Section 4.3.
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3.3.1 Quality Score

To measure the quality of a generated sample x, we propose to use an intermediate representation

of x in the pre-trained classifier c, and to measure the Euclidean distance from this representation

to its nearest-neighbor in the training set. More specifically, if cl(x) denotes the activation levels

in the pre-trained classifier’s layer l given sample x, then the quality score q(x) is defined as:

(3.2) q(x)= 1− exp(||cl(x)− cl(NN(x))||2)
exp(||cl(x)− cl(NN(x))||2)+a

Above a is a constant greater than zero, and NN(x) is the nearest-neighbor of x in the

training set, with regards to the pre-trained classifier’s intermediate representation cl , and is

defined as NN(x)= argmin
x′∈X

||cl(x)− cl(x′)||2. We also define the quality score for a set of samples

X as follows:

(3.3) q(X )= ∑
x∈X

1
|X | q(x)

3.3.2 Diversity Score

To measure the diversity of generated samples, we take into account both the inter-class, and

the intra-class diversity. For intra-class diversity we measure the average (negative) MS-SSIM

metric [36] between all pairs of generated images in a given set of generated images X :

(3.4) dintra(X )= 1− 1
|X |2

∑
(x,x′)∈X×X

MS−SSIM(x,x′)

For intra-class diversity, we use the pre-trained classifier to classify the set of generated

images, such that for each sampled image, x, we have a classification prediction in the form of a

one-hot vector, c(x). We then measure the entropy of the average one-hot classification prediction

vector to evaluate the diversity between classes in the samples set:

(3.5) dinter(X )= 1
log(N)

H

(
1
|X |

∑
x∈X

c(x)

)

We combine both the intra-class and the inter-class diversity scores into a single diversity
score as follows:

(3.6) d(X )=
√

dintra(X )∗dinter(X )
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3.3.3 Combined Score

While it is important to look at the quality and diversity scores separately, since they measure

two complementary properties of a model, it is sometimes necessary to obtain a single score per

model. We therefore define the following combined measure:

(3.7) s(X )=
√

q(X )∗d(X )

The range of the proposed quality, diversity and combined scores is [0,1], where 0 marks the

lowest score, and 1 marks the highest score. This property makes them easy to comprehend, and

convenient to use when comparing the performance of different models.
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4
EXPERIMENTAL EVALUATION

In this chapter we empirically evaluate the benefits of our proposed approach, comparing

the performance of MM-GAN with alternative baselines. Specifically, we compare the

performance of the unsupervised MM-GAN model to that of the originally proposed GAN

[11], and the performance of our proposed supervised MM-GAN model to that of AC-GAN [28].

In both cases, the baseline models’ latent space probability distribution is standard normal, i.e.

z ∼ N(0, I). The network architectures and hyper-parameters used for training the MM-GAN

models are similar to those used for training the baseline models. In the following experiments we

evaluated the different models on the 6 datasets listed in Table 4.1. Further details about these

datasets are provided in Table 4.1. In all cases, the only pre-processing made on the training

images is a transformation of pixel-values to the range of [−1,1].
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Dataset
Name

Description Number
of
Classes

Samples
Dimen-
sion

Train
Sam-
ples

Test
Sam-
ples

Toy-
Dataset

Points sampled from differ-
ent Gaussians in the 2-D
Euclidean space.

9 2 5,000 -

MNIST [21] Images of handwritten dig-
its.

10 28x28x1 60,000 10,000

Fashion-
MNIST
[38]

Images of clothing articles. 10 28x28x1 60,000 10,000

CIFAR-10
[20]

Natural images. 10 32x32x3 50,000 10,000

STL-10 [1] Natural images. 10 96x96x3 5,000 8,000
Synthetic
Traffic
Signs [27]

Synthetic images of street
traffic signs.

43 40x40x3 100,000 -

Table 4.1: Details of the different datasets used in the empirical evaluation: a Toy-Dataset which
we have created (see details in Section 4.1), MNIST [21], Fashion-MNIST [38], CIFAR-10 [20],
STL-10 [1] and the Synthetic Traffic Signs Dataset [27].

4.1 Toy-Dataset

We first compare the performance of our proposed MM-GAN models to the aforementioned

baseline models using a toy dataset, which was created in order to gain more intuition regarding

the properties of the MM-GAN model. The dataset consists of 5,000 training samples, where each

training sample x is a point in R2 drawn from a homogeneous mixture of M Gaussians, i.e., ∀x
p(x) = ∑M

m=1
1
M pm(x) where pm(x) ∼ N(µm,Σm). In our experiments we used M = 9 Gaussians,

∀m ∈ [M] Σm = 0.1∗ I and µ= {−1,0,1}× {−1,0,1}. We labeled each sample with the identity of

the Gaussian from which it was sampled.

We trained two instances of the MM-GAN model, one supervised, using the labels of the

samples, and one unsupervised, which was not given access to these labels. In both cases, we

used K = 9 Gaussians in the mixture from which latent vectors are sampled. Figure 4.1 presents

samples generated by the baseline models (GAN, AC-GAN) and samples generated by our

proposed MM-GAN models (both unsupervised and supervised variants). It is clear that both

variants of the MM-GAN generate samples with a higher likelihood, which matches the original

distribution more closely as compared to the baseline methods. It is also evident that in this

configuration, the diversity of samples generated by the MM-GAN model is lower than that of

the classic GAN model. This illustrates the trade-off between quality and diversity, which we

explore more thoroughly in Section 4.3. Figure 4.2 demonstrates the superiority of MM-GAN as

compared to classic GAN, when measuring the trade-off between quality and diversity offered by
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these models (see Section 4.3 for further elaboration on this matter).

(a) (b)

(c) (d)

Figure 4.1: Samples from the toy-dataset along with samples generated from: (a) GAN, (b)
unsupervised MM-GAN, (c) AC-GAN, (d) supervised MM-GAN. Samples from the training set are
drawn in black, and samples generated by the trained Generators are drawn in color. In (b) and
(d), the color of each sample represents the Gaussian from which the corresponding latent vector
was sampled.

An intriguing observation is that the MM-GAN’s Generator is capable, without any super-

vision, of mapping each Gaussian in the latent space to samples in the data-space which are

almost perfectly aligned with a single Gaussian. We also observe this when training unsupervised

MM-GAN on the MNIST and Fashion-MNIST datasets. In Chapter 5 we exploit this phenomenon

by training unsupervised clustering models.

Finally, we note that the MM-GAN models converge considerably faster than the baseline

models. Figure 4.3 shows the (negative) log-likelihood of samples generated from the different

models, as a function of the training epoch.
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GAN MM-GAN

σ= 0.25

σ= 0.5

σ= 1.0

σ= 1.5

σ= 2.0

Figure 4.2: Samples from the toy-dataset along with samples generated from GAN (left column)
and unsupervised MM-GAN (right column), using different σ values for sampling latent vectors
from the latent space Z. During the training process of both models, latent vectors were sampled
with σ = 1.0. Samples from the training set are drawn in black, and samples generated by
the trained Generators are drawn in color. In samples generated by the MM-GAN, the color of
each sample represents the Gaussian from which the corresponding latent vector was sampled.
MM-GAN clearly offers a better trade-off between quality and diversity as compared to the
baseline.
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Figure 4.3: Convergence rate of our proposed models vs. baselines. The plot shows the negative
log-likelihood of generated samples, as a function of the training epoch of each model. Both
variants of the MM-GAN model converge much faster as compared to the baseline models.
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4.2 Real Datasets, Inception Scores

We next turn to evaluate our proposed models when trained on more complex datasets. We start

by using the customary Inception Score [32] to evaluate and compare the performance of the

difference models, the two MM-GAN models and the baseline models (GAN and AC-GAN). We

trained the models on two real datasets with 10 classes each, the CIFAR-10 [20] and STL-10

[1] datasets. Each variant of the MM-GAN model is trained multiple times, each time using

a different number (k) of Gaussians in the latent space probability distribution. In addition,

each model was trained 10 times using different initial parameter values. We then computed

for each model its mean Inception Score and the corresponding standard error. The results for

the two unsupervised and two supervised models are presented in Table 4.2. In all cases, the

two MM-GAN models achieve higher scores when compared to the respective baseline model.

The biggest improvement is achieved in the supervised case, where the supervised variant of

the MM-GAN model outperforms AC-GAN by a large margin. We also found that the number of

Gaussians used in the MM-GAN’s latent space probability distribution can improve or impair the

performance of the corresponding model, depending on the dataset.

CIFAR-10 STL-10

Model (unsupervised) Score
GAN 5.71 (±0.06)
MM-GAN (k=10) 5.92 (±0.07)
MM-GAN (k=20) 5.91 (±0.05)
MM-GAN (k=30) 5.98 (±0.05)

Model (unsupervised) Score
GAN 6.80 (±0.07)
MM-GAN (k=10) 7.06 (±0.11)
MM-GAN (k=20) 6.58 (±0.16)
MM-GAN (k=30) 7.03 (±0.10)

Model (supervised) Score
AC-GAN 6.23 (±0.07)
MM-GAN (k=10) 6.84 (±0.03)
MM-GAN (k=20) 6.81 (±0.04)
MM-GAN (k=30) 6.83 (±0.02)

Model (supervised) Score
AC-GAN 7.45 (±0.10)
MM-GAN (k=10) 8.32 (±0.06)
MM-GAN (k=20) 8.16 (±0.05)
MM-GAN (k=30) 8.08 (±0.07)

Table 4.2: Inception Scores for different MM-GAN models vs. baselines trained on the CIFAR-10
and STL-10 datasets.

4.3 Trade-off between Quality and Diversity

As discussed in Chapter 3, the Inception Score is not sufficient, on its own, to illustrate the

trade-off between the quality and the diversity of samples which a certain GAN is capable of

generating. In our experiments, we control the quality-diversity trade-off by varying, after the

model’s training, the probability distribution which is used to sample latent vectors from the

latent space. We do so by multiplying the covariance matrix of each Gaussian by a scaling factor

22



CHAPTER 4. EXPERIMENTAL EVALUATION

σ. Specifically, when using the baseline models we sample z∼ N(0,σ∗ I), and when using the MM-

GAN models we sample z|k ∼ N(µk,σ∗Σk), k ∼ Categ( 1
K , ..., 1

K ). Thus, when σ< 1, latent vectors

are sampled with lower variance around the modes of the latent space probability distribution,

and therefore the respective samples generated by the Generator are of higher expected quality,

but lower expected diversity. The opposite happens when σ> 1, where the respective samples

generated by the Generator are of lower expected quality, but higher expected diversity. Figures

4.2, 4.4 demonstrate qualitatively the quality-diversity trade-off offered by MM-GANs when

trained on the Toy and MNIST datasets.

We evaluated each model by calculating our proposed Quality Score from Eq. (3.2), and the

Combined Diversity Score from Eq. (3.6), for each σ ∈ {0.5,0.6, ...,1.9,2.0}. Each model was trained

10 times using different initial parameter values. We computed for each model its mean Quality

and mean Combined Diversity scores and the corresponding standard errors. The Quality and

Diversity Scores of the MM-GAN and baseline models, when trained on the CIFAR-10, STL-10,

Fashion-MNIST and MNIST datasets, are presented in Figure 4.5.

In some cases (e.g. supervised training on CIFAR-10 and STL-10) the results show a clear

advantage for our proposed model as compared to the baseline, as both the quality and the

diversity scores of MM-GAN surpass those of AC-GAN, for all values of σ. In other cases (e.g.

unsupervised training on CIFAR-10 and STL-10), the results show that for the lower-end range

of σ, the baseline model offers higher quality, but dramatically lower diversity samples, as

compared to our proposed model. In accordance, when visually examining the samples generated

by the two models, we notice that most samples generated by the baseline model belong to a

single class, while samples generated by our model are much more diverse and are scattered

uniformly between different classes. In all cases, the charts predictably show an ascending

Quality Score, and a descending Combined Diversity Score, as σ is increased. This correlates well

with qualitative results which we have examined during our experiments, and thus shows that

our proposed scoring method fits its task.
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σ= 0.1 σ= 0.4

σ= 0.7 σ= 1.0

σ= 1.5 σ= 2.0

Figure 4.4: Samples taken from an MM-GAN trained on the MNIST dataset. In each panel,
samples are taken with a different value of σ. The quality of samples decreases, and the diversity
increases, as σ grows. 24
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Figure 4.5: Quality and Diversity scores of MM-GANs vs. baselines trained on 4 datasets,
each corresponding to a different row, shown from top to bottom as follows: CIFAR-10, STL-
10, Fashion-MNIST and MNIST-10. Left column: AC-GANs vs. supervised MM-GANs. Right
column: GANs vs. unsupervised MM-GANs. Error bars show the standard error of the mean.
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5
UNSUPERVISED CLUSTERING USING MM-GANS

Throughout our experiments, we noticed an intriguing phenomenon where the unsupervised

variant of MM-GAN tends to map latent vectors sampled from different Gaussians in the

latent space to samples of different classes in the data space. Specifically, each Gaussian

in the latent space is usually mapped, by the MM-GAN’s Generator, to a single class in the data

space. Figures 4.1, 5.1 demonstrate this phenomenon on different datasets. The fact that the

latent space in our proposed model is sparse, while being composed of multiple Gaussians with

little overlap, may be the underlying reason for this phenomenon.

In this chapter, we exploit this observation to develop a new clustering algorithm, and provide

quantitative evaluation of the proposed method when applied on different datasets.
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(a) (b)

Figure 5.1: Samples taken from two unsupervised MM-GAN models trained on the MNIST (top
panels), Fashion-MNIST (middle panels) and CIFAR-10 (bottom panels) datasets. In (a) the
Gaussian mixture contains K = 10 Gaussians; in each panel, each row contains images sampled
from a different Gaussian. In (b) the Gaussian mixture contains K = 20 Gaussians; in each panel,
each half row contains images sampled from a different Gaussian.
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5.1 Clustering Method

Our clustering method works as follows: we first train an unsupervised MM-GAN on the dataset,

where K , the number of Gaussians forming the latent space, is set to equal the number of

clusters in the intended partition. Using the trained MM-GAN model, we sample from each

Gaussian k ∈ [K] a set of M latent vectors, from which we generate a set of M synthetic samples

X̃k =
{
x̃(i)

k

}
i∈[M]

. We then train a K-way multi-class classifier on the unified set of samples

from all Gaussians
⋃

k∈[K] X̃k, where the label of sample x̃ ∈ X̃k is set to k, i.e. the index of the

Gaussian from which the corresponding latent vector has been sampled. Finally, we obtain the

soft-assignment to clusters of each sample x in the original dataset by using the output of this

classifier c(x) ∈ [0,1]K when given x as input. Each element c(x)k (k ∈ [K]) of this output vector

marks the association level of the sample x to the cluster k. A hard-assignment to clusters can

be trivially calculated from the soft-assignment vector by selecting the cluster k with which

the sample is mostly associated, i.e. argmaxk∈[K] c(x)k. This clustering procedure is formally

described in Algorithm 2.

Algorithm 2 Unsupervised clustering procedure using MM-GANs.
Require:

X - a set of samples to cluster.
K - number of clusters.
M - number of samples to draw from each Gaussian.

1: (G,D)← MM-GAN(X ,K) . Train an unsupervised MM-GAN on X using K Gaussians.
2: for k = 1...K do
3: Sample Zk ∼ N(µk,Σk)M . Sample M latent vectors from the k’th latent Gaussian.
4: X̃k ←G(Zk) . Generate M samples using the set of latent vectors Zk.
5: ∀x̃ ∈ X̃k y(x̃)← k . Label every sample by the Gaussian from which it was generated.
6: X̃ ←⋃

k X̃k . Unite all samples into the set X̃ .
7: c ← classifier(X̃ , y) . Train a classifier on samples X̃ and labels y.
8: ∀x ∈ X cluster(x)← argmaxk∈[K] c(x)k . Cluster X using classifier c.

5.2 Empirical Evaluation

We evaluated the proposed clustering method on three different datasets: MNIST, Fashion-

MNIST, and a subset of the Synthetic Traffic Signs Dataset containing 10 selected classes (see

Table 4.1). For every dataset, we run our method with the number of clusters set to be the

number of classes in the dataset. To evaluate clustering performance we adopt two commonly

used metrics: Normalized Mutual Information (NMI), and Clustering Accuracy (ACC). Clustering

accuracy measures the accuracy of the hard-assignment to clusters, with respect to the best

permutation of the dataset’s ground-truth labels. Normalized Mutual Information measures

the mutual information between the ground-truth labels and the predicted labels based on the
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clustering method. The range of both metrics is [0,1] where a larger value indicates more precise

clustering results. Both metrics are formally defined as follows:

ACC(c|X , y)= max
π∈SN

1
|X |Σx∈X 1y(x)=π(c(x))(5.1)

NMI(c|X , y)= 1
|X |Σx∈X

I(y(x), c(x))√
H(y(x)) H(c(x))

(5.2)

Above X denotes the dataset on which clustering is performed, y(x) denotes the ground-truth

label of sample x, c(x) denotes the cluster assignment of sample x, H denotes entropy, I denotes

mutual-information, and SN denotes the set of all permutations on N elements (the number of

classes in the dataset).

The unsupervised clustering scores of our method are presented in Table 5.1.

Dataset Method ACC NMI
MNIST K-Means [39] 0.5349 0.500

AE + K-Means [39] 0.8184 -
DEC [39] 0.8430 -
DCEC [13] 0.8897 0.8849
InfoGAN [7] 0.9500 -
CAE-l2 + K-Means [3] 0.9511 -
CatGAN [34] 0.9573 -
DEPICT [9] 0.9650 0.9170
DAC [6] 0.9775 0.9351
GAR [16] 0.9832 -
IMSAT [14] 0.9840 -
MM-GAN (Ours) 0.9924 0.9618

Synthetic Traffic Signs K-Means* 0.2447 0.1977
AE + K-Means* 0.2932 0.2738
MM-GAN (Ours) 0.8974 0.9274

Fashion-MNIST K-Means* 0.4714 0.5115
AE + K-Means* 0.5353 0.5261
MM-GAN (Ours) 0.5816 0.5690

Table 5.1: Clustering performance of our method on different datasets. Scores are based on
clustering accuracy (ACC) and normalized mutual information (NMI). Results of a broad range of
recent existing solutions are also presented for comparison. The results of alternative methods
are the ones reported by the authors in the original papers. Methods marked with (*) are based
on our own implementation, as we didn’t find any published scores to compare to.

When evaluated on the MNIST dataset, our method outperforms other recent alternative

methods, and, to the best of our knowledge, achieves state-of-the-art performance. Less impressive

performance is achieved on the Fashion-MNIST dataset. The fact that this dataset is characterized

by small inter-class diversity may be the underlying reason for this. In such a case, an MM-GAN
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with merely K = 10 Gaussians may struggle to model this dataset in such a way where different

Gaussians in the latent space are mapped to different classes in the data space. Thus, some

Gaussians in the latent space are mapped to multiple classes in the data-space and therefore

the resulting performance of our method deteriorates. In such case, improved performance can

potentially be achieved by increasing the number of Gaussians forming the latent space; however,

in this configuration it would not be possible to quantitatively measure the performance of the

resulting dataset partitioning, thus we skip this test.
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6
SUMMARY AND DISCUSSION

This chapter summarizes this work and discusses the benefits and shortcomings of the

methods we have proposed.

6.1 Summary

This work is motivated by the observation that the commonly used GAN architecture may be ill

suited to model data in such cases where the training set is characterized by large inter-class

and intra-class diversity, a common case with real-world datasets these days. To address this

problem we propose a variant of the basic GAN model where the probability distribution over

the latent space is a mixture of Gaussians, a multi-modal distribution much like the target data

distribution which the GAN is trained to model. Additionally, we propose a supervised variant of

this model which is capable of conditional sample synthesis. We note that these modifications can

be applied to any GAN model, regardless of the specifics of the loss function and architecture.

In order to compare the different models, we note that the performance of GANs, and perhaps

other families of generative models, exhibits a certain trade-off between the quality of their

generated samples and the diversity of those samples. Therefore arguably the performance of

such models must be evaluated by separately measuring the quality and the diversity of the

generated samples, unlike common practice. For this purpose we propose a scoring method which

separately takes into account these two factors. The proposed score can be modified, based on the

application’s requirement, by adjusting the proportion of each factor when employing the trained

model.

In our empirical study, using both synthetic and real-world datasets, we quantitatively showed

that MM-GANs outperform baselines, both when evaluated using the commonly used Inception
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Score [32], and when evaluated using our own alternative scoring method. We also demonstrated

how the quality-diversity trade-off offered by our models can be controlled, by altering, post

training, the probability distribution of the latent space. This allows one to sample higher-quality,

lower-diversity samples or vice versa, according to one’s needs.

Finally, we qualitatively demonstrated how the unsupervised variant of MM-GAN tends to

map latent vectors sampled from different Gaussians in the latent space to samples of different

classes in the data space. We further showed how this phenomenon can be exploited for the

task of unsupervised clustering, and backed our method with quantitative evaluation which has

demonstrated the superior performance of our model over other competitors when evaluated on

the MNIST dataset.

6.2 Discussion

It is important to emphasize that the architectural modifications we proposed in this work are

orthogonal to, and can be used in conjunction with, other architectural improvements suggested

in prior art, such as those reviewed in Section 1.2. Thus, other variants of GANs can also benefit

from adopting the proposed method. For example, one may use a multi-modal prior in conjunction

with the popular WGAN-GP model [12] in order to achieve better training stability as well as

higher quality sample generation, or the InfoGAN model [7] in order to improve the modeling of

multi-modal attributes.

The MMGAN model, along with the proposed scoring method, allow one to control the

quality-diversity trade-off and directly choose between drawing higher-quality or higher-diversity

samples. This can be useful in cases where these factors have an influence on the application

for which the GAN is employed. For example, when a GAN is used to boost the performance of a

classifier trained in a semi-supervised learning settings, e.g. [32, 33], both the quality and the

diversity of the synthetic samples can influence the performance of the target classifier. Thus

one may want to carefully choose the right proportions of these two factors when employing the

model. Another example is Curriculum Learning [4, 37], a setting in which training samples are

gradually revealed from the easiest to the most difficult. Here one can employ our method in

order to initially generate high quality and low diversity samples, which are arguably easier,

followed by samples of higher diversity and lower quality.

Although lots of room for improvements in GANs still exists, we feel that this work brings

these family of models a step closer to achieving the desired capability of true photo-realistic

image synthesis, and hope that it will serve as a basis for future work which will continue the

march towards this goal.
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