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Abstract

Learning from a small sample is an acute problem which arises in
many applications where acquiring new samples is difficult, time consum-
ing or expensive. The problem becomes even harder when dealing with
rich high dimensional data. The learning process in such cases is often
preceded by dimensionality reduction or feature selection. The need to
avoid overfitting of an algorithm to the data is critical in this situation
and is sometimes handled using regularization techniques. In this work
we address these problems by incorporating a feature selection method
into an existing boosting based distance learning algorithm (DistBoost).
Given equivalence constraints over pairs of data points, the feature se-
lection method optimizes an L1 based cost function which takes into ac-
count the constraints and a regularization term. Selection is performed
in each boosting iteration, with the training data weights causing the fea-
tures relevant to the current data distribution to be chosen. We tested
our algorithm on the recognition of facial images, using two public do-
main databases. We show the results of extensive experiments where our
method outperforms a number of competing methods including the orig-
inal boosting based distance learning method and two commonly used
Mahalanobis distance functions.
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1 Introduction

In the field of computational learning theory, algorithms are designed which
attempt to learn certain properties of a given data set. The question of which
properties are relevant is task dependent and can vary even when looking at
the exact same data. As an example we can look at the task of classifying fa-
cial images. A set of facial images can be classified according to the different
individuals appearing in the image, according to the gender of the individuals,
their age or the facial expression. Each such task defines which are the impor-
tant characteristics of the data. In the supervised (or semi-supervised) learning
scenario, a simple way of guiding an algorithm towards these characteristics is
by labeling the data. The labels can be presented in the form of the class attri-
bution of a data sample or, as in this work, it can be in the form of equivalence
constraints stating, for pairs of samples, whether they belong to the same class
or not.
When asking how many examples we need to see in order to infer a general
property or classification rule, a number of considerations are involved. While
this is generally an open question, in a statistical framework, under certain as-
sumptions, the larger the sample size is, the more accurate our modeling of the
data would be. On the other hand practical issues, such as the time and cost
needed to acquire the data and the time needed for the algorithm to learn, make
it a desirable property to learn from as few examples as possible. The problem
of learning from small sample has received much attention and approaches for
dealing with it often require the use of additional bias information. This can be
in the form of unlabeled data or labeled data from related classes which share
a similar structure ([4],[2],[1],[8],[6]).
Another factor which complicates the problem further is the fact that the repre-
sentation of the data may include irrelevant or misleading information (images
of objects taken under different illumination conditions may cause different ob-
jects look similar and vice versa).
The effect of these obstacles can be greatly reduced by using feature selection
methods, allowing the algorithm to concentrate on the relevant information.
In this work it is done by minimizing a cost function which takes into account
the equivalence constraints and a regularization term, whose purpose is twofold.
Regularization techniques are used to prevent overfitting parameters to the given
data, and this is especially important when dealing with small data. In the form
presented here, the regularization term often constrains the problem to sparse
solutions, effectively causing the selection of relevant features.

1.1 Learning Distance Functions

Distance functions are mappings from pairs of data points to the real numbers.
Intuitively, one would like a distance function which maps data points according
to a (inverse) similarity notion that humans use, for example when comparing
images. In this context we do not restrict ourselves to metric distances (con-
forming to the properties of isolation, symmetry and the triangle inequality)
which have been shown not to reflect human similarity judgements ([9]).
Some of the motivations for learning distance function and not mearly classifi-
cation rules include:

• Many clustering and classification methods receive as their input the dis-
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tances between pairs of data points. A good distance measure would
improve their performance.

• Data is not necessarily divided into clear classes. Often there is a soft tran-
sition between one class to another and binding the description capability
to just class attribution is quite limiting. For example in the application
of image retrieval, say we have learnt to distinguish between images of
land mammals and birds but we are given a query of a platypus - both
mammals and birds seem like good candidates for retrieval.

• Another motivation related to the above metioned is the ”Learning to
Learn” scenario. Inspired by human’s ability to transfer knowledge about
a certain task into new similar tasks, it is suggested that this can be done
with the help of distance functions ([8],[5]).

Defining what a good distance function is, is somewhat problematic because of
the vagueness of the target concept, yet some sort of assesment of the quality of
the learnt function still needs to be given. Several methods are suggested and
used in this work and are described in 4.2.
Various algorithms have been developed for learning distance functions, of which
some are used as comparison to the method proposed here (see 4.1 for a de-
scription of these methods). One common family of distance functions is the
Mahalanobis distance, which is characterized by a positive semi-definite matrix
A with the distance between row data vectors x, y defined as (x−y)T ·A ·(x−y).
When A is the identity matrix this is the Euclidean distance.
Another important family of distance functions used widely for classification
tasks are kernel functions. In methods such as SVM, these functions are used
as computationaly efficient ways of calculating the dot product in high dimen-
sional spaces, where data is hopefully more easily separated. The importance of
carefully selecting the appropriate kernel for the given task has lead to the de-
velopement of kernel learning algorithms, one of which is based on the distance
learning algorithm used in this work ([4]).
Our feature selection method uses a powerful non parametric distance learning
algorithm called DistBoost([3]). The algorithm boosts weak distance functions
and is described in the following sections.
For a thorough review on distance function learning see [5].

1.2 Boosting

Boosting is a machine learning technique which uses a set of weak hypotheses
and amplifies their perfomance by combining them and creating a stronger hy-
pothesis. Many variants of this idea have been developed in recent years due
to theoretical justifications as well as practical successes of the algorithms. The
classical AdaBoost algorithm was developed by Freund and Schapire (1997) and
a generalization of it was presented by Schapire and Singer(1999) which allows
the usage of confidence rated predictors as weak hypotheses([7]).
AdaBoost takes a training set as input and proceeds in iterations. Each iter-
ation a weak hypothesis is greedily chosen with the aim of minimizing a cost
function defined over the labeled data. A distribution over the training set is
maintained and the weights are updated so as to give higher weights to samples
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which were misclassified using the chosen hypothesis. The final strong hypoth-
esis is a weighted sum of the chosen hypotheses.
AdaBoost tends to avoid overfitting, which makes it a good candidate for our
purpose of learning from small samples. The next section describes an appli-
cation of Adaboost used for distance learning with an extension for use with
unlabeled data - the DistBoost algorithm.

1.3 DistBoost

DistBoost([3]) is a semi-supervised algorithm for learning distance functions.
Its input is a training set augmented by partial side information in the form
of equivalence constraints. The algorithm is based on boosting Gaussian mix-
ture models which are computed using constrained EM. It therefore extends
Adaboost to the case where part of the data is unlabeled. DistBoost has been
shown to significantly outperform other distance learning methods when used
for clustering and nearest neighbor classification. A variant of this method is
also used in kernel function learning (KernelBoost [4]) where good performance
is achieved on small training samples. Following is a schematic description of
the algortihm:

Algorithm 1 DistBoost - Boosting with unlabeled data
Given (x1, y1), ..., (xn, yn); xi ∈ X , yi ∈ {−1, 1, ∗} Initialize
D1(i) = 1/n i = 1, .., n
For t = 1, .., T

1. Train weak learner using distribution Dt

2. Get weak hypothesis ht : X → [−1, 1] with rt =
∑n

i=1 Dt(i)ht(i) > 0. If
no such hypothesis can be found, terminate the loop and set T = t.

3. Choose αt = 1
2 ln( 1+r

1−r )

4. Update:

Dt+1(i) =
{

Dt(i) exp(−αtyiht(xi)) yi ∈ {−1, 1}
Dt(i) exp(−αt) yi = ∗

5. Normalize: Dt+1(i) = Dt+1(i)/Zt+1

where Zt+1 =
∑n

i=1 Dt+1(i)

6. Output the final hypothesis f(x) =
∑T

t=1 αtht(x)

A drawback of this method when used on small, high dimensional samples is
that fitting Gaussian mixture models in the original representation of this data
requires the estimation of many parameters (often more parameters than data
samples), which makes the weak hypotheses highly inaccurate (and also very
costly in computation time). This is traditionally overcome by reducing the
dimension of the data using PCA or LDA, but as results show, this reduction
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may cause the loss of valuable information. In this work we suggest handling
this problem using feature selection.
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