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ABSTRACT

The clustering of unlabeled raw images is a daunting task, which has recently

been approached with some success by deep learning methods. Here we propose

an unsupervised clustering framework, which learns a deep neural network in

an end-to-end fashion, providing direct cluster assignments of images without additional

processing. Multi-Modal Deep Clustering (MMDC), trains a deep network to align its

image embeddings with target points sampled from a Gaussian Mixture Model distribu-

tion. The cluster assignments are then determined by mixture component association

of image embeddings. Simultaneously, the same deep network is trained to solve an

additional self-supervised task of predicting image rotations. This pushes the network to

learn more meaningful image representations that facilitate a better clustering. Experi-

mental results show that MMDC achieves or exceeds state-of-the-art performance on

six challenging benchmarks. On natural image datasets we improve on previous results

with significant margins of up to 20% absolute accuracy points, yielding an accuracy of

82% on CIFAR-10, 45% on CIFAR-100 and 69% on STL-10.
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1
INTRODUCTION

C lustering involves the organization of data in an unsupervised manner, based

on the distribution of datapoints and the distances between them. Since these

properties are closely tied to the representation of the data, the problems of

clustering and data representation are firmly connected and are therefore sometimes

solved jointly. In accordance, in this work we start from a recent method for the un-

supervised computation of effective data representation (or features discovery), and

develop a clustering method whose results significantly improve the state of the art in

the clustering of natural images.

The task of unsupervised image clustering is challenging and interesting, as the

algorithm needs to discover patterns in highly entangled data, and produce separated

groups without explicitly specifying the grouping features. A large body of work has

been devoted to the problem of clustering [26], see Chapter 2 for a review of recent

related work. In recent years, with the emergence of deep learning as the method of

choice in visual object recognition and image classification, emphasis has shifted to the

computation of effective representations that will support successful clustering [37]. Vice

versa, unsupervised clustering loss has been used to drive the computation of image

representation and the discovery of enhanced image features by making it possible to use

unsupervised data in the training of deep networks, which traditionally require massive

amounts of labeled data.

When learning feature representation from unsupervised data by minimizing a

clustering-based loss function, one danger is cluster collapse - the representation may
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CHAPTER 1. INTRODUCTION

collapse to the trivial solution of a single cluster. In [6], a similar problem of represen-

tation collapse is managed by mapping the network’s representation to a fixed set of

randomly chosen points in some target features space. Here we borrow this mapping

idea, and incorporate it into a clustering algorithm.

More specifically, we first sample a fixed set of points in some target space. Since our

method is designed to partition the data into k clusters, the target points are chosen

from a matched density function - Gaussian Mixture Model (GMM) with k components.

Our model trains a randomly initialized neural network to align its image embeddings

with the sampled target points, directly inducing a partition that is based on the mixture

components. This is done by simultaneously learning a one-to-one mapping between the

output of the network and the target points, and updating the networks parameters to

best fit images with their target points as assigned by the mapping.

In the absence of ground truth, the proposed approach is prone to instability as

target points are continuously reassigned between images, creating a non-stationary

online learning environment. Such instability is often linked with unsupervised learning

tasks. To alleviate this problem, unsupervised tasks such as representation learning may

be combined with self-supervision tasks to achieve better results [14]. Here we adopt

the approach taken by [9] to deal with the notorious instability of training generative

adversarial networks. Thus the model is jointly trained on the main clustering task

and on a self-supervised auxiliary task as defined in RotNet [20], where all images are

subjected to 4 rotation angles. In this auxiliary task the network is trained to recognize

the 2D rotation of each rotated image.

For computation engine, our method uses off the shelf ConvNets and standard SGD

training with mini-batch sampling in an end-to-end fashion. It is therefore scalable to

large datasets.

1.1 Contributions

Our main contributions in this study are the following:

I) Introduce a novel clustering framework, Multi-Modal Deep Clustering (MMDC), which

partitions unlabeled images into semantically meaningful groups by training a ConvNet

to align image embeddings with fixed targets sampled from a Gaussian Mixture Model.

II) Propose incorporating an auxiliary self-supervised representation learning task

of predicting image rotations, to enhance the ConvNets features and consequentially

facilitate a more accurate clustering.

2



1.1. CONTRIBUTIONS

III) Apply our method to a variety of datasets and demonstrate a significant improve-

ment to previous state-of-the-art in common image clustering benchmarks, further

closing the performance gap between the realms of unsupervised and supervised learn-

ing.
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2
BACKGROUND & RELATED WORK

In this chapter we broadly review the topic of unsupervised data clustering and the

relations of clustering to data representation. We then survey recent advancements

in unsupervised image representation learning and image clustering using deep

neural networks.

2.1 Background

Clustering is a form of unsupervised learning, a machine learning paradigm that aims to

extract patterns from unlabeled data. In a typical supervised learning setting, of either a

classification or regression task, an algorithm is shown pairs of data points and labels

and must learn to predict the labels of new unseen data points. In contrast, a clustering

algorithm is shown a set of unlabeled data points and its goal is to determine cluster

assignments for each one of the data points. This process can sometimes be thought of as

unsupervised classification.

The objective of data clustering is to partition data points into groups such that

points in each group are more similar to each other than to data points in the other

groups. The measure of similarity between data points is heavily tied with how the

data is represented and what similarity metric is used. Expectantly, these choices can

greatly impact the efficacy of the clustering result. In practice, there is no one size fits

all solution. Different clustering algorithms differ by what assumptions they have on the

data points, how they measure similarity and in what way they approach the building of
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CHAPTER 2. BACKGROUND & RELATED WORK

the clusters. Prior knowledge of the characteristics of the data and clear definition of the

desired outcome can guide a wiser choice of a compatible algorithm for a specific task.

The problem of data clustering has received much attention in past decades and

many algorithms have been proposed to tackle it [26]. A coarse distinction to be made

is between Hierarchical algorithms and Partitional algorithms. Hierarchical clustering

approaches yield a dendogram of nested groups of clusters, i.e. a hierarchy of clusters

where on the top the whole dataset is clustered together and at the bottom each data

point is in a cluster of its own. Agglomerative clustering [22] builds the clusters in a

bottom-to-up fashion and Divisive clustering [44] constructs the clusters in a top-to-

bottom order. Partitional clustering algorithms [18] produce a single partition of the

data by minimizing a given clustering criterion, where usually a locally optimal solution

is achieved. In contrast to the hierarchical approach, typically a choice of the specific

number of desired clusters has to be made and is given as input to the algorithm. As

hierarchical algorithms produce many partitions of the data, they often require more

computational resources and are less scalable to large datasets than partitional methods.

Our work falls in the Partitional approach, as such we will continue mainly focusing on

it.

2.1.1 Partitional Clustering

Partitional clustering algorithms produce a single partition of the data points. In most

cases, the desired number of clusters is given as input to the algorithm. An exception to

this is density based approaches, which will be discussed later. There are two complemen-

tary approaches for choosing k, the number of clusters. The first, and the more subjective

one, is human evaluation. A domain expert can have prior knowledge on the expected

number of natural clusters in the data and can also manually observe several different

partitions of the data and select one that appears most fitting. A second approach is to

use principled evaluation metrics and visualization tools such as the Elbow method [28]

or Silhouette [43]. For each k, clustering is performed and some value is calculated and

a choice of k is determined by plotting the values and using a visual heuristic.

Centroid-based Clustering

In centroid-based clustering, commonly known as k-means clustering, clusters are repre-

sented by a centroid vector and each data point is assigned to the cluster of its nearest

centroid. A typical clustering criterion can be formulated as

6



2.1. BACKGROUND

(a) (b) (d)(c)

Figure 2.1: Illustration of different clustering approaches. (a) Centroid based methods,
such as k-means, associate each cluster with a centroid vector. (b) Density based methods,
such as DBSCAN, define dense areas as clusters and sparse areas as the buffer between
clusters. (c) Distribution based methods, such as Gaussian Mixture Model, fit the data
points to a parameterized distribution. (d) Spectral clustering methods make use of the
spectrum (eigenvalues) of the similarity matrix of the data to perform dimensionality
reduction before clustering in fewer dimensions.

(2.1) min
c1,...,cK

K∑
j=1

n j∑
i=1

d(xi, c j)

{xi}n
i=1 are the data points we wish to clusters, {c j}K

j=1 are the cluster centroids we aim

to find, n j is the number of data points in cluster j ∈ [K] and d(·, ·) is a distance function.

Solving this optimization problem directly is known to be NP-Hard. An approximate

solution can be found using Llyod’s algorithm [34], commonly referred to as k-means.

Initially, data points are assigned random clusters. In each step, new cluster centroids

are calculated as the average of all vectors currently assigned to the cluster and then

each data point is reassigned to the cluster of its nearest centroid. This is repeated

iteratively until convergance. Although this process leads to a local optimum of the

k-means objective, in practice it quite often produces pleasing results. Variations of the

original algorithm include optimizations such as running the algorithm several times and

choosing the partition with the best k-means score or initializing the cluster assignments

using better heuristics [3, 40].

Distribution-based Clustering

A clustering approach that is closely tied to statistics is distributed-based clustering.

Data points most likely belonging to the same distribution are clustered together. The

7
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most prominent model is the Gaussian Mixture Model, where each cluster is assumed to

be distributed normally and the number of clusters is equal to the number of gaussians in

the mixture. After the parameters of the mixture model is determined, each data point is

assigned to the gaussian it most likely belongs to. Naturally, soft cluster assignments are

obtained as well. Determining the mixture models parameters is commonly done using

the Expectation-Maximization (EM) algorithm [11]. First, the distributions parameters θ

are initialized to some random values. Then a two-step procedure is iteratively repeated

until convergence. In the first step, each data point is assigned the gaussian it has

most likely come from. In the second step, the gaussians parameters θ are updated to

maximize the likelihood of the data points.

Density-based Clustering

In the paradigm of density-based approaches, clusters are defined as areas with a high

density of data points, separated by areas with low density of data points which are

considered noise. Density-based spatial clustering of applications with noise (DBSCAN)

[17, 48] is perhaps the most popular algorithm in this class. In contrast to other parti-

tional clustering algorithms, the number of desired clusters k is not required as input.

Substituting, are the impactful parameters ε and minPts. A data point is considered

to be in a cluster if there are at least minPts other points within a radius of ε from it.

DBSCAN is one of the most commonly used clustering algorithms thanks to its rather

efficient O(n2) complexity and its ability to discover clusters of various shapes and sizes.

Ordering points to identify the clustering structure (OPTICS) [2] adapts the density-

based approach to a hierarchical framework where a hierarchy of clusters is produced.

In DeLi-Clu [1], further improvments are made and the need for the ε parameter is

eliminated.

Spectral Clustering

The general scheme of Spectral Clustering algorithms is to perform dimensionality

reduction on the data points prior to clustering using standard methods (such as k-

means) by making use of the spectrum of the similarity matrix of the data. Given a

similarity matrix of the data, first a Laplacian matrix L is calculated. Then the first k
eigenvectors, corresponding to the k smallest eigenvalues, of L are calculated and are

used to form a new matrix where each row corresponds to the features of a specific data

point. Finally some other clustering algorithm is applied on the matrix rows. Different

8
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spectral clustering algorithms [38, 45] mainly differ by how they define and interpret

the Laplacian L.

2.2 Related Work

2.2.1 Unsupervised Representation Learning

Naïvely attempting to cluster images with traditional approaches does not produce

a pleasing partitions of the images, as they work on the raw representations of the

images in pixel space, whereas semantically similar images are not necessarily similar,

by standard metrics such as the euclidean distance, in the high-dimensional pixel space

in which the images reside. Learning effective representations of data is crucial for the

success of machine learning tasks such as classification and clustering [4]. In recent years

learning useful image representations in an unsupervised manner has been dominated

by deep-learning-based approaches.

Autoencoders (AEs) [5] encode images with a deep network and are trained by recon-

structing the image using a decoder network. Different variations typically supplement

the reconstruction loss with regularization terms that encourage the latent space of

the autoencoder to have specific properties that are believed to facilitate better repre-

sentations. Sparse autoencoders apply L1 regularization on the output of the encoder

to encourage the optimization process to produce sparse representations. Denoising

autoencoders [47] add gaussian noise to the encoders input in the training phase. Many

more variations exist [36, 54].

Generative models such as Generative Adversarial Networks (GAN) [21] and vari-

ational autoencoders (VAE) [29] learn representations as a byproduct of learning to

generate images. One may simply use the discriminator of a GAN framework as a

feature extractor [42]. In a more principled manner, BiGANs [15, 16] learn an inverse

mapping f : X → Z that encodes images into the generators latent space.

Tightly connected to our work, Noise-As-Targets (NAT) [6] and DeepCluster [7] adopt

a training strategy of iteratively reassigning psuedo-labels to date points while training

the network to fit them. In [6] each data point is assigned a unique target sampled

uniformly from the unit sphere, whilst [7] produces psuedo-labels by applying k-means

clustering on the activations of the penultimate layer of the network and using the

cluster assignments as psuedo-labels for the data points. We expand on these methods in

chapter 3.
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2.2.2 Self-Supervised Learning

A family of unsupervised learning algorithms that gained popularity in recent years

are self-supervised methods. In the self-supervised learning framework, labels are

automatically generated from the data and are used to train a parameterized model. In

the context of unsupervised representation learning, this is typically done by training

a deep network to solve a pretext task, where labels can be produced directly from

the data. The task is designed in such a way that solving it implicitly requires the

network to learn semantically meaningful features of the data. In [39] a network is

tasked with solving a jigsaw puzzle. Given an unlabeled image, non-overlapping tiles

are extracted and shuffled and the network is required to predict the correct order of

the tiles. [41] proposes the pretext task of generating image regions conditioned on their

surroundings. A region within an image is masked out and an autoencoder is trained to

fill in the missing pixels. In [13] image patches representations are learnt by predicting

the relative position of patches in an image. More recently, [20] proposed rotating an

image and tasking a network with predicting in what orientation was the image rotated

(RotNet). In self-supervised GANs [9], predicting image rotations is used as an auxiliary

task to stabilize and improve training, by enhancing the discriminator’s representation

capabilities. In our method we adopt this approach as well, as elaborated later on.

2.2.3 Deep Clustering

A straightforward approach for image clustering is to first perform unsupervised repre-

sentation learning with some existing method and then apply clustering on the repre-

sentations. Deep Embedded Clustering (DEC) [50] first trains an autoencoder and then

discards of the decoder. In the second stage, cluster centroids in the encoders embedding

space are iteratively calculated and refined until convergence.

The dominant and most successful approach to clustering of images in recent years

has been to incorporate the tasks of representation learning and clustering into a single

framework. In Joint Unsupervised Learning (JULE) [52], the authors adopt an agglom-

erative clustering approach by iteratively merging clusters of deep representations and

updating the networks parameters to better predict the cluster assignments of the im-

ages. Associative Deep Clustering (ADC) [23] jointly learns network parameters and

embedding centroids with an association loss in order to estimate cluster membership.

Deep Adaptive Clustering (DAC) [8] and DCCM [49] recast the clustering problem into a

binary pairwise-classification framework, where cosine distances between image features

10
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of image pairs are used as a similarity measure to decide if they belong to the same

cluster.

More recently, Invariant Information Clustering (IIC) [27] adopts an approach that

achieves clustering based on maximizing the mutual information between two sets: deep

embeddings of images, and instances of the images that underwent random image trans-

formations while keeping the image semantic meaning intact. The natural properties

of the mutual information formulation assures that not all images are assigned to the

same cluster, as when maximizing the mutual information, the entropy of the cluster

assignments is maximized as well. IIC leverages auxiliary over-clustering to increase

expressivity in the learned feature representation, improving the representation capa-

bilities of its network. This tactic bears resemblance to our incorporation of rotation

prediction as an auxiliary task.

11
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3
OUR METHOD

In this chapter we present Multi-Modal Deep Clustering (MMDC), a novel image

clustering algorithm. Our goal is to partition a set of images into k clusters, which

reflect internal structure in the data. Fig. 3.2 shows an overview of the proposed ap-

proach. The algorithm alternates between solving the main unsupervised clustering task,

and an auxiliary self-supervised task that helps the training process. The ingredients of

the method are described next. The full method is summarized in Algorithm 1.

3.1 Unsupervised Learning

The starting point for this work is an unsupervised learning framework for learning

image representation from unlabeled data. The method, Noise as Targets [6], learns

useful representations of images by training a deep network to align its images’ embed-

dings with a fixed set of target points. The target points are uniformly scattered on the

d-dimensional unit sphere.

More specifically, let X = {xi}n
i=1 denote a set of images, and fθ : X → Z the parameter-

ized deep network we wish to train. The output of fθ is normalized to have `2 norm of 1,

entailing that Z is the d-dimensional unit sphere. NAT starts by uniformly sampling

n targets on this unit sphere. Let {ti}n
i=1 denote the set of target points, which remain

fixed throughout the training. Each image xi is assigned a unique target yi through a

13
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permutation P : [n]→ [n]. The optimization objective is formulated as

min
θ,P

1
n

∑
i
`( fθ(xi), yi) yi = tP(i)(3.1)

where ` is the Euclidean distance.

This optimization problem is solved in a stochastic manner, by iteratively solving

it over randomly sampled mini-batches. Given a mini-batch of images Xb, the current

representation vectors fθ(Xb) are first computed. Subsequently, Equation (3.1) is opti-

mized for P over the points in mini-batch Xb using the Hungarian method [32], which

reassigns the currently assigned targets of the mini-batch to minimize the Euclidean

distance (`2) between images and their assigned target points. Finally, the gradients of

fθ on Xb with respect to θ are computed, and an SGD step is executed.

Intuitively, NAT permutes the assignment of image representation vectors to target

points delivered by fθ, so that nearby embedding vectors are mapped to nearby target

vectors, and then updates θ accordingly. This process leads to the grouping of semantically

similar images in target space, and to effective representations that perform well in

downstream computer vision classification and detection tasks.

3.2 Multi-Modal Distribution of Target Points

The uniform distribution of target points on the unit sphere, as described above, is

not well suited for unsupervised clustering, since it is likely to blur the dividing lines

between clusters rather than sharpen them. Instead, multi-modal distribution seems

like a natural choice for the objective of clustering, as it directly produces separated

groups in target space.

In this work, we propose to use the mixture of Gaussians distribution, projected to

the unit sphere, for the sampling of target points. Formally, this implies:

p(u)=
K∑

k=1
αk · pk(u) u ∈Rd

p(ti)=
∫

u
‖u‖2

=ti

p(u)du ti ∈ Z
(3.2)

where K denotes the number of Gaussians in the mixture, d the dimension of the

embedding space, αk=1..K a categorical random variable, and pk(u) the multivariate

normal distribution N(µk,Σk), parameterized by mean vector µk and covariance matrix

Σk. In the absence of prior knowledge we assume that the mixture components are

14



3.2. MULTI-MODAL DISTRIBUTION OF TARGET POINTS

Algorithm 1
Input:
{xi}n

i=1 - images
fθ - ConvNet with two heads
k - number of clusters
epochs - number of epochs to train
iters - number of iterations in an epoch
σ - variance of normal distribution
d - dimension of embedding space
λc,λr - learning rates
g - random image transformation
r - number of instances of g in a batch
Init:
P ← initialize with random assignments
θ← initialize with random weights
T ← initialize empty list
for i = 1...n do

sample c ∼ Categ( 1
K , ..., 1

K )
sample u ∼ N(µc,σ · Id×d)
T[i]← ti = u

‖u‖
end for
for e = 1...epochs do

for i = 1...iters do
sample batch Xb and assigned targets Tb
compute fθ(Xb)
update P by minimizing Equation (3.1) w.r.t P
compute ∇θLc(θ) of Equation (3.1) for g(Xb)
update θ← θ−λc∇θLc(θ)

end for
for i = 1...iters do

sample batch Xb
rotate Xb ∀r ∈ {0°,90°,180°,270°}
compute ∇θLr(θ) // Lr is cross-entropy loss
update θ← θ−λr∇θLr(θ)

end for
end for

equally likely, namely αk = 1
K ∀k ∈ [K]. Finally, since the target points are constrained to

lie on the unit sphere, we project the sample in Rd to the unit sphere by ti = u
‖u‖2

.

We define the cluster assignment ci of image xi as follows

ci = argmin
k

‖ fθ(xi)−µk‖2(3.3)
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Figure 3.1: Our approach takes a set of images and solves two tasks in alternating epochs.
In the primary task, a CNN is trained to produce output which matches some predefined
set of target points sampled from a Gaussian mixture model, and optimally aligned with
the training set. In the secondary task, given a rotated image, the same CNN is trained
to predict the rotation angle of the image.

Note that if the final network fθ fits that target points exactly, namely fθ(xi)= yi, and if

Σk are the same ∀k, then with high probability ci is the index of the mixture component

from which target point yi has been sampled.

3.3 Image Transformations

Data augmentation is a useful and common technique to improve performance of machine

learning algorithms. Usually, random image transformations such as cropping, flipping,

rotation, scaling and photometric transformations are applied to images in order to

expand the dataset with new and unique images. In our task of unsupervised clustering,

these random transformations are essential, because they provide several instances of the

same image that appear different but share the same semantic meaning as they contain

the same object. Let g denote a random image transformation. In our method, we use the
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center crop of an image when minimizing Equation (3.1) w.r.t P. When minimizing the

same equation w.r.t θ, we first apply g to the image. Why is this algorithmic ingredient

useful? When training the ConvNet, it must find common patterns between the original

images and transformed images when fitting them to the same target. These common

patterns are likely to appear in other images in the dataset belonging to the same class.

This pushes the network to map images that contain the same objects closer to each

other, in a similar manner to the beneficial effect of self-supervision.

3.4 Auxiliary Task

While optimizing the clustering objective (3.1), the ConvNet model simultaneously

learns image representation and partitions the images. The success of unsupervised

clustering is highly correlated with the quality of the learnt representation. It has

been repeatedly shown that self-supervision methods can significantly improve the

quality of representations in an unsupervised learning scenario. To benefit from this

idea, we employ RotNet [20], which is a self-supervised learning algorithm that learns

image features by training a ConvNet to predict image rotations. Specifically, images

are rotated by r degrees where r ∈ {0°,90°,180°,270°}, and the model is subsequently

trained to predict their rotation by optimizing the cross-entropy loss. RotNet produces

competitive performance in representation learning benchmarks, and has been shown

to benefit training in other tasks, when incorporated into a model as an auxiliary task

[9, 19, 35]. We incorporate RotNet into our method, modifying the ConvNet training

procedure to alternate between optimizing the main clustering task and this secondary

auxiliary task.

3.5 Refinement Stage

As we have no prior knowledge regarding the size of the clusters, we begin by assuming

that clusters’ sizes are equal. When this assumption cannot be justified, we propose to

augment the algorithm with an additional step, performed after the main training is

concluded. In this step the assumption is relaxed, while target points are iteratively

reassigned based on the outcome of k-means applied to fθ(x1), ..., fθ(xn), and assigning

image xi to target µ j with label j ∈ [K] derived from the outcome of k-means. This

ingredient is similar to DeepCluster [7], proposed by Caron et al. as an approach for

representation learning, where they perform the clustering on the latent vectors of the
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CNN

K-means
Clustering

Targets

Figure 3.2: Illustration of the final refinement stage of our method. Images x1, ..., xn
are reassigned targets at the start of each epoch by applying K-means clustering on
fθ(x1), ..., fθ(xn) and assigning target µ j to image xi with cluster assignment j ∈ [K].

model and not the final output layer. A possible alternative method may start with this

stage and discard the first one altogether, as this approach makes no assumption on the

size of the clusters. However, we found that starting off with reassigning labels based on

k-means is not competitive and produces less accurate clusters. For example, training on

MNIST results in low accuracy of 81%.
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4
EXPERIMENTAL EVALUATION

We empirically evaluate our proposed algorithm for image clustering on a variety

of datasets and compare the results to previous methods discussed in chapter 2.

We specify the implementation details of our method, the evaluation protocol

and analyze the results. Subsequently, we report the results of an ablation study evalu-

ating the various ingredients of the algorithm, which demonstrate how they contribute

to its success

4.1 Datasets

The datasets we evaluate our method on are commonly used as benchmarks for image

clustering methods and contain varying amounts of classes and samples, and a variety of

resolutions. We are most interested in the datasets that consist of natural images, which

all but one do. The six datasets used in our empirical study: MNIST [33], CIFAR-10 [31],

the 20 superclasses of CIFAR-100 [31], STL-10 [10], ImageNet-10 (a subset of ImageNet

[12]) and Tiny-ImageNet [12], more details are presented in Table 4.1.
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Table 4.1: The image datasets used in our experiments.

Name Classes Samples Dimension

MNIST 10 70,000 28×28
CIFAR-10 10 60,000 32×32×3
CIFAR-100 20 60,000 32×32×3
STL-10 10 13,000 96×96×3
ImageNet-10 10 13,000 96×96×3
Tiny-ImageNet 200 100,000 64×64×3

4.2 Implementation Details

4.2.1 Architectures

For the MNIST experiments we use a small VGG model [46] with batch normalization

[25]. Each block in this neural network consists of one convolution layer, followed by a

batch normalization layer and ReLU activation function, and ends with a max pooling

layer. Our model has four blocks. For all other experiments we use a ResNet model [24]

with 18 layers. These base models are followed by a linear prediction layer, that outputs

the cluster assignments. When trained on the auxiliary task, the base model is also

followed by another linear head, which predicts the image rotation.

4.2.2 Training Details

The network is trained with stochastic gradient descent with learning rate 0.05 and

momentum of 0.9. We apply weight decay of 0.0001 for CIFAR-100 and Tiny-ImageNet,

and 0.0005 for all other datasets. We use batch size 128 and perform random image

augmentations which include cropping, flipping and color jitter. When training on the

auxiliary rotation task, we rotate each image to all four orientations, resulting in an

effective batch size of 512. We train the network for 400 epochs and decay learning rate

by a factor of 5 after 350 epochs. For MNIST we train for 50 epochs and decay learning

rate by a factor of 10 after 40 epochs. Training on CIFAR-10 takes 10.5 hours on a single

GTX-1080 GPU.
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Figure 4.1: Comparison of clustering performance on MNIST with different Mixture of
Gaussians initializations. We compare different dimensions for the target vectors and
different coefficient parameters (σ) for the covariance matrices of the gaussians. These
results do not include performing the refinement stage.

4.2.3 Mixture of Gaussians

We examined several initialization heuristics to determine the Gaussian means {µk} in

the GMM distribution defined in (3.2) and the covariance matrices {Σk}. A comparison

of different initialization schemes is provided in Figure 4.1, where all vectors lie on

the d-dimensional unit sphere. Gaussian means {µk} are sampled from a multi-variate

uniform distribution within the range [−0.1,0.1] and projected onto the unit sphere. We

always set Σk =σ · IK×K ∀k ∈ [K]. We compare different values for the dimension d and
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the variance parameter σ. Smaller variance usually performs best with the added benefit

of similar performance for different choices of dimension d. We therefore opted to use

K different one-hot vectors in RK for {µk} with variance σ = 0, as this achieved good

performance while reducing the number of free hyperparameters.

4.3 Evaluation Metrics

To evaluate clustering performance we adopt two commonly used scores: Normalized Mu-

tual Information (NMI), and Clustering Accuracy (ACC). Clustering accuracy measures

the accuracy of the hard-assignment to clusters, with respect to the best permutation of

the dataset’s ground-truth labels. The best permutation can be found using the Hungar-

ian algorithm [32]. Normalized Mutual Information measures the mutual information

between the ground-truth labels and the predicted labels based on the clustering method.

The range of both scores is [0, 1], where a larger value indicates more precise clustering

results. We formally define these metrics as:

ACC(c, y, X )=max
π∈SK

1
|X |

∑
x∈X

1y(x)=π(c(x))(4.1)

NMI(c, y, X )= 1
|X |

∑
x∈X

I(y(x), c(x))√
H(y(x))H(c(x))

(4.2)

Where X denotes the dataset on which clustering is performed, c(x) ∈ [K] denotes the

cluster assignment of sample x, y(x) ∈ [K] denotes the ground truth label of sample x, SK

denotes the set of all possible permutations on K elements, I denotes mutual information

and H denotes the entropy function.

4.4 Results

The results of our method when applied to the six image datasets are reported in Table 4.4.

Clearly, our clustering algorithm is able to separate unlabeled images into distinct groups

of semantically similar images with high accuracy, improving the state-of-the-art in the

five datasets of natural images. Examples of clustering results on the STL-10 dataset of

natural images are shown in Figure 4.2.

As baselines, we report clustering results of classical algorithms such as k-means

(KM) [3] and spectral clustering (SC) [53], and a simple deep learning approach of
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Table 4.2: Unsupervised clustering results. The results of our method are shown below
the separation line. For each dataset, we show the average result over five runs, standard
error (ste) and the best run. Above the separation line we list state of the art results for
comparison, see review in Chapter 2. Unreported results are marked with (-).

MNIST CIFAR-10 CIFAR-100 STL-10 ImNet-10 Tiny-ImNet
NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC

KM 0.499 0.572 0.087 0.228 0.083 0.129 0.124 0.192 0.119 0.241 0.065 0.025
SC 0.663 0.696 0.103 0.247 0.090 0.136 0.098 0.159 0.151 0.274 0.063 0.022
AE 0.725 0.812 0.239 0.313 0.100 0.164 0.249 0.303 0.210 0.317 0.131 0.041
DEC 0.772 0.843 0.257 0.301 0.136 0.185 0.276 0.359 0.282 0.381 0.115 0.037
JULE 0.913 0.964 0.192 0.272 0.103 0.137 0.182 0.277 0.175 0.300 0.102 0.033
DAC 0.935 0.978 0.396 0.522 0.185 0.238 0.249 0.303 0.394 0.527 0.190 0.066
IIC 0.978 0.992 0.513 0.617 0.224 0.257 0.431 0.499 - - - -
DCCM - - 0.496 0.623 0.285 0.327 0.376 0.482 0.608 0.710 0.224 0.108

O
ur

s avg. 0.971 0.990 0.703 0.820 0.418 0.446 0.593 0.694 0.719 0.811 0.274 0.119
ste ±.000 ±.000 ±.011 ±.019 ±.003 ±.006 ±.005 ±.013 ±.008 ±.012 ±.001 ±.001
best 0.973 0.991 0.720 0.843 0.423 0.464 0.609 0.741 0.732 0.830 0.277 0.121

applying k-means to the latent space of an autoencoder (AE). We also compare ourselves

to state-of-the-art methods such as DEC [51], JULE [52], DAC [8], IIC [27] and DCCM

[49]. Compared to previous state-of-the-art, we improve clustering accuracy on CIFAR-10

by 20%, CIFAR-100 by 12%, STL-10 by 20%, ImageNet-10 by 10% and Tiny-ImageNet

by 1%.

In the results reported in Table 4.4, the refinement stage was invoked only when

using the MNIST dataset. A more complete ablation study of the refinement stage is

reported in Table 4.5. The auxiliary task of RotNet, which was shown to be beneficial

when learning natural images, was used to enhance the clustering of all the datasets

except MNIST. For reference, we used the same image augmentations as in [27], which

uses a larger ResNet-34 as the backbone for the model. We use centrally cropped images

for evaluation.

4.4.1 Benefits of Auxiliary Task

Applying the Sobel filter to an image emphasizes edges and discards colors. This pre-

processing is commonly done in the context of unsupervised representation learning and

clustering algorithms, presumably to avoid sub-optimal solutions based on trivial cues

such as color [6, 27]. We observed an interesting interaction between Sobel filtering and
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Table 4.3: Clustering performance on CIFAR-10, showing the combined effect of pre-
processing with the Sobel filter and adding a rotation loss. First row: no pre-processing
and no rotation loss, second row: pre-processing and no rotation loss, third row: no
pre-processing with a rotation loss, fourth row: both.

Sobel Rotation loss NMI ACC

0.428 ± .005 0.492 ± .003
X 0.463 ± .003 0.560 ± .006

X 0.703 ± .011 0.820 ± .019
X X 0.610 ± .010 0.725 ± .020

training with the auxiliary task of predicting image rotations. Without the auxiliary task,

Sobel filtering indeed improves clustering performance as seen in Table 4.3. In contrast,

when training with an auxiliary task and adding the rotation loss, pre-processing with

the Sobel filter degrades the algorithms performance. Furthermore, without the rotation

loss the learning rate has to be reduced to 0.01 for training to converge. The reason

may be that trivial cues such as color are not beneficial for the task of predicting image

rotations, and therefore the auxiliary task forces the ConvNet to learn features that

focus on the object in the image. Once the focus is on the object, additional cues such as

color can be beneficial for clustering, and as a result pre-processing with the Sobel filter

is detrimental to the algorithm’s performance.

4.4.2 Features Evaluation

Our algorithm borrows some of its ingredients from NAT and RotNet. However, while

these two methods address representation learning, the final goal of our method is

clustering. Nevertheless, we compare our method to NAT and RotNet in two ways.

First, we examine the clustering capabilities of the methods by applying k-means to the

penultimate layer of the networks. Second, we evaluate the learnt features by training a

linear classifier with the image labels on top of the frozen features of the networks. We

use the same architecture and image transformations as our model for both methods. We

follow the training procedure from [30] for training RotNet and [6] for training NAT.

More specifically, we train the linear classifier with stochastic gradient descent with

learning rate 0.1, momentum of 0.9, weight decay of 0.00001, batch size of 128, cosine

annealing for learning rate scheduling, and 100 training epochs. Results with CIFAR-10

and CIFAR-100 are reported in Table 4.4. As shown our method outperforms the others
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in all cases except one, where NAT+RotNet performs better when clustering CIFAR-10

image features. As a reference for the linear classifier performance, we also evaluate a

model pretrained with ImageNet (first row in Table 4.4). Note that we use the same image

augmentations as for training the unsupervised methods, including 20×20 cropping,

which may degrade performance for this model.

Table 4.4: Evaluation of unsupervised feature learning methods on CIFAR-10 and CIFAR-
100. We use the penultimate layer of the network as image features and test performance
with two procedures. We perform k-means clustering on the image features and train
a linear classifier using the image labels. As a reference, we report results using an
imagenet-pretrained ResNet-18.

CIFAR-10 CIFAR-100
K-means Linear K-means Linear

NMI ACC ACC NMI ACC ACC

ImNet 0.321 0.407 0.782 0.247 0.281 0.646

NAT 0.044 ± .001 0.162 ± .001 0.315 ± .002 0.037 ± .001 0.095 ± .001 0.177 ± .001
RotNet 0.329 ± .011 0.349 ± .012 0.740 ± .002 0.261 ± .006 0.284 ± .013 0.543 ± .001
NAT+Rot 0.413 ± .005 0.511 ± .002 0.764 ± .001 0.190 ± .007 0.232 ± .006 0.499 ± .002

Ours 0.428 ± .011 0.397 ± .018 0.869 ± .002 0.395 ± .002 0.347 ± .007 0.662 ± .001

4.4.3 Refinement Stage

We compare clustering performance with and without the proposed refinement stage

in Table 4.5. MNIST is the only dataset with class imbalance, as its smallest class has

6313 samples while its largest has 7877. Reassuringly, the refinement stage helps the

algorithm achieve near perfect clustering with accuracy of 99.0%.

Table 4.5: Comparison of clustering performance before and after the refinement stage.

MNIST CIFAR-10 CIFAR-100 STL-10 ImNet-10 Tiny-ImNet
NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC

B
ef

or
e avg. 0.950 0.981 0.703 0.820 0.418 0.446 0.593 0.694 0.719 0.811 0.274 0.119

ste ±.002 ±.001 ±.011 ±.019 ±.003 ±.006 ±.005 ±.013 ±.008 ±.012 ±.001 ±.001

A
ft

er avg. 0.971 0.990 0.715 0.829 0.422 0.446 0.596 0.696 0.725 0.815 0.254 0.095
ste ±.000 ±.000 ±.009 ±.021 ±.002 ±.005 ±.005 ±.013 ±.008 ±.012 ±.001 ±.002
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airplane bird car cat deer dog horse monkey ship truck

Figure 4.2: Visualization of image clustering results on STL-10. Each column shows
images from a different cluster. The top seven images in each column are examples of
images from the same class successfully clustered together. The images in the bottom
three rows illustrate failure cases, where the image is assigned to the wrong cluster (e.g.,
an airplane assigned to the ’bird’ cluster).
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5
SUMMARY AND CONCLUSIONS

For the task of unsupervised semantic image clustering, we presented an end-to-

end deep clustering framework, that trains a ConvNet to align image embeddings

with targets sampled from a Gaussian Mixture Model by solving a linear assign-

ment problem using the Hungarian algorithm. Image transformations that preserve the

semantic context of an image, such as cropping and flipping, are used to create several

instances of an image that are mapped to the same target. This pushes the network

to map images that contain the same objects closer to each other. The usage of fixed

targets prevent the determinal phenomenon of target collapse, where all images would

be assigned the same target, and consequently the same cluster. Motivated by the idea

that a pleasing clustering of images requires an effective image representation to support

this effort, we incorporated an additional auxiliary task to the training of the ConvNet

- the prediction of image rotation, an effective self-supervised representation learning

approach. Our ablation study shows that the contribution of this component is essential

for the success of the method.

Even though the proposed method is quite simple, it yields a significant improvement

on previous state-of-the-art methods on a variety of challenging benchmarks, further

closing the gap between unsupervised and supervised learning. Furthermore, it is quite

efficient and takes less time to train than previous state-of-the-art methods.
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