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ABSTRACT

S tudies in visual perceptual learning investigate the way human performance improves

with practice, in the context of relatively simple (and therefore more manageable) visual

tasks. Building on the powerful tools currently available for the training of Convolution

Neural Networks (CNN), networks whose original architecture was inspired by the visual system,

we revisited some of the open computational questions in perceptual learning. We first replicated

two representative sets of perceptual learning experiments by training a shallow CNN to perform

the relevant tasks. These networks qualitatively showed most of the characteristic behavior

observed in perceptual learning, including the hallmark phenomena of specificity and its various

manifestations in the forms of transfer or partial transfer, and learning enabling. We next

analyzed the dynamics of weight modifications in the networks, identifying patterns which

appeared to be instrumental for the transfer (or generalization) of learned skills from one task to

another in the simulated networks. These patterns may identify ways by which the domain of

search in the parameter space during network retraining can be significantly reduced, thereby

accomplishing knowledge transfer.
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1
INTRODUCTION

Performance in relatively simple perceptual tasks is known to be affected by practice.

The study of this process revealed some surprising results [16], providing a window into

human learning mechanisms. One of the most striking results has been the repeated

observation that many of the acquired skills are specific to low level properties of the stimuli (e.g.,

orientation), and do not transfer (e.g., do not generalize to other orientations). These and other

results were used to constrain computational modeling of human perceptual learning, as briefly

reviewed Section 2.1.

In this paper we revisit these computational studies in the context of recent advances in

deep learning, and specifically model the learner by a Convolution Neural Network (CNN).

This modeling choice is justified by the resemblance between the CNN architecture and the

organization of low level visual areas in the brain. In Section 3 we describe the simulations

of representative perceptual learning experiments, where the learner is a shallow CNN, and

investigate its emerging properties. These properties are directly compared with the actual

perceptual learning results in a qualitative manner. In Section 4 we analyze the learning process.

We track the dynamics of weight modifications as learning proceeds, and identify patterns of

change which facilitate subsequent learning sessions, i.e.enable learning transfer. This facilitation

is likely achieved by reducing the search space when re-training the network.

The model we investigate here is a relatively shallow Convolution Neural Network (CNN) with

two hidden conv-pool layers (effectively the learned features), and one output layer that integrates

the responses of the features using modifiable weights. The main difference with respect to

previous modeling attempts, reviewed below, is that this is a generic model, which resembles the

visual system in its pipeline hierarchical structure (although it is not a physiologically accurate

model of the visual processing areas). It is a general learning machine that learns visual features
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CHAPTER 1. INTRODUCTION

from scratch, as well as decision classifiers. Thus it can be used to investigate the relative

contribution of features and classification weights to the learning process.
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2
BACKGROUND

Extraordinary cognitive learning abilities, arguably superior to any other living creature,

have allowed human beings to achieve incredible things. Here we focus on the less

glamorous but related ability of perceptual learning, where learners improve their

perceptual skills (and specifically visual skills) as a result of practice and training.

2.1 Generalization in perceptual learning

Perceptual learning studies usually measure the effect of practice on the performance of simple

visual tasks, such as motion direction discrimination or line orientation detection. Typically the

learner is given feedback, but perceptual learning is known to take place also without direct

feedback.

Early studies showed improvement in sensitivity of basic (low level) visual tasks, as basic as

hyper-acuity. It was soon shown that most of these improvements were rather specific, selective

to stimulus orientation, spatial-frequency, and retinal location [3, 6]. This seemed to imply that

learning-related modulations were taking place in early areas of visual processing, indicating

somewhat unexpected plasticity in the adult brain. Thus, the issue of learning Specificity became

central to the study of perceptual learning, with evidence accumulating for the lack of Transfer,

namely, perceptual learning typically would not lead to improved performance in the same

task when slightly modified (e.g., by shifting the stimulus to a different retinal position). A

central question emerged [16]: "does learning involve rewiring of neurons in early visual areas,

or can it all be explained by improved efficiency in the readout of unchanged early neuronal

representations?". This question provided a central motivation for the current study.

The question of learning Specificity continued to inspire additional studies, further complicat-

ing the picture. Thus learning Specificity was shown to be correlated with difficult perceptual
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CHAPTER 2. BACKGROUND

tasks. In easier tasks, e.g., in discrimination tasks involving stimuli with high SNR, general-

ization was sometimes seen by way of immediate improvement in the novel task, or a shorter

learning period [9, 12]. Moreover, a new phenomenon called learning Enabling, or Eureka, was

reported. This time, when the difficulty of the perceptual task was manipulated, a new form

of transfer was observed [2]: after training with an easy perceptual task (e.g., using high SNR

stimulus), observers were suddenly able to learn the corresponding difficult condition (low SNR)

they had previously been unable to learn. This is reminiscent of similar phenomena in cognitive

learning, and the related concept of curriculum learning [4].

Two prominent computational models of perceptual learning were developed to explain this

pattern of results. The reverse hierarchy theory [1] postulates a hierarchical architecture, where

learning is governed by a top-down (rather than the customary bottom-up) information flow.

Specifically, learning is first achieved at some rather abstract high level layer, which is task

specific; only later, if and when necessary, further learning is achieved at lower level layers

which correspond more directly to stimuli processing and the computation of feature maps. The

reweighting model [9] assumes a shallow network, and seeks to explain all observed perceptual

learning phenomena based on the reweighting of an unchanged set of features. Thus, while not

postulating a reverse learning order, this model also looks for the primary loci of modulations (or

learning) at some integration level - where the the task-relevant decision (or classification) is

taking place, rather than at the feature level. However, since there seems to be neurophysiological

evidence that perceptual learning corresponds to changes in low-level visual processing areas as

well [16], this theory is not fully satisfying.

2.2 Convolution Neural Networks

Convolution Neural Network (CNN) is a model whose architecture is based on the neocognitron

model [7, 8], whose architecture in turn was inspired to a large extent by our understanding

of the early visual system as it took shape in the 1960’s and 70’s. Each layer in the network

computes a number of feature maps (or channels), where each channel corresponds to a certain

filter which convolves with patches in the image, in a manner similar to passing a sliding window.

In addition to a convolution sub-layer, each layer includes additional operations (sub-layers).

Some correspond with known operations in the visual system, like max-pooling which computes

the maximal response over a small window defined over the convolution sub-layer, or Rectified

Linear Units (ReLU) which correspond to a non-linear operation on the responses, nulling out all

negative responses. Additional operations which are not necessarily biologically motivated have

been added along the way to artificial CNNs to increase their power.

Current CNN models are based on models developed in the 1980’s [15]. Unlike the neocog-

nitron model, these were learning machines which modified the weights of the network based

on propagating the error signal from the output layer all the way to the input layer. The back-
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CHAPTER 2. BACKGROUND

propagation model was not biologically motivated, in itself being equivalent to gradient descent

of a natural loss function in order to update the network’s weights. However, the error signal

derived from the loss function approximates the Hebbian rule to some extent, and therefore this

model was used to investigate biological learning mechanisms (e.g., [13, 14]).

In recent years we have seen an ever increasing use of CNN models for practical applications,

which now dominate the state of the art in many computer vision sub-fields like object recognition

(e.g., [10, 11, 17, 18]). This was made possible by the availability of big data - a large number of

images collected into publicly available databases, which were used to train deep CNN models

more effectively than ever before. In this paper we take advantage of this opportunity - the

widespread and the availability of very effective tools to train CNNs, in order to revisit questions

in perceptual learning, and investigate the learning of CNN models in the context of perceptual

learning tasks.

5
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3
THE EMERGENCE OF SPECIFICITY AND ENABLING

IN NETWORK TRAINING

We focused our investigation on two hallmark characteristics of perceptual learning (see

discussion in the previous section): Specificity and Enabling.

3.1 Methods

CNN network We trained a two layer CNN using vanilla SGD, with a fixed learning rate

and batch size (50). The network was initialized using a weights vector out of a fixed randomly

generated set. The first layer included 6 channels, each with 5x5 conv, stride 1, ReLU and pooling.

The second layer included 16 channels, each with 5x5 conv, stride 1 ReLU and pooing. This layer

was connected to the output of the network, 2 output neurons. Overall, the network had 8846

parameters including weights and biases. Each experiment was repeated 32 times, training a

new network each time. The plots in this section show average results across all repetitions, with

the appropriate standard deviation (std). In all conditions the network was trained long enough

with the initial learning task to achieve convergence.

Visual stimuli All images were grayscale of size 108×108, with added Gaussian noise. For

each experimental setup (e.g., pop-out task with θ = 8o), a dataset comprising of 3000 train and

1500 test images was created. In the pop-out experiment (Section 3.2), each image showed a

7×7 array of parallel oriented line segments. The experiment involved 4 conditions illustrated in

Fig. 3.1a: no pop-out (a1), pop-out in either the right or left location (a2 and a3 respectively), and

the same two conditions with swapped orientations (a4). Each image was randomly translated

7



CHAPTER 3. THE EMERGENCE OF SPECIFICITY AND ENABLING IN NETWORK TRAINING

a) b)

Figure 3.1: a) Pop-out discrimination task with differently oriented line segments in two locations.
b) Orientation discrimination task.

by up to 4 pixels in each direction along the x and y axes. In the orientation discrimination

experiment (Section 3.3), images were grayscale of size 68×68. A tilted Gabor patch was shown

near one of the 4 corners of the image (see Fig. 3.1b), after which it was rotated by a fixed angle

in either clockwise or counter clockwise direction.

3.2 Specificity and Enabling in pop-out tasks

We first replicated the task described in [2], training the Convolution Neural Network described

above to perform the discrimination task described next. We specifically looked for the emerging

properties of learning as they are related to the results reported in [2].

3.2.1 Experimental setup:

The relevant perceptual task was similar to the task described in Fig. 3.1a. The task required to

determine whether the displayed array contained an odd line segment (as in Fig. 3.1-a2) or not

(as in Fig. 3.1-a1). The angular difference between the odd segment and the remaining segments

θ controlled the level of difficulty (or SNR) of the task. In [2] there was an additional parameter

which controlled task difficulty - the SOA (Stimulus Onset Asynchrony); this physiological

parameter was not replicated in our simulations, as it required physiological modeling beyond

the scope of this work.

3.2.2 Learning as a function of task difficulty:

Our CNN model was trained to perform the discrimination of an odd element as illustrated in

Fig. 3.1a. The results (percent correct) are shown in Fig. 3.2. We note that it took about 300

8
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epochs to achieve 0.3% test error with the easy task (30o), and about 1500 epochs for 3.1% test

error with the hard task (8o).

a) b)

Figure 3.2: Results of training to perform the relevant discrimination task with a few levels of
difficulty. a) CNN network: the difficulty level is controlled by the angle difference between the
odd line segment and the background segments: 8o,16o,30o. b) [2] Fig. 1b. The two plots show
qualitatively similar behavior - longer training time for more difficult discrimination tasks. We
note, however, that both difficulty level and improvement were measured quite differently in a)
and b).

We repeated the manipulation of task difficulty as reported in [2] by changing the angle

difference between the odd line segment and the background segments. We used 3 conditions: 8o

(hardest), 16o (intermediate), and 30o (easiest). As described in Section 2.1, perceptual learning

experiments revealed different characteristics when the task difficulty was manipulated. In the

extreme cases, no learning was seen with very difficult tasks, while learning was fast or even

immediate with easy tasks. This pattern emerged in our experiments as well, as can be seen in

Fig. 3.2a.

3.2.3 Learning generalization (Transfer):

To check the Specificity of learning, the trained network was tested on the same discrimination

task as described above. As in [2], we first tested for transfer in the same image position. Without

changing the difficulty of the task, this was originally accomplished by using the swapped task

(see Fig. 3.1-a4). Results are shown in Fig. 3.3, showing similar qualitative behavior of larger

transfer for easier task, and vice versa.

Next, we investigated the transfer of learning to similar stimuli shown in different image

locations. Now the odd line segment was shown in a different image location, in the adjacent

grid position to the left or right of the trained location. The results (percent correct) are shown in

Fig. 3.4. Once again, we see similar qualitative behavior in the simulated and biological learning

outcomes, namely, training with the easy task (30o angle difference) transferred (or generalized)

9



CHAPTER 3. THE EMERGENCE OF SPECIFICITY AND ENABLING IN NETWORK TRAINING

Figure 3.3: Transfer in the same image position between two similar tasks of the same difficulty
level. Top: CNN network, transfer in the easier task with θ = 30o (left), and the more difficult
task with θ = 8o (right). Bottom: a qualitatively similar phenomenon was reported in [2] Fig. 2a.

quite significantly to new locations in the visual field, while training with the more difficult

task (16o angle difference) hardly affected performance in the new locations. We see one minor

difference: humans transferred more readily to the position between the two trained locations,

while our network did not display this preference.

3.2.4 Learning enabling (Eureka):

Finally, we investigated the enabling of learning. In very difficult tasks, it may be the case that

participants do not improve with practice, either because they cannot learn the task, or because

they learn it too slowly for the outcome to be measurable. In [2] it was shown that after a short

training session with the easy task (or a single long exposure), there was a sudden change and

observers began to improve very fast while learning the difficult task. This phenomenon was

termed in [2] the Enabling of learning; when the change was instantaneous, it was called Eureka.

In our simulations a similar phenomenon emerged, where training with the hard task

took significantly longer than training with the easy task. If, however, the network was first

trained with the easy task, subsequent training with the hard task became very fast with

some instantaneous improvement. Improvement was evident in both accuracy and the speed of

convergence, achieving a test error smaller by 1.5% in less than half the number of accumulated

iterations, in agreement with the results reported in [4]. These results are shown in Fig. 3.5.

10
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a) b)

Figure 3.4: Results of testing the trained network with the same discrimination task, but where
the odd element was shifted to a different location from the trained one. a) CNN network. b) A
qualitatively similar phenomenon was reported in [2] Fig. 2c.

a) b)

Figure 3.5: a) CNN: training to detect an odd segment with θ = 8o (a difficult task) takes a very
long time (bottom line). However, when the network has been first trained with a similar easy
task using θ = 30o, instantaneous improvement is seen, followed by speedy learning. The same
happens even if the orientations of the background and odd elements are swapped between the
odd element and the background. b) A qualitatively similar phenomenon was reported in [2]
Fig. 5b.

3.3 Specificity in orientation discrimination

Our second representative perceptual learning task is inspired by the one used in [9].

11
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3.3.1 Experimental setup:

The relevant perceptual task was similar to the task described in Fig. 3.1b. The task required

to determine whether the stimulus rotated clockwise or counter-clockwise. The rotation angle

θ controlled the level of difficulty (or SNR) of the task. In each experimental session, only two

corners along one image diagonal were used for training, while the other two corners were used

to probe for location transfer. In order to test for orientation transfer, another oriented stimulus

was presented, corresponding to a rotation by 90o of the stimulus presented during training.

3.3.2 Learning precision:

In this task, as in the previous task described in Section 3.2, learning characteristics strongly

depended on task difficulty. Like before, learning was fast for easier tasks (with relatively large

orientation difference θ), and much slower for difficult tasks (small θ). However, [9] observed that

what mattered was the difficulty of the target (test) task, a characteristic which they called task

precision, and not the difficulty of the initial training task, see Fig. 3.6-bottom1.

In accordance, we repeated this experiments and simulated the 4 relevant conditions. In the

first 2 conditions shown in Fig. 3.6-left, we trained the network with either a difficult training task

(θ = 16o) or a relatively easy task (θ = 30o), and tested transfer to the easy condition of θ = 30o.

In the last 2 conditions shown in Fig. 3.6-right, we used the same training but tested instead

transfer to the difficult condition of θ = 16o. The simulation results show similar qualitative

behavior an in the perceptual learning task, although in our simulations the difficulty of the

training task also played a role in the efficacy of transfer, and transfer was not instantaneous

even with the easy task.

3.3.3 Learning generalization (Transfer):

[5] investigated the question of learning interference. Specifically, they compared the transfer

to a new task in 3 conditions: when changing only stimulus absolute orientation, changing only

the image location where the stimulus was present, or changing both. Based on the results

described above, we expect that if the task is not too difficult there should be some transfer in all

3 conditions. Interestingly, [5] observed that when the stimulus absolute orientation was changed,

transfer was stronger when it was presented in a new location, as compared to presenting the

modified stimulus in the same location. This may indicate the existence of some destructive

interference between the learning of different basic features in the same image location.

We investigated whether the same can be seen in our model. Like before, we trained the

CNN using the original stimulus, and then tested performance using the same 3 manipulations:

change of stimuli absolute orientations while keeping the orientation difference fixed, change

1The difference between the initial learning curves (denoted ’Training’) in the two conditions, shown on the
left side of each panel of Fig. 3.6-bottom, are due to random differences between subjects, since different subjects
participated in the two experiments. The learning task, however, was identical.

12
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Figure 3.6: The dependence of transfer on the difficulty of the training task vs. the difficulty
of the target (test) task. Transfer results are shown separately depending on the difficulty of
the transfer (test) task. Left: easy test task; right: difficult test task. Top: CNN simulations (see
explanation in text). Bottom: a qualitatively similar phenomenon was reported in [9] Fig. 2.

of location, and change of both. The results are shown in Fig. 3.7 for θ = 30o, the easy task, in

qualitative agreement with the perceptual learning results. (The relevant results reported in [5]

only mention the easy task of θ = 30o. In our simulations this phenomenon was also evident with

θ = 16o, a harder task.)

a) b)

Figure 3.7: Transfer to a new location and new stimulus orientation. a) CNN, using θ = 30o. b) A
qualitatively similar phenomenon was reported in [5] Fig. 2.

13
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3.4 Discussion

Simulating the task described in [2], the learning outcome showed qualitatively similar charac-

teristics to the results described in human perceptual learning. Specifically, as the difficulty of

the perceptual task decreased, learning time decreased. Learning transferred (or generalized)

to similar tasks much more readily when the task was easy. Finally, training with an easy task

enabled subsequent training with difficult tasks by significantly shortening the time needed for

learning. These qualitative results capture the essence of almost all the observations reported in

[2].

Simulating the tasks described in [5, 9], we saw parallels to additional effects: transfer

depended more strongly on the difficulty of the target task rather than the training task; transfer

was more effective when image location was changed as compared to when stimulus orientation

was changed; and finally, we observed some learning interference when teaching similar tasks

with different stimuli in the same image location. The latter observation did not depend on the

number of channels in each layer.
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4
DYNAMICS OF WEIGHT MODIFICATIONS

In the previous section we showed how our simulations, when training a shallow CNN to

perform visual discrimination tasks, were able to replicate many of the phenomena observed

repeatedly in perceptual learning experiments. In this section we go a step further, and

investigate the network’s weights modification patterns which underlie these phenomena.

4.1 Feature maps and filters

We first note that, in both experiments, the CNN learned simple edge-like features matching the

displayed stimuli, as can be readily seen in Fig. 4.1. More specifically, Fig. 4.1a shows typical

patterns of activation in the channels of the second CNN layer in a pop-out experiment. In many

of these channels, the location of the odd element appears as a highlighted region or a gap in the

background pattern.

In Fig. 4.1b we see detectors of line segments matching the locations and orientations of the

training segments (first and last row). Interestingly, features learned for one task with orientation

o1 were able to partially detect the target segment in another task with orientation o2 (second

row). Slight weight modifications, limited to the bias elements only, improved the detection

somewhat (compare the third row with the fourth row). This may explain the orientation transfer

we see in this condition, where re-training with a new orientation is much faster than training

from scratch in the new orientation.
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a) b)

Figure 4.1: Representative feature maps. a) Pop-out detection tasks (Section 3.2). The first 3
columns from left to right correspond to a different angle difference: 8o, 16o and 30o. The 4th

column corresponds to a task with swapped orientations. In each column, 4 arbitrary channels are
shown. b) Orientation discrimination tasks (Section 3.3). Each column corresponds to a different
channel. The first row shows 4 feature maps from 4 channels when using orientation o1 during
both train and test. The last row shows the same channels when using o2, the angle obtained
when rotating o1 by 90o, during both train and test. The 2nd row shows the same channels when
o1 is used for training the network, and o2 is used for the computation of the feature map. The
3rd row shows the same channels when o1 is used for training the network, after which the biases
are copied from the network of the last row, and finally o2 is used for the computation of the
feature map.

4.2 Generalization to new locations

Learning Transfer (i.e., generalization) is the term used in the perceptual learning literature

to describe the phenomenon where some initial training with a visual task in a certain image

location improves performance in a different image location. We replicated two such results, as

shown in Fig. 3.4a and Fig. 3.7a.

To investigate Transfer, we analyzed the network modifications in the experiment described in

Fig. 3.7. Recall that in this setup, a network was first trained with the discrimination of oriented

edges in one part of the image (intermediate weight values), and subsequently the network was

trained with the same discrimination task in a different image location (final weight values). We

Analyzed the changes in the network weights between the intermediate and final states.

First, we noticed that all the significant (normalized) changes occurred in the connections

between the last conv-pool layer and the output neurons. These modifications are shown1 in

1In order to visualize the changes in weights, we reshaped the network weights into a 1D vector. Thus, for each
2-dimensional filter, the vectorization procedure transformed the matrix of weights to a vector by concatenating the
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Fig. 4.2. We see a range of changes in Fig. 4.2a, including inhibition and excitation. However,

many of the channels exhibited a specific pattern of changes, as shown for one typical channel in

Fig. 4.2b. Here, the pattern of learned weights displays alternating peaks corresponding to the

location of the stimuli in the image. This pattern is an artifact of the vectorization procedure.

a) b)

Figure 4.2: a) The weights of the connections between the last conv-pool layer and the output
neurons. Faint vertical line separate the weights into 16 groups, each corresponding to weights
originating from one channel in the last conv-pool layer. The intermediate weights (yellow) are
super-imposed on the final weights (blue). Since the intermediate weights hardly changed in the
second phase of training, the final weights are in fact described by the union of the yellow and
blue bars. b) Close-up on a typical channel, showing only weights originating from one of the
channels in the last conv-pool layer.

Fig. 4.2b should be interpreted as follows: The left pattern corresponds to the left half of the

image; here, blue bars correspond to pixels in the top of each column, while yellow bars correspond

to pixels in the bottom. The intermediate weights were trained when the edge appeared at the

bottom-left part of the image, thus the connections to these locations were amplified (yellow bars).

In the second learning phase (the transfer task), the edge appeared at the top-left corner of the

image, leading to the amplification of the connections to these pixels (blue bars).2

Thus, what we see is that the network maintained the features it had learned in the inter-

mediate phase of training, as seen by the stability of the weights from the first conv-pool layer

to the second one. When the same stimulus appeared in a new location, all the network had to

do was to modify the weights of the connections between the last conv-pool layer and the output

neurons, corresponding to the new image locations. This restriction of the search space, during

the second training phase, allowed the network to converge much faster to a good solution for

stimuli presented in new locations. In other words, in our network location transfer was the result

of re-using features learned previously, having to re-learn only the weights between features and

columns of the matrix scanned from left to right.
2The right pattern, corresponding to the right half of the image, should be interpreted in a similar manner.
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output layer (the readout weights).

4.3 Generalization to new orientations

In the experiments described in Fig. 3.7a, we investigated transfer to new stimulus orientations

(as well as new locations). When we examined the dynamics of weight modifications in our

network, changing the stimulus orientation while keeping the location constant, we saw a

different picture as compared to the one described above. This time all the weights in the network

changed, and in particular, new features were being learned, giving rise to weight changes in the

first and second conv-pool layers. In the decision layer, connecting the last conv-pool layer to the

output neurons, weights were adjusted to match the orientation of the second (transfer) stimulus.

a) b) c)

Figure 4.3: The 6 convolution filters learned in the first conv-pool layer of the CNN when: a)
the network was trained to discriminate orientation o1 only; b) the network was trained to
discriminate orientation o2 only; c) the network was trained to discriminate orientation o2 after
being trained with orientation o1.

The 6 convolution filters (for each of the 6 channels) learned in the first conv-pool layer of the

CNN in one simulation are shown in Fig. 4.3. When training with a single orientation, either o1 or

o2, some of the emerging filters captured the displayed orientation. Interestingly, when training

with one orientation (o1) and then the other (o2), new filters appropriate for o2 appeared in the

second phase of learning, but the best filters for the discrimination of o1 had not been significantly

modified. This interesting property, where training with a new task modified primarily channels

which had been less significant for the previous task, characterized the emerging filters of our

network in all 32 repetitions. We note that in a few repetitions, the CNN failed to learn new

appropriate filters, and it also failed to learn the new discrimination task with orientation o2.

Swapping the line segments: In the pop-out experiment, transfer to a new orientation was

investigated by swapping the orientations of the odd segment and the background segments. We

inspected the dynamics of weight modifications in the corresponding simulation, as illustrated in

Fig. 4.4. In this example, the strong positive weights correspond to a channel (Fig. 4.4a) activated
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by the odd segment in the initial learning task. After orientation swap this channel is activated

by background segments, and the output neuron indicates whether an input is "non-pop-out".

In order for the output neuron to properly classify an input as such, the network suppressed

the negative weights emanating from this channel and corresponding to background segments

(higher weights in the yellow as compared to the blue curve). Otherwise, their effect, which is

summed over all background segments locations, could multiply and decrease the total sum,

causing the output neuron to misclassify.

a)

b) c)

Figure 4.4: a) The weights of the connections between the last conv-pool layer and the output
neurons. Showing 16 channels each fenced by two faint vertical bars. The significant changes
occurred primarily in the channel marked in pink background. b) Zoom-in on the channel of
interest from above. The final weights at the end of re-training with orientation swap (yellow),
are super-imposed on the intermediate weights before re-training (blue). c) The feature map of
the channel activated by the pop-out edge during the initial task (left). The same channel feature
map, at the end of the second learning session after orientation swap (right).

4.4 Enabling

Learning Enabling is the term used to describe the phenomenon where initial training with a

certain task in an easy condition (high SNR) enables subsequent learning of the same task in

a difficult condition (low SNR). We described two such cases in Fig. 3.5a and Fig. 3.6-left. To

investigate learning Enabling, we analyzed the network modifications in the experiment described

in Fig. 3.6. Note that in Fig. 3.6 we used the somewhat confusing terminology introduced in [9]
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of low precision and high precision, which in the following discussion is replaced by the more

accurate terminology of high SNR and low SNR respectively.

Once again, we checked the modifications which occurred in the weights of the trained

network during the two learning phases. In Fig. 4.5 we show the weights of the network at

the end of the first learning phase (end of training with the high SNR task) superimposed on

the weights at the end of the second learning phase (end of training with the low SNR task).

We first observe that in general, the absolute values of the weights increased substantially, in

accordance with our empirical observation that independent training with high SNR and low

SNR tasks leads in general to higher absolute weights in the first case as compared to the second.

Interestingly, we don’t see weights redistribution after the second phase of learning, but what

appears like an amplification of the weights: for the most part the weights just got stronger in

absolute value while keeping the same sign (see Fig. 4.5-right). We see weight amplification all

over the network, including the first and second convolution layers, and the last decision layer.

We note that had we trained the network from scratch on the low SNR difficult task, without

previously training on the high SNR task, the overall effect would have been the re-distribution

of weights rather than weight amplification.

Figure 4.5: Left. Visualization of the weights of the trained network: blue bars show the weights
at the end of the process, and super-imposed yellow bars show the intermediate weights after
training with the initial easy (high SNR) task. Almost all weight changes correspond to amplifica-
tion (more positive or more negative values); very few changes correspond to decrease of absolute
value or change of sign. Right. To demonstrate this point, we show a close-up on a part of the plot,
focusing on the changes in a few of the final weights going from channels to decision neurons.
This is typical of all the other weight changes in the network.

Interestingly, it appears like learning Enabling in our network was the result of its achieving

a certain state, after the first learning phase, which proved to be a powerful initial condition

for the second learning phase; from this starting point, weight amplification alone allowed, for

the most part, convergence to a good solution in the second task. This reduced the search space
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Task Accuracy #bits

2 pos - 30o 99.79% 5.094
2 pos - 16o 99.40% 5.656
2 pos - 8o 96.90% 5.7188
8o enabled 98.43% 5.7188

Table 4.1: Number of bits needed to maintain original accuracy.

significantly, thus leading to much faster convergence, or the enabling of learning.

Finally, we evaluated the networks trained for tasks with different SNR, calculating the

minimal number of bits required to store the network’s weights without reducing performance by

more than 1%, see Table 4.1. Clearly, more bits (or higher precision) were required for harder

discrimination tasks. Moreover, we see that the enabled network (row 4 in the Table) reached

higher accuracy while requiring the same precision (the same number of bits) as compared with

the network trained only with the hard task (row 3).
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5
SUMMARY AND CONCLUSIONS

We described in this paper two sets of results and observations, based on the simulation

of perceptual learning experiments. We first trained a shallow Convolution Neural

Network to perform these tasks, to be compared with human learners. We were able

to show many parallels between the emerging properties in both learning scenarios, especially

those concerning learning transfer and enabling.

We then analyzed patterns of weight modifications in the network, identifying characteristic

patterns which may have been instrumental for the observed transfer of learning. When the new

task occurred in a different image location, the network typically re-used the features learned for

the first task, changing only the readout weights in the final classification layer. This agrees with

the model proposed in [9]. However, some transfer tasks (such as change in orientation) required

the changing of weights across the board, in disagreement with the model proposed in [9]. It may,

however, be more consistent with evidence for plasticity in early visual areas during perceptual

learning. We further postulate, that increasing the constraints on the architecture, i.e.decreasing

the number of channels, might increase the interference effect seen in Fig. 3.7, as the filters

might need to be unlearned.

Learning enabling, when learning a difficult task becomes possible only after being trained

with an easier task, also emerged in our simulations. Specifically, training the network with

an easy task left the network in a state where subsequent training with the difficult task

converged to excellent performance. This was accomplished by selectively amplifying the weights

of the network. This significant reduction of the search space during training could account for

the increased learning rate observed as part of learning Enabling as suggested in [12]. This

explanation of the Enabling phenomenon is very different from the explanation proposed in the

reverse hierarchy theory [2], which postulated a top-down order of learning. In our model all the
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weights of the network were changed simultaneously as a result of error propagation, and still

learning Enabling emerged.

In conclusion, the results and analysis provided in this paper can be used to rethink the

mechanism underlying perceptual learning, and give practical considerations on how to facilitate

knowledge transfer in CNN.
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