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ABSTRACT

Deep neural networks have incredible capacity and expressibility, and can seemingly

memorize any training set. This introduces a problem when training in the presence

of noisy labels, as the noisy examples cannot be distinguished from clean examples by

the end of training. Recent research has dealt with this challenge by utilizing the fact that deep

networks seem to memorize clean examples much earlier than noisy examples. Here we report a

new empirical result: for each example, when looking at the time it has been memorized by each

model in an ensemble of networks, the diversity seen in noisy examples is much larger than the

clean examples. We use this observation to develop a new method for noisy labels filtration. The

method is based on a statistics of the data, which captures the differences in ensemble learning

dynamics between clean and noisy data. We test our method on three tasks: (i) noise amount

estimation; (ii) noise filtration; (iii) supervised classification. We show that our method improves

over existing baselines in all three tasks using a variety of datasets, noise models, and noise

levels. Aside from its improved performance, our method has two other advantages. (i) Simplicity,

which implies that no additional hyperparameters are introduced. (ii) Our method is modular:

it does not work in an end-to-end fashion, and can therefore be used to clean a dataset for any

other future usage.
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1
INTRODUCTION

Deep neural networks dominate the state of the art in an ever increasing list of application

domains, but for the most part, this incredible success relies on very large datasets of annotated

examples available for training. Unfortunately, large amounts of high-quality annotated data are

hard and expensive to acquire, whereas cheap alternatives (obtained by way of crowd-sourcing

or automatic labeling, for example) often introduce noisy labels into the training set. By now

there is much empirical evidence that neural networks can memorize almost every training set,

including ones with noisy and even random labels Zhang et al. (2017), which in turn increases

the generalization error of the model. As a result, the problems of identifying the existence of

label noise and the separation of noisy labels from clean ones, are becoming more urgent and

therefore attract increasing attention.

Henceforth, we will call the set of examples in the training data whose labels are correct

"clean data", and the set of examples whose labels are incorrect "noisy data". While all labels can

be eventually learned by deep models, it has been empirically shown that most noisy datapoints

are learned by deep models late, after most of the clean data has already been learned (Arpit

et al., 2017). Therefore many methods focus on the learning time of an example in order to

classify it as noisy or clean, by looking at its loss (Pleiss et al., 2020; Arazo et al., 2019) or loss per

epoch (Li et al., 2020) in a single model. However, these methods struggle to classify correctly

clean and noisy datapoints that are learned at the same time, or worse - noisy datapoints that

are learned early. Additionally, many of these methods work in an end-to-end manner, and thus

neither provide noise level estimation nor do they deliver separate sets of clean and noisy data

for novel future usages.

Our first contribution is a new empirical results regarding the learning dynamics of an

ensemble of deep networks, showing that the dynamics is different when training with clean

data vs. noisy data. The dynamics of clean data has been studied in (Hacohen et al., 2020;
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CHAPTER 1. INTRODUCTION

Pliushch et al., 2021), where it is reported that different deep models learn examples in the same

order and pace. This means that when training a few models and comparing their predictions,

a binary occurrence (approximately) is seen at each epoch e: either all the networks correctly

predict the example’s label, or none of them does. Namely, this result is coming on par with other

results (e.g (Nakkiran et al., 2021; Neal et al., 2018)) on the subject of deep neural networks

variance. The variance of neural networks tends to behave in an interesting way when the

amount parameter is changed. Like classical models, when the number of parameters is small,

the network exhibits low variance and low accuracy. When the number of parameters is higher,

in the so-called "interpolation zone" where the number of parameters is roughly equal to the

data points size - neural networks exhibit large variance and lower accuracy. But unlike classical

models, when the number of parameters is much bigger than the number of data points, a unique

behavior emerges in the over-parametrized zone, as the variance gets smaller, and the accuracy

gets higher. This provides additional evidence that different deep networks learn data at the

same time simultaneously, as the variance decrease during training.

Figure 1.1: With noisy labels models show higher disagreement.
The noisy examples are not only learned at a later stage, but
each model learns the example at its own different time.

In Section 3 we describe a new

empirical result: when training an

ensemble of deep models with noisy

data, and in contrast to what hap-

pens when using clean data, differ-

ent models learn different datapoints

at different times (see Fig. 1.1). This

empirical finding tells us that in an

ensemble of networks, the learning

dynamics of clean data and noisy data can be distinguished. When training such an ensemble

with a mixture of clean and noisy data, the emerging dynamics reflects this observation, as well

as the tendency of clean data to be learned faster as previously observed.

In our second contribution, we use this result to develop a new algorithm for noise level

estimation and noise filtration, which we call DisagreeNet (see Section 4). Importantly, unlike most

alternative methods, our algorithm is simple (it does not introduce any new hyperparameters),

parallelizable, easy to integrate with any supervised or semi-supervised learning method and

any loss function, and does not rely on prior knowledge of the noise amount. When used for noise

filtration, our empirical study (see Section 5) shows the superiority of DisagreeNet as compared

to the state of the art, using different datasets, different noise models and different noise levels.

When used for supervised classification by way of pre-processing the training set prior to training

a deep model, it provides a significant boost in performance, more so than alternative methods.

In a broader sense, this work is part of a growing line of works that focus on fundamental

experiments with deep neural networks. In this field, the aim of the research is to advance the

understanding of deep neural networks by taking a somewhat "behavioral" approach. This is

2



done by treating our models as black boxes and observing the response when we control the

experiment settings. The setting may be the training data, model size, hyperparameters, or

anything else, and the response may be the test accuracy, different statistics of the weights, or

any traceable behavior of the model. The aim of this field is to provide a qualitative description of

the models, if not prove them rigorously.
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2
INTER-NETWORK AGREEMENT

Measuring the similarity between deep models is not a trivial challenge, as modern deep neural

networks are complex functions defined by a huge number of parameters, which are invariant

to transformations hidden in the model’s architecture. Here we measure the similarity between

deep models in an ensemble by measuring inter-model prediction agreement at each datapoint.

Accordingly, in Section 2.2 we describe scores that are based on the state of the networks at each

epoch e, while in Section 2.3 we describe cumulative scores that integrate these states through

many epochs. Practically (see Section 4), our proposed method relies on the cumulative scores,

which are shown empirically to provide more accurate results in the noise filtration task. These

scores promise added robustness, as it is no longer necessary to identify the epoch at which the

score is to be evaluated.

2.1 Preliminaries

Notations Let f e :Rd → [0,1]|C| denote a deep model, trained with Stochastic Gradient Descent

(SGD) for e epochs on training set X= {(xi, yi)}M
i=1, where xi ∈Rd denotes a single example and

yi ∈ [C] its corresponding label. Let F e(X) = { f e
1 , ..., f e

N } denote an ensemble of N such models,

where each model f e
i∈[N] is initialized and trained independently on X.

Noise model We analyze the training dynamics of an ensemble of models in the presence of

label noise. Label noise is different from data noise (like image distortion or additive Gaussian

noise). Here it is assumed that after the training set X= {(xi, l i)}M
i=1 is sampled, the labels {l i} are

corrupted by some noise function g : [C]→ [C], and the training set becomes X= {(xi, yi)}M
i=1 , yi =

g(l i). The two most common models of label noise are termed symmetric noise and asymmetric

noise (Patrini et al., 2017). In both cases it is assumed that some fixed percentage of the labels

are corrupted by g(l). With symmetric noise, g(l) assigns any new label from the set [C]\{l} with

5



CHAPTER 2. INTER-NETWORK AGREEMENT

equal probability. With asymmetric noise, g(l) is the deterministic permutation function. Note

that the asymmetric noise model is considered much harder than the symmetric noise model.

2.2 Per-Epoch Agreement Score

Following Hacohen et al. (2020), we define the True Positive Agreement (TPA) score of ensemble

F e(X) at each datapoint (x, y), where

TP A(x, y;F e(X))= 1
N

N∑
i=1

1[ f e
i (x)=y]

. The TPA score measures the average accuracy of the models in the ensemble, when seeing

x, after each model has been trained for exactly e epochs on X. Note that TP A measures the

average accuracy of multiple models on one example, as opposed to the generalization error that

measures the average error of one model on multiple examples.

2.3 Cumulative Scores

When inspecting the dynamics of the TPA score on clean data, we see that at the beginning the

distribution of {TP A(xi, yi)} is concentrated around 0, and then quickly shifts to 1 as training

proceeds (see side panels in Fig. 3.1(a)). This implies that empirically, data is learned in a specific

order by all models in the ensemble. To measure this phenomenon we use the Ensemble Learning

Pace (ELP) score defined below, which essentially integrates the TPA score over a set of epochs E :

ELP(x, y)= 1
|E |

∑
e∈E

TP A(x, y;F e(X))(2.1)

ELP(x, y) captures both the time of learning by a single model, and its consistency across models.

For example, if all the models learned the example early, the score would be high. It would be

significantly lower if some of them learned it later than others (see pseudo-code in Sec. 4.1).

In our study we evaluated two additional cumulative scores of inter-model agreement:

1. Cumulative loss: CumLoss(x, y)= 1
N|E |

∑
i,e∈E

CE( f e
i (x), y)

Above CE denotes the cross entropy function. This score is very similar to ELP, engaging the

average of the cross-entropy loss instead of the accuracy indicator 1[ f e
i (x)=y].

2. Area under the margin: following (Pleiss et al., 2020), the MeanMargin score is defined as

follows

MeanMargin(x, y)= 1
N|E |

∑
i,e∈E

[ f e
i (x)]yi −argmax

j ̸=yi

[ f e
i (x)] j

The MeanMargin score is the mean of the ’margin’, the difference between the value of the

ground-truth logit (before softmax) and the value of the otherwise maximal logit.

6
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2.4 Overfit and inter-model correlation

In this section we formally analyze the relation between two type of scores, which measure either

overfit or inter-model agreement. Overfit is a condition that can occur during the training of deep

neural networks. It is characterized by the co-occurring decrease of train error or loss, which is

continuously minimized during the training of a deep model, and the increase of test error or

loss, which is the ideal measure one would have liked to minimize and which determines the

network’s generalization error. An agreement score measures how similar the models are in their

predictions.

We start by introducing the model and some notations in Section 2.4.1. In Section 2.4.2 we

prove the main result (Prop. 2.4.2): the occurrence of overfit at time s in all the models of the

ensemble implies that the agreement between the models decreases.

2.4.1 Model and notations

Model. We analyze the agreement between an ensemble of Q models, computed by solving the

linear regression problem with Gradient Descent (GD) and random initialization. In this problem,

the learner estimates a linear function f (x) :Rd →R, where x ∈Rd denotes an input vector and

y ∈ R the desired output. Given a training set of M pairs {xm, ym}M
m=1, let X ∈ Rd×M denote the

training input - a matrix whose mth column is xm ∈ Rd, and let row vector y ∈ RM denote the

output vector whose mth element is ym. Let N denote the size of the test set. When solving a

linear regression problem, we seek a row vector ŵ ∈Rd that satisfies

(2.2) ŵ= argminw L(w), L(w)= 1
2
∥wX − y∥2

F

To solve (2.2) with GD, we perform at each iterative step s ≥ 1 the following computation:

ws+1 = ws −µ∆ws

∆ws = ∂L(X)
∂w

∣∣∣
w=ws

= wsΣX X −ΣY X ΣX X = X X⊤, ΣY X = yX⊤(2.3)

for some random initialization vector w0 ∈ Rd where usually E[w0] = 0, and learning rate µ.

Henceforth we omit the index s when self evident from context.

As a final remark, when we use the notation ∥A∥ below for some matrix A, differently from

∥A∥F , it denotes the operator norm of the symmetric matrix A, namely, its largest singular value.

Additional notations

• Index i ∈ [Q] denotes a network instance, and t denotes the test data. For simplicity and

with some risk of notation abuse, let Q and Q′ also denote sets of indices, either training or

test. Specifically, Q = [1, . . . ,Q] and Q′ = [1, . . . ,Q, t].

7



CHAPTER 2. INTER-NETWORK AGREEMENT

• We use function notation, where {X (i), y(i)} is the training set of network i and {X (t), y(t)}

is the test set. Thus

ΣX X ( j)=X( j)X( j)⊤, ΣY X ( j)= y( j)X( j)⊤ j ∈Q′

• Similarly, w(i) ∈ Rd is the model learned by network i, and ∆w(i) is the gradient step of

w(i), where

∆w(i)= w(i)ΣX X (i)−ΣY X (i) i ∈Q

• e(i, j) denotes a function, which maps indices i ∈Q, j ∈Q′ to the cross error of model i on

data j - the classification error vector when using model w(i) to estimate y( j). Let M′ = M

if j ∈Q is a training index, and M′ = N if j ∈ {t} .Then we can write

e(i, j) : Q×Q′ →RM′
e(i, j)= w(i)X( j)− y( j)

=⇒ ∆w(i)= e(i, i)X(i)⊤

Note that in this notation, e(i, t) is the classification error vector when using model i, which

is trained on data X(i), to estimate the desired outcome on the test data - y(t). ∥e(i, t)∥F is

the test error, estimate of the generalization error, of classifier i.

• Let ∆(i, j) denote the cross gradient:

∆(i, j)= e(i, j)X( j)⊤ = w(i)ΣX X ( j)−ΣY X ( j) =⇒ ∆w(i)=∆(i, i)(2.4)

After each GD step, the model and the error are updated as follows:

w̃(i)= w(i)−µ∆w(i)

ẽ(i, j)= w̃(i)X( j)− y( j)= e(i, j)−µ∆(i, i)X( j)

We note that at step s and ∀i, j ∈Q, w̃(i) is a random vector in Rd, and ẽ(i, j) is a random vector

in RM . If j ∈ {t}, then ẽ(i, j)= ẽ(i, t) is a random vector in RN .

Test error random variable. Using the above notations, {e(i, t)}Qi=1 is a set of Q test errors

vectors in RN , where the nth component of the ith vector e(i, t)n captures the test error of model

i on test example n. In effect, it is a sample of size Q from the random variable e(∗, t)n. This

random variable captures the error over test point n of a model computed from a random sample

of size M. The empirical variance of this random variable will be used to estimate the agreement

between the models.

Overfit. Overfit occurs at step s if

(2.5) ∥ẽ(i, t)∥2
F > ∥e(i, t)∥2

F

Measuring inter-model agreement. In classification problems, bi-modality of the ELP score

captures the agreement between a set of classifiers, all trained on the same training matrix

8



2.4. OVERFIT AND INTER-MODEL CORRELATION

X(i) = X . Since here we are analyzing a regression problem, we need a comparable score to

measure agreement between the predictions of Q linear functions. This measure is chosen to

be the variance of the test error among models. Accordingly, we will measure disagreement by

the empirical variance of the test error random variable ẽ(∗, t)n, average over all test examples

n ∈ [N].

More specifically, consider an ensemble of linear models {w(i)}Qi=1 trained on set X to minimize

(2.2) with s gradient steps, where i denotes the index of a network instance and Q the number of

network instances. Using the test error vectors of these models e(i, t), we compute the empirical

variance of each element var[e(∗, t)n], and sum over the test examples n ∈ [N]:

N∑
n=1

σ2[e(∗, t)n]=
N∑

n=1

1
2Q2

Q∑
i=1

Q∑
j=1

|e(i, t)n − e( j, t)n|2 = 1
2Q2

Q∑
i=1

Q∑
j=1

∥e(i, t)− e( j, t)∥2
F

Definition 1 (Inter-model DisAgreement.). The disagreement among a set of Q linear models

{w(i)}Qi=1 at step s is defined as follows

(2.6) DisAg(s)= 1
2Q2

Q∑
i=1

Q∑
j=1

∥e(i, t)− e( j, t)∥2
F

2.4.2 Overfit and Inter-Network Agreement

We first prove Lemma 1, which has the following intuitive interpretation: overfit occurs in model

i iff the gradient step of model i (denoted ∆w(i)), which is computed using the training set, is

negatively correlated with the ’correct’ gradient step - the one we would have obtained had we

known the test set (this unattainable vector is denoted ∆(i, t)).

Lemma 1. Assume that the learning rate µ is small enough so that we can neglect terms that are

O(µ2). Then in each gradient descent step s, overfit occurs iff the gradient step ∆w(i) of network i

is negatively correlated with the cross gradient ∆(i, t).

Proof. Starting from (2.5)

(overfit) ⇐⇒∥ẽ(i, t)∥2
F > ∥e(i, t)∥2

F

⇐⇒∥ẽ(i, t)∥2
F −∥e(i, t)∥2

F = ∥e(i, t)−µ∆(i, i)X(t)∥2
F −∥e(i, t)∥2

F > 0

⇐⇒ −2µ∆(i, i)X(t)e(i, t)⊤+O(µ2)> 0

⇐⇒∆(i, i) ·∆(i, t)< 0

⇐⇒∆w(i) ·∆(i, t)< 0

(2.7)

■

Lemma 2 claims that if the magnitude of the gradient step µ is small enough, then the

operator norm of matrix I −µΣX X is smaller than 1. The implication is that a geometric sum of

this matrix converges, a technical result which will be used later.

9



CHAPTER 2. INTER-NETWORK AGREEMENT

Lemma 2. For any invertible covariance matrix ΣX X there exists µ̂ > 0, such that µ < µ̂ =⇒
∥I −µΣX X∥ < 1.

Proof. Since ΣX X is positive-definite, we can write ΣX X =USU⊤ for orthogonal matrix U and the

diagonal matrix of singular values S = diag{si}. It follows that I −µΣX X =Udiag{1−µsi}U⊤, a

matrix whose largest singular value is 1−µsd. Since by assumption sd > 0, the lemma follows. ■

Our last Lemma 3 claims that eventually, after sufficiently many gradient steps, the expected

value of the solution is exactly the closed-form solution of the vetor that minimizes the loss.

Lemma 3. Assume that ∥I −µΣX X∥ < 1 and ΣX X is invertible. If the number of gradient steps s is

large enough so that ∥I −µΣX X∥s can be neglected, then

(2.8) E[ws]≈ΣY XΣ
−1
X X

Proof. Starting from (2.3), we can show that

ws = w0(I −µΣX X )s−1 +µΣY X

s−1∑
k=1

(I −µΣX X )k−1

Since E(w0)= 0

E(ws)= E(w0)(I −µΣX X )s−1 +µΣY X

s−1∑
k=1

(I −µΣX X )k−1 =µΣY X

s−1∑
k=1

(I −µΣX X )k−1

Given the lemma’s assumptions, this expression can be evaluated and simplified:

E(ws)=µΣY X [I − (I −µΣX X )]−1[I − (I −µΣX X )s−1]

=ΣY XΣ
−1
X X −ΣY XΣ

−1
X X (I −µΣX X )s−1

≈ΣY XΣ
−1
X X

(2.9)

■

From (2.6) it follows that a decrease in inter-model agreement at step s, which is implied by

increased test variance among models, is indicated by the following inequality:

C= DisAg(s)−DisAg(s−1)

= 1
2Q2

Q∑
i, j=1

∥ẽ(i, t)− ẽ( j, t)∥2
F − 1

2Q2

Q∑
i, j=1

∥e(i, t)− e( j, t)∥2
F > 0

(2.10)

Theorem. Assume that all models see the same training set, denoted as X(i)= X ∀i ∈ [Q], and

that the training data covariance matrix ΣX X is full rank.

We make the following asymptotic assumptions, which are loosely phrased but can be rigorously

defined with additional notations:

10



2.4. OVERFIT AND INTER-MODEL CORRELATION

1. The learning rate µ is small enough so that ∥I−µΣX X∥ < 1 (from Lemma 2), and additionally

we can neglect terms that are O(µ2).

2. The number of gradient steps s is large enough so that ∥I −µΣX X∥s can be neglected.

3. The number of models Q is large enough so that using the law of large numbers, we get
1
Q

∑Q
i=1 w(i)≈ E[w].

Finally, we assume that overfit occurs at time s in all the models of the ensemble. In other

words, at time s the generalization error does not decrease in all the models.

When these assumptions hold, the agreement between the models decreases.

Proof. (2.10) can be rearranged as follows

C= 1
2Q2

Q∑
i, j=1

∥[e(i, t)−µ∆(i, i)X(t)]− [e( j, t)−µ∆( j, j)X(t)]∥2
F − 1

2Q2

Q∑
i, j=1

∥e(i, t)− e( j, t)∥2
F

= 1
Q2

Q∑
i, j=1

−µ[e(i, t)− e( j, t)] · [∆(i, i)X(t)]−∆( j, j)X(t)]+O(µ2)

= µ

Q2

Q∑
i, j=1

[∆(i, i) ·∆( j, t)+∆( j, j) ·∆(i, t)]− [∆(i, i) ·∆(i, t)+∆( j, j) ·∆( j, t)]+O(µ2)

where the last transition follows from e(i, t)X(t)⊤=∆(i, t). Using assumption 2

(2.11) C=µ(C′−C′′)+O(µ2)≈µ(C′−C′′)

where

(2.12) C′′ = 1
Q2

Q∑
i, j=1

[∆(i, i) ·∆(i, t)+∆( j, j) ·∆( j, t)]= 2
Q

Q∑
i=1
∆(i, i) ·∆(i, t)

and

C′ = 1
Q2

Q∑
i, j=1

[∆(i, i) ·∆( j, t)+∆( j, j) ·∆(i, t)]

= 1
Q

Q∑
i=1
∆(i, i) · 1

Q

Q∑
j=1
∆( j, t)+ 1

Q

Q∑
j=1
∆( j, j) · 1

Q

Q∑
i=1
∆(i, t)

= 1
Q

Q∑
i=1
∆(i, i) · 2

Q

Q∑
j=1
∆( j, t)

(2.13)

Next, we prove that C′ is approximately 0. We first deduce from assumptions 1 and 4 that

1
Q

Q∑
i=1
∆(i, i)= 1

Q

Q∑
i=1

w(i)ΣX X (i)−ΣY X (i)=
(

1
Q

Q∑
i=1

w(i)

)
ΣX X −ΣY X ≈ E[w]ΣX X −ΣY X

11



CHAPTER 2. INTER-NETWORK AGREEMENT

From assumption 3 and Lemma 3, we have that E[w]≈ΣY XΣ
−1
X X . Thus

1
Q

Q∑
i=1
∆(i, i)≈ E[w]ΣX X −ΣY X ≈ΣY XΣ

−1
X XΣX X −ΣY X = 0

From this derivation and (2.13) we may conclude that C′ ≈ 0. Thus

(2.14) C≈−µC′′ =−µ 2
Q

Q∑
i=1
∆(i, i) ·∆(i, t)

If overfit occurs at time s in all the models of the ensemble, then C> 0 from Lemma 1 and

(2.14). From (2.10) we may conclude that the inter-model agreement decreases, which concludes

the proof.

■
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3
DEALING WITH NOISY LABELS

In this section we analyze, both theoretically and empirically, how measures of inter-network

agreement may indicate the detrimental phenomenon of ’overfit’. Overfit is a condition that can

occur during the training of deep neural networks. It is characterized by the co-occurring decrease

of train error or loss and the increase of test error or loss. Recall that train loss is the quantity

that is being continuously minimized during the training of deep models, while the test error is

the quantity linked to generalization error. When these quantities change in opposite directions,

training harms the final performance and thus early stopping is recommended.

We begin by showing in Section 3.1 that in an ensemble of linear regression models, overfit

and the agreement between models are negatively correlated. When this is the case, an epoch

in which the agreement between networks reaches its maximal value is likely to indicate the

beginning of overfit.

Our next goal is to examine the relevance of this result to deep learning in practice. Yet

inexplicably, at least as far as image datasets are concerned, overfit rarely occurs in practice

when deep learning is used for image recognition. However, when label noise is introduced,

significant overfit occurs. Capitalizing on this observation, we report in Section 3.3 that when

overfit occurs in the independent training of an ensemble of deep networks, the agreement

between the networks starts to decrease.

The approach we describe in Section 4 is motivated by these results: Since it has been observed

that noisy data are memorized later than clean data, we hypothesize that overfit occurs when the

memorization of noisy labels becomes dominant. This suggests that measuring the dynamics of

agreement between networks, which is correlated with overfit as shown below, can be effectively

used for the identification of label noise.

13



CHAPTER 3. DEALING WITH NOISY LABELS

3.1 Overfit and Agreement: Theoretical Result

Since deep learning models are not amenable to a rigorous theoretical analysis, and in order to

gain computational insight into such general phenomena as overfit, simpler models are sometimes

analyzed (e.g. Weinshall and Amir, 2020). Accordingly, in Sec. 2.4 we formally analyze the relation

between overfit and inter-model agreement in an ensemble of linear regression models. In this

framework, it can be shown that the two phenomena are negatively correlated, namely, increase

in overfit implies decrease in inter-model agreement. Thus, we prove (under some assumptions)

the following result:

Theorem 1. Assume an ensemble of models obtained by solving linear regression with gradient

descent and random initialization. If overfit increases at time t in all the models in the ensemble,

then the agreement between the models in the ensemble at time t decreases.

3.2 Measuring the Agreement between Models

In order to obtain a score that captures the level of disagreement between networks, we inspect

more closely the distribution of TP A(x, y;F e(X)), defined in Section 2.2, over a sample of dat-

apoints, and analyze its dynamics as training proceeds. First, note that if all of the models in

ensemble F e(X) give identical predictions at each point, the TPA score would be either 0 (when

all the networks predict a false label) or 1 (when all the networks predict the correct label). In this

case, the TPA distribution is perfectly bimodal, with only two peaks at 0 and 1. If the predictions

of the models at each point are independent with mean accuracy p, then it can be readily shown

that TPA is approximately the binomial random variable with a unimodal distribution around p.

Empirically, (Hacohen et al., 2020) showed that in ensembles of deep models trained on "real"

datasets as we use here, the TPA distribution is highly bimodal. Since commonly used measures

of bimodality, such as the Pearson bimodality score, are ill-fitted for the discrete TPA distribution,

we measure bimodality with the following Bimodal Index score:

BI(e)=
√√√√ 1

M

M∑
i=1

1[TP A(xi ,yi ;F e(X))=N] +
√√√√ 1

M

M∑
i=1

1[TP A(xi ,yi ;F e(X))=0](3.1)

BI(e) measures how many examples are either correctly or incorrectly classified by all the models

in the ensemble, rewarding distributions where points are (roughly) equally divided between 0

and 1. Here we use this score to measure the agreement between networks at epoch e.

If we were to draw the Bimodality Index (BI) of the TPA score as a function of the epochs

(Fig. 3.1(a)), we often see two distinct phases. Initially (phase 1), BI is monotonically increasing,

namely, both test accuracy and agreement are on the rise. We call it the "learning" phase.

Empirically, in this phase most of the clean examples are being learned (or memorized), as

can also be seen in the left side panels of Fig. 3.1(a) (cf. Li et al., 2015). At some point BI may

14



3.3. OVERFIT AND AGREEMENT: EMPIRICAL EVIDENCE

1

2 max BI

3

((a)) BI (Y -axis) vs. epochs (X -axis)

4

5

6

((b))

Figure 3.1: (a) Main panel: bimodality in an ensemble of 10 DenseNet networks, trained to classify Cifar10
with 20% symmetric noise. Side panels: TPA distribution in 6 epochs (blue - clean examples, orange - noisy
ones). (b) Scatter plots of test accuracy vs train bimodality, measured by BI(e) as defined in (3.1), where
changes in color from blue to yellow correspond with advancing epochs.

start to decrease, followed by another possible ascent. This is phase 2, in which empirically the

memorization of noisy examples dominates the learning (see the right side panels of Fig. 3.1(a)).

This fall and rise is explained by another set of empirical observations, that noisy labels are not
being learned in the same order by an ensemble of networks, which therefore predicts a decline

in BI when noisy labels are being learned. To see this, we measure the distance between the TPA

distribution, computed separately for clean examples and for noisy examples, and the binomial

distribution, which is the expected distribution of iid classifiers with the same overall accuracy.

Specifically, we compute the Wasserstein distance between the agreement distribution at each

epoch and the binomials BIN (k,pclean) and BIN(k,pnoisy), where pclean is the average accuracy

on the clean examples, and pnoisy is the average accuracy on the noisy examples, see Fig. 3.2.

We see that while the distribution of model agreement on clean examples is very far from the

binomial distribution, the distribution of model agreement on noisy examples is much closer.

3.3 Overfit and Agreement: Empirical Evidence

Earlier work, investigating the dynamics of learning in deep networks, suggests that examples

with noisy labels are learned later (Krueger et al., 2017; Zhang et al., 2017; Arpit et al., 2017;

Arora et al., 2019). Since the learning of noisy labels is unlikely to improve the model’s test

accuracy, we hypothesize that this may be correlated with the occurrence (or increase) of overfit.

The theoretical result in Section 3.1 suggests that this may be correlated with a decrease in the

agreement between networks. Our goal now is to test this prediction empirically.

We next outline empirical evidence that this is indeed the case in actual deep models. In order

to boost the strength of overfit, we adopt the scenario of recognition with label noise, where the

occurrence of overfit is abundant. When overfit indeed occurs, our experiments show that if the
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CHAPTER 3. DEALING WITH NOISY LABELS

((a)) Empirical distribution - Clean examples ((b)) Empirical distribution - Noisy examples

((c)) Binomial distribution - Clean examples ((d)) Binomial distribution - Noisy examples

((e))
Figure 3.2: (a)-(d): The empirical distribution of the agreement values over epochs (X -axis: epochs, Y -axis:
agreement, color code: blue for low and red for high). Clearly, the distribution of noisy examples resembles
the binomial distribution with matched expected value, while the clean examples distribution is far
from binomial. (e) Wasserstein distance between the binomial distribution and the empirical agreement
distribution over epochs.

test accuracy drops, then the disagreement score BI also decreases (see example in Fig. 3.1(b)-

bottom). This observation is confirmed with various noise models and different datasets. When

overfit does not occur, the prediction is no longer observed (see example in Fig. 3.1(b)-top).

These results suggest that a consistent drop in the BI index of some training set X can

be used to estimate the occurrence of overfit, and possibly even the beginning of noisy label

memorization.
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4
DEALING WITH NOISY LABELS: PROPOSED APPROACH

When dealing with noisy labels, there are essentially three intertwined problems that may

require separate treatment:

1. Noise level estimation: estimate the number of noisy examples.

2. Noise filtration: flag points whose label is to be removed.

3. Classifier construction: train a model without the examples that are flagged as noisy.

4.1 DisagreeNet

Guided by Section 3, we propose a method to estimate the noise level in a training set denoted

DisagreeNet, which is further used to filter out the noisy examples (see pseudo-code below in

Alg. 1 and Alg. 2):

1. Compute the ELP score from (2.1) at each training example (Alg. 2)

2. Fit a two component BMM to the ELP distribution (see Fig. 4.1).

3. Use the intersection between the 2 components of the BMM fit to divide the data to two

groups.

4. Call the group with lower ELP ’noisy data’.

5. Estimate noise level by counting the number of datapoints in the noisy group.

As part of our ablation study, we evaluated the two alternative scores defined in Section 2.3:

CumLoss and MeanMargin, where Step 2 of DisagreeNet is executed using one of them instead of

the ELP score. Results are shown in Section 5.4, revealing the superiority of the ELP score in

noise filtration.

17



CHAPTER 4. DEALING WITH NOISY LABELS: PROPOSED APPROACH

Algorithm 1: DisagreeNet
Input: ELP_arr, specifying the ELP score of each point in training set X
Output: Noise level estimate, and the list of indices of noisy points
{G low−ELP ,Ghigh−ELP }← divide the data to two groups using fit_BMM(ELP_arr);
noise_indices ← indices of ELP_arr assigned to G low−ELP ;
noise_estim ← |G low−ELP |

|ELP_arr| ;
return noise_estim, noise_indices

Cifar10, 40% Symm. noise Cifar100, 20% Asymm. noise TinyImagenet, 40% Symm. noise

Figure 4.1: ELP distribution, shown separately for the clean data in blue and the noisy data in orange.
Superimposed, in blue and orange lines, is the bi-modal BMM fit to the ELP total (not separated)
distribution

4.2 Classifier construction

Aiming to achieve modular handling of noisy labels, we propose the following two-step approach:

1. Run DisagreeNet.

2. Run SOTA supervised learning method using the filtered data.

In step 2 it is possible to invoke semi-supervised SOTA methods, using the noisy group as

unsupervised data. However, given that semi-supervised learning typically involves additional

assumptions (or prior knowledge) as well as high computational complexity (that restricts its

applicability to smaller datasets), as discussed in Section 1, we do not consider this scenario

here.
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4.2. CLASSIFIER CONSTRUCTION

Algorithm 2: Computing the ELP score
Input: Training dataset X with N examples, potentially noisy, network architecture A ,

batch size b, learning rate η, number of networks K, number of epochs E
Output: Array, containing the ELP score for each data point
compute agreement during training;
initialization θ0

1...θ0
K different initialization of A ;

Initialize agreement_arr[E,N]← 0;
for e = 0;E do

for k = 0;K do
sample indicesb with size b from [1...N] uniformly;
xb, yb ←X [indicesb],Y [indicesb]; /* Gets a mini batch */
compute pb on xb using θe

k;
compute loss lb with respect to pb and yb;
θe+1

k ← SGD(θe
k; lb);

agreement_arr[e, indiceb] += (argmax(pb)== yb); /* Store whether the
network k predicted correctly on the examples at epoch e */

end
end
agreement_arr ← agreement_arr/(E ·K); /* normaliztion */
ELP_arr ← mean_over_epochs(agreement_arr); /* mean over X-axis */
return ELP_arr
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5
EMPIRICAL EVALUATION

We evaluate our method in the following scenarios and tasks:

1. Noise identification (Section 5.2), with two complementary sub-tasks: (i) estimate the noise

level in the given dataset; (ii) identify the noisy examples.

2. Supervised classification (Section 5.3), after the removal of the noisy examples.

5.1 Dataset and Baselines

Datasets We evaluated our method on a few standard image classification datasets, includ-

ing Cifar10 and Cifar100 (Krizhevsky et al., 2009) and Tiny imagenet (Le and Yang, 2015).

Cifar10/100 consist of 60k 32×32 color images of 10 and 100 classes respectivaly. Tiny ImageNet

consists of 100,000 images from 200 classes of ImageNet (Deng et al., 2009), downsampled to size

64×64. Animal10N dataset contains 5 pairs of confusing animals with a total of 55,000 64x64

images. Clothing1M (Xiao et al., 2015) contains 1M clothing images in 14 classes. These datasets

were used in earlier work to evaluate the success of noise estimation (Pleiss et al., 2020; Arazo

et al., 2019; Li et al., 2020; Liu et al., 2020).

Baseline methods for comparison We evaluate our method in the context of two approaches

designed to deal with label noise: methods that focus on improving the supervised learning by

identifying noisy labels and removing/reducing their influence on the training, and methods that

use iterative methods and utilize semi-supervised algorithms in order to learn with noisy labels.

First approach: ⋄ DY-BMM and DY-GMM (Arazo et al., 2019) estimate mixture models on

the loss to separate noisy and clean examples. ⋄ INCV (Chen et al., 2019) iteratively filter out

noisy examples by using cross-validation. ⋄ AUM (Pleiss et al., 2020) inserts corrupted examples
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to determine a filtration threshold, using the mean margin as a score. ⋄ Bootstrap (Reed et al.,

2014) interpolates between the net predictions and the given label. ⋄ D2L (Ma et al., 2018)

follows Bootstrap, and uses the examples dimensional attributes for the interpolation. ⋄ Co-
teaching (Han et al., 2018) use two networks to filter clean data for the other net training. ⋄ O2U
(Huang et al., 2019b) varies the learning rate to identify the noisy samples, based on a loss-based

metric. ⋄ MentorNet (Jiang et al., 2018) trains a mentor network, whose outputs are used as

a curriculum to the student network. ⋄ LEC (Lee and Chung, 2019) trains multiple networks,

and uses the intersection of their small loss examples (using a given noise rate as a threshold) to

construct a filtered dataset for the next epoch.

Second approach: ⋄ SELF (Nguyen et al., 2019) iteratively uses an exponential moving

average of a net prediction over the epochs, compared to the ground truth labels, to filter noisy

labels and retrain . ⋄ Meta learning (Li et al., 2019) uses a gradient based technique to update

the networks weights with noise tolerance. ⋄ DivideMix (Li et al., 2020) uses 2 networks to

flag examples as noisy and clean with two component mixture, after which the SSL technique

MixMatch (Berthelot et al., 2019) is used. ⋄ ELR (Liu et al., 2020) identifies early learned

example, and uses them to regulate the learning process. ⋄ C2D (Zheltonozhskii et al., 2022) uses

the same algorithm as ELR and Dividemix, and uses a pretrain net with unsupervised loss.

We also report the results of two absolute baselines: (i) Oracle, which trains the model on

the clean dataset; (ii) Random, which trains the model after the removal of a random fraction of

the whole data, equivalent to the noise level.

Other methods The following methods use additional prior information, such as a clean

validation set or known level of noise: Co-teaching (Han et al., 2018), O2U (Huang et al., 2019b),

LEC (Lee and Chung, 2019) and SELFIE (Song et al., 2019). Direct comparison does injustice

to the previous group of methods, and so the comparison is done separately, in section 5.5.

Another group of methods is excluded from the comparison because they invoke semi-supervised

or contrastive learning (e.g., Ortego et al., 2020; Li et al., 2020; Karim et al., 2022; Li et al., 2022;

Wei et al., 2020; Yao et al., 2021), which is a different learning paradigm (see discussion of prior

art in Section 1).

Implementation details We used DenseNet (Iandola et al., 2014), ResNet-18 and ResNet50

(He et al., 2016) when training on CIFAR-10/100 and Tiny imagenet , and ResNet50 for Cloth-

ing1M and Animal10N.

Technical Details Unless stated otherwise, we used an SGD optimizer with 0.9 momentum

and a learning rate of 0.01, weight decay of 5e-4, and batch size of 32. We used a Cosine-annealing

scheduler in all of our experiments and used standard augmentation (horizontal flips, random

crops) during training. We inspected the effect of different hyperparameters in the ablation study.
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5.2. RESULTS: NOISE IDENTIFICATION

All of our experiments were conducted on the internal cluster of the Hebrew University, on GPU

type AmpereA10.

5.2 Results: Noise Identification

The performance of DisagreeNet is evaluated in two tasks: (i) The detection of noisy examples,

shown in Fig. 5.1(a)-5.1(b) (see also Figs. A.1 and A.2 in App. A), where DisagreeNet is seen to

outperform the three baselines - AUM, DY-GMM and DY-BMM. (ii) Noise level estimation, shown

in Fig. 5.1(c)-5.1(d), showing good noise level estimation especially in the case of symmetric noise.

We also compare DisagreeNet to MeanMargin and CumLoss, see Fig. 5.2.

5.3 Result: Supervised Classifications

DisagreeNet is used to remove noisy examples, after which we train a deep model from scratch

using the remaining examples only. We report our main results using the Densenet architecture,

and report results with other architectures in the ablation study. Table 5.1 summarizes the

results for simulated symmetric and asymmetric noise on 5 datasets, and 3 repetitions. It also

shows results on 2 real datasets, which are assumed (in previous work) to contain significant

levels of ’real’ label noise. Additional results are reported in Sec. 5.5, including methods that

require additional prior knowledge.

Not surprisingly, dealing with datasets that are presumed to include inherent label noise

proved more difficult, and quite different, than dealing with synthetic noise. As claimed in

(Ortego et al., 2020), non-malicious label noise does less damage to networks’ generalization

than random label noise: on Clothing1M, for example, hardly any overfit is seen during training,

even though the data is believed to contain more than 35% noise. Still, here too, DisagreeNet

achieves improved accuracy without access to a clean validation set or known noise level (see

Table 5.1). In Sec. 5.5, Table 5.5 we compare Disagreenet to methods that do use such prior

((a)) Cifar100 sym ((b)) Cifar100 asym ((c)) Cifar100 sym ((d)) Cifar100 asym

Figure 5.1: (a)-(b) Noise identification: F1 score for noisy label identification task, using different
noise levels (X -axis), with asymmetric (a) and asymmetric (b) noise models. Results reflect 3 repetitions
involving an ensemble of 10 Densenets each. (c)-(d) Noise level estimation: different noise levels are
evaluated (X -axis), with asymmetric (c) and asymmetric (d) noise models (the 3 comparison baselines did
not report this estimate).
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Table 5.1: Test accuracy (%), average and standard error, in the best epoch of retraining after filtration.
Results of benchmark methods (see Section 5.1) are taken from (Pleiss et al., 2020). The top and middle
tables show CIFAR-10, CIFAR-100 and Tiny Imagenet, with simulated noise. The bottom table shows
three ‘real noise’ datasets, and includes in addition results of noise level estimation (when applicable). The
presumed noise level for these datasets is indicated in the top line following (Huang et al., 2019a; Song
et al., 2019).

Method/Dataset CIFAR-10 sym CIFAR-100 sym
Noise level 20% 40% 60% 20% 40% 60%
random 87.18±0.6 81.59±0.4 64.35±0.4 65.49±0.4 49.1±0.2 28.7±0.5
Bootstrap 77.6±0.2 62.6±0.4 48.0±0.2 51.4±0.2 41.1±0.2 29.7±0.2
MentorNet 86.7±0.1 81.9±0.2 – 64.2±0.3 57.5±0.2 –
D2L 87.7±0.2 84.4±0.3 72.7±0.6 54.0±1.0 29.7±1.8 –
INCV 89.5±0.1 86.8±0.1 81.1±0.3 58.6±0.5 55.4±0.2 43.7±0.3
AUM 90.2±0.0 87.5±0.1 82.1±0.0 65.5±0.2 61.3±0.1 53.0±0.5
DisagreeNet+SL 93.1±0.2 91.1±0.1 83.9±0.08 77.3±0.2 71.8±0.3 64.7±0.3
oracle 95.1±0.2 94.1±0.2 92.4±0.1 78.2±0.3 75.4±0.1 70.3±0.2

Method/Dataset CIFAR-10 constant asym CIFAR-100 constant asym Tiny Imagenet sym
Noise level 20% 40% 20% 40% 20% 40%
random 89.5±0.2 79.3±0.4 65.2±0.1 44.64±0.2 49.8±0.4 29.9±0.3
Bootstrap 76.2±0.2 55.0±0.6 53.4±0.3 38.7±0.3 - -
D2L 88.6±0.2 76.4±1.5 43.6±0.7 16.9±1.2 - -
DY-BMM 77.9±0.1 59.4±0.6 53.2±0.0 37.9±0.0 41.8±0.1 36.3±0.2
INCV 88.3±0.1 79.8±0.4 56.8±0.1 44.4±0.7 45.2±0.1 42.6±0.1
AUM 89.7±0.1 58.7±0.2 59.7±0.2 40.2±0.1 48.9±0.2 44.7±0.1
DisagreeNet+SL 94.4±0.1 91.9±0.0 73.9±0.5 61.3±0.2 64.5±0.1 58.5±0.2
oracle 95.2±0.0 94.3±0.0 78.1±0.1 75±0.1 65.4±0.0 60.8±0.2

Method/Dataset animal10N, 8% noise Clothing1M, 38% noise
Noise level noise est test accuracy noise est test accuracy
Cross-Entropy - 84.1±0.3 - 69
AUM - - 10.7 70.4
DisagreeNet+SL 7.8 85.1±0.1 17 70.8

knowledge. Surprisingly, we see that DisagreeNet still achieves better results even without using

any additional prior knowledge.

5.4 Ablation Study

How many networks are needed? We report in Table. 5.2 the F1 score for noisy label

identification, using DisagreeNet with varying numbers of networks. The main boost in perfor-

mance provided by the use of additional networks is seen when using DisagreeNet on hard noise

scenarios, such as the asymmetric noise, or with small amounts of noise.

Additional ablation results Results in Table. 5.3, Table 5.4 indicate robustness to archi-

tecture, scheduler, and usage of augmentation, although the standard training procedures

achieve the best results. Additionally, we see robustness to changing the backbone architecture
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Table 5.2: F1 score of DisagreeNet, using different numbers of models.

Dataset Noise size of ensemble (number of networks)

Method 1 2 3 4 7 10

Cifar10 sym
10% 0.605±0.01 0.77±0.0 0.862±0.0 0.906±0.0 0.941±0.0 0.936±0.0
20% 0.861±0.0 0.939±0.0 0.95±0.0 0.949±0.0 0.943±0.0 0.941±0.0
40% 0.954±0.0 0.953±0.0 0.952±0.0 0.952±0.0 0.951±0.0 0.951±0.0

Cifar100 sym
10% 0.225±0.05 0.855±0.0 0.855±0.01 0.854±0.0 0.860±0.01 0.864±0.01
20% 0.89±0.0 0.895±0.0 0.896±0.0 0.897±0.0 0.901±0.0 0.899±0.0
40% 0.89±0.0 0.917±0.0 0.921±0.0 0.924±0.0 0.924±0.0 0.927±0.0

Cifar10 asym
10% 0.355±0.0 0.469±0.01 0.568±0.01 0.631±0.01 0.748±0.0 0.814±0.0
20% 0.553±0.0 0.642±0.01 0.703±0.01 0.734±0.0 0.799±0.01 0.829±0.01
40% 0.739±0.0 0.795±0.0 0.816±0.0 0.826±0.0 0.824±0.0 0.812±0.0

Cifar100 asym
10% 0.703±0.0 0.708±0.0 0.712±0.0 0.716±0.0 0.718±0.0 0.717±0.0
20% 0.727±0.0 0.732±0.0 0.732±0.0 0.735±0.0 0.736±0.0 0.737±0.0
40% 0.594±0.0 0.606±0.0 0.614±0.0 0.614±0.0 0.618±0.0 0.62±0.0

of DisagreeNet, using ResNet18 and ResNet50, see Table 5.3. Finally, in Fig. 5.2 we compare

DisagreeNet using ELP to disagreeNet using the MeanMargin and CumLoss scores, as defined

in Section 2.3. In symmetric noise scenarios all scores perform well, while in asymmetric noise

scenarios the ELP score performs much better, as can be seen in Figs. 5.2(b),5.2(d). Additional

analysis of the 3 scores are reported in Sec.5.6.

Table 5.3: Final accuracy results when changing the backbone architecture.

Method/Dataset CIFAR-10 sym CIFAR-100 sym
Noise level 20% 40% 60% 20% 40% 60%
DisagreeNet+SL R18 93.3±0.1 91.1±0.6 87.6±0.1 75.1±0.1 71.5±0.1 63.1±0.4
DisagreeNet+SL R50 93.4±0.1 91.0±0.2 87.0±0.1 75.7±0.3 70.2±1.2 61.0±0.4

((a)) Cifar100 sym ((b)) Cifar100 asym ((c)) Cifar100 sym ((d)) Cifar100 asym

Figure 5.2: (a)-(b): F1 score (Y -axis) for the noisy label identification task, using different noise levels
(X -axis), with asymmetric (a) and asymmetric (b) noise models. Results with 3 variants of DisagreeNet are
shown, based on 3 scores: MeanMargin, ELP and CumLoss. (c)-(d): Error in noise level estimation (Y -axis)
using different noise levels (X -axis), with asymmetric (c) and asymmetric (d) noise models. As can be seen,
ELP very significantly outperforms the other 2 scores when handling asymmetric noise.

Table 5.4 summarize experiments relating to architecture, scheduler, and augmentation

usage.

Alternative scores We evaluate the two alternative scores defined in Section 2.3: CumLoss

and MeanMargin, in which case Step 2 of DisagreeNet is executed using one of them instead of
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Table 5.4: F1 score for Cifar100 with 2 levels of symmetric noise. Different ablation conditions are marked
in columns: ResNet34 indicates a change of architecture, no Aug indicates that image augmentations are
not used, and lr 0.01 indicates that no scheduler or learning rate drop are used during training.

Noise level No change ResNet34 No Aug Constant lr 0.01 Lr 0.01 + no Aug

20% 0.903±0.01 0.839±0.0 0.832±0.0 0.859±0.01 0.869±0.01
40% 0.918±0.01 0.887±0.0 0.887±0.01 0.877±0.0 0.888±0.01

the ELP score. Fig. 5.3 shows the Probability Distribution Function (PDF) of the three scores,

revealing that ELP is more consistency bimodal (especially in the difficult asymmetric case), with

modes (peaks) that appear more separable. This benefit translates to superior performance in

the noise filtration task (Figs. 5.2(b),5.2(d)).

((a)) Cifar10 with 40% Symmetric noise ((b)) Cifar100 with 20% Asymmetric noise

Figure 5.3: Distribution of the CumLoss, MeanMargin and ELP scores during training. ELP remains
bimodal even for hard noise models, where the other scores become unimodal.

We believe that this empirical observation, of increased mode separation, is due to significant

difference in the pace of change in agreement values during training between clean and noisy

data, in contrast with the pace of change in smoother measures of confidence like Margin and

Loss (see Sec. 5.6). Note that with the easier symmetric noise, we do not see this difference, and

indeed the other scores exhibit two nicely separated modes, sometimes achieving even better

results in noise filtration than ELP (Fig. A.1 in App. A.1). However, when comparing the test

accuracy after retraining (see App. A), we observe that ELP still achieves superior results.

5.5 Comparing to methods with different assumptions

Here we compare DisagreeNet to methods that assume known noise level - O2U (Huang et al.,

2019b) and LEC (Lee and Chung, 2019), using a 9-layered CNN for the training (with standard

hyper parameters as detailed in Sec. 5.1). Since the noise level is assumed known, we replace

the estimation provided by DisagreeNet with the actual noise level. The results are summarized
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in Table. 5.5. We also compare DisagreeNet to other methods that use prior knowledge, where

DisagreeNet does not use prior knowledge. The results are summarized in Table. 5.6

Dataset Noise level Method

Dataset - noise type Noise level O2U LEC DisagreeNet

Cifar10 sym

10% 87.64% - 92.57%
20% 85.24% 88.31% 91.44%
40% 79.64% - 88.48%
60% - 80.52%. 81.81%

Cifar100 sym

10% 62.32% - 69.86%
20% 60.53% 59.98% 67.99%
40% 52.47% - 62.89%
60% - 46.63% 53.76%

Cifar10 asym
10% 88.22% - 91.96%
20% - 89.41%. 90.94%
40% - 86.50% 86.93%

Cifar100 asym
10% 64.50% - 69.83%
20% - 58.86%. 67.99%
40% - 47.82%. 62.89%

Table 5.5: Test accuracy (%) comparison with methods that utilize prior knowledge with 9-layered CNN

Method/Dataset CIFAR-10 sym CIFAR-100 sym
Noise level 20% 40% 60% 20% 40% 60%
Co-teaching 88.8±0.1 86.5±0.1 80.7±0.1 64.1±0.1 60.2±0.2 48.0±0.3
LEC 88.3 - 80.5 60 - 46.63
O2U 92.5 90.3 - 74.1 69.2 -

DisagreeNet+SL
(no prior knowledge)

93.1±0.2 91.1±0.1 83.9±0.08 77.3±0.2 71.8±0.3 64.7±0.3

Method/Dataset CIFAR-10 asym CIFAR-100 asym Tiny Imagenet sym
Noise level 20% 40% 20% 40% 20% 40%
LEC 89.4 86.5 58.9 47.8 - -

DisagreeNet+SL
(no prior knowledge) 94.4±0.1 91.9±0.0 73.9±0.5 61.3±0.2 62.5±0.2 55.7±0.4

Method/Dataset animal10N, 8% noise
Noise level noise est test accuracy
Co-teaching - 82.5±0.1
SELFIE - 83±0.1
DisagreeNet+SL (no prior knowledge) 7.8 85.1±0.1

Table 5.6: Test accuracy (%) comparison with methods that utilize prior knowledge of the real noise level.

5.6 Comparing agreement to confidence in noise filtration

While the learning time of an example has been shown to be effective for noise filtration, it fails

to separate noisy and clean data that are learned more or less at the same time. To tackle this

problem, one needs additional information, beyond the learning time of a single network. When
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using an ensemble, we can use the TPA score, or else the average probability assigned to the

ground truth label (denoted the "correct" logit) by the networks. The latter score conveys the

model’s confidence in the ground truth label, and is used by our two alternative scores - CumLoss

and MeanMargin.

Going beyond learning time, we propose to look at "how quickly" the agreement value rises

from 0 to 1, denoted as the "slope" of the agreement. Since our empirical results indicate that

the learning time of noisy data is much more varied, we expect a slower rise in agreement over

noisy data as compared to clean data. In our experiments, ELP achieved superior results in noise

filtration. We hypothesize that the difference in slope between clean and noisy data may underlie

the superiority of ELP in noise filtration.

To check this hypothesis, we compare between two scores computed at each data example:

ELP and Logits Mean (denoted LM for simplicity). LM is defined as follows:

LM(x)=
∑k

i=1
∑T

j=1 [pi, j(x)]y

kT

where k is the number of networks, T is the number of epochs during training, (x, y) is a data

example and its assigned label, and [pi, j(x)]y is the probability assigned by network i in epoch j

to y (the ground truth label).

In order to compare between the pace of increase (slope) of ELP and LM, we conduct the

following analysis: We select the two groups of clean and noisy data that are learned (roughly)

at the same time by some net in the ensemble, and then compute the average agreement and

"correct" logit functions as a function of epoch, separately for clean and noisy data. We then

compute the difference per epoch between the noisy and clean average agreement, which we

denote as ∆Agreement and ∆logit. Note that ∆Agreement and ∆logit encode the difference

in the slope between noisy and clean data, since they begin to rise at (roughly) the same time.

Finally, we plot in Fig. 5.4 the difference between ∆Agreement and ∆logit, recalling that larger

∆ indicates stronger separation between the clean and noisy data.

Indeed, our analysis shows that with asymmetric noise, the difference between the agreement

slope on clean and noisy data of the ELP score is consistently larger than the agreement slope

difference between the average logits on clean and noisy data. This, we believe, is the key reason

as to why ELP outperforms LM in noise filtration. Note that this effect is much less pronounced

when using the easier symmetric noise, and indeed, our empirical results show that ELP does

not outperform LM significantly in this case.

To conclude, we believe that the signal encoded by the agreement values is stronger than

the signal encoded in measures of confidence in the networks’ prediction when true labels are

concerned, which explains its capability to classify correctly even some hard-clean examples

and easy-noisy examples as clean and noise (respectively). This, we believe, is a result of the

polarization effect caused by the binary indicators inside TPA, which disregard misleading

positive probabilities assigned to noisy labels even before they are learned by the networks.
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((a)) 20% symmetric noise ((b)) 40% symmetric noise ((c)) 20% Asymmetric noise ((d)) 40% Asymmetric noise

((e)) 20% symmetric noise ((f)) 40% symmetric noise ((g)) 20% Asymmetric noise ((h)) 40% Asymmetric noise

Figure 5.4: Top: X -axis is the learning time of the chosen clean and noisy data; Y -axis is the difference
between ∆Agreement and ∆logit. We see that for most of the training, the difference is positive, implying
that ELP provides stronger separation between these groups. Bottom: X -axis is the difference between
∆Agreement and ∆logit; Y -axis is the ratio between the amount of clean and noisy data. The color
represents the learning time of the groups. These graphs show that while at the end of the training the
difference between ∆Agreement and ∆logit is negative, implying that LM would be better at separating
these groups, these are in fact very small sets of data, as most of the data is learned by some network at
an earlier stage of the training
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DISCUSSION

We presented a new empirical observation, that the variability in the predictions of an ensemble

of deep networks is much larger when labels are noisy, than it is when labels are clean. This

observation is used as a basis for a new method for classification with noisy labels, addressing

along the way the tasks of noise level estimation, noisy labels identification, and classifier

construction. Our method is easy to implement, and can be readily incorporated into existing

methods for deep learning with label noise, including semi-supervised methods, to improve the

outcome of the methods.

Importantly, our method achieves this improvement without making additional assumptions,

which are commonly made by alternative methods: (i) Noise level is expected to be unknown.

(ii) There is no need for a clean validation set, which many other methods require, but which is

very difficult to acquire when the training set is corrupted. (iii) Almost no additional hyperpa-

rameters are introduced.

6.1 Future work

6.1.1 ELP score

Working with the ELP score rises multiple questions on the process of learning in deep neural

networks. Having established that the neural networks models have a global order of learning, we

can ask ourselves what this order means, and what is its relation to other metrics of the hardness

of the data. For example, we may wonder about the relation between sample selection and the

ELP score, in the practical context of active learning or datasets distillation. Furthermore, we

can relate the ELP to curriculum learning, as we try to understand what the optimal order is to

present the data to the model, and whether the natural order is the best order. Another point of
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interest is the connection between the classification task with given labels and other tasks, in the

context of the learning order. Does this order is preserved with different training schemes, such

as transfer learning? or by adding auxiliary tasks to the training? Can we define a meaningful

metric on the unsupervised representation learning process, so the order of learning will be

similar to the learning order of the supervised task? Is there an order of learning in unsupervised

tasks at all? Those questions stem from the same origin of understanding the roots of the ELP

score, and the fundamental connections between the data points and their labels. Other questions

that are worth exploring are less practical but still interesting. What would happen if we removed

the examples with the lowest score from the training process? Would the test set have the same

ELP score or something fundamental will change, as the neural network learns in a local fashion,

in each epoch? Does the big dataset behave as a ’regulator’, or we can remove many data points

that have ’repetitive’ knowledge, and are not essential to the deep neural networks learning

process? Invariants or preserved statistics in complex models are an interesting subject, and

this course of exploration may shed new perspectives on the behavior of SGD and deep neural

networks.

6.1.2 Broader view

In a broader sense, we can relate this work to one of the most interesting phenomenon in deep

learning research today: low variance (Neal et al., 2018). As we mentioned in the introduction,

when the depth and number of parameters of the neural networks grow, we traditionally expect

the bias to descend and variance to ascent. There are some interpretations of this phenomenon,

and it may be interesting to look at those interpretations in light of this work. To summarize the

relevant part of the work, deep neural networks learn examples in the same order and pace, and

noisy examples in different paces and order. This behavior on clean examples is an extension

of the low variance (and even strengthens the phenomenon), but the low variance on the noisy

examples still requires an explanation. Many works discussed the subject of low variance in

deep neural networks, using the tools of statistical physics (Gerace et al., 2021), or statistics

(Bartlett et al., 2021). Some of the explanation deal with terms like benign overfit (Bartlett et al.,

2021), inductive bias, and implicit regularization (Neyshabur, 2017). These works attempt to

analyze simpler models (shallow neural networks, linear regressors), so the extrapolation to more

complex models can be problematic. We can ask which approach our results support, and future

(and careful) examination of this question is still open and interesting.
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A.1 Noise level estimation on additional datasets

((a)) CIFAR10 F1 ((b)) CIFAR10 estimation error ((c)) CIFAR10 asym F1

((d)) CIFAR10 asym estimation error ((e)) TinyImagenet F1 ((f)) TinyImagenet estimation error

Figure A.1: Additional results on CIFAR10 and Tiny Imagenet.
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APPENDIX A. ADDITIONAL RESULTS

A.2 Precision and Recall results

((a)) CIFAR10 ((b)) CIFAR100 ((c)) CIFAR10 asym ((d)) CIFAR100 asym

((e)) CIFAR10 ((f)) CIFAR100 ((g)) CIFAR10 asym ((h)) CIFAR100 asym

Figure A.2: Noisy label identification. Top: precision; bottom: recall.
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