
Boosting the Performance of
Semi-Supervised Learning with

Unsupervised Clustering

By

BOAZ LERNER

Under the supervision of

PROF. DAPHNA WEINSHALL

Faculty of Computer Science and Engineering
THE HEBREW UNIVERSITY OF JERUSALEM

A dissertation submitted to the Hebrew University of
Jerusalem as a partial fulfillment of the requirements
of the degree of MASTER OF SCIENCE in the Faculty of
Computer Science and Engineering.

DECEMBER 2020

ABSTRACT

Recently, Semi-Supervised Learning (SSL) has shown much promise in leveraging

unlabeled data while being provided with very few labels. In this study, we show

that ignoring the labels altogether for whole epochs intermittently during train-

ing can significantly improve performance in the small sample regime. More specifically,

we propose to train a network on two tasks jointly. The primary classification task is ex-

posed to both the unlabeled and the scarcely annotated data, whereas the secondary task

seeks to cluster the data without any labels. As opposed to hand-crafted pretext tasks

frequently used in self-supervision, our clustering phase utilizes the same classification

network and head in an attempt to relax the primary task and propagate the information

from the labels without overfitting them. On top of that, the self-supervised technique of

classifying image rotations is incorporated during the unsupervised learning phase to

stabilize training. We demonstrate our method’s efficacy in boosting several state-of-the-

art SSL algorithms, significantly improving their results and reducing running time in

various standard semi-supervised benchmarks, including 92.6% accuracy on CIFAR-10

and 96.9% on SVHN, using only 4 labels per class in each task. We also notably improve

the results in the extreme cases of 1,2 and 3 labels per class, and show that features

learned by our model are more meaningful for separating the data.

i

DEDICATION AND ACKNOWLEDGEMENTS

There are several people who made my journey much more meaningful and fun,
and to whom I wish to dedicate this work. Firstly, I would like to thank my
advisor, Professor Daphna Weinshall who supported me throughout the process

and motivated me during hard times. I learned a lot from her vast experience, and
greatly enjoyed our weekly meetings.

I would also like to thank my friends from the lab and from other labs as well, for
your encouragement, fruitful conversations and most importantly, fun lunch breaks.

And finally, to my lovely fiancée, Yael, who has always been by my side, and believed
in me all along the way.

iii

TABLE OF CONTENTS

Page

List of Tables vii

List of Figures ix

1 Introduction 1

2 Background & Realted Work 3
2.1 Background . 3

2.2 Related Work . 5

2.2.1 Semi-Supervised Learning . 5

2.2.2 Deep Clustering . 7

2.2.3 Self-Supervised Learning . 8

2.2.4 Few-Shot Learning . 9

2.2.5 Active Learning . 9

3 Our method 11
3.1 SSL with Very Few Labels . 11

3.1.1 Unsupervised Clustering - MMDC . 12

3.1.2 Semi-Supervised Classification . 14

3.1.3 Integrated Method . 16

4 Experimental Evaluation 19
4.1 Datasets . 19

4.2 Implementation Details . 19

4.3 Results . 21

4.3.1 Ablation Study . 26

5 Summary and Conclusions 27

v

TABLE OF CONTENTS

5.1 Summary and Discussion . 27

Bibliography 29

vi

LIST OF TABLES

TABLE Page

4.1 Datasets used in our experiments. For STL-10, the 100K extra unlabeled

images were used as well. 20

4.2 Error rates for the 3 datasets used in our study: CIFAR-10, STL-10 and SVHN.

Results are reported for varying amounts of labels, denoting the total number

of labeled points from all classes. 21

4.3 Error rates of MixMatch (top) and UDA (bottom), with and without clustering,

trained on CIFAR-10 with 40 labeled examples. 26

4.4 Ablation study on CIFAR-10 with 40 labeled examples. 26

vii

LIST OF FIGURES

FIGURE Page

3.1 Our method iterates between two phases. In the first phase we train our model

with the available labeled and unlabeled data points using a semi-supervised

learning algorithm. In the second phase we train the same model to cluster

all the data points, without using any labels. 12

4.1 Classification accuracy, comparing our method to FixMatch with CTA, using

identical protocols. Left: CIFAR-10, right: SVHN. The numbers inside the

columns denote the mean accuracy across different partitions and runs. . . . 22

4.2 The classification accuracy for CIFAR-10 with 20 labels (2 per class), presented

separately for each partition. 22

4.3 Clustering accuracy for the same experiment, the results of which are reported

in Fig. 4.1. 23

4.4 Two different partitions of CIFAR-10 with one label per class are shown above.

Given the top partition, our model found the wrong permutation as illustrated

with blue arrows. This error led to the gap between classification accuracy

of 67.6% and clustering accuracy of 92.5%. Given the bottom partition, our

model found the optimal permutation and achieved 91.0% accuracy in both

classification and clustering. 24

4.5 Top-k classification accuracy for CIFAR-10 with 10, 20 and 30 labels. k denotes

the number of permutations considered. 25

ix

C
H

A
P

T
E

R

1
INTRODUCTION

In recent years we have seen huge improvement in the performance of deep learning

methods in various computer vision tasks. However, most models require large

amounts of annotated data. Collecting this data is a tedious and expensive process.

Moreover, learning from so many labels is very different from the way that we as humans

learn, and from the way we conceive of intelligence. Therefore, it seems desirable, in

our journey towards strong AI, to develop models that rely less on data annotated by

humans, and are capable of extracting features in an unsupervised manner.

Semi-Supervised Learning (SSL) is an attempt to tackle this issue and bridge the gap

between supervised and unsupervised learning. The typical setting of the problem is that

we are given a small amount of labeled data and a possibly large amount of unlabeled

data, where both are sampled from the same or similar distributions. Most techniques

derive an objective which is split into two separate terms for labeled and unlabeled data

[52, 56]. In this way, every gradient step is influenced by the labels. [39] is unusual in

that respect, as their method iterates between supervised learning with only labeled

data, and unsupervised learning with only unlabeled data. However, their unsupervised

stage relies exclusively on fixed pseudo-labels obtained in the supervised stage. Hence,

this stage can be considered ’supervised learning with noisy labels’.

In this study, we wish to benefit from real unsupervised learning, undistracted by a

small number of possibly uncharacteristic training points, within the SSL framework.

The approach is illustrated in Fig. 3.1. We start by describing a clustering algorithm that

can be easily integrated with any deep SSL method. This algorithm serves as a secondary

1

CHAPTER 1. INTRODUCTION

task to the principal classification task. Unlike [39], the pseudo labels (targets) may be

propagated from the real labels seen during classification, but they are likely to change

during this clustering phase. Also differing from some self-supervised auxiliary tasks

used in [2, 56], we use the exact same architecture (network and head) for clustering.

Our main goal is to add to the learning protocol a phase which does not depend on the

labels. When learning the secondary task, the goal is to separate the data into clusters

without assigning names to those clusters. At the same time, self-supervision [17] is used

to stabilize and accelerate training during the clustering phase.

Our main contributions in this work are the following:

• Devise a new approach for semi-supervised learning, which is based on solving an

unsupervised clustering task together with a classification task.

• Show how realizing this approach by integrating a deep clustering algorithm with

three existing SSL algorithms can boost their performance and surpass state-of-the-

art results on 3 benchmark datasets.

2

C
H

A
P

T
E

R

2
BACKGROUND & REALTED WORK

In the first part of this chapter, we give a high level background on our main topic

of semi-supervised learning. Next, we survey some significant developments in

the various fields discussed through our work, and connect our framework to some

other resembling frameworks.

2.1 Background

Broadly speaking, machine learning is traditionally divided into two major tasks: super-

vised learning and unsupervised learning. In supervised learning, we are provided with

data points and their corresponding ground-truth output values, and we aim to learn

a classifier or regressor that is able to predict the output value for unseen inputs. In

unsupervised learning, only the data points are provided, and we are trying to infer a

certain structure of the data. E.g., in unsupervised clustering we wish to learn a mapping

from the data points to some groups, where each group should contain inputs that are

similar to each other in some sense.

Semi-supervised learning attempts to incorporate extra information from one of the

above worlds in order to benefit the other. For instance, we may be given extra unlabeled

data for a classification problem or some cues regarding the similarity between certain

inputs for a clustering problem. However, the extra information might be less structured

and more domain specific.

Most SSL research is focused on classification problems. An implied condition neces-

3

CHAPTER 2. BACKGROUND & REALTED WORK

sary for semi-supervised classification methods to benefit from unlabeled data is that

p(x) has information on p(y|x). x here denotes a data point and y denotes an optional

label. If that holds, we should be able to learn from the unlabeled data about p(x) and

thereby strengthen our knowledge about p(y|x) [47]. When this is not the case, the

extra unlabeled data is useless for our classification task, and we can discard it. In light

of the prominent success of SSL, we can infer that the interaction between these two

probabilitiy distributions do exist in most real problems, while the level in which they

interact and the exact form of interaction vary across different data and domains.

As a result, some assumptions about this interaction are normally undertaken. The

most widely recognized assumptions are the following:

• Smoothness assumption: Every two points that are close by in the input space

should share the same label. This assumption is also true for standard supervised

classification, but can be exploited more significantly in the SSL setting, as it implies

transitivity in the labels. Namely, an unlabeled sample which is close to a labeled

sample in the input space, can be given the same label and propagate that information

further to other unlabeled samples in its vicinity.

• Low density assumption: The decision boundary of the classifier should not pass

through high density areas. This assumption is somewhat implied by the above

smoothness assumption.

• Manifold assumption: The data lie approximately on a manifold of much lower

dimension than the input space. This assumption is used in many other fields of

machine learning. For example, in the vision domain, the input space of natural

images is a huge space. However, obviously not every combination of pixels in that

space can constitute a natural image. Hence, their intrinsic dimension is much lower.

In the case of SSL, it encourages a shift in the attention from primarily being focused

on the labels, to being focused on finding the low-dimensional manifold. If we further

assume that each class lies on a slightly different manifold, we can try to develop

representations for each of these manifolds using just the input data (without labels).

In this task the unlabeled data is identically helpful compared with the labeled data.

Once achieved, hopefully we can simply label the different manifolds according to the

few labeled instances.

Most semi-supervised classification methods assume at least one of the above as-

sumptions. In the next section, we explore the various means of practically implementing

those theoretical concepts.

4

2.2. RELATED WORK

2.2 Related Work

In this work we employ several methods from various fields, including semi-supervised

learning, deep clustering and self-supervision. We therefore review the most prominent

recent developments in each of those fields. In addition, we present some closely related

paradigms and draw the lines between our framework and theirs.

2.2.1 Semi-Supervised Learning

As mentioned in previous section, semi-supervised learning refers to a family of algo-

rithms aimed at learning from both labeled and unlabeled data. Thanks to the relative

simplicity of collecting big unlabeled datasets without manual labeling, the field has

seen an increasing interest in the last few years. As a result, the performance gap

between supervised and unsupervised methods has been consistently diminishing, with

the number of labels used to achieve comparable results getting considerably smaller.

Given the vast amount of techniques proposed in the literature, we review only the latest

and most influential works, and refer the reader to [7] for a comprehensive survey.

Most recent approaches revolve around the two fundamental concepts of entropy min-

imization and consistency regularization. An intuitive assumption is that the decision

boundaries of a classifier should not pass in highly dense areas - the low-density as-

sumption. Minimizing the entropy of a model’s prediction on unlabeled data is a common

approach to facilitate this heuristic. It can be done explicitly [19] or quite often implicitly

by psuedo-labeling [30, 39, 45], a method that assigns an artificial label to an unlabeled

image and trains the network to predict that label.

The most basic approach that uses pseudo-labelling is called self-training. The idea is

to train in a supervised manner on the labeled data, with the labeled data getting larger

in each iteration by appending to it some new unlabeled samples we choose to pseudo-

label. Often, this process continues iteratively until all data is labeled. The various

methods differ in the way they choose which unlabeled data to label, the stopping criteria

and the way in which they re-use the pseudo-labelled data. In [15], a pool of unlabeled

samples which is the closest to labeled data is formed. Then, those images which the

model is the most uncertain about are selected to be labeled. Their intuition for the first

step is clearly linked to the smoothness assumption detailed in Section 2.1, while the

intuition for the second step is that the less certain samples are more informative for the

model to get better. This is contrary to more common heuristics which simply prefer the

most confident samples. For instance, in [21], they propose to weight a sample according

5

CHAPTER 2. BACKGROUND & REALTED WORK

to the current confidence of the model, but also according to the effect of selecting it on

the accuracy of the model on the originally labeled data. If a pseudo-labeled sample will

cause a major deviation in the performance on the labeled data, it might imply that the

pseudo-labelling was wrong. To tackle the same problem of wrong pseudo labels, [31]

proposed to increase the weight of pseudo samples as training progresses. The reason is

that as the model gets better during training, its pseudo-labels become more reliable.

The second common concept of consistency regularization refers to the assumption

that small perturbations to the data should not affect its semantics, and hence the label.

It is reasonable then to force the model to output consistent predictions to all perturbed

versions of the same sample. Consequently, a lot of recent research makes use of complex

augmentation strategies [2, 10, 11, 52]. FixMatch [45], which is the most relevant to our

work, combines both approaches and will be thoroughly discussed in Section 3.1.2.

The two concepts discussed above are closely linked to the first two assumptions we

discussed in section 2.1. The third assumption regarding the low-dimensional manifold

in which the data resides is often assumed in an approach that takes advantage of the

huge development in generative models. The most commonly used generative models in

general, and within the framework of semi-supervised classification in particular are:

generative adversarial networks (GANs) [18] and variational auto-encoders (VAEs) [27].

GANs consist of two neural networks. The first one is called the generator, whose

goal is to generate images resembling the data distribution, and hence to fool the

second network, the discriminator, that the image came from the real distribution. The

discriminator’s goal then is to distinguish between images coming from the real data

distribution and "fake" images generated by the generator. Its output is a scalar reflecting

the probability of the image coming from the real distribution. The simplest extension

of GANs for SSL [41] extends the discriminator’s output space to have K +1 outputs,

where K is the number of classes. The first K outputs represent the probabilities for each

class, and the last output corresponds to the probability of the image being generated by

the generator. Then, [41] proposed to combine the cross-entropy loss with the regular

adversarial loss (only the last output is used) for labeled data, and use the adversarial

loss alone for unlabeled data. After training, the discriminator is used as the classifier

by ignoring the last output and predict according to the highest probability among

the first K outputs. In triple adversarial networks [33], the discriminator/classifier is

separated into two distinct networks. The discriminator then is back to its usual form,

only distinguishing between real and fake images, with the slight change that it works

on the joint distribution p(x, y) (x-image, y-label) instead of the marginal p(x). Namely,

6

2.2. RELATED WORK

the input to the discriminator is an image-label pair. In every iteration, three batches

are sampled: one from the real labeled data, another one from the generator and the last

one from the classifier which outputs a pseudo-label to unlabeled images. The intuition

is that the joint distribution can be factorized in two ways. One way, p(x, y)= p(x)p(y|x),

is approximated by the classifier and the other, p(x, y)= p(y)p(x|y), is approximated by

the generator.

VAEs are type of auto-encoders [40] with some added constraint on the prior distri-

bution over the latent space. The common prior used is the normal distribution N (0,I).

Given an image x, the encoder models the posterior distribution p(z|x) (z is a latent

code) and attempts to approximate the prior by outputting a mean and covariance of

the Gaussian distribution. Then, a latent code is sampled via a reparameterization trick

to keep all operations differentiable, and a new image is generated by the decoder. The

loss is a combination of the regular reconstruction loss of auto-encoders and a DKL

loss between the outputted encoder’s Gaussian distribution and the prior. One of the

most prominent methods applying VAEs within the framework of SSL is introduced by

Kingma et. al [26]. They propose a two-steps model. The first step is a preprocessing

representation learning step, where a regular VAE is trained in a standard manner on

the entire data (labeled and unlabeled). Then, in the second step they train a VAE whose

latent representation is augmented with a label vector. For the labeled data, this vector

is the one-hot version of the true label and for the unlabeled data it is treated as an

additional latent variable. In addition to the decoder, another classification network is

introduced to infer the labels’ predictions.

2.2.2 Deep Clustering

The task of unsupervised clustering is a long-standing problem and a highly challenging

one, especially when it meets the high-dimensionality of images. Classical algorithms,

such as k-means [25] and Gaussian Mixture Models (GMM) [4], struggle in this domain

as the raw data is not very informative, and thus the need for succinct and meaningful

representation of images is critical. In recent years, deep clustering frameworks have

become increasingly competent in solving this task. One type of such frameworks divides

training into two steps. The first step focuses on learning good representations and the

second step finetunes the network’s parameters with some clustering objective [23, 53].

The probably most known work performing that is Deep Embedded Clustering (DEC)

[51]. Firstly, an encoder network is initialized by pre-training on a reconstruction task

alongside a decoder (i.e an auto-encoder) which is afterwards discarded. Then, cluster

7

CHAPTER 2. BACKGROUND & REALTED WORK

centroids in the embedding space are iteratively computed and refined until convergence.

More recently, [48] utilizes representations learned from a pretext self-supervised task

in order to extract the nearest neighbors of each image. Then, they train a different

network to output similar features for an image and those nearest neighbors.

Other methods use representations learned in a supervised way. Guérin et al. [20]

conduct extensive experiments with various CNN architectures pre-trained on ImageNet

[12]. They use those pre-trained networks as features extractors and apply several clas-

sical clustering algorithms on these features. In [22], they use the pre-trained network

for initializing the clusters’ centroids. Then, they finetune this network’s parameters

together with a k-means objective.

However, more typical approach is to jointly learn image features alongside cluster

assignments by training a deep network with some clustering loss in an end-to-end

fashion. The coupling of learning image features and clusters together allows the deep

network to better adapt its image features to the task of clustering. Joint Unsupervised

Learning (JULE) [54] trains a model in an end-to-end fashion by iteratively merging

clusters of deep representations and updating the network’s parameters in a hierar-

chical fashion. Recently, Invariant Information Clustering (IIC) [24] proposed a novel

information-theory approach for clustering, in which they maximize the mutual informa-

tion between deep embeddings obtained by two different random augmentations applied

to the same image, and rely on the natural characteristics of the mutual information loss

to produce a clustering of the data.

2.2.3 Self-Supervised Learning

Self-supervised learning is an approach to learning in an unsupervised manner by

solving a pretext supervised task. The supervisory signals are gathered automatically

from the data without the need for manual labeling. The task is designed in a way that

implicitly requires learning of useful image representation, e.g. predicting the relative

position of patches in an image [14], or solving jigsaw puzzles [36]. A more recent method

[17] predicts image rotations (RotNet) and has also been used as an auxiliary task to

stabilize and improve training in semi-supervised [56] and image generation tasks [8].

Similalry, our method also employs RotNet for this purpose.

8

2.2. RELATED WORK

2.2.4 Few-Shot Learning

In our context of very small sample of labeled data, it’s compelling to compare to the

newly rising paradigm of few-shot learning (FSL) [50]. Typically FSL is formulated as

an N-way-K-shot classification problem, where N is the number of classes and K is the

number of samples from each class, which tends to be very small. While humans can

normally solve this problem pretty easily, this is a very challenging task for machines.

Hence, usually a prior knowledge is leveraged. This prior can be in the form of extra

N-way-K-shot tasks (with different classes), as in the framework of meta learning where

the goal is to learn how to learn [49], or a pre-trained model as in the framework of

transfer learning [37]. The key distinction between this study and FSL is the type of

prior. FSL typically leverages extra supervisory information from data sampled from

different distribution than the data’s in hand whereas SSL focuses in leveraging extra

unlabeled data assumed to come from the same distribution as the labeled one.

2.2.5 Active Learning

Similarly to our main goal of learning with as few labeled data as possible, active learning

is a paradigm which attempts to minimize the number of labels provided to the learner.

In this framework, there is an interaction between the learner and the real world. The

learner starts with unlabeled data only (or very few labeled data), and during training

it can request to label some specific instances of the data. Essentially, labelling a data

point is assumed to have a certain cost (usually the same cost for all data points) and

the goal is to prioritize the data for labelling in a way that minimizes the amount of

resources utilized. Different methods mainly differ in the scoring function they use for

determining which unlabeled instance to query in each step. The most basic idea is to

query the instances about which the model is least certain how to label. The uncertainty

can take into account the probability the model gives to the most likely class [32], both

the most likely and second most likely classes’ probabilities [42], or the entire vector

of probabilities, e.g. using the entropy. While both active learning framework and our

framework make use of both labeled data and unlabeled data, in this study we focus on

standard SSL, which is static with respect to the data. We fix the labeled data in the

beginning and don’t allow interaction for acquiring labels during training. We can think

of our method as an attempt to perform well no matter which labels are chosen, and of

active learning as a method to choose the labels wisely in order to improve performance.

9

C
H

A
P

T
E

R

3
OUR METHOD

In this chapter, we present our novel approach for semi-supervised learning when

the data is scarcely annotated. We discuss the different components of our proposed

method for realizing this approach and give intuition to why it should work.

3.1 SSL with Very Few Labels

In this section we present an SSL algorithm that alternates between two phases: unsu-

pervised clustering and semi-supervised classification. The method is designed especially

to perform well in the very-few-labels scenario.

As the SSL building block we use in our experiments a variety of recent state-of-the-

art algorithms, including FixMatch [45] which is used in most of the experiments, as

well as MixMatch [3] and UDA [52]. Our main goal is to equip them with an additional

unsupervised mechanism, in order to reduce their susceptibility to outliers in the small

labeled sample. To this end we describe an effective unsupervised deep clustering method,

a variant of MMDC [44]. This building block can also be replaced in order to improve

performance.

We start by describing each component separately, and then describe their integration

into a single coherent model.

11

CHAPTER 3. OUR METHOD

CNN

? ?

Unlabeled

Labeled Clustering
Loss

Semi-Supervised
Loss

Phase I

Phase II

?

?

?

?
??

?

FC

Figure 3.1: Our method iterates between two phases. In the first phase we train our
model with the available labeled and unlabeled data points using a semi-supervised
learning algorithm. In the second phase we train the same model to cluster all the data
points, without using any labels.

3.1.1 Unsupervised Clustering - MMDC

In a typical supervised classification setting we are given pairs of images and labels

{xi, yi}n
i=1, and train a parameterized model fθ by solving:

(3.1) min
θ

1
n

n∑
i=1

`(fθ(xi), yi),

where ` is some loss function. In the setting of unsupervised clustering, where ground

truth labels y1, ..., yn are not available, we can attempt to learn them alongside the

model’s parameters:

(3.2) min
θ,y1,...,yn

1
n

n∑
i=1

`(fθ(xi), yi).

Without additional constraints, this optimization procedure is prone to suffer from

mode collapse, where all images are assigned the same label y1 = ·· · = yn. To overcome

this susceptibility, we add a constraint to the optimization formulation that explicitly

prevents this from happening:

(3.3) ∀k ∈ [K]
n∑

i=1
1yi=k ≥α

n
K

, 0<α≤ 1.

12

3.1. SSL WITH VERY FEW LABELS

Here K denotes the number of classes in the dataset and α is a hyper-parameter. Eq. 3.3

guarantees that each cluster has a minimal number of images assigned to it.

In order to solve this optimization problem, we adapt a similar approach to the one

taken in [5], where the task of representation learning is addressed. In [5], the problem

of feature collapse is tackled by fixing static feature vectors {yi}n
i=1 at the beginning of

training. Throughout the training, the algorithm learns the model’s parameters and a

one-to-one mapping P : [n]→ [n] from images {xi}n
i=1 to those fixed targets.

In our case, we are interested in clustering the data, and hence it is reasonable to

set the targets to be one-hot vectors in Rk, which we denote by e1, . . . , ek. To enforce (3.3),

the targets are set to T = {yi|∀k ∈ [K],
∑n

i=11yi=ek = α n
K }, with α n

K target instances per

cluster. Before training begins, each target is randomly assigned to an image in the

dataset. Note that some images may not be paired up with a target as there might be

more images than targets.

The optimization problem is solved stochastically one mini-batch at a time, where

each iteration consists of two steps. Given a mini-batch Xb = {x′1, . . . , x′b}⊆ X of b images

and their current targets Tc = {t′1, . . . , t′c}⊆ T (b ≥ c), the first step finds the best assign-

ment of targets to images, denoted by P∗ : [c] → [b], while the network’s parameters

are kept fixed. This is accomplished by minimizing the following objective with the

Hungarian method [29]:

(3.4) P∗ = argmin
P

c∑
i=1

|| fθ(x′P(i))− t′i||22.

Recall that not all images are necessarily assigned a target. Among the unassigned

images, only those with confidence exceeding a certain threshold are assigned to pseudo-

targets. A similar approach is adopted in [6, 45]. For an unassigned image x′k to be

considered confident, we require that || fθ(x′k)− eargmax fθ(x′k)||22 < ρ, where ρ is a hyper-

parameter. In this case, the pseudo-target assigned to x′k is ỹk = eargmax fθ(x′k).

In the second step of the optimization scheme, we update the model’s parameters

with a gradient step, which minimizes the distance of the model’s outputs from the

targets or pseudo-targets found in the first step. Specifically, if we denote the unassigned

confident images by C, and the batch images being processed by S = Im(P∗)∪C, then in

the second step each image in S is augmented r times with a stochastic function g, where

all r versions of the same image are matched to the same target. This is formulated as

minimizing the following objective w.r.t. θ:

(3.5) Lc = 1
|S|r

∑
i∈S

r∑
j=1

|| fθ(g(x′i))− ỹi)||22,

13

CHAPTER 3. OUR METHOD

where ỹi is either the target or the pseudo-target of image x′i. The objective is minimized

via stochastic gradient descent. Note that unassigned images with low confidence are

ignored and do not influence the optimization. As in [5], we implement fθ as a ConvNet

and normalize its output such that || fθ(x)||2 = 1.

To further enhance the representation capabilities of the model, which may in turn

facilitate better clustering, we train the same model on an additional auxiliary task.

Specifically, we employ the self-supervised task of predicting image rotations (RotNet)

[17], as it has a proven record of efficiently improving ConvNets representations in a

variety of tasks [8, 16, 56]. We do this by feeding the penultimate layer of fθ into another

head, which is used to generate the rotation predictions for the RotNet task.

The full clustering algorithm is detailed below in Alg. 1.

3.1.2 Semi-Supervised Classification

Semi-supervised classification is carried out in most of our experiments by adopting

the FixMatch method, as it currently yields state-of-the-art results when relying on a

small labeled sample. FixMatch combines the two commonly used heuristics discussed

in Section 2.2.1, consistency regularization and pseudo-labelling. They are expressed

as part of the loss function applied to unlabeled data during the training of a neural

network, while labeled data is used to optimize the standard cross-entropy loss.

Formally, given a batch of b images X = {x1, . . . , xb} and their labels Y = {y1, . . . , yb},

and another batch of b′ unlabeled images U = {u1, . . . ,ub′}, FixMatch predicts the class

distribution of the network’s output on a weakly-augmented expansion of the unlabeled

batch, and uses these predictions as hard pseudo-labels for a strongly-augmented expan-

sion of the same images. Thus, if we denote the network by fθ and the stochastic weak

and strong augmentation functions by g and q respectively, the pseudo-label of image ui

becomes y′i =max(fθ(g(xi)), and the loss term on the unlabeled batch can be written as:

Lu = 1
|{i ∈ [b′] | y′i ≥ τ}|

b′∑
i=1

1(y′i ≥ τ)H(fθ(q(ui)), y′i).

Above, H denotes the cross-entropy loss and τ denotes a hyper-parameter that determines

the threshold confidence above which the image will be considered in the update of the

network’s parameters (similar to ρ defined above). The loss on labeled data is simply:

(3.6) Ls = 1
b

b∑
i=1

H(fθ(g(xi)), yi),

14

3.1. SSL WITH VERY FEW LABELS

Algorithm 1 Unsupervised Clustering
INPUT: X = {xi}n

i=1 - unlabeled dataset
fθ - convnet with two heads and parameters θ
K - number of clusters
g - stochastic augmentation function
λi - learning rate at epoch i
r - number of times g is applied to an image
α - ratio of dataset that will have targets
ρ - maximal distance to be considered confident

T ← []
for k=1 to K do . initialize targets

for i=1 to α n
K do

append ek to T . ek is the kth unit vector in RK

end for
end for
∀i ∈ [αn] A(xi)= T[i] . initialize assignments
for i=1...epochs do

for j=1...iters do
sample a batch ({x′i}

b
i=1, {t′i}

c
i=1) . b ≥ c

compute P∗ with Eq. 3.4
∀i ∈ [c] A(xP∗(i))= t′i . update assignments
update the parameters with gradient step of Eq. 3.5:

θ← θ−λi∇θLc

end for
for j=1...iters do

sample a batch Xb
∀d ∈ {0◦,90◦,180◦,270◦}, rotate Xb d degrees
update parameters with a gradient step of the
cross-entropy loss Lr:

θ← θ−λi∇θLr

end for
end for

and the total loss is a combination of them both: Ls +λuLu, where λu denotes a hyper-

parameter balancing the weights of the two terms.

The weak augmentations used in the algorithm include the standard flip and shift

transformations. First, the images are flipped horizontally with 50% probability, and

then they are randomly translated by up to 12.5% vertically and horizontally. As strong

15

CHAPTER 3. OUR METHOD

augmentations, two variants of AutoAugment [10] are used, RandAugment [11] and

CTAugment [2]. Both are followed by Cutout [13].

3.1.3 Integrated Method

The basic idea underlying our method is that if the number of labels is small, it benefits

a classification algorithm to occasionally refrain from taking the labels into account. To

achieve this goal, our method alternates traditional semi-supervised training epochs

with full epochs that optimize the unsupervised loss in (3.5) while ignoring the labels.

This design aims to learn meaningful features, which can compensate for the shortage of

labels and help the model generalize better. As a result, the model is less susceptible to

overfitting the few labeled datapoints, especially when they do not agree well with the

total data distribution.

Specifically, we use the same network architecture and weights to solve the two

different tasks described above jointly. To this end the algorithm alternates between

FixMatch epochs and clustering epochs. We also perform several RotNet warmup epochs,

as this has proven useful for accelerating the learning.

Given the information propagated from the labels during the semi-supervised phase,

clustering can be seen as a surprisingly easier task that attempts to separate the data

without giving names to the different clusters thus created. Along the way, the mini-

batch permutation optimization gives the network a chance to swiftly switch the targets

of images whose confidence level is too low. Then, in the next supervised phase, the

algorithm tries again to give those clusters names and refine the boundaries between

them. This cycle is repeated until convergence.

Alg. 2 summarizes the method. We make the code available in github1. In the next

section, we show its effectiveness in semi-supervised learning with a small labeled sample.

In these experiments, the semi-supervised step is realized with more out-of-the-box SSL

algorithms for comparison.

1https://github.cs.huji.ac.il/boazler/SSClustering

16

https://github.cs.huji.ac.il/boazler/SSClustering

3.1. SSL WITH VERY FEW LABELS

Algorithm 2 Boosted SSL
INPUT: U = {ui}n

i=1 - unlabeled dataset
(X ,Y)= {xi, yi}m

i=1 - labeled dataset
SSL_ALGO - some deep SSL algorithm
C_ALGO - our clustering algorithm from 1
fθ - convnet with two heads and parameters θ
g - stochastic augmentation function
λi, j - learning rate at iteration i, epoch j
r - number of times g is applied to an image
α - ratio of dataset that will have targets
ρ - maximal distance to be considered confident

for i=1...iters do
for j=1...e1 do

run SSL_ALGO(X ,Y ,U , fθ) for one epoch
end for
for j=1...e2 do

run C_ ALGO(U , c, fθ, g,λi, j, r,α,ρ) for one
epoch . c is the number of classes

end for
end for

17

C
H

A
P

T
E

R

4
EXPERIMENTAL EVALUATION

In this chapter we empirically evaluate our method on various datasets. We show

how it can boost the performance of several SSL algorithms and decrease their

running time significantly. Also, we show its superiority when employing FixMatch

as the SSL module, and discuss directions for improving the results further.

4.1 Datasets

We evaluate our method on three common SSL benchmarks, see Table 4.1. We should

mention that STL-10 contains 100K extra unlabeled images which come from a slightly

different distribution than the labeled data, including some extra classes not represented

in the 5000 labeled images. Hence, this dataset is more challenging and requires more

labeled data to perform well. SVHN contains roughly 530K extra labeled images as well

which we don’t use in our experiments. It is also slightly imbalanced, having a ratio of

approximately 1 : 3 between the number of instances in the least represented class to the

number in the most represented one.

4.2 Implementation Details

In all of the experiments we used the WideResNet (WRN) architecture [55], replicating

the setup described in [45]. More specifically, for the CIFAR-10 and SVHN datasets we

19

CHAPTER 4. EXPERIMENTAL EVALUATION

Name Classes Train/Test Size Dimension

CIFAR-10 [28] 10 50000 / 10000 32×32×3

SVHN [35] 10 73257 / 26032 32×32×3

STL-10 [9] 10 5000 / 8000 96×96×3

Table 4.1: Datasets used in our experiments. For STL-10, the 100K extra unlabeled
images were used as well.

used WRN-28-2, and for STL-10 we used WRN-37-2. In the SSL phase, we kept the exact

same hyper-parameters as in the original SSL algorithm being employed, while for the

clustering phase, the learning rate and weight decay were reduced to 0.01 and 0.0001

respectively (from 0.03 and 0.0005 in FixMatch). The clustering hyper-parameter ρ was

set to 0.2, and the α hyper-parameter was set to 1 for Cifar-10, and 0.6 for SVHN and

STL-10. As in most other contemporary SSL methods, we stored and evaluated the model

with exponential moving average of the weights over the training and a decay of 0.999.

Image augmentation: during the SSL phase, we took care to always apply the

exact same augmentations as used in the original SSL method used to realize the SSL

phase. Specifically in the experiments with FixMatch, we used Control Theory Augment

[2] that achieved the best results in most scenarios. In the unsupervised phase, we used

the customary flip followed by crop, after the application of random color jitter to each

pixel. We used the same flip and crop transformation in both phases: horizontal flip with

probability 0.5, followed by cropping the mirror padded image to the original size.

Unless otherwise mentioned, we trained our model for 200 iterations, each comprising

multiple passes over the data in the SSL phase (10 for Cifar-10 and 5 for all other

datasets), followed by one pass in the clustering phase.

In all the experiments whose results are reported below, in order to ensure a fair

comparison, we used the exact same partitions into labeled and unlabeled data as used

in [45]. Therefore, whenever we present results while replicating experiments reported

in [45], we use the results reported there for all the methods but our own. When using

different existing algorithms, we first made sure that our implementation of those

methods yielded comparable results to those reported in the original manuscripts, in

order to avoid running all the various experiments anew.

20

4.3. RESULTS

4.3 Results

CIFAR-10 STL-10 SVHN

Method 40 labels 250 labels 1000 labels 40 labels 250 labels

Π-Model [38] - 54.26±3.97 26.23±0.82 - 18.96±1.92
Pseudo-Labeling - 49.78±0.43 27.99±0.80 - 20.21±1.09
Mean Teacher [46] - 32.32±2.30 21.43±2.39 - 3.57±0.11
MixMatch 47.54±11.50 11.05±0.86 10.41±0.61 42.55±14.53 3.98±0.23
UDA 29.05±5.93 8.82±1.08 7.66±0.56 52.63±20.51 5.69±2.76
ReMixMatch 19.10±9.64 5.44±0.05 5.23±0.45 3.34±0.20 2.92±0.48
FixMatch (RA) 13.81±3.37 5.07±0.65 7.98±1.50 3.96±2.17 2.48±0.38
FixMatch (CTA) 11.39±3.35 5.07±0.33 5.17±0.63 7.65±7.65 2.64±0.64

Ours 7.39±0.61 5.51±0.25 4.78±0.29 3.09±0.54 2.30±0.03

Table 4.2: Error rates for the 3 datasets used in our study: CIFAR-10, STL-10 and SVHN.
Results are reported for varying amounts of labels, denoting the total number of labeled
points from all classes.

Classification Results with FixMatch

In Table 4.2, we report the results of our method when applied to the three datasets

used in our study, with various amounts of labels. We ran the algorithm with 5 different

partitions, the exact same partitions used in [45]. Due to the large variance in the 40

labels setting, we repeated the experiment 3 times for each partition. Hence, the standard

deviation reported in our results is the standard deviation (STD) of the means over the

different partitions. As expected for such small partitions, it is rather large.

As can be seen in Table 4.2, our method is very effective in the very small sample

regime with 4 labels per class, where its relative advantage over the alternative methods

is quite high. Its added value is less pronounced when using a total of 250 labels. Still,

when learning to classify the more challenging STL-10 dataset with a setting identical to

the one described in [45]—we used the same 5 folds of 1000 labeled images each, and the

additional 100K unlabeled images—our method once again outperforms all the results

reported in [45].

Finally, in order to push our method to its limit, we experimented with even fewer

labels: 10, 20, 30, and also 100 - an intermediate number between 40 and 250. This very

small sample regime is not systematically investigated in [45]. The results for these

experiments are presented in Fig. 4.1, as well as a detailed per-partition results for the

21

CHAPTER 4. EXPERIMENTAL EVALUATION

20-labels CIFAR-10 experiment in Fig. 4.2. Clearly, as long as the number of labeled

points is smaller than 250, our method is quite beneficial.

10 20 30 100
Number of labels

0

20

40

60

80

Ac
cu

ra
cy

54.27

71.9
84.34

93.14

40.89

63.3

80.53
92.86

Ours
FixMatch

10 20 30 100
Number of labels

0

20

40

60

80

100

Ac
cu

ra
cy

37.42

64.77

83.98
97.65

14.95

46.97

81.18

97.7

Ours
FixMatch

Figure 4.1: Classification accuracy, comparing our method to FixMatch with CTA, using
identical protocols. Left: CIFAR-10, right: SVHN. The numbers inside the columns denote
the mean accuracy across different partitions and runs.

1 2 3 4 5
Partition

0

20

40

60

80

Ac
cu

ra
cy

70.84
65.09 64.53 68.87

90.18

61.5 62.81
55.84

61.71
74.64

Ours
FixMatch

Figure 4.2: The classification accuracy for CIFAR-10 with 20 labels (2 per class), presented
separately for each partition.

22

4.3. RESULTS

Clustering Accuracy Score

10 20 30 100
Number of labels

0

20

40

60

80

Ac
cu

ra
cy

85.27 89.42 89.54 93.14

51.13

70.72
81.1

92.86

Ours
FixMatch

Figure 4.3: Clustering accuracy for the same experiment, the results of which are reported
in Fig. 4.1.

An interesting advantage of our method is demonstrated in Fig. 4.3. The accuracy

shown there is the clustering accuracy score, which is traditionally computed as the

classification accuracy of the best permutation of class labels, when uniquely matched

with the different clusters. More precisely, if our test images and their corresponding

labels are given by ({xi}m
i=1, {yi}m

i=1), and the model’s predictions are given by { ỹi}m
i=1, then

the clustering accuracy score is defined as:

(4.1) max
P : [c]→[c]

1
m

m∑
i=1

1(yi = P(ỹi)),

where P denotes a permutation over the c possible classes.

Note that while the classification accuracy for the experiments with 10 and 20 labels

may seem low, the data is still clustered very well by our model. Even with one label per

class, the model reaches a mean clustering accuracy of over 85%, and the best partition

achieves mean accuracy of over 90%. At the same time, we see in Fig. 4.1 that the

mean classification accuracy is only 54.3%. The gap in accuracy may be large, but it

23

CHAPTER 4. EXPERIMENTAL EVALUATION

resides solely in the naming of the clusters. Conversely, this cannot be said about the

predictions obtained by FixMatch alone. There, the gap between classification accuracy

and clustering accuracy is considerably smaller, which means that FixMatch doesn’t

succeed in separating the classes in the extreme small sample regime. With 100 labeled

examples, the classification and clustering accuracy converge to the same value for both

methods.

In Fig. 4.4 we show two partitions from CIFAR-10, each with 10 labels. In one

partition there is a big gap between classification accuracy and clustering accuracy,

because the model confused the labels of 3 clusters as shown by the arrows. In the other

partition, the model succeeded in finding the right permutation, and hence achieved 91%

accuracy in both classification and clustering.

Figure 4.4: Two different partitions of CIFAR-10 with one label per class are shown
above. Given the top partition, our model found the wrong permutation as illustrated
with blue arrows. This error led to the gap between classification accuracy of 67.6% and
clustering accuracy of 92.5%. Given the bottom partition, our model found the optimal
permutation and achieved 91.0% accuracy in both classification and clustering.

Bridging this gap between classification accuracy and clustering accuracy with so

few labels is a hard problem. We investigated a few heuristics in order to identify "good"

permutations during or after training, but more effort is needed. In Fig. 4.5 we show

the results when employing one such heuristic. After training is completed, we rotate

the labeled images (in four orientations as in RotNet) and use the average prediction in

order to find the k best permutations with Murty’s algorithm [34]. We use rotated images

because the trained model is already (over-)fitted to the small labeled sample. Note that

the permutation which achieves the best performance, and which defines the clustering

accuracy, always lies within the 100 best permutations (out of 10! possible permutations)

according to this score in the experiments with 20 and 30 labeled examples.

24

4.3. RESULTS

1 3 10 20 100 ... 10!
k

55

60

65

70

75

80

85

90

M
ax

 c
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 o

ve
r t

op
-k

 p
ar

tit
io

ns

10 labels
20 labels
30 labels

Figure 4.5: Top-k classification accuracy for CIFAR-10 with 10, 20 and 30 labels. k
denotes the number of permutations considered.

Running Time Comparison

Another advantage of our method is its efficiency with respect to running time. As

mentioned in Section 4.2, the reported results are obtained after 200 iterations of our

method. This implies 2000 passes through the whole data, plus another 200 passes for

clustering and 200 passes for RotNet. In FixMatch, with randomly sampled batches,

the total number of semi-supervised batches processed to achieve the published results

approaches ∼1M batches, while our method processes ∼220K batches to achieve the

results shown above. Even though each clustering epoch takes a bit longer than a

FixMatch epoch, due to the expensive assignment problem, the total running time of our

method adds up to roughly 30% of the running time needed by FixMatch when left on its

own. Similar observations hold for the other SSL algorithms, which are compared with

our method next.

Other SSL algorithms

As explained in Chapter 3, our approach is general in the sense that it can use any

clustering algorithm and any SSL method to address the challenging SSL problem of

25

CHAPTER 4. EXPERIMENTAL EVALUATION

classification with small labeled sample. In this section we show that interlacing our

proposed clustering method with two other successful SSL methods improves their

outcome, in a similar way to the previous results with FixMatch. Thus, in Table 4.3 we

show how our approach boosts the performance of MixMatch [3] and UDA [52]. These

experiments were conducted on CIFAR-10 with 40 labels, using the same 5 partitions as

in all the other experiments. Each partition was evaluated once. As can be seen, UDA

combined with our clustering mechanism almost closes its initial gap against FixMatch,

when both methods use RandAugment as the generator of strong augmentations (this

was the augmentation used by the original method).

Method Error Rate
MixMatch 47.54±11.50
MixMatch + Clustering 35.37±6.01
UDA 29.05±5.93
UDA + Clustering 14.37±3.85

Table 4.3: Error rates of MixMatch (top) and UDA (bottom), with and without clustering,
trained on CIFAR-10 with 40 labeled examples.

4.3.1 Ablation Study

We tested the contribution of two major components of the proposed method: clustering

and RotNet, using CIFAR-10 with 40 labeled examples. Table 4.4 summarizes the results.

As before, each of the 5 partitions used in the initial experiments is learned 3 times

independently. We can see that RotNet alone does not improve the results, nor does it

degrade them. However, without RotNet the clustering phase is far less stable, with a

detrimental effect on the final classification outcome. In both cases, we observed a much

higher variance in performance.

Method Error Rate
FixMatch 11.39±3.35
FixMatch + RotNet 11.55±2.98
FixMatch + Clustering 12.15±3.08
Our Method 7.39±0.61

Table 4.4: Ablation study on CIFAR-10 with 40 labeled examples.

26

C
H

A
P

T
E

R

5
SUMMARY AND CONCLUSIONS

5.1 Summary and Discussion

Motivated by the desire to reduce the reliance on annotated data as much as

possible, we propose a new approach to semi-supervised learning, which is

designed to reduce overfit when very few labels are available. The proposed

method alternates between an unsupervised clustering phase that ignores the labels

in the training data, and a semi-supervised classification phase that makes full use of

the training labels. To this end, we utilize a variant of a new deep clustering algorithm

[44]. We then demonstrate the effectiveness of the general approach by plugging into

it existing SSL algorithms, achieving significantly improved performance and reduced

running time. When the recent FixMatch algorithm is plugged in as the SSL module,

we improve state-of-the-art results on 3 benchmarks typically used to evaluate SSL

algorithms. The proposed approach is general, in that both the SSL and the clustering

modules can be replaced, although in this work we experimented with a single clustering

method.

From a broader perspective, our approach can take advantage of curriculum learning

[1], as one might look for means to schedule the supervised and unsupervised phases in

a more sophisticated manner during training. It can also benefit from active learning

[43], when seeking the best permutation between labels and clusters in the course of

learning, which is especially tricky when the number of labeled points per class is very

small. Under the active learning framework, where the learner can opt for a specific

27

CHAPTER 5. SUMMARY AND CONCLUSIONS

label of interest, we can adjust the permutation gradually by clustering the data first,

subsequently asking the user to provide labels for each cluster’s centroid. This way, in

each round of communication the permutation can be tuned with less than one additional

label per class, as only labels from uncertain clusters will be requested.

28

BIBLIOGRAPHY

[1] Y. BENGIO, J. LOURADOUR, R. COLLOBERT, AND J. WESTON, Curriculum learning,

in Proceedings of the 26th annual international conference on machine learning,

2009, pp. 41–48.

[2] D. BERTHELOT, N. CARLINI, E. D. CUBUK, A. KURAKIN, K. SOHN, H. ZHANG, AND

C. RAFFEL, Remixmatch: Semi-supervised learning with distribution alignment
and augmentation anchoring, arXiv preprint arXiv:1911.09785, (2019).

[3] D. BERTHELOT, N. CARLINI, I. GOODFELLOW, N. PAPERNOT, A. OLIVER, AND

C. A. RAFFEL, Mixmatch: A holistic approach to semi-supervised learning, in

Advances in Neural Information Processing Systems, 2019, pp. 5049–5059.

[4] C. M. BISHOP, Pattern recognition and machine learning, springer, 2006.

[5] P. BOJANOWSKI AND A. JOULIN, Unsupervised learning by predicting noise, arXiv

preprint arXiv:1704.05310, (2017).

[6] J. CHANG, L. WANG, G. MENG, S. XIANG, AND C. PAN, Deep adaptive image
clustering, in IEEE/CVF International Conference on Computer Vision (ICCV),

2017, pp. 5880–5888.

[7] O. CHAPELLE, B. SCHLKOPF, AND A. ZIEN, Semi-Supervised Learning, The MIT

Press, 1st ed., 2010.

[8] T. CHEN, X. ZHAI, M. RITTER, M. LUCIC, AND N. HOULSBY, Self-supervised gans
via auxiliary rotation loss, in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2019, pp. 12154–12163.

[9] A. COATES, A. NG, AND H. LEE, An analysis of single-layer networks in unsuper-
vised feature learning, in Proceedings of the fourteenth international conference

on artificial intelligence and statistics, 2011, pp. 215–223.

29

BIBLIOGRAPHY

[10] E. D. CUBUK, B. ZOPH, D. MANE, V. VASUDEVAN, AND Q. V. LE, Autoaugment:
Learning augmentation strategies from data, in Proceedings of the IEEE confer-

ence on computer vision and pattern recognition, 2019, pp. 113–123.

[11] E. D. CUBUK, B. ZOPH, J. SHLENS, AND Q. V. LE, Randaugment: Practical au-
tomated data augmentation with a reduced search space, in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops,

2020, pp. 702–703.

[12] J. DENG, W. DONG, R. SOCHER, L.-J. LI, K. LI, AND L. FEI-FEI, Imagenet: A
large-scale hierarchical image database, in 2009 IEEE conference on computer

vision and pattern recognition, Ieee, 2009, pp. 248–255.

[13] T. DEVRIES AND G. W. TAYLOR, Improved regularization of convolutional neural
networks with cutout, arXiv preprint arXiv:1708.04552, (2017).

[14] C. DOERSCH, A. GUPTA, AND A. A. EFROS, Unsupervised visual representation
learning by context prediction, in Proceedings of the IEEE international confer-

ence on computer vision, 2015, pp. 1422–1430.

[15] I. DÓPIDO, J. LI, P. R. MARPU, A. PLAZA, J. M. B. DIAS, AND J. A. BENEDIKTS-

SON, Semisupervised self-learning for hyperspectral image classification, IEEE

transactions on geoscience and remote sensing, 51 (2013), pp. 4032–4044.

[16] S. GIDARIS, A. BURSUC, N. KOMODAKIS, P. PÉREZ, AND M. CORD, Boosting
few-shot visual learning with self-supervision, in Proceedings of the IEEE Inter-

national Conference on Computer Vision, 2019, pp. 8059–8068.

[17] S. GIDARIS, P. SINGH, AND N. KOMODAKIS, Unsupervised representation learning
by predicting image rotations, arXiv preprint arXiv:1803.07728, (2018).

[18] I. GOODFELLOW, J. POUGET-ABADIE, M. MIRZA, B. XU, D. WARDE-FARLEY,

S. OZAIR, A. COURVILLE, AND Y. BENGIO, Generative adversarial nets, in

Advances in neural information processing systems, 2014, pp. 2672–2680.

[19] Y. GRANDVALET AND Y. BENGIO, Semi-supervised learning by entropy minimiza-
tion, vol. 17, 01 2004.

[20] J. GUÉRIN, O. GIBARU, S. THIERY, AND E. NYIRI, Cnn features are also great at
unsupervised classification, arXiv preprint arXiv:1707.01700, (2017).

30

BIBLIOGRAPHY

[21] Y. GUO, H. ZHANG, AND X. LIU, Instance selection in semi-supervised learning, in

Canadian Conference on Artificial Intelligence, Springer, 2011, pp. 158–169.

[22] C.-C. HSU AND C.-W. LIN, Cnn-based joint clustering and representation learning
with feature drift compensation for large-scale image data, IEEE Transactions

on Multimedia, 20 (2017), pp. 421–429.

[23] P. HUANG, Y. HUANG, W. WANG, AND L. WANG, Deep embedding network for
clustering, in 2014 22nd International conference on pattern recognition, IEEE,

2014, pp. 1532–1537.

[24] X. JI, J. F. HENRIQUES, AND A. VEDALDI, Invariant information clustering for
unsupervised image classification and segmentation, in Proceedings of the IEEE

International Conference on Computer Vision, 2019, pp. 9865–9874.

[25] T. KANUNGO, D. M. MOUNT, N. S. NETANYAHU, C. D. PIATKO, R. SILVERMAN,

AND A. Y. WU, An efficient k-means clustering algorithm: Analysis and imple-
mentation, IEEE transactions on pattern analysis and machine intelligence, 24

(2002), pp. 881–892.

[26] D. P. KINGMA, S. MOHAMED, D. JIMENEZ REZENDE, AND M. WELLING, Semi-
supervised learning with deep generative models, Advances in neural information

processing systems, 27 (2014), pp. 3581–3589.

[27] D. P. KINGMA AND M. WELLING, Auto-encoding variational bayes, arXiv preprint

arXiv:1312.6114, (2013).

[28] A. KRIZHEVSKY, G. HINTON, ET AL., Learning multiple layers of features from tiny
images, (2009).

[29] H. W. KUHN, The Hungarian method for the assignment problem, Naval Research

Logistics (NRL), 52 (2005), pp. 7–21.

[30] D.-H. LEE, Pseudo-label: The simple and efficient semi-supervised learning method
for deep neural networks, in Workshop on challenges in representation learning,

ICML, vol. 3, 2013.

[31] , Pseudo-label: The simple and efficient semi-supervised learning method for
deep neural networks, in Workshop on challenges in representation learning,

ICML, vol. 3, 2013.

31

BIBLIOGRAPHY

[32] D. D. LEWIS AND J. CATLETT, Heterogeneous uncertainty sampling for supervised
learning, in Machine learning proceedings 1994, Elsevier, 1994, pp. 148–156.

[33] C. LI, T. XU, J. ZHU, AND B. ZHANG, Triple generative adversarial nets, Advances

in neural information processing systems, 30 (2017), pp. 4088–4098.

[34] K. G. MURTY, Letter to the editor‚Äîan algorithm for ranking all the assignments in
order of increasing cost, Operations research, 16 (1968), pp. 682–687.

[35] Y. NETZER, T. WANG, A. COATES, A. BISSACCO, B. WU, AND A. Y. NG, Reading
digits in natural images with unsupervised feature learning, (2011).

[36] M. NOROOZI AND P. FAVARO, Unsupervised learning of visual representations by
solving jigsaw puzzles, in European Conference on Computer Vision, Springer,

2016, pp. 69–84.

[37] S. J. PAN AND Q. YANG, A survey on transfer learning, IEEE Transactions on

knowledge and data engineering, 22 (2009), pp. 1345–1359.

[38] A. RASMUS, M. BERGLUND, M. HONKALA, H. VALPOLA, AND T. RAIKO, Semi-
supervised learning with ladder networks, in Advances in neural information

processing systems, 2015, pp. 3546–3554.

[39] S.-A. REBUFFI, S. EHRHARDT, K. HAN, A. VEDALDI, AND A. ZISSERMAN, Semi-
supervised learning with scarce annotations, in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition Workshops, 2020,

pp. 762–763.

[40] D. E. RUMELHART, G. E. HINTON, AND R. J. WILLIAMS, Learning internal repre-
sentations by error propagation, tech. rep., California Univ San Diego La Jolla

Inst for Cognitive Science, 1985.

[41] T. SALIMANS, I. GOODFELLOW, W. ZAREMBA, V. CHEUNG, A. RADFORD, AND

X. CHEN, Improved techniques for training gans, Advances in neural information

processing systems, 29 (2016), pp. 2234–2242.

[42] T. SCHEFFER, C. DECOMAIN, AND S. WROBEL, Active hidden markov models for
information extraction, in International Symposium on Intelligent Data Analysis,

Springer, 2001, pp. 309–318.

32

BIBLIOGRAPHY

[43] B. SETTLES, Active learning literature survey, tech. rep., University of Wisconsin-

Madison Department of Computer Sciences, 2009.

[44] G. SHIRAN AND D. WEINSHALL, Multi-modal deep clustering: Unsupervised par-
titioning of images, Proceedings: 25th International Conference on Pattern

Recognition (ICPR), Milano Italy, January 2021.

[45] K. SOHN, D. BERTHELOT, C.-L. LI, Z. ZHANG, N. CARLINI, E. D. CUBUK, A. KU-

RAKIN, H. ZHANG, AND C. RAFFEL, Fixmatch: Simplifying semi-supervised
learning with consistency and confidence, arXiv preprint arXiv:2001.07685,

(2020).

[46] A. TARVAINEN AND H. VALPOLA, Mean teachers are better role models: Weight-
averaged consistency targets improve semi-supervised deep learning results, in

Advances in neural information processing systems, 2017, pp. 1195–1204.

[47] J. E. VAN ENGELEN AND H. H. HOOS, A survey on semi-supervised learning,

Machine Learning, 109 (2020), pp. 373–440.

[48] W. VAN GANSBEKE, S. VANDENHENDE, S. GEORGOULIS, M. PROESMANS, AND

L. VAN GOOL, Scan: Learning to classify images without labels, in European

Conference on Computer Vision, Springer, 2020, pp. 268–285.

[49] R. VILALTA AND Y. DRISSI, A perspective view and survey of meta-learning, Artificial

intelligence review, 18 (2002), pp. 77–95.

[50] Y. WANG, Q. YAO, J. T. KWOK, AND L. M. NI, Generalizing from a few examples:
A survey on few-shot learning, ACM Computing Surveys (CSUR), 53 (2020),

pp. 1–34.

[51] J. XIE, R. GIRSHICK, AND A. FARHADI, Unsupervised deep embedding for clustering
analysis, in International conference on machine learning, 2016, pp. 478–487.

[52] Q. XIE, Z. DAI, E. HOVY, M.-T. LUONG, AND Q. V. LE, Unsupervised data aug-
mentation for consistency training, arXiv preprint arXiv:1904.12848, (2019).

[53] B. YANG, X. FU, N. D. SIDIROPOULOS, AND M. HONG, Towards k-means-friendly
spaces: Simultaneous deep learning and clustering, in international conference

on machine learning, PMLR, 2017, pp. 3861–3870.

33

BIBLIOGRAPHY

[54] J. YANG, D. PARIKH, AND D. BATRA, Joint unsupervised learning of deep represen-
tations and image clusters, in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2016, pp. 5147–5156.

[55] S. ZAGORUYKO AND N. KOMODAKIS, Wide residual networks, arXiv preprint

arXiv:1605.07146, (2016).

[56] X. ZHAI, A. OLIVER, A. KOLESNIKOV, AND L. BEYER, S4l: Self-supervised semi-
supervised learning, in Proceedings of the IEEE international conference on

computer vision, 2019, pp. 1476–1485.

34

	List of Tables
	List of Figures
	Introduction
	Background & Realted Work
	Background
	Related Work
	Semi-Supervised Learning
	Deep Clustering
	Self-Supervised Learning
	Few-Shot Learning
	Active Learning

	Our method
	SSL with Very Few Labels
	Unsupervised Clustering - MMDC
	Semi-Supervised Classification
	Integrated Method

	Experimental Evaluation
	Datasets
	Implementation Details
	Results
	Ablation Study

	Summary and Conclusions
	Summary and Discussion

	Bibliography

