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Abstract 

We present a method for object detection in a multi view 3D 
model. Out data is comprised of many overlapping aerial 
images with a 45 degree slant. These datasets are typical for the 
task of 3D reconstruction and include ground, roofs, building 
facades and many urban objects such as cars, plants and 
windows. These 3D models are becoming more and more 
common as 3D reconstruction algorithms improve, computation 
becomes cheaper and more and more uses are being found for 
them such as navigation, context for geo-referencing, urban 
planning etc. As the uses of these models grow beyond 
visualization so will the need for high level understanding of 
the scene and its contents. We use cars as a test case for a 
general framework for object detection in these datasets.  

Typical aerial car detectors do significantly worse on this 
dataset because of the 45 degree angle photos that include many 
rectangular shaped objects, such as windows and doors, that are 
not visible in aerial datasets that are taken from the nadir. The 
good news is that the high redundancy that is necessary for the 
task of 3D reconstruction contains a lot of information that is 
generally not fully taken advantage of in classical object 
detector frameworks. In this work we focus on using all 
available information: highly overlapping views, geometric data 
and semantic surface classification in order to boost a simple 
2D detector. Specifically, a 3D model is computed from the 
overlapping views, which represents the 3D scene and 
geometric relations. The model is segmented into semantic 
labels using height information, color and local planar features 
which describe the surfaces of the scene using high level 
classes such as roof, wall, road etc. A 2D detector is run on all 



images separately and then detections are mapped into 3D via 
the model. The 3D space is used as a common language for all 
images and the detections are clustered in 3D and represented 
by 3D boxes. Finally, the detections, visibility maps and 
semantic labels are combined using a Support Vector Machine 
to achieve a more robust object detector. 

We show that a simple car detector based on Haar-like features 
does not fare very well on these images, however integrating 
over multiple images, and using semantic and geometric 
context can achieve a high Precision-Recall ratio.  

  



  תקציר

אובייקט בעזרת מודל תלת מימדי וריבוי  יבמאמר הזה מוצגת שיטה לזיהו  
, הנתונים המוצגים מורכבים מריבוי תמונות אוויריות חופפות. היבטים

 מסוג זה אופייניים( Datasets)נתונים . מתחת לאופק 45°שצולמו בזוית של 
 בנייניםחזיתות , גגות, קרקעות: וכוללות ממדיותלמשימות שיחזור תלת 

 מימדיםמודלים תלת . צמחים וחלונות, ואובייקטים עירוניים רבים כגון רכבים
אלה הופכים להיות שכיחים יותר עם שיפור האלגוריתם של שיחזור תלת 

הקשר , נוספים כמו ניווט םיישומיומציאת , הוזלת החישוביות, מימדי
ככל ששימושים במודלים אלה . וכדומה יאורבאנתכנון , תגיאוגרפיולהתוויות 

כך עולה הצורך להבנה , מתרחבים מעבר לשימוש לצורך הצגה חזותית פשוטה
במחקר זה מבוצע שימוש ברכבים כמקרי ביקורת . עילית של הזירה ומרכיביה

 . ליצירת מסגרת לאיתור אובייקטים במאגרי הנתונים

גלאי רכב אוויריים טיפוסיים מצליחים פחות בצורה משמעותית מכיוון 
מכילות אובייקטים מלבניים רבים כגון חלונות  45°שתמונות בזווית של 

היתרון בשימוש . נדירשאינם נצפים בתמונות אוויריות שצולמו מה, ודלתות
תלת  לשחזורהוא שהיתירות הגבוהה  הנדרשת , במערכות נתונים מסוג זה

 יימדי מכילה מידע רב שלרוב אינו מנוצל במערכות סטנדרטיות לזיהומ
, מבטים בחפיפה גדולה: בעבודה זאת נעשה שימוש בכל המידע הזמין.  רכבים
וקלסיפיקציה סמנטית על מנת לשפר את פעילותו של הגלאי  יגיאומטרמידע 

מימדי משוחזר מתמונות חופפות -בפרט נעשה שימוש במודל תלת. מימדי-הדו
המודל מחולק . םהגיאומטרייוהיחסים  ממדיתהמייצג את הסצנה התלת 

, צבע, לסגמנטים בעלי משמעות סמנטית תוך שימוש באינפורמציית גובה
מאפיינים מישוריים מקומיים אשר מתארים את הזירה בעזרת רכיבים בעלי 

מימדי -ה הרצה של הגלאי הדובוצע'. כבישים וכו, קירות, משמעות כגון גגות
ם מופו על ידי המודל למרחב יעל כל אחת מהתמונות בנפרד ולאחר מכן הזיהוי

אם . מימדי משמש כשפה משותפת עבור התמונות-המרחב התלת. תלת מימדי
. ממדיתתלת  תיבהכך הזיהויים מקובצים בתלת מימד וכל מקבץ מיוצג על ידי 

הקשר הסמנטי משולבים בעזרת מפות ההסתרות וה, הזיהויים, לבסוף
Support Vector Machine אובייקטים איכותי ואמין יותר ליצירת גלאי . 

תוצאות המחקר מראות שגלאי רכבים פשוט המבוסס על מאפיינים דמויי 
Haar יחד עם זאת שילוב של . משיג תוצאות דלות על מערכות נתונים אלה

וסמנטי מניבים יחס גבוה של  ירריבוי תמונות ושימוש בהקשר גיאומט
Precision-Recall . 
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1 Introduction 

3D reconstruction is becoming more and more common as computing power 
increases and more methods are being developed. Standard graphics cards are 
now strong enough to generate photorealistic images of complex scenes in 
real-time. Typical data consists of multiple images with large overlap, where 
the camera’s internal parameters and location are either known or estimated 
with SFM methods. The model is reconstructed using multiview geometry, 
and may be represented by such means as polygons, voxel space or planar 
disks; it typically contains no high level understanding or semantic 
interpretation.  The widespread existence of such datasets and the existence of 
only low level understanding of the scene geometry have caused a need to 
build autonomous methods of extracting information from the data. 

1.1 Object Detection in Images 

Common methods for object detection in 2D images often use sliding 
windows of different sizes, where each window is tested for the existence of 
an object. A standard way of testing a given window is by extracting features 
and using machine learning to test it.  

Viola and Jones [1] used Haar like features to describe a given patch. They 
define three kinds of features, two-three- or four rectangle features, see Fig. 1. 
The two rectangle feature defined as the sum of pixels in one rectangular area 
of the image minus the sum of pixels in an adjacent rectangular area, three 
rectangle feature is the sum of two rectangles minus the sum of a third 
rectangle and similarly the four rectangle feature is the sum of two rectangles 
minus the sum of another two rectangles. The size and location of rectangles 
in the given patch defines an overcomplete base. For a patch size of 24x24 the 
Haar like features define a set of 180,000 features.  

Viola and Jones utilized a concept called Integral Images to enable fast 
computation of the Haar like features in all resolutions. The Integral images is 
defined as an image, ii, where the value of each pixel is the sum of all pixels 
in the upper left rectangle from the top left pixel to the given pixel;  𝑖𝑖(𝑥, 𝑦) =
∑ 𝑖(𝑥′, 𝑦′)𝑥′≤𝑥
𝑦′<𝑦

. The integral image can be computed quickly in 𝑂(#𝑝𝑖𝑥𝑒𝑙𝑠) in 

one pass over the image since 𝑖𝑖(𝑥, 𝑦) = 𝑖𝑖(𝑥 − 1, 𝑦) + 𝑖𝑖(𝑥, 𝑦 − 1) −
𝑖𝑖(𝑥 − 1, 𝑦 − 1) + 𝑖(𝑥, 𝑦). Once 𝑖𝑖 is computed the sum of a given rectangle is 
𝑖𝑖(𝑏𝑜𝑡𝑡𝑜𝑚 𝑟𝑖𝑔ℎ𝑡) − 𝑖𝑖(𝑡𝑜𝑝 𝑟𝑜𝑔ℎ𝑡) −  𝑖𝑖(𝑏𝑜𝑡𝑡𝑜𝑚 𝑙𝑒𝑓𝑡) +  𝑖𝑖(𝑡𝑜𝑝 𝑙𝑒𝑓𝑡). This 
representation allows us to compute the features at different resolutions 
without computing a pyramid of the original image as is often computed in 
other feature representations. 
 



 
Figure 1: Types of Haar like features: two- three- four rectangle features. In all cases the 

sum of each rectangle can be computed by accessing 4 values of the integral image.  

Viola and Jones used the given features to build a classifier using Adaboost. 
AdaBoost is a greedy algorithm that learns in every iteration a weak classifier 
ℎ𝑗(𝑥) consisting of feature 𝑓𝑗 , threshold 𝜃𝑗  and parity 𝑝𝑗 indicating the 

direction of the inequality sign: 

ℎ𝑗(𝑥) =  {
1 𝑖𝑓 𝑝𝑗𝑓𝑗(𝑥) < 𝑝𝑗𝜃𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Each weak classifier and its weight αj are chosen to minimize the 

misclassification error for the current dataset with the current weights and the 
previous weak classifiers. Finally a classifier is defined: 

𝐻(x) =  {
1 ∑𝛼𝑡ℎ𝑡(𝑥)

t

≥
1

2
∑𝛼𝑡
t

0 otherwise

 

 

A given patch x is detected as a car if 𝐻(𝑥) = 1. Viola and Jones' main 
contribution, besides the choice of features and their fast computation, was to 
speed up the computation time of 𝐻(𝑥) by substituting 𝐻(𝑥) with a cascade of 
classifiers. Notice that the complexity, and also the success, of 𝐻 is dependant 
on the number of features f used. They suggested to learn a cascade 
𝐻1, 𝐻2, … , 𝐻𝑛 such that the success of 𝐻𝑖 on the patches that pass all previous 
classifiers will have a false negative rate smaller than 𝜖 and false positive rate 
smaller than 𝛿. After n stages the overall false negative rate will be bounded 
from below by (1 − ϵ)n and the false positive will be bounded from above by 
δn. Clearly this task gets more and more difficult and demands more and more 
features and the runtime of each stage will grow. However most patches that 
do not contain the desired object will fail in a very early stage, thus saving us 
a lot of unneeded computation in later stages. The result is a detector that 
works nearly as well in a fraction of the time. 

 

Lienhart and Maydt [2] extended the set of features to include diagonal 
features and centered surround features while excluding the four-rectangle-
features since these can be well represented by 2(e) and 2(g), see Fig 2. To 
support these new features they extended the integral image to incorporate a 



possible rotation. In addition to the integral image of Viola and Jones they 
also calculated RSAT (Rotated Sum Area Table) for a rotation of 45 degrees. 
This paper also incorporated a contrast stretching of the form 𝑖(̅𝑥, 𝑦) =
𝑖(𝑥.𝑦)−𝜇

𝑐𝜎
 𝑐 ∈ 𝑅+. 𝜇 can easily be computed for a given area using RSAT, 

however σ needs information for the sum of sqruared pixels in the given area. 
To quickly compute this, another integral image of the squared pixels is 
needed. In total this paper uses 4 pre-computed images and boasts 
approximately 10% decrees in false alarms for a given hit rate in comparison 
to [1] 

 
Figure 2 extended set of Haar like features and the rotated integral image (RSAT) for 45 

degree rotated features 

  

Although [1-2] developed and tested their methods on databases for face 
detection there is nothing inherent in the algorithm for face detections. H. 
Grabner et al [3] learned a car detector for large aerial images using extended 
Haar features along with local orientation histogram and local binary patterns. 
They trained the classifier using online boosting which drastically reduces the 
need for a large training set. In each learning iteration the user marked one 
wrongly labeled detection and the classifiers were adjusted. In this way 
marking multiple examples that aren't informative is avoided and only 
significant examples are labeled.  The online learning is done using online 
AdaBoost. In the offline AdaBoost all training samples are available and the 
weak classifiers ℎ1, ℎ2, … ℎ𝑛 are train sequentially on all the training samples 
with their current weight and then the samples reweighted before the next 
learning stage. Online boosting introduces a new concept “Selectors” which 

holds a set of M weak classifiers and selects one of them ℎ𝑠𝑒𝑙(𝑥) = ℎ𝑚
𝑤𝑒𝑎𝑘(𝑥) 

according to an optimization criterion (specifically the estimated error of each 
weak classifier). When a new sample is introduced each selector trains all its 
weak classifiers and then best one is selected, the weight of the new sample is 
updated and passed to the next selector to continue the training. In the online 
boosting algorithm a strong classifier is available at all times.  

 

Kluckner et all [4] extend the idea of online learning by using 3D information 
to automate the labeling in each step in order to detect and label false 



positives. The database they used is the UltraCamD camera from Microsoft 
Photogrammetry which consists of  11500 × 7500 pixel images taken  from 
the Nadir with high overlap. The images are taken by flying in strips with a 
60% overlap between strips and an inner strip overlap of 80%. They used the 
multiple views to assign a depth for each pixel. The reference image is 
compared with 2 other overlapping images where each depth defines a pixel 
matching to the other images and the pixels are compared using a similarity 
function, in this case Normalized Cross Correlation (NCC). Since the images 
are very close to each other, using only triangulation will result in erratic and 
large changes in the depth map caused by noise in the pixel matching, 
occlusions and changes in lighting. To overcome the inherent noise a global 
optimization scheme is used to achieve a more consistent solution. Intuitively 
we expect neighboring pixels with similar appearance to have similar depth 
values. Instead of performing global optimization over all image pixels, 
which is computationally expensive, they introduced super pixels and local 
planar constraint.  The image was segmented into super pixels and each super 
pixel was assumed to correspond to some 3D plane. Neighboring super pixels 
should ideally reside on the same plane. The problem was formalized as a 
Markov Random Field (MRF) combining a Data term for assigning a given 
segment to a certain plane, and a Smoothness term for assigning neighboring 
segments to different planes. The Data cost is the sum of pixel 
correspondence defined by the homography induced by the 3D plane. The 
smoothness cost is a discontinuity penalty that incorporates the common 
border lengths and the mean color similarity. Loopy Belief Propagation was 
used to find an approximate optimal assignment of planes to each segment. 

 
Figure 3 a small part of the depth image with the corresponding color image and 

detected cars. The depth map maximizes both the correlation to matching pixels in 

other images and global depth consistency between neighboring pixels 

This extra data was used to learn an aerial car detector. Like Grabner et al [3] 
they used online Adaboost starting from a single positive example, and after 
each iteration the depth image was used to automatically label the false 
positives. A simple method was used to identify false positives. They assumed 
that for true car detections all pixels in the current window (and a small area 
surrounding it) should all have similar depth values. All pixels in the 
detection window were fitted to a plane, and if this plane had a slant above a 
certain threshold the detection was declared to be false and was reweighted 
for the next iteration of online learning. Since it's not possible to 
automatically label true positives using the height map, only initially hand 
labeled positives were available during the learning. To compensate, when a 



hand labeled car was not detected, it was reweighted and no false positives 
were added in that round. It is important to emphasize that once the detector 
was learned, no depth information is calculated or used when evaluating a 
new image. This can be seen as an advantage and a disadvantage. On the one 
hand it can run on a single image with no extra demands. On the other hand 
when multiple images, or depth information are available, it doesn't utilize 
this valuable information to improve detections. 

1.2 Using Context to Boost Detection 

While methods for patch based detection and recognition are making progress 
using better descriptors and learning methods, others are seeking to use more 
information than just the pixels in a given patch. This includes a variety of 
context and scene understanding cues, in order to boost performance for 
object detection. Oliva and Torralba [5] review current research about the 
importance of context in human vision. Real world object co-occur with 
objects of the same type as well as different types of objects. A computer 
screen will often be above a keyboard and a desk, and a fire hydrant will be 
above a grey-street layer with a dark building type background above it , see 
Fig. 4. Experiments show that humans find objects with higher percentage 
when the object is in its natural context in multiple levels: semantic, spatial 
and pose. Semantic:  a table and chair are probably present in the same 
images, whereas an elephant and a bed are not. Spatial configuration: a 
keyboard is expected to be below a monitor. Pose: chairs are oriented towards 
the table, a pen should have a particular pose relative to the paper to be useful 
for writing and a car will be oriented along the driving directions of a street. 
In typical experiments the subjects are shown an image or a few consecutive 
images for less than 200ms, and asked to identify the objects and/or scene. 
These experiments show the importance of the location. A plate should be on 
table but also could be on wall or cabinet, a fire hydrant will always be on top 
of the sidewalk, not below the ground plane or floating in the air. Object 
recognition was shown to be more accurate if the relationship between the 
context and the object is strong, and the observers’ accuracy was facilitated if 
the target (e.g. a loaf of bread) was presented after an appropriate scene (e.g. 
a kitchen counter) and impaired if the scene–object pairing was inappropriate 
(e.g. a kitchen counter and bass drum)  



 
Figure 4 images averaged over the LabelMe dataset. The images were translated and scaled 

to put the object in the center before averaged. It's easy to see that the context of these 

objects. 

 

 
Figure 5: locations were objects may be found in relation to the center object (shown in red). 

In the left image we see people in relation to a person in the center. In the right image we see 

likely locations of a chimney in relation to a house.  

Heitz et al. used Spatial Context by using the co-dependence between local 
scenes and the presence of certain objects to label the scene and boost object 
detection simultaneously. They worked on two very different datasets: 
PASCAL VOC 2005/2006 and satellite images from Google Earth. The 
PASCAL dataset was used to perform detection of cars, bicycles and 
motorbikes in street scenes and detection of cows and sheep in rural scenes. 
The Google Satellite images were used to perform car detection. The image 
was segmented into super pixels and a local scene feature was extracted for 
each segment. 𝑁 implicit local scene classes were learned from the training 
images, which can intuitively be identified as classes such as street, building, 
trees, water, etc. The relationships, 𝑅, between the 𝑁 classes and the objects 
were also learned using a Bayesian network model and Expectation-
Maximization. During testing the base detector is run over the image and all 
windows, 𝑊, above a minimum threshold are considered. Finally, given the 
features 𝐹𝑖 for each window, an assignment 𝑇(the presence of objects) was 
estimated that maximizes 𝑝(𝑇|𝐹, 𝑅,𝑊).  
  



The probability of an assignment 𝑇 is a summation of all possible 
assignments, 𝑆, of each segment to a class 

𝑝(𝑇|𝐹, 𝑅,𝑊) =∑𝑝(𝑇, 𝑆|𝐹, 𝑅,𝑊)

𝑆

 

Since all possible assignments, 𝑆, is exponential in the number of classes, it’s 
not feasible to search over all possible assignments for 𝑆, 𝑇 and choose the 
maximum likelihood. Instead, they used the Gibbs sampling which is an 
iterative method. An initial assignment for 𝑇, 𝑆 are chosen and are alternately 
updated by re-sampling with the distribution 𝑃(𝑇|𝑆, 𝐹, 𝑅,𝑊) and 
𝑃(𝑆|𝑇, 𝐹, 𝑅,𝑊). Since the Bayesian model assumes the 𝑆𝑖 labels are 
independent given 𝑇 and 𝑇𝑖 are independent given 𝑆 

𝑃(𝑆|𝑇, 𝑅, 𝐹,𝑊) = ∏𝑃(𝑆𝑖|𝑇, 𝑅, 𝐹,𝑊) 

𝑃(𝑇|𝑆, 𝑅, 𝐹,𝑊) = ∏𝑃(𝑇𝑖|𝑆, 𝑅, 𝐹,𝑊) 

which can be calculated easily by further decomposing: 

𝑃(𝑆𝑖|𝑇, 𝑅, 𝐹,𝑊) ∝ 𝑃(𝑆𝑖) ⋅ 𝑃(𝐹𝑖|𝑆𝑖) ⋅∏𝑃(𝑅𝑖𝑗𝑘|𝑇𝑗 , 𝑆𝑖)

𝑗,𝑘

 

After the last iteration 𝑇 is used as an estimate of the maximum likelihood of 
the object detections. 

Hoiem et al [7] used geometric context, photometric context and local objects 
in a naive Bayes model. The task combined detection of pedestrians and cars 
in images taken from street level. Geometric context attempts to recognize 
surface orientation, ground, vertical and sky, with 5 subclasses of vertical: 
planar facing “left”, “center”, and “right”, and non-planar “solid” and 
“porous”. The image was segmented into super pixels and features containing 
color, texture, shape, location and 3D geometry (long lines, intersections of 
lines, parallel lines and texture gradients) were extracted. A classifier was 
trained using Adaboost with weak learners based on eight-node decision trees.   

Photometric context is an estimation of viewpoint. All images were assumed 
to be taken from approximately human height facing the horizon. Given the 
location of the horizon and the height of the camera, the expected size of an 
object in the image can be calculated depending on its location in the image.  
They used a simple Gaussian model prior for camera height and orientation, 
which were also assumed independent. The scene was modeled by a graphical 
model: geometric surfaces are independent given their corresponding object 
identities and object identities are independent given the viewpoint, see Fig. 
6. These assumptions make the decomposition task possible and each variable 
is dependent on only one other allowing these dependences were learned. 
Given an image the maximum likelihood assignment was found using the 
Pearl’s belief propagation algorithm. 



 
Figure 6: pose estimation. Given the camera height and location of horizon object sizes are 

governed by their location. On the right is the graphical model.  

 

Divvala et al. [24] performed an extensive experiment testing the importance 
of different types of context. They combined local pixel context, 2D scene 
gist, 3D geometric, semantic, geographic and photogrammetric context. Local 
pixel context is simply using a slightly larger bounding box that includes 
pixels from the surrounding area. In this way we implicitly expect green 
pixels in close proximity of “cow” and road in close proximity of "cars". 2D 
scene gist includes global image statistics to classify the gist of the scene. 3D 
scene includes physical layout of the scene, support surface, surface 
orientations, occlusions, etc. Semantic context includes scene category, 
objects present in the scene and types of surfaces. Geographic context is a 
novel context they presented and includes the actual location the image was 
taken. This information includes terrain type, land category, elevation, 
population density etc. Photogrammetric context includes image orientation, 
height, internal camera parameters, radial distortion, etc. All these types of 
context can directly affect the probability of the presence, location and size of 
different types of objects in the image. A classifier is learned for each type of 
context. For each detection object presence, object location and object size 
estimates are calculated using each of the defined context classifiers.  A 
logistic regression classifier is trained using the above features on the 
VOC’08 validation set. Their experiments showed the importance of 
reasoning about an object within the context of the scene, as the average 
precision of the original detector was boosted from 18.2 to 22.0. 

1.3 Integration of 3D information 

The use of 3D scene information to enhance object detection has been made 
even more explicit. It’s common in robotics to find systems that combine 
standard images with auxiliary input such as laser sensors, Sonar, Radar as 
well as navigational data such as GPS and inertial systems. These inputs can 
be combined to generate a full map of the locations of the platform over time 
as well as a 3D map of the scene. This task is called Simultaneous 
Localization and Mapping (SLAM), see section 2.1.  

Posner et al [8] used a system comprised of an RGB camera, Lidar and 
inertial measurement system for the task of adding semantic labeling to the 
map. Typically, pixel features are extracted from the image for the task of 
learning a semantic classifier. Posner et al incorporated the 3D information as 
well. 3D laser points were accumulated over a time window of length ∆𝑡 into 



the past. Thus, a 3D point cloud was assembled which represents the 3D scene 
in a limited time around 𝑡. The 3D points were segmented into planes 
following a divide-and conquer approach: a given point cloud was discretized 
into cubic cells and planes were fitted locally using RANSAC. Plane 
segments, for which the support (i.e. the number of inliers) was less than a 
threshold, were discarded. Planes obtained in neighboring cells were merged 
according to two constraints relating to relative surface orientation and 
translation. The merging criteria for neighboring planes demands that the 
normal of the planes be closer than a maximum angle and the distance 
between them, defined by the distance of the center of mass projected onto 
the other plane, be smaller than a given distance. Finally these planes were 
projected back onto the image to define a depth and normal for each pixel as 
well as a geometric segmentation. Appearance features were extracted from 
the image for both color and texture. Color features were represented by a 15 
bin histogram for Hue and Saturation of pixels in a 15x15 neighborhood as 
well as variance. Since the platform is always on the ground facing the 
horizon (as in [7]) the spatial location of the pixel is very informative as 
spatial context, thus the x,y location was also added to the feature. An all-vs-
one classifier was learned for each class using Gaussian Kernel SVM, and 
each pixel was labeled with the classification that gave the greatest margin.  

This work did not use any spatial or temporal inner-pixel reasoning, i.e 
neighboring pixels were classified independently and a 3D point projected 
onto 2 different images may be labeled differently in each. This was partially 
addressed by voting over each planar segment and showed better results but 
was only expanded on in [9], also Posner et al. In this work the images were 
segmented both by the 3D planes as well as standard image super pixel 
techniques. Instead of using SVM to classify each pixel, a probabilistic 
framework was defined and each segment was assigned a probability for each 
class. More specifically, a feature is computed for each pixel in the segment, 
and the feature is associated with a “word” from a vocabulary learned during 

the learning phase. The segment is assigned a binary vector (𝑧1, … , 𝑧|𝑉|) where  

|𝑉| is the size of the vocabulary and 𝑧𝑖 = 1 if the word 𝑣𝑖  is present in the 
segment, 0 otherwise. The probability of class 𝑘 given an observation 𝑧, 
𝑃(𝐶𝑘|𝑧) is proportionate to 𝑃(𝑧|𝐶𝑘) and some priors. Calculting 𝑃(𝑧|𝐶𝑘) is 
dificult to learn unless approximating that all 𝑧𝑖 are independent given Ck; 
𝑃(𝑧|𝐶𝑘) = ∏𝑃(𝑧𝑖|𝐶𝑘). This however is a bad assumption as different words 
are very dependent on each other. Instead the full dependence is modeled by 

constructing a dependence tree. i.e 𝑃(𝑍𝑝|𝑧, 𝐶𝑘) ≅ 𝑃(𝑍𝑝|𝑍𝑝𝑞 , 𝐶𝑘) where 𝑝𝑞 is 

the parent of 𝑞. The Chau Liu tree is the optimal tree approximation. Once 
each segment in the image has a probability for each class, an optimal 
assignment is one that maximizes both the inner segment probability and a 
temporal probability. More explicitly we expect neighboring segments to have 
the same label with high probability. The problem was formulated as a 
Markov Random Field using 1 − 𝑃(𝐶𝑘|𝑧𝑠) as the data cost of assigning label 
𝐶𝑘 to segment 𝑠, and the smooth cost is a simple probability of two different 
classes being neighbors which can easily be measured from the training set.  

Posner et al added temporal context in [10] by adding links in the MRF over 
𝑁 images (in their experiments 𝑁 = 3). Segments from different images were 



linked if their corresponding 3D points overlap by more than 20%. The MRF 
was solved for segments in all 𝑁 images. 

  

Kluckner et al. [11] used a similar concept for the task of semantic labeling in 
aerial images combining laser scans with color images although their method 
was different. Unlike Posner et al. an initial segmentation of the image was 
not performed. Instead, features were extracted per pixel, and class 
probability was estimated per pixel using Random Forests. A Conditional 
Random Field was defined on the four neighborhood graph of the image 
pixels where edges between neighboring pixels are weighted according to the 
height difference in the Lidar images. The energy is minimized using graph 
cuts based on linear programming. 

 
Figure 7: Aerial Semantic labeling. Shown the original image and depth map from Lidar.  

 

 
Figure 8: associated Semantic labeling by performing Graph Cuts on 4 neighborhood image 

grid 

Bischof et al. [13] used similar data for the task of street layer extraction and 
car detection. Overlapping images were used to generate depth maps, and 
objects that are specific to roads were detected and used as starting points for 
full street layer segmentation. They employed a specifically designed Gabor 
filter to detect zebra crossing (cross walks). Again, a 4 neighborhood grid was 
built for the image and the edges between pixels were weighted according to 



color and height similarity. Since the images were taken from the nadir, the 
street layer was assumed to be well connected in the image. Zebra crossings 
from multiple images were projected onto the reference image using the 3D 
information and Dijkstra’s shortest path algorithm was used to find lowest 
cost paths between zebra crossings. Zebra crossings with large distances were 
filtered out as false detections, while the remaining zebra crossings and the 
paths between them were assumed to be points on the street layer. A Thin 
Plate Spline (TPS) was fitted to these points using Least Squares as well as 
the color distribution for streets. All other points in the image that match the 
TPS and color distribution were labeled as street layer. Cars were detected 
using Adaboost, although any other method is possible, and detections that do 
not lie on the street surface were removed. Although they used overlapping 
images, the process was done independently for each image followed by 
interpolation obtained by projecting the street layer onto the Digital Terrain 
Map (DTM).  

Our approach takes this research direction a bit further starting from the 
reconstruction of a 3D scene model from the overlapping views. Inference is 
done in the 3D space using all images equally as multiple measurements 
simultaneously and not defining one image as a reference while using a few 
overlapping images as support like [8-13]. We detect static objects in the 
model by using detections from all images and 3D semantic labeling 
simultaneously. More specifically, the camera location and orientation are 
calculated for each image using Slam [14] and then a dense 3D model is 
calculated [15-17]. A sliding window detector is run on each image at 6 
different rotations and each image detection is translated to a 3D Bounding 
Box using the camera calibration and 3D model. All 3D Bounding Boxes are 
clustered into a smaller set of representative 3D Bounding Boxes. This allows 
us to infer from many images while overcoming obstructions and greatly 
varying viewpoints. A multiclass semantic labeling of the model is performed 
using geometric information, local planes and color information from all 
images. We show that using multiple overlapping viewpoints and context 
greatly improves the initial performance of the 2D detector. 

 

2 Our Method: Object Detection from 

Multiple Views 

Our method is described in Algorithm 1 below. The input is a set of 
overlapping images {𝑰𝒊}. We first reconstruct the 3D scene from these images 
in order to obtain estimated location and orientation for each image and a 3D 
model – a mesh (𝑉, 𝑇) consisting of vertices and triangles, see Section 2.1. 
Next, we look for objects in the images - cars defined by location, orientation 
and size 𝑑 = (𝑙, 𝑜, 𝑠). In Section 2.2 we describe how for each image 𝐼𝑖 a set 
of cars 𝑑𝑖𝑗 is detected and assigned weights 𝑤𝑖𝑗 using a cascade of weak 

classifiers. In Section 2.3 we describe how each detection 𝑑𝑖𝑗 in image 𝐼𝑖 is 

mapped to a 3D Bounding Box 𝐷𝑖𝑗, and how a 3D Bounding Box is projected 



onto an image.  

 

Algorithm 1: object detection in multiple overlapping views 

Input: set of images  {𝑰𝒊}. 
Output: set of object detections in images 

1. (𝑉, 𝑇)  ← Reconstruct the 3D scene and obtain 3D model. 
2. For each image 𝐼𝑖 

o {𝑑𝑖𝑗, 𝑤𝑖𝑗} ←Run sliding window detector in 6 rotations 

o {𝐷𝑖𝑗 ,𝑊𝑖𝑗} ←Map 2D detections into 3D 

3. {𝐷𝑘,𝑊𝑘} ←Cluster 3D detections and choose representatives {𝐷𝑘}  ⊂ {𝐷𝑖𝑗} 
and corresponding weights {𝑊𝑘}. 

4. Compute semantic labels for each vertex in the model 𝑣 ∈ 𝑉 
o {𝑓𝑣} ←compute feature vector containing 3D and photometric 

information 

o {𝑊𝑣
𝑠} ∈ [0,1]|𝑉|×|𝑆| ← compute a semantic weight for every 

semantic class 
5. Classification with Semantic Context 

a. {𝑓𝐷𝑘} ← compute feature vector containing semantic information 

from all vertices in the neighborhood of 𝐷𝑘, local information and 
detection weight 𝑊𝑘 

b. Final car classification using SVM 
 

 

The detections 𝑑𝑖𝑗 are mapped into 3D in order to achieve common 

parameterization and used together to infer information about the existence of 
objects. They are first clustered into a set of 3D boxes 𝐷𝑘. The local 
information around each 𝐷𝑘 is used along with the 2D information to better 
understand the scene and improve the detection. In Section 2.4 we define 
semantic classes 𝑆: Ground, Wall, Vegetation, Roof, Tiled Roof and Car. 
Every 3D vertex 𝑣 ∈ 𝑉 is assigned a semantic weight, 𝑊𝑣

𝑠, for each semantic 
class. In Section 2.5 the semantic weights and previously calculated 
information in the neighborhood of 𝐷𝑘 are used to construct a semantic vector 
𝑓𝐷𝑘
𝑠 ; final classification is obtained with SVM. 

 

2.1  3D Reconstruction 

It’s common in robotics to find systems that combine standard images from 
multiple viewpoints with auxiliary input such as laser sensors, Sonar, Radar 
as well as navigational data such as GPS and inertial systems. These inputs 
can be combined to generate a full map of the locations of the platform over 
time as well as a 3D map of the scene. This task is called Simultaneous 
Localization and Mapping (SLAM). Usually the auxiliary information isn’t 
complete or is not exact enough and multiple overlapping data from different 
times must be combined to produce a coherent map. Visual Slam, or 



Monocular Slam, uses only a single moving camera and also measurements 
estimating its location and orientation if available.  

Denote: 

 𝑇𝑡, 𝛹𝑡  - The camera parameters (location and orientation) at time 𝑡 
 𝑅𝑡 – The rotation matrix for the camera at time 𝑡 as defined by 𝛹𝑡 
 𝐾 - The camera's intrinsic matrix. Used to project a 3D point to a pixel 

in homogeneous coordinates. Assumed to be the same for all cameras. 

 𝑃𝑖 - The 3D location of point i. 

 𝑝𝑖
𝑡 - The 2D pixel representing the 3D point 𝑖 on the camera at time 𝑡. 

The projection function is: 𝑝𝑖
𝑡 = [

𝑣𝑖
𝑡(0)

𝑣𝑖
𝑡(2)

𝑣𝑖
𝑡(1)

𝑣𝑖
𝑡(2)

]

2𝑥1

; 𝑣𝑖
𝑡 = 𝐾𝑅𝑡(𝑃𝑖 − 𝑇

𝑡) 

 

  
Figure 9: 3 images of the scene. 3D points are tracked through all images. A 3D Point,  𝒊 is 

projected onto image   at  𝒊
  

The first step is to generate corresponding points, also known as tracks, 

between the images. A track, {𝑝𝑖
𝑡1 , 𝑝𝑖

𝑡2 , … , 𝑝𝑖
𝑡𝑛}, is a list of pixels in different 

images that correspond to a single point in the 3D word. Given this set of 

tracks and an initial guess for �̃�𝑡, �̃�𝑡, the problem can be formalized as 
finding the correct orientation of these images and the 3D locations of the 
points that were extracted using maximum likelihood estimation.  
  



We assume that the given measurements have some Gaussian error with 
known covariance: 

 𝑝𝑖
𝑡 = 𝑝𝑖

𝑡 + 𝑛𝑖
𝑡 where 𝑛𝑖

𝑡 ∈ 𝒩(0, Δi
t) and 𝑝𝑖

𝑡 is the true projection of 𝑃𝑖 on 
image 𝑡 

 �̃�𝑡 = 𝑇𝑡 + 𝑛𝑇
𝑡  Where 𝑛𝑇

𝑡 ∈ 𝒩(0, ΔT
t ) and 𝑇𝑡 is the true camera position  

at time 𝑡 
 �̃�𝑡 = 𝛹𝑡 + 𝑛𝛹

𝑡  Where 𝑛𝛹
𝑡 ∈ 𝒩(0, 𝛥𝛹

𝑡 ) and 𝛹𝑡 is the true camera 
orientation at time 𝑡 

We see that given the normal distribution, the probability of a measurement 𝑝𝑖
𝑡 

given its true projection 𝑝𝑖
𝑡 is a normally distributed variable: 

 𝑃(𝑝𝑖
𝑡|𝑝𝑖

𝑡) = 𝑃(𝑝𝑖
𝑡 − 𝑝𝑖

𝑡) = 𝑃(𝑛𝑖
𝑡) =  

|Δi
t|
 
1
2

2 
𝑒(�̃�𝑖

𝑡−𝑝𝑖
𝑡)
T
(Δi
t)
 1
(�̃�𝑖
𝑡−𝑝𝑖

𝑡) 

The problem is then formalized as finding the parameters 𝑃𝑖 , 𝑇
𝑡, 𝛹𝑡 that 

maximize the likelihood of the measurements 𝑝𝑖
𝑡, �̃�𝑡, �̃�𝑡: 

 𝑟𝑔𝑚 𝑥 𝑖,𝑇𝑡, 𝑡 {∏𝑃(𝑛𝑖
𝑡 = 𝑝𝑖

𝑡 − 𝑝𝑖
𝑡)

𝑖,𝑡 

⋅∏𝑃(𝑛𝑇
𝑡 = �̃�𝑡 − 𝑇𝑡)

t

⋅∏𝑃(𝑛𝛹
𝑡 = �̃�𝑡 −𝛹𝑡)

t

} 

 

=  𝑟𝑔𝑚 𝑥 𝑖,𝑇𝑡, 𝑡 {∏
|Δi
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1
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=  𝑟𝑔𝑚 𝑥 𝑖,𝑇𝑡, 𝑡 {∑(�̃�𝑖
𝑡 − 𝑝𝑖

𝑡)T(Δi
t)−1(�̃�𝑖

𝑡 − 𝑝𝑖
𝑡)

𝑖,𝑡

+∑(�̃�𝑡 − 𝑇𝑡)
T
(ΔT
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𝑡

+∑(�̃�𝑡 −𝛹𝑡)
T
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t
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The above cost function corresponds to the weighted Sum of Squared Error 
(SSE) when we use the inverse of the covariance matrices 
(Δi
t)−1, (ΔT

t )−1, (Δ 
t )−1  as the weights. 

Once the camera calibration is known, dense reconstruction algorithms 



attempt to "fill in the blanks" of the sparse 3D map. There are a few ways to 
represent the scene, most notably Voxels (Volumetric Pixels), Range Maps 
and Polygon Mesh. Voxels form a regular 3D grid where each voxel can 
encode a binary variable, occupied/solid vs. vacant, or as a function encoding 
the distance to the surface. This representation is useful for its simplicity and 
its quick query time for a given location in space. However, its cost in 
memory consumption may become impractical for large areas since the 
volume of the scene grows polynomialy in space and resolution. Range maps 
are a set of 2D images for known locations and encode the distance to the 
surface. Range maps avoid the need to resample the 3D space and offer an 
easy way to break certain tasks into smaller ones that can be easily managed 
and computed in parallel. Polygon meshes represent a surface as a set of 
connected planar facets. They are efficient to store and render and are 
therefore a popular output format for multi-view algorithms. 

Given a point 𝑃 on the scene surface and two or more cameras with known 
orientation in which 𝑃 is visible, we can demand the appearance of the 
projected pixels be similar. This is called the Photo consistency of the scene. 
The photo consistency measure varies between methods and the similarity 
measure between pixels is generally not intrinsic to the reconstruction 
algorithm. The Photo consistency function can be divided into two types, 
Scene Space or Image Space. The former integrates over the scene and 
evaluates the accuracy of the model by comparing the pixels in all relevant 
images. An example of such a measure can be the variance of the pixels. The 
latter uses the scene to warp, or project, one image onto another, and then 
compare the reprojected image to the original, called the Prediction Error or 
Reprojection Error. An example of the comparison method can be Normalized 
Cross Correlation (NCC), Sum of Square Differences (SSD), etc. Scene Space 
error functions are integrated over the surface of the scene and thus often tend 
to prefer smaller surfaces, whereas prediction error is integrated over the set 
of images of a scene and thus ascribe more weight to parts of the scene that 
appear frequently or occupy a large image area. 

Goesele et al. [14] presented a simple yet robust method to build a depth map 
for each image and merge them into a mesh. In the first stage a set of range 
maps are built, one for each image. A depth is assigned per pixel encoding the 
estimated distance to the surface of the scene from the camera center. Each 
image is compared to a set of target images, 𝑉, that have similar viewpoints. 
The target images are chosen using the tracking information from the SLAM 
with the assumption that images with many mutual tracks are similar enough 
to be successfully compared at the pixel level.  

Two cameras with images 𝐼1, 𝐼2 and known orientations 𝑅1, 𝑅2 define a 
fundamental Matrix 𝐹 ∈ 𝑅3×3 such that any 3D point 𝑃 projected to pixels 
𝑝1, 𝑝2 ∈ 𝑅3×1on images 𝐼1, 𝐼2 respectively fulfill 𝑝1

𝑇𝐹𝑝2 = 0. Alternatively, a 

given pixel 𝑝1 in 𝐼1 defines a line 𝑙𝑝1 = 𝑝1
𝑇𝐹 in 𝐼2. This line is called the 

epipolar line and every point on the epipolar line in 𝐼2 uniquely defines a 
depth for 𝑝1, see Fig. 10.  

Every pixel 𝑝 in the reference camera and every depth, 𝑑, is assigned a grade 
according to the similarity of the projection on the target images. The 



Normalized Cross Correlation between pixel 𝑝 and view 𝑗, 𝑁𝐶𝐶(𝑝, 𝑉𝑗 , 𝑑) is 

computed between an 𝑚×𝑚 window centered around 𝑝 and the 
corresponding windows centered around the projections in each of the views 
𝑅𝑗. If two views show the same surface we expect to see a high NCC score for 

some value of 𝑑. If, in contrast, there is an occlusion or other compounding 
factor, the NCC value will typically be low for all depths. We wish to rely on 
a depth value only if the window in the reference view correlates well with 
the corresponding window in multiple views. We therefore define that a depth 

value is valid if 𝑁𝐶𝐶(𝑝, 𝑉𝑗, 𝑑) > 𝑡ℎ𝑟𝑒𝑠ℎ for at least two views in 𝑉. The set of 

all views with NCC larger than thresh for a given depth d is denoted as 𝐶𝑉(𝑑). 
For a valid depth 𝑑 we compute a correlation value as the mean of the NCC 
values of all views in 𝐶𝑉(𝑑): 

𝑐𝑜𝑟𝑟(𝑑) =
∑ 𝑁𝐶𝐶(𝑝, 𝑉𝑗, 𝑑)𝐶𝑉(𝑑)

‖𝐶𝑉(𝑑)‖
 

For each pixel the depth is chosen to be the value that maximizes 𝑐𝑜𝑟𝑟(𝑑) or 
none if no valid depth is found. This method is very simple and easy to 
implement and has a short runtime on modern multi-threaded platforms since 
we don't assume any dependence between pixels in the range map. Using only 
values that are greater than a minimum thresh implicitly handles obstructions 
caused by the 3D nature of the scene and the viewpoint changes. The 
Normalized Cross Correlation method normalizes each patch according to its 
mean and STD and is therefore robust to light changes. However, it is not 
rotation invariant. Therefore, for databases with few images, Goesele's 
method results in large areas with low confidence or no depth. For databases 
with many images such as the Dino and Temple dataset, with over 300 images 
each, the method shows good results with completeness of 98% and 80% 
respectively, but only 86% and 57% respectively when using only 50 images. 

 
Figure 10: Given a pixel and an image window around it, a number of depths along its 

viewing ray are hypothesized. At each depth, the window is projected onto the other images. 

At the true depth (highlighted in green), the consistency score is at its maximum. 



 
Figure 11: Dense recursion results for temple data using 16, 47 and 317 images. 

The depth maps are merged into a single surface mesh using the volumetric 
method of Curless and Levoy [17]. The space is discretized into voxels and an 
implicit continuous function 𝐷(𝑥) is estimated. The function represented is 
the weighted signed distance of each 3D point, 𝑥, to the nearest surface. Each 
point 𝑥 in the voxel space is projected onto all range maps 𝐼1…𝐼𝑛 and 
distances 𝑑1(𝑥), … , 𝑑𝑛(𝑥) are calculated using the distance between 𝑥 and 
camera location and the estimated depth in the range map. Weights  
𝑤1(𝑥),… ,𝑤𝑛(𝑥) are assigned using the correlation grade calculated by the 
NCC described above. Then  

𝐷(𝑥) =
∑ 𝑤𝑖(𝑥) ⋅ 𝑑𝑖(𝑥)𝑛

∑ 𝑤𝑖(𝑥)𝑛
 

Finally an iso-surface is extracted using marching cubes at points 
𝑥 𝑠. 𝑡 𝐷(𝑥) = 0 
 

 
Figure 12: (a) A range sensor looking down the x-axis observes a range image. Following one 

line of sight down the x-axis, we can generate a signed distance function as shown. The zero 

crossing of this function is a point on the range surface. (b) The range sensor repeats the 

measurement, but noise in the range sensing process results in a slightly different range 

surface. Following the same line of sight as before, we obtain another signed distance 

function. By summing these functions, we arrive at a cumulative function with a new zero 

crossing positioned midway between the original range measurements. 

  



2.2  2D Detections 

We train a single 2D detector for each oriented object. We first train a cascade 
of 22 weak classifiers using Haar-like features [1,2], retrieving those windows 
that pass all levels of the cascade. The cascade is run on 6 different rotations 

of the image, see Fig. 13. For angle 𝜃 ∈ [−
 

2
,
 

2
] the image is rotated and the 

detector is used to find detections that are parallel to the image axis. 
Detection 𝑑𝑖𝑗 in location (𝑥, 𝑦) in a rotated image is translated to location 

𝑅(𝜃)𝑡 [
𝑥
𝑦] with orientation – 𝜃 in the original image.  

As is customary, we perform post processing to overcome multiple detections 
of the same object in close locations. In order to take location, size and 
orientation into account, we define two detections to be "close" if all 
corresponding corners are no more than 𝛼 ⋅ 𝑠𝑖𝑧𝑒 apart. In our experiments we 
set 𝛼 = 0.3. All detections are clustered using disjoint sets, i.e. two sets 𝐴, 𝐵 
will be joined if they contain items that are close. Finally, we set 𝑤𝑖𝑗 =
#{𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝑐𝑙𝑢𝑠𝑒𝑟}. 

 

 
Figure 13: example of 2D detections in 3 rotaions of the original image 

 

2.3  Clustering in 3D 

Each 3D object is visible in many images. The 2D detector may fail to detect 
it in some images but succeed in others. In order to collect data from different 
images and use them together, the detections are mapped into 3D. Using the 
calculated camera locations, a vertex 𝑣 ∈ 𝑅3 is projected onto the image plane 
with the projection matrix 𝑃𝑖 and, conversely, a pixel in image  𝐼𝑖 defines a ray 
that intersects the 3D Mesh at point 𝑝. Thus detection 𝑑𝑖𝑗 in image 𝐼𝑖 is 

projected to a 3D box 𝐷𝑖𝑗 by projecting the center 𝑐𝑖𝑗 of detection 𝑑𝑖𝑗 onto the 

mesh at point 𝐶𝑖𝑗, which is used as the center point of 𝐷𝑖𝑗. The 3D orientation 

is calculated by projecting the 2D orientation onto the 𝑥, 𝑦 plane (𝑧 = 0) 
around 𝐶𝑖𝑗. 𝐷𝑖𝑗 is always assumed to be parallel to the 𝑥, 𝑦 plane, and is 

assigned weight 𝑊𝑖𝑗 = 𝑤𝑖𝑗. 
  



Next, we seek a subset of all 3D boxes from all images that best explains the 
2D detections. We define a measure of similarity between two 3D boxes 

𝑠(𝐷𝑖1𝑗1 , 𝐷𝑖2𝑗2) = 𝑉𝑜𝑙(𝐷𝑖1𝑗1 ∩ 𝐷𝑖2𝑗2)/𝑉𝑜𝑙(𝐷𝑖1𝑗1 ∪ 𝐷𝑖2𝑗2) 

This can easily be calculated since the detections are parallel to the 𝑥, 𝑦 plane 
and can be calculated as the area of the intersection and union of 2D 
rectangles. The 𝑧 dimension is ignored when there is an overlap, whereas 

𝑠(𝐷𝑖1𝑗1 , 𝐷𝑖2𝑗2) = 0 otherwise, to help prevent the similarity function from 

diminishing too quickly.  

We represent this problem as a multi-labeling problem. The goal is to choose 
a representative for each 𝐷𝑖𝑗 that best describes it, requiring that similar 

detections have the same representatives. We define a graph 𝐺 = (𝑉, 𝐸) whose 
nodes are the 3D detections, and edges are drawn between any intersecting 

detections: 𝑉 = {𝐷𝑖𝑗}, 𝐸 = {(𝐷𝑖1𝑗1 , 𝐷𝑖2𝑗2)|𝑠(𝐷𝑖1𝑗1 , 𝐷𝑖2𝑗2) > 0}. A labeling of the 

graph is a function 𝐿: {𝐷𝑖𝑗} → {𝐷𝑖𝑗}; it is a mapping from each 3D detection to 

a representing 3D box. We use Graph Cuts to minimize the total energy [21-
23]. 

 𝐸(𝐺, 𝐿) =∑𝑊𝑖𝑗 ⋅ (1 − 𝑠(𝐿(𝐷𝑖𝑗), 𝐷𝑖𝑗))

𝐷𝑖𝑗

+ ∑ min(𝑊𝑖1𝑗1 ,𝑊𝑖2𝑗2) ⋅ 𝑠(𝐷𝑖1𝑗1 , 𝐷𝑖2𝑗2)

(𝐷𝑖1𝑗1 ,𝐷𝑖2𝑗2)∈𝐸,

𝐿(𝐷𝑖1𝑗1)≠𝐿(𝐷𝑖2𝑗2)

 

The first sum is the data fidelity term - the cost of assigning 𝐷𝑖𝑗 to 𝐿(𝐷𝑖𝑗). The 

second sum is the smoothness term - the cost of assigning neighboring 
detection to different labels. We use the image of the labeling function as the 

representative set: {𝐷𝑘} ← {𝐷𝑖𝑗|∃𝑖
′𝑗′, 𝐿(𝐷𝑖′𝑗′) = 𝐷𝑖𝑗}, and each label’s weight 

is assigned the sum of weights over the cluster 

𝑊𝑘 = ∑ 𝑊𝐷𝑖𝑗
𝑊𝐷𝑖𝑗

∈𝐿 1(𝐷𝑘)

 

 

2.3.1 Clustering Implementation Details 

In our experiments described below, mapping all 2D detections into 3D 
resulted in approximately 80k detections. Building the entire graph 𝐺, and 
running Graph Cuts on all possible labeling, would have been prohibitive 
despite recent improvements in the runtime of Min cut-Max flow and Graph 
Cuts algorithms. Graph Cut works by running iterations of min-cut on 
intermediate graphs 𝐺𝛼 for every potential label 𝛼. The runtime is controlled 
by the size of 𝐺𝛼 and the number of labels. To improve runtime we divide the 
problem into smaller problems by splitting 𝐺 into sub graphs and run Graph 
Cut on each independently. We split 𝐺 using disjoint sets with an aggressive 
distance threshold 𝛼 = 0.4, i.e. two disjoint sets 𝐴, 𝐵 ⊂ {𝐷𝑘} will be joined if 
max𝑎∈𝐴,𝑏∈𝐵 𝑠( , 𝑏) > 𝛼. This is done quickly by utilizing a KD-tree 



architecture to search for close neighbors. An aggressive threshold can be 
used since we expect the detections around a car to be dense and separating 
them is unlikely. In our experiments this resulted in small graphs that 
contained at most a couple thousand detections. 

To further improve runtime we consider only a small portion of the potential 
labels. For each 𝐷𝑘 we add the four best representatives 
 𝑟𝑔𝑚𝑖𝑛𝐿(𝐷𝑘){𝐷 𝑡 (𝐷𝑘)}. Alpha expansion is performed only on these labels, 

where during construction of the intermediate graph 𝐺𝛼 we restrict the graph 
to nodes {𝐷𝑘|𝑠(𝐷𝑘, 𝛼) > 0}. This greatly reduces runtime and guarantees that 
the representative 𝐿(𝐷𝑘) of 𝐷𝑘 is not too far from 𝐷𝑘. 

2.4  Semantic Labeling 

The mesh is represented by a set of 3D vertices (point cloud) and a set of 
polygons, but it doesn’t contain any high level information. It’s not possible 
to ask questions such as “What’s in this area?”, “Is there a lot of vegetation 
here?”, or “Is there a car here?”. Intuitively we expect to find certain objects 
in a natural context - bears in the forest, toaster in the kitchen, etc. Here we 
represent the context by learning semantic classes: Ground, Vegetation, Wall, 
Roof, Tiled Roof and Car. We use information from the surrounding geometry 
as well as information from the images that view each vertex 𝑣 ∈ 𝑉 to assign 
weights 𝑊𝑣

𝑠 ∈ [0,1] for every semantic class. Local geometric information is 
achieved by adapting the methods of [19] to 3D models, as opposed to range 
maps, in order to segment the model into planar and non-planar areas. 

We use these planar segments when creating a feature vector 𝑓𝑣 as follows: 

1. Vertex Normal: average normal of polygons that contain this vertex 
2. Vertex Height: height above Digital Terrain Map (DTM); when DTM 

is not available, RANSAC is used to obtain one 
3. Planar Segment Normal: the normal of the segment 
4. Planar Segment Type (binary): planar or non-planar 
5. Planar Segment size: the size of the segment 
6. RGB histogram, 15 bins 
7. RGB standard deviation 
8. Hue histogram, 15 bins 

For each semantic class a “One Vs. All” classifier was learned using 
AdaBoost; it is a greedy algorithm that learns in every iteration a weak 
classifier hj(x) consisting of a feature fj , a threshold θj and a parity pj 
indicating the direction of the inequality sign: 

hj(x) =  {
1 if pjfj(x) < pjθj
0 otherwise

 

Each weak classifier and its weight αj are chosen to minimize the 

misclassification error for the current dataset with the current weights and the 
previous weak classifiers. Finally, a strong classifier is defined: 

ℎ(x) =  {
1 ∑𝛼𝑡ℎ𝑡(𝑥)

t

≥
1

2
∑𝛼𝑡
t

0 otherwise

 



Alternatively, we can define 𝛼𝑗
′ =

𝛼𝑗

∑ 𝛼𝑡t  
 and ℎ′(𝑥) = ∑ 𝛼𝑡

′ℎ𝑡(𝑥)t . In this way 

ℎ′(𝑥) ∈ [0,1] and ℎ′(𝑥) ≥
1

2
 𝑖𝑓𝑓 ℎ(𝑥) = 1. We use this slight modification to 

be able to compare the confidence of the different classifiers by setting 
𝑊𝑣
𝑠 ← ℎ𝑠

′ (𝑣). In Fig 14 each vertex, 𝑣, was colored with the corresponding 
color of  𝑟𝑔𝑚 𝑥𝑠(𝑊𝑣

𝑠). 
 

2.5  Boosting Classification with Semantic Context 

When examining a potential detection of a car, it’s important to consider its 
surroundings and not only what this location looks like when projected onto 
different images. Thus, we may expect the vertices that constitute a car and its 
surroundings to have high scores in the Road and Car coordinates of 𝑊𝑣

𝑠, and 
low scores in its Roof coordinate.  

Specifically, each 3D detection 𝐷 has 3D volume that intersects the model and 
contains 𝑁𝐷 vertices. The scores for all classes are averaged over all vertices 

in 𝐷 to create a six coordinate vector 𝑓𝐷
𝑠 =

1

𝑁𝐷
∑ 𝑊𝑣

𝑠
𝑣∈𝐷 . This vector is 

concatenated to the 3D cluster weight 𝑊𝐷 and 
𝑊𝐷

|{𝐼𝑣𝑖𝑠(𝐷)}|
, where {𝐼𝑣𝑖𝑠(𝐷)} is the 

group of images in which 𝐷 is visible. The last coordinate is important since it 
normalizes the grade against areas with higher visibility, such as roofs that 
naturally get a higher grade than obscured areas like cars in alleyways. 
However, it is not sufficient since it will over-represent a single false 
detection in an otherwise occluded area.  

In summary, each 3D detection D is represented by the vector 𝑓𝐷
𝑠, which 

contains information from all images, the surrounding context and its 
visibility.  

 
Figure 14 : Original image and semantic labels. Classes are roof, tiled roof, wall, ground, 

vegetation and car in blue, red, yellow, black, green and pink respectively 

  



2.5.1 Classification Implementation Details 

Here we use the feature vector 𝑓𝐷
𝑠 to learn an SVM classifier with RBF kernel 

𝑘(𝑥𝑖 , 𝑥𝑗) = 𝑒
−𝛾‖𝑥𝑖−𝑥𝑗‖

2

, which distinguishes cars from background. 

To aid classification, we uniformly scaled the data to [0,1], since 𝑤𝑠 ∈ [0,1] 
while in some cases 𝑊𝐷 > 10

3. We used a small part of the data and cross 
validation, in order to find good values for the penalty parameter of the error 
term 𝐶 and the kernel parameter 𝛾. Specifically, we used grid search on 
exponentially growing values of 𝛾 = 2−4…24 and 𝐶 = 2−4…210 and chose 
the pair that maximized the Area Under Curve (AUC) of the PR. Simple 
percent correct wouldn’t work on this unbalanced dataset, where a trivial 
negative classifier achieves accuracy of 96%. We chose the pair (𝐶, 𝛾) =
(0.125,256), although there was a wide range of pairs that performed almost 
equally well. SVM was then trained using v-fold cross-validation with 10 
groups while weighting the positive instances by 25 to overcome the 
unbalanced dataset. 

 

  



3 Experiments 

 

3.1 Data and 3D Reconstruction 

We used a set of 420 aerial images that together cover a ground area of 
400 × 400𝑚 with a surface resolution of 15𝑐𝑚/𝑝𝑖𝑥. The images were taken at 
a 45 − 60° below the horizon. The images have a large overlap and every 
ground point is visible in at least 80 − 100 images (unless hidden by other 
objects). The images came with GPS and Inertial Navigation System (INS) 
measurements. They were corrected using Slam techniques and a dense 3D 
model was reconstructed. Stationary cars were reconstructed as well and are 
visible in the 3D model. 

 

3.2 Training  

All the data, images and model were split into two groups according to the 
ground area they had covered. A geographic area covering a quarter of the 
entire area, and all data associated with it, was designated as training data; the 
remaining data was used for testing. This division, according to ground 
coverage rather than choosing pictures at random, guaranteed that we won’t 
have different instances of the same car in both the train and test sets. 

We hand labeled the location and orientation of the cars in the 3D model and 
projected them onto the images to create 2D training and test sets. Each 2D 
instance was rotated so that the wheels are aligned with the x axis of the 
image and only fully visible instances were used for training (Fig. 15). 
Negative examples were selected randomly from areas of the image that don’t 
have any vehicles, even partially visible (Fig. 16). 

 
Figure 15 : Example of multiple views with large baseline and various levels of visibility. Images were 

rotated to align with the x axis and only fully visible examples are used for training (marked in red) 



 

Figure 16 : A few negative examples 

We built a cascade of weak classifiers. Each weak classifier must have a false 
positive rate smaller than λ and a detection rate no lower than 1 − ϵ. Thus a 
cascade of 𝑁 weak classifiers achieves a false hit rate lower than λN and 

detection rate higher than (1 − ϵ)N on the training set. We set 𝜆 = 0.5, 
𝜖 = 0.01, 𝑁 = 22.  

To train the semantic classifiers we hand labeled vertices in the part of the 
model that corresponds to the ground area designated for training. Classifier 
ℎ𝑠
′  for class 𝑠 ∈ 𝑆 was trained using all vertices with label 𝑠 as positive 

examples and vertices with different labels as negative examples. The 
AdaBoost algorithm described in section 2.4 was used with 20 iterations. 
These results are shown in Fig. 14 where each vertex 𝑣 was assigned the label 
corresponding to  𝑟𝑔𝑚 𝑥𝑠∈𝑆{ℎ𝑠

′ (𝑣)} . We can see for example that Vegetation is 
confused with Ground and with Car but almost never with Roof. Tiled Roof may 
be mistaken for Roof or Wall. 

 

 
Figure 17 : Confusion matrix for semantic labels. On the left is the true label and on the top 

is the detected label. Black denotes high detection rates. 

  



3.3 Results 

We show results comparing a pure 2D car detector vs. our method both with 
and without the use of context. It’s important to emphasize that our method 
detects objects in 3D, while the alternative sliding window method detects 2D 
instances in single images. This means that our method detects each car only 
once, while the 2D method detects all instances of the same car in different 
images as unrelated detections. Note that this set is very unbalanced with only 
60 cars in the entire set. This means that only 1:20000 of the model vertices 
are cars. This is greatly visible in the Precision Recall (PR) curves, especially 
in the 2D curve. For this reason we show both the Receiver Operating 
Character (ROC) and the PR. The main difference in these two curves is that 
in PR the false positives are normalized against the true positives, while ROC 
is normalized against the true negatives. For this reason the ROC is much 
more “forgiving” of false positives when the data is unbalanced [20]. 

2D Detector: The 2D detector is very noisy and never achieves 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 >
0.2, where chance detection would achieve 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 0.04 on this dataset. 
This can be explained by the angles in which the images were taken. Many 
walls are visible with box like windows. Haar-like features measure gain 
changes in rectangular areas, and therefore many false positives occur on 
corner/boxy objects such as windows and solar panels. We tried using an 
alternative detector [6] that was trained on Google Satellite images from the 
nadir with similar pixel resolution, but its performance was not better than 
chance.  

Our method with 3D Clustering: After clustering we were left with 1500 
detections, most with small weights that could be discarded without losing 
any true positives, see Fig. 18. We achieve 𝑅𝑒𝑐 𝑙𝑙 = 1, 𝐹𝑃𝑅 > 0.65. 

Our method with Semantic Context: For each detection 𝐷 found by the 
clustering stage we constructed the feature vector 𝑓𝐷

𝑠 as described in Section 
2.4. Each detection contained some 2-3 thousand vertices.  

Fig. 18 shows the performance of the 3 methods: 2D detector, our method 
with 3D clustering, and our method enhanced by semantic context. We see 
that clustering detections from multiple images achieves 50% recall with no 
false positives. At higher Recall values, using Semantic Context can reduce 
false positives by a factor of 2 or more. This is hardly visible in the ROC 
curve in this unbalanced data. In the PR curve a reduction in false positives is 
very noticeable since it’s proportionate to the true positives. 



 

 
Figure 18 : ROC and Precision Recall Curve. For Recall = 0.5 both 3D clustering and Semantic 

Context have perfect precision. For recall above 0.7 Semantic Context improves precision by a factor 

of 2. 

  



4 Summary and Discussion  

We have described a method for finding static objects in multiple overlapping 
views using 3D reconstruction. Our method combines detections from a 2D 
sliding window detector. The detections from all images are translated into 3D 
where they are all considered together. Since true detections are stable over 
multiple images, clustering in 3D results in more reliable detections. Using 
the semantic labels of the 3D model as context and using visibility of each 
object location in the images further improves the detections. 

Our choice for the 2D detector was motivated by the desire to use a generic, 
simple 2D detector for 2 reasons. The first was to show that our framework is 
not dependent on a designated car detector [3,4]. Clearly a better car detector 
will simplify the task assigned to our framework. It is possible that a highly 
designated car detector will have far less false positives to sift through in 
consequent stages of our framework, in which case, perhaps, a simpler 
method of clustering will suffice. This brings us to our second motivation for 
using a simple detector. Our framework is not designed for a specific object 
and we wanted a detector that is not specific for any one object type. The 
same framework with the same detector can be trained to detect any object 
that has a statistical correlation with its geometric and semantic surroundings.  

In order to combine detections from different images we used the 3D 
representation as a common language. Once all the 2D detections were 
converted into a 3D Bounding Box we were able to compare them, measure 
the distance between them and the extent to which they differ. The similarity 
measure between two detections should not only measure the location but also 
the size and orientations. If the detection were represented as a vector of 
location, size and orientation a simple distance measure could be tricky. We 
chose to use the ratio between the intersection and union as a similarity 
function since this is a compact way to calculate and represent all of the 
above. The similarity can be assumed to be zero if the centers are far enough 
from each other. This approximation will prove important to avoid a full 
graph in the clustering stage.  

During clustering we use Graph Cuts. This method was chosen, instead of 
standard clustering methods such as k-means and mean-shift, for several 
reasons. First and foremost, Graph Cuts offers control over the representation 
of the constraints. By not assigning edges to the graph we can explicitly 
restrict the set of possible solutions. Since we have some insight into the type 
of errors inherent in 2D detectors, we can assign different weights according 
to that probability. In our case, by restricting the graph edges to detections 
with nonzero intersections, we place an explicit limit to the size of a cluster. 
In this dataset, with many overlapping images, an algorithm, such as k-means, 
mean-shift or hierarchal clustering, is likely to result in large clusters. Since 
each cluster represents a single detection, it's clear we don’t want a cluster to 
grow too big.  

Second, by choosing only the most promising links, and placing edges only 
between “promising” detections we can explicitly lower  the number of edges 



in the graph to 𝑂(𝑁) which is a huge reduction in computation time when 
solving the Graph Cuts.  

Future work may explore a clustering method that uses a statistical model to 
representation of the links between potential detection. We can study the what 
kind of errors a 2D detection generates around an object, in space scale and 
rotation and how this error is projected into 3D. We tested a Gaussian Model 
Mixture (GMM) clustering scheme, however, using Gaussian models on 
rotation is problematic, and the runtime on a cluster this size was also 
unfeasible. It is possible to use a Gaussian Model to convert a cluster into a 
maximum likelihood detection instead of the average of the cluster as we 
described.   

Once a few key detection were selected to represent all the detections we 
wished to use all the information at hand for each cluster to answer the simple 
question “Is this cluster indeed a car?”. Each cluster has information from 
every image that saw it (after taking obstructions into account), the weight 
assigned to it (zero if there is no detection there) and the semantic information 
from its surroundings. Intuitively we expect a car to have little “roof” , a lot of 
“street”, and a lot of “car” in it. These labels were summed into a vector of 
probabilities that can be interpreted as exactly that, the amount of “roofness”  
or “carness” in this area. Using a leave-one-out method we could learn a 
separator between “car” and “background” using SVM with RBF Kernel. We  
found that the performance is robust to very a large range of assignments to 
the parameter of the error term 𝐶 and the kernel parameter 𝛾. The kernel 
parameter could take a wide range of pairs with almost identical classification 
results.  

The choice of SVM for the inference stage is not an obvious one. Future work 
can focus on an MRF model that connects different image observations, the 
geometric and semantic context and possibly even other detections in this 
area. Such models are popular when using context to boost classification. 
They typically neglect inner model dependencies such as detection-detection 
and goemtric-goemtric dependencies in the presence of a detection. These 
approximations allow a simple decomposition of the statistic model into 
smaller independent expressions that can estimated either from the data, or as 
a prior.   
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