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Abstract

Automatic processing of video data is essential in order to allow efficient

access to large amounts of video content, a crucial point in such applications

as video mining and surveillance. In this paper we focus on the problem of

identifying interesting parts of the video. Specifically, we seek to identify atypical

video events, which are the events a human user is usually looking for. To this

end we employ the notion of Bayesian surprise, as defined in [8, 17], in which

an event is considered surprising if its occurrence leads to a large change in the

probability of the world model. We propose to compute this abstract measure

of surprise by first modeling a corpus of video events using the Latent Dirichlet

Allocation model. Subsequently, we measure the change in the Dirichlet prior

of the LDA model as a result of each video event’s occurrence. This change

of the Dirichlet prior leads to a closed form expression for an event’s level of

surprise, which can then be inferred directly from the observed data. We tested

our algorithm on a real dataset of video data, taken by a camera observing an

urban street intersection. The results demonstrate our ability to detect atypical

events, such as a car making a U-turn or a person crossing an intersection

diagonally.



Chapter 1

Introduction

1.1 Motivation

The availability and ubiquity of video from security and monitoring cameras has

increased the need for automatic analysis and classification. One urging problem

is that the sheer volume of data renders it impossible for human viewers, the ulti-

mate classifiers, to watch and understand all of the displayed content. Consider

for example a security officer who may need to browse through the hundreds

of cameras positioned in an airport, looking for possible suspicious activities

- a laborious task that is error prone, yet may be life critical. In this paper

we address the problem of unsupervised video analysis, having applications in

various domains, such as the inspection of surveillance videos, examination of

3D medical images, or cataloging and indexing of video libraries.

A common approach to video analysis serves to assist human viewers by

making video more accessible to sensible inspection. In this approach the hu-

man judgment is maintained, and video analysis is used only to assist viewing.

Algorithms have been devised to create a compact version of the video, where

only certain activities are displayed [3], or where all activities are displayed using

video summarization [15].

We would like to go beyond summarization; starting from raw video input,
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we seek an automated process that will identify the unusual events in the video,

and reduce the load on the human viewer. This process must first extract and

analyze activities in the video, followed by establishing a model that character-

izes these activities in a manner that permits meaningful inference. A measure

to quantify the significance of each activity is needed as a last step.

1.2 Related Work

Boiman and Irani [3] propose to recognize irregular activities in video by con-

sidering the complexity required to represent the activity as a composition of

codebook video patches. This entails dense sampling of the video and is there-

fore very time consuming, making it cumbersome to apply this algorithm to

real world data. Itti and Baldi [8] present a method for surprise detection that

operates in low-level vision, simulating early vision receptors. Their work is

directed at the modeling and prediction of human visual attention, and does

not address the understanding of high level events.

Other researchers use Bayesian topic models as a basis for the representation

of the environment and for the application of inference algorithms. To detect

landmark locations Ranganathan and Dellaert [16] employ the surprise measure

over an appearance place representation. Their use of only local shape features

makes their approach applicable in the field of topological mappings, but not in

object and behavior based video analysis. Two closely related models are that of

Hospedales et. al. [6] and Wang et. al. [21]. Both models use topic models over

low level features to represent the environment. [6] uses Bayesian saliency to

recognize irregular patterns in video scenes, while [21] defines abnormal events

as events with low likelihood. Both approaches may be prone to the ‘white

snow paradox’ [8], where data that is more informative in the classic Shannon

interpretation does not necessarily match human semantic interests.
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1.3 Our Approach

We present a generative probabilistic model that accomplishes the tasks outlined

above in an unsupervised manner, and test it in a real world setting of a webcam

viewing an intersection of city streets.

The preprocessing stage consists of the extraction of video activities of high

level objects (such as vehicles and pedestrians) from the long video streams given

as input. Specifically, we identify a set of video events (video tubes) in each video

sequence, and represent each event with a ‘bag of words’ model. In previous

work words were usually chosen to be local appearance features, such as SIFT

[11, 4] or spatio-temporal words [10]. We introduce the concept of ‘transition

words’, which allows for a compact, discrete representation of the dynamics

of an object in a video sequence. Despite its simplicity, this representation is

successful in capturing the essence of the input paths. The detected activities

are then represented using a latent topic model, a paradigm that has already

shown promising results [18, 12, 4, 6].

Next, we examine the video events in a rigorous Bayesian framework, to

identify the most interesting events present in the input video. Thus, in order to

differentiate intriguing events from the typical commonplace events, we measure

the effect of each event on the observer’s beliefs about the world, following the

approach put forth in [8, 17]. We propose to measure this effect by comparing

the prior and posterior parameters of the latent topic model, which is used to

represent the overall data. We then show that in the street camera scenario, our

model is able to pick out atypical activities, such as vehicle U-turns or people

walking in prohibited areas.

The rest of the paper is organized as follows: in Section 2 we describe the

basic extraction and representation of activities in input videos. In Section 3 the

‘bag of words’ model is used to represent the input in a statistical generative

manner as explained above. Section 4 and Section 5 introduce the Bayesian

framework for identifying atypical events, and in Section 6 the application of

this framework to real world data is presented.
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Chapter 2

Activity Representation

2.1 Objects as Space Time Tubes

To recognize unusual activities in input videos, we first need to isolate and

localize objects out of the image sequence. The fundamental representation

of objects in our model is that of ‘video tubes’ [14]. A tube is defined by a

sequence of object masks carved through the space time volume, assumed to

contain a single object of interest (e.g., in the context of street cameras, it may

be a vehicle or a pedestrian). This localizes events in both space and time, and

enables the association of local visual features with a specific object, rather than

an entire video.

Tubes are extracted by first segmenting each video frame into background

and foreground regions, using a modification of the ‘Background Cut’ method,

described in [19]. Foreground blobs from consecutive frames are then matched

by spatial proximity to create video tubes that extend through time. A collection

of tubes extracted from an input video sequence is the corpus used as the basis

for later learning stages.
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2.2 Trajectories

An obvious and important characteristic of a video tube is its trajectory, as

defined by the sequence of its spatial centroids. Encoding the dynamics of

an object is a crucial step for successful subsequent processing. A preferable

encoding in our setting should capture the characteristic of the tube’s path in

a compact and effective way, while considering location, speed and form.

Of the numerous existing approaches, we use a modification of the method

suggested in [20]. Denote the displacement vector between two consecutive spa-

tial centroids Ct and Ct+1 as D =
−−−−→
CtCt+1 (Fig. 2.1a). Since the temporal

difference is constant (a single frame interval between centroids) we may ig-

nore it, and assume D has only spatial components (∆x,∆y). Quantization

of possible values of D is obtained through the following procedure: First, the

magnitude of all displacement vectors is normalized by the largest displacement

found in the trajectory - ‖D‖max. Then the normalized magnitude is assigned

to one of three uniform quantization levels. The orientation component of each

displacement vector is binned into one of eight sectors of the unit circle, each

sector covering π/4 radians. The combination of three magnitude scales and

eight orientation sectors gives 24 quantization bins (Fig. 2.1b). Adding another

bin to indicate zero displacement, we have a total of 25 displacement bins. After

quantizing all of the displacement vectors of a trajectory, we create a transition

occurrence matrix (Fig. 2.1c), indicating the frequency of bin transitions in the

tube.

This matrix can be viewed as a histogram of ‘transition words’, where each

word describes the transition between two consecutive quantized displacement

vectors. The final representation of a trajectory is this histogram, indicating

the relative frequency of the 625 possible transitions.
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(a) (b) (c)

Figure 2.1: Trajectory representation: the three stages of our trajectory repre-

sentation: (a) compute the displacement of the centroids of the tracked object

between frames, (b) quantize each displacement vector into one of 25 quantiza-

tion bins, and (c) count the number of different quantization bin transitions in

the trajectory into a histogram of bin transitions.

α θ z w

β

N
M

(a)

γ φ

θ z
N
M

(b)

Figure 2.2: (a) Graphical model represntation of LDA using plate notation. (b)

Simplified model used to approximate the posterior distribution.
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Chapter 3

Modeling of Typical

Activities Using LDA

The Latent Dirichlet Allocation (LDA) model is a generative probabilistic model,

first introduced in the domain of text analysis and classification [2]. As other

topic models, it aims to discover latent topics whose mixture is assumed to be

the underlying cause of the observed data. Its merits lie in that it is a truly

generative model that can be learned in a completely unsupervised manner, it

allows the use of priors in a rigorous Bayesian manner, and it does not suffer

from over-fitting issues like its closely related pLSA model [5]. It has been

successfully applied recently to computer vision tasks, where the text topics

have been substituted with scenery topics [4] or human action topics [12].

As is common with models from the ‘bag of words’ paradigm, the entities

in question (video tubes, in our case) are represented as a collection of local,

discrete features. The specific mixture of topics of a single video tube determines

the observed distribution of these features.

More formally, assume we have gathered a set of video tubes and their

trajectories in the corpus T = {T1, T2, ..., Tm}. Each tube is represented as

a histogram of transition words taken from the trajectory vocabulary V =
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{w1−1, w1−2, ..., w25−24, w25−25}, |V | = 625. Thus the process that generates

each trajectory Tj in the corpus is:

1. Choose N ∼ Poisson(ξ), the number of feature words (or, in effect, the

length of the trajectory).

2. Choose θ ∼ Dirichlet(α), the mixture of latent topics in this tube.

3. For each of the N words wn, where 1 ≤ n ≤ N :

• Choose a topic zn ∼Multinomial(θ)

• Choose a codebook word wn from the multinomial distribution p(wn |

zn, β)

In this model, α is a k-dimensional vector that is the parameter for the Dirichlet

distribution, k is the predetermined number of hidden topics, and β is a k × V

matrix that characterizes the word distributions conditioned on the selected

latent topic. The entry βi,j corresponds to the measure p(wj = 1 | zi = 1).

A plate notation representation of the model is shown in Fig. 2.2a. The joint

distribution of the trajectory topic mixture θ, the set of transition words w and

their corresponding topics z can be summarized as:

p(θ,w, z | α, β) = p(θ | α)

N∏
n=1

p(zn | θ)p(wn | zn, β) (3.1)

Once the model has been learned and the values of the vector α and the

matrix β are known, we can compute the posterior distribution of the hidden

variables of a new unseen tube:

p(θ, z | w, α, β) =
p(θ,w, z | α, β)

p(w | α, β)
(3.2)

Although this distribution is computationally intractable, approximate in-

ference algorithms such as Gibbs sampling or variational methods can be used.

The basic principle behind the variational approach [9] is to consider a simplified

graphical model, where problematic ties between variables are removed. The
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edges between θ, z, and w cause the coupling between θ and β, which is the rea-

son for the intractibility of Eq. (3.2). Dropping these edges and incorporating

the free variational parameters γ and φ into the simplified model (Fig. 2.2b),

we acquire a family of distributions on the latent variables that is tractable:

q(θ, z | γ, φ) = q(θ | γ)

N∏
n=1

q(zn | φn) (3.3)

where γ approximates the Dirichlet parameter α and φ mirrors the multinomial

parameters β.

Now an optimization problem can be set up to minimize the difference be-

tween the resulting variational distribution and the true (intractable) posterior,

yielding the optimizing parameters (γ∗, φ∗), which are a function of w. The

Dirichlet parameter γ∗(w) is the representation of the new trajectory in the

simplex spanned by the latent topics. Thus it characterizes the composition of

the actual path out of the k basic trajectory topics.

Based on this inference method, Blei [2] suggests an alternating variational

EM procedure to estimate the parameters of the LDA model:

1. E-Step: For each tube, find the optimizing values of the variational pa-

rameters {γ∗t , φ∗t : t ∈ T.}

2. M-Step: Maximize the resulting lower bound on the log likelihood of the

entire corpus with respect to the model parameters α and β.

The estimation of the model’s parameters α and β completes our observer’s

model of its world. The Dirichlet prior α describes the common topic mixtures

that are to be expected in video sequences taken from the same source as the

training corpus. A specific mixture θt determines the existence of transitions

found in the trajectory using the per-topic word distribution matrix β. Crude

classification of tubes into one of the learned latent topics can be done simply

by choosing the topic that corresponds to the maximal element in the posterior

Dirichlet parameter γ∗t .
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Chapter 4

Surprise Detection

The notion of surprise is, of course, human-centric and not well defined. Sur-

prising events are recognized as such with regard to the domain in question,

and background assumptions that can not always be made explicit. Thus, rule

based methods that require manual tuning may succeed in a specific setting,

but are doomed to failure in less restricted settings. Statistical methods, on

the other hand, require no supervision. Instead, they attempt to identify the

expected events from the data itself, and use this automatically learned notion

of typicality to recognize the extraordinary events.

Such framework is proposed in the work by Itti [8] and Schmidhuber [17].

Dubbed ‘Bayesian Surprise’, the main conjecture is that a surprising event from

the viewpoint of an observer is an event that modifies its current set of beliefs

about the environment in a significant manner. Formally, assume an observer

has a model M to represent its world. The observer’s belief in this model is

described by the prior probability of the model p(M) with regard to the entire

model space M. Upon observing a new measurement t, the observer’s model

changes according to Bayes’ Law:

p(M | t) =
p(M)p(t |M)

p(t)
(4.1)

This change in the observer’s belief in its current model of the world is
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defined as the surprise experienced by the observer. Measurements that induce

no or minute changes are not surprising, and may be regarded as ‘boring’ or

‘obvious’ from the observer’s point of view. To quantify this change, we may

use the KL divergence between the prior and posterior distributions over the

set M of all models:

S(t,M) = KL(p(M), p(M | t)) =

∫
M
p(M)log

p(M)

p(M | t)
dM (4.2)

This definition is intuitive in that surprising events that occur repeatedly

will cease to be surprising, as the model is evolving. The average taken over the

model space also ensures that events with very low probability will be regarded

as surprising only if they induce a meaningful change in the observer’s beliefs,

thus ignoring noisy incoherent data that may be introduced.

Although the integral in Eq. (4.2) is over the entire model space, turning this

space to a parameter space by assuming a specific family of distributions may

allow us to compute the surprise measure analytically. Such is the case with the

Dirichlet family of distributions, which has several well known computational

advantages: it is in the exponential family, has finite dimensional sufficient

statistics, and is conjugate to the multinomial distribution.
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Chapter 5

Bayesian Surprise and the

LDA Model

As noted above, the LDA model is ultimately represented by its Dirichlet prior

α over topic mixtures. It is a natural extension now to apply the Bayesian

surprise framework to domains that are captured by LDA models.

Recall that video tubes in our ‘bag of words’ model are represented by the

posterior optimizing parameter γ∗. Furthermore, new evidence also elicits a

new Dirichlet parameter for the world model of the observer, α̂. To obtain α̂,

we can simulate one iteration of the variational EM procedure used above in the

model’s parameters estimation stage, where the word distribution matrix β is

kept fixed. This is the Dirichlet prior that would have been calculated had the

new tube been appended to the training corpus. The Bayesian Surprise formula

when applied to the LDA model can be now written as:

S(α, α̂) = KLDIR(α, α̂) (5.1)

The Kullback - Leibler divergence of two Dirichlet distributions can be com-
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puted as [13]:

KLDIR(α, α̂) = log
Γ(α)

Γ(α̂)
+

k∑
i=1

log
Γ(α̂i)

Γ(αi)
+

k∑
i=1

[αi − α̂i][ψ(αi)− ψ(α)] (5.2)

where

α =

k∑
i=1

αi and α̂ =

k∑
i=1

α̂i

and Γ and ψ are the gamma and digamma functions, respectively.

Thus each video event is assigned a surprise score, which reflects the tube’s

deviation from the expected topic mixture. In our setting, this deviation may

correspond to an unusual trajectory taken by an object, such as ‘car doing a

U-turn’, or ‘person running across the road’. To obtain the most surprising

events out of a corpus, we can select those tubes that receive a surprise score

that is higher than some threshold.
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Chapter 6

Experimental Results

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.1: Trajectory classifications: (a,b) cars going left to right, (c,d) cars

going right to left, (e,f) people walking left to right, and (g,h) people walking

right to left.
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6.1 Dataset

Surveillance videos are a natural choice to test and apply surprise detection

algorithms. Millions of cameras stream endless videos that are notoriously hard

to monitor, where significant events can be easily overlooked by an overwhelmed

human observer. We test our model on data obtained from a real world street

camera, overlooking an urban road intersection. This scenario usually exhibits

structured events, where pedestrians and vehicles travel and interact in mostly

predefined ways, constrained by the road and sidewalk layout. Aside from secu-

rity measures, intersection monitoring has been investigated and shown to help

in reducing pedestrian and vehicle conflicts, which may result in injuries and

crashes [7].

The training input sequence consists of an hour of video footage, where

frame resolution is 320x240 and the frame rate is 10fps. The test video was

taken in the subsequent hour. The video was taken during the morning, when

the number of events is relatively small. Still, each hour contributed about 1000

video tubes. The same intersection at rush hours poses a significant challenge to

the tracking algorithm due to multiple simultaneous activities and occlusions,

but this tracking is not the focus of this work. Subsequent analysis is agnostic

to the mode of tube extraction, and the method we used can be easily replaced

by any other method.

6.2 Trajectory Classification

The first step in our algorithm is the construction of a model that recognizes

typical trajectories in the input video. We fix k, the number of latent topics

to be 8. Fig. 6.1 shows several examples of classified objects from four of the

eight model topics, including examples from both the training and test corpora.

Fig. 6.2 shows the distribution of trajectories into topics, in the train and test

corpora.

Note that some of the topics seem to have a semantic meaning. Thus, on
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Figure 6.2: Number of trajectories assigned to each topic in the train (left) and

test (right) corpora. 1306 tubes were extracted from the training sequence, and

1364 from the test sequence.

the basis of trajectory description alone, our model was able to automatically

catalog the video tubes into semantic movement categories such as ‘left to right’,

or ‘top to bottom’, with further distinction between smooth constant motion

(normally cars) and the more erratic path typically exhibited by people. It

should be noted, however, that not all latent topics correspond with easily

interpretable patterns of motion as depicted in Fig. 6.1. Other topics seem to

capture complicated path forms, where pauses and direction changes occur, with

one topic representing ‘standing in place’ trajectories.

6.3 Surprising Events

To identify the atypical events in the corpus, we look at those tubes which

have the highest surprise score. Several example tubes which fall above the

95th percentile are shown in Fig. 6.4. They include such activities as a vehicle

performing a U-turn, or a person walking in a path that is rare in the training

corpus, like crossing the intersection diagonally.

In Fig. 6.3 the γ∗ values of the most surprising and typical trajectories are

shown. It may be noted that while ‘boring’ events generally fall into one of

the learned latent topics exclusively (Fig. 6.3b), the topic mixture of surprising

events has massive counts in several topics at once (Fig. 6.3a). This observation

is verified by computing the mean entropy measure of the γ∗ parameters, after

16



0

10

20

0

20

40

0

50

100

0

50

100

0

50

100

0

20

40

0

10

20

0

100

200

0

20

40

0

50

100

0

20

40

0

20

40

(a)

0

10

20

0

10

20

0

10

20

0

20

40

0

20

40

0

20

40

0

10

20

0

20

40

0

10

20

0

10

20

0

10

20

0

10

20

(b)

Figure 6.3: Posterior Dirichlet parameters γ∗ values for the most surprising (a)

and typical (b) events. Each plot shows the values of each of the k = 8 latent

topics. Note that the different y scales correspond to different trajectory lengths

(measured in frames).

(a) (b) (c)

(d) (e) (f)

Figure 6.4: Surprising events: (a) a bike turning into a one-way street from the

wrong way, (b) a car performing a U-turn, (c) a bike turning and stalling over

pedestrian crossing, (d) a man walking across the road, (e) a car crossing the

road from bottom to top, (f) a woman moving from the sidewalk to the middle

of the intersection.
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being normalized to a valid probability distribution:

H(γsurprising) = 1.2334, H(γtypical) = 0.5630

(a) (b)

Figure 6.5: Erroneous tracking: (a) the tracking of a car which has exited

the frame to the right wrongly continues with the tracking of a car tht is just

entering from the right, (b) a complicated scene where a car standing in the

middle of the road confuses the tracking algorithm.

Another possible application of the detection of abnormal paths is their use

in the refinement of tracking algorithms. In Fig. 6.5 a couple of examples of

erroneous paths are shown. In Fig. 6.5a a ‘fake’ U-turn is detected, where the

trajectory first follows a car leaving the frame to the right and then skips to a

car which enters the frame going in the other direction. In Fig. 6.5b the same

scenario is complicated even further by a car standing in the middle of the road,

and additional tracking errors are ensued. These faults are of course due to the

simple tracking algorithms we have used. Such results can be used to improve

tracking algorithms, or post-process their results.
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Chapter 7

Conclusions

In this work we presented a novel integration between the generative probabilis-

tic model LDA and the Bayesian surprise framework. We applied this model to

real world data of urban scenery, where vehicles and people interact in natural

ways. Our model succeeded in automatically obtaining a concept of the normal

behaviors expected in the tested environment, and in applying these concepts

in a Bayesian manner to recognize those events that are out of the ordinary.

Although the features used are fairly simple (the trajectory taken by the ob-

ject), complex surprising events such as a car stalling in its lane, or backing out

of its parking space were correctly identified, judged against the normal paths

present in the input.

A natural extension to the model would be the inclusion of more sophisti-

cated representations, where other visual features such as appearance descrip-

tors are incorporated into the codebook. In the street setting tested the tra-

jectory representation we used sufficed to tell apart not only different typical

dynamics, but also create different classes for vehicles and people. This is due to

the inherent differences between human and vehicle motion reflected in our tra-

jectory representation, but of course this may not always be the case. Another

shortcoming of our model is the manually set number of latent topics. There

are several approaches to tackle this limitation [1], which also address the issue

of the ‘flatness’ of the model, in a domain where a hierarchical interpretation

seems natural.
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