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ABSTRACT

Measuring the confidence of a classifier in its predictions is very important for many

applications, and is therefore an important part of the classifier design. Yet, although

deep learning has received tremendous attention in recent years, not much progress

has been made in quantifying the prediction confidence of neural network classifiers. Bayesian

models offer a mathematically grounded framework to reason about model uncertainty, however,

Bayesian neural networks usually come with prohibitive computational costs. To this day, the

most commonly used confidence scores are the simple Max Margin, which is the strength of the

most activated output unit followed by a softmax normalization, or the (negative) entropy of this

softmax output. Some recent works proposed ways to improve the confidence score provided by

the entropy, but they come with a price of a highly increased train or test time.

In this work we propose a new confidence score based on the estimation of local density as

induced by the network, when points are represented using the effective embedding created by

the trained network in its penultimate layer. Our work is motivated by the empirical observation

concerning neural networks trained for classification, which have been shown to demonstrate

in parallel useful embedding properties. We note, however, that the commonly used embedding

discussed above is associated with a network trained for classification only, which may impede its

suitability to measure confidence reliably. In accordance, we propose two methods for improving

the probabilistic interpretation of the embeddings. In the first method we modify the network

loss function and add a term which penalizes for the violation of pairwise constraint. In the

second method we use Adversarial Training, which is designed to improve the measurement of

uncertainty, but is surprisingly helpful for achieving suitable embeddings as well.

In this work we show that our proposed confidence score is both simple to implement and

scalable while also being much cheaper in terms of train and test time, compared to other

recently proposed methods. We also test our method on several tasks which use a confidence

score. These tasks include correct classification prediction, self-training, ensemble methods and

novelty detection. In all tasks we show significant improvement over traditional, commonly used

confidence scores even when those are improved with the methods mentioned above.
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1
INTRODUCTION

C lassification confidence scores are designed to measure the accuracy of the model when

predicting class assignment (rather than the uncertainty inherent in the data). Most

generative classification models are probabilistic in nature, and therefore provide such

confidence scores directly. Most discriminative models, on the other hand, do not have direct

access to the probability of each prediction. Instead, related non-probabilistic scores are used as

proxies, as for example the margin in SVM classifiers.

When trying to evaluate the confidence of neural network (NN) classifiers, a number of scores

are commonly used. One is the strength of the most activated output unit followed by softmax

normalization, or the closely related ratio between the activities of the strongest and second

strongest units. Another is the (negative) entropy of the output units, which is minimal when

all units are equally probable. Often, however, these scores do not provide a reliable measure of

confidence, see [2, 15, 17, 21].

Why is it important to reliably measure prediction confidence? In various contexts such as

medical diagnosis and decision support systems, it is important to know the prediction confidence

in order to decide how to act upon it. For example, if the confidence in a certain prediction is

too low, the involvement of a human expert in the decision process may be called for. Another

important aspect of real world applications is the ability to recognize samples that do not belong

to any of the known classes, which can also be improved with a reliable confidence score. More

generally and importantly, estimating when a model is in error is of great concern to AI Safety

[2]. But even independently of the application context, reliable prediction confidence can be used

to boost the classifier performance via such methods as self-training or ensemble classification.

In this context a better confidence score can improve the final performance of the classifier.

The derivation of a good confidence score should therefore be a part of the classifier design, as
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CHAPTER 1. INTRODUCTION

important as any other component of classifiers’ design.

In order to derive a reliable confidence score for NN classifiers, we focus our attention on the

empirical observation concerning neural networks trained for classification, which have been

shown to demonstrate in parallel useful embedding properties. Specifically, a common practice

these days is to treat one of the upstream layers of a pre-trained network as a representation (or

embedding) layer. This layer activation is then used for representing similar objects and train

simpler classifiers (such as SVM, or shallower NNs) to perform different tasks, related but not

identical to the original task the network had been trained on.

In computer vision such embeddings are commonly obtained by training a deep network on

the recognition of a very large database (typically ImageNet [10]). These embeddings have been

shown to provide better semantic representations of images (as compared to more traditional

image features) in a number of related tasks, including the classification of small datasets

[47], image annotation [12] and structured predictions [23]. Given this semantic representation,

one can compute a natural multi-class probability distribution as described in Section 3.1, by

estimating local density in the embedding space. This estimated density can be used to assign a

confidence score to each test point, using its likelihood to belong to the assigned class.

We note, however, that the commonly used embedding discussed above is associated with a

network trained for classification only, which may impede its suitability to measure confidence

reliably. In fact, when training neural networks, metric learning is often used to achieve desirable

embeddings (e.g., [22, 46, 50, 54]). Since our goal is to improve the probabilistic interpretation

of the embedding, which is essentially based on local point density estimation (or the distance

between points), we may wish to modify the loss function and add a term which penalizes

for the violation of pairwise constraints as in [18]. Our experiments show that the modified

network indeed produces a better confidence score, with comparable classification performance.

Surprisingly, while not directly designed for this purpose, we show that networks which are

trained with adversarial examples following the Adversarial Training paradigm [15, 49], also

provide a suitable embedding for the new confidence score.

Our first contribution, therefore, is a new prediction confidence score which is based on local

density estimation in the embedding space of the neural network. This score can be computed

for every network, but in order for this score to achieve superior performance, it is necessary

to slightly change the training procedure. In our second contribution we show that suitable

embedding can be achieved by either augmenting the loss function of the trained network with

a term which penalizes for distance-based similarity loss (as in Eq. (3.2) below), or by using

Adversarial Training. The importance of the latter contribution is two fold: Firstly, we are the first

to show that the density of image embeddings is improved with indirect Adversarial Training

perturbations, in addition to the improved word embedding quality shown in [36] by direct

Adversarial Training perturbations. Secondly, we show in Section 4 that Adversarial Training

improves the results while imposing a much lighter burden of hyper-parameters to tune as

2



compared to the distance-based loss.

The new confidence score is evaluated in comparison to other scores, using the following tasks:

(i) Performance in the binary classification task of identifying each class prediction as correct or

incorrect (Section 3.1). (ii) Ranking unknown points for semi-supervised self-training, in order

to improve performance of the final classifier (Section 3.4) (iii) Training an ensemble of NN

classifiers, where each classifier’s prediction is weighted by the new confidence score (Section 3.5).

(iv) Novelty detection, where confidence is used to predict whether a test point belongs to one of

the known classes from the train set (Section 3.6).

The empirical evaluation of our method is described in Section 4, using a few datasets and

different network architectures which have been used in previous work when using these specific

datasets. Our method achieves significant improvement in all 4 tasks. When compared with

two more recent methods shown to improve traditional measures of classification confidence,

MC dropout [13] and Adversarial Training [49], our method achieves better results while also

maintaining lower computational costs.

Finally, we also describe and analyze another hybrid architecture based on the use of 2

clone neural network classifiers. This contribution is most relevant in the context of ensemble

classification, where multiple networks are trained. The basic architecture is based on a pair of

identical networks trained with two related loss functions: the "regular" cross entropy loss for one

network, and a linear combination of the cross-entropy loss and a margin-based similarity loss

for the second network. The embedding obtained by the second network is used to compute the

confidence score for the final classifier. A pair of classifiers thus constructed is shown to provide

a more reliable measure of prediction confidence as compared to a single classifier. Ensembles

which are based on pairs of classifiers constructed in this manner achieve better performance

than ensembles composed of the same number of un-paired classifiers.

3
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2
RELATED WORK

In the next few pages we describe notable works which are related to the topics which are

discussed through our work.

2.1 Confidence Score for Neural Network Classifiers

The Bayesian approach learns a posterior distribution over the parameters of the neural network

and uses it to estimate prediction uncertainty, as in [32, 37]. However, Bayesian neural networks

are not always practical to implement, and the computational cost involved is typically high. This

raises the need for a solution that can improve the classifier’s confidence score and yet require

only minor modifications in the training procedure.

In accordance, [13] showed that a neural network, with dropout applied before every weight

layer, is mathematically equivalent to an approximation of the probabilistic deep Gaussian

process [9]. Using this probabilistic interpretation, the authors proposed to use dropout during

test time in a method referred below as MC-Dropout. Using this method, a cheap proxy to

Bayesian Neural Networks is achieved by running many stochastic forward passes through the

network and averaging the results, providing an improved uncertainty measure of the network’s

predictions.

Still, the most basic confidence scores for neural networks can be derived from the strength of

the most activated output unit (also called softmax input). In doing so we assume that our model

is reasonably good in approximating the real class posterior probabilities:

(2.1) D0(x)= maxk p̂(C = k|x)

Note that the network’s output, p̂(k|x), are not however true probabilities, since there is no guar-

antee that their sum be one. A probability distribution may be trivially obtained by normalizing

5



CHAPTER 2. RELATED WORK

the outputs. A more statistically meaningful score would therefore be the the normalized version

of the output layer (also called softmax output or max margin):

(2.2) D1(x)= maxk p(k̂|x)= maxk
p̂(k|x)∑m

j=1 p̂( j|x)

However, these scores are an approximation of the true probability of good classification when

the class chosen is most probably correct, but not otherwise. They do not tell us the confidence on

the choice of class. Despite its simplicity, this equation provides a confidence score which is still

one of the most commonly used today.

A confidence score that handles better a situation where there is no one class which is most

probable, is the (negative) entropy of the normalized network’s output [53]:

(2.3) D2(x)=−H(p(k̂|x))=
m∑

j=1
p( ĵ|x) log p( ĵ|x)

Where p( ĵ|x) equals to the softmax output. These scores, as well as some more complex ones

(e.g. [51]), were compared in [56], which (somewhat surprisingly) demonstrated the empirical

superiority of the two most basic methods (D1(x) and D2(x)) described above.

2.2 Adversarial Training

Adversarial examples are points of data which are "close" to the original training samples (e.g. an

image that is visually indistinguishable from the original image to humans), but are misclassified,

usually with high confidence, by the neural networks. This concept was first introduced in [49]

and later extended in [15], where authors noted that these examples could be used by a potential

attacker in order to mislead the neural network, thus creating a possible security breach [2]. [15]

suggested a brute force solution of generating adversarial examples during training and explicitly

training the model not to be fooled by each of them. This training method is therefore called

Adversarial Training and the method of generating those examples is described in Section 3.1.

In a more recent work, [29] proposed to use adversarial training in order to improve the

uncertainty measure of the entropy score of the neural network. The authors suggested that

Adversarial Training can be interpreted as a computationally efficient solution to smooth the

predictive distributions by increasing the likelihood of the target around some neighborhood of

the observed training samples. This smoothness is, in turn, contributing for both the classifier’s

robustness and its predictive uncertainty estimation.

Finally, in the context of embeddings, [36] showed that applying Adversarial Training directly

on word embeddings can improve their quality. However, this improvement comes from a direct

perturbation of the embeddings which is different from the indirect perturbation performed in

our work.

6



2.3. SELF TRAINING

2.3 Self Training

Self training is a common bootstrapping procedure which relies on the availability of a reliable

confidence score for each classification prediction (see details in Section 3.4). This method has

been used to improve the performance of classifiers, often in the context of semi-supervised

learning and was used in a wide range of application domains, from NLP to computer vision

[8, 35, 44].

In one of the most notable and early works, [55] used a classifier in an iterative way, where in

each step the training data is provided by the classifier’s predictions in the previous step. This

approach was also used successfully in semi-supervised learning with neural networks, where the

classifier is using its own predictions for training data with missing labels [30] and classification

with noisy labels [43]. Specifically, the classifier uses its own predictions to change the given

labels of the training data.

2.4 Ensemble Methods

Ensembles of models have been used to improve the overall performance of the final classifier

(see reviews in [11, 31]). There are many ways to train an ensemble, such as boosting or bagging.

In the context of this work we address the kind of ensemble which is made when using different

training parameters with a single training method.

After the ensemble of networks is trained, there are also many ways to integrate the pre-

dictions of the classifiers in the ensemble, including the average prediction or voting [4]. Some

ensemble methods use the confidence score to either weight the predictions of the different

classifiers (average weighting), or for confidence voting where the most confident networks gets

more (or even all) votes when classifying.

2.4.1 Novelty Detection

Novelty detection, where the task is to determine whether a test point belongs to a known class

label or not, is another problem which becomes more relevant with the ever increasing availability

of very large datasets, see reviews in [33, 41] and the recent work in [52]. We also note that

novelty detection is quite different from the learning of classes with no examples, as in zero shot

learning [40].

The ability to differentiate between known and unknown test samples is one of the funda-

mental requirements of a good classifier. Since classifier can never be trained on all possible

classes, the performance of the network will be poor for those classes that are under-represented

in the training set (see [34] for a review). Moreover, neural networks can make overconfident

predictions on unseen samples, even for completely unrecognizable samples [39]. This poses a

real problem for deploying neural networks in real world environments, where the classifier is

7



CHAPTER 2. RELATED WORK

usually exposed to many samples which do not belong to any of the classes seen during training.

Ideally, we would like the predictions to exhibit higher uncertainty when the test data is very

different from the training data. This difference in uncertainty can provide us with the ability to

differentiate between known and unknown samples during testing. Recently, [21] showed that

the max-margin score can be used as a good baseline for novelty detection. In our experiment

we show that our confidence score gains significantly better results on this task compared to the

proposed baseline.
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3
NEW CONFIDENCE SCORE

We describe next the new proposed confidence score. We then discuss how it can be used

to boost classification performance with self training and ensemble methods, or when

dealing with novelty detection.

3.1 New Confidence Score for Neural Network Classifiers

The main motivation behind the proposed confidence score is that, when trained properly, a

neural network creates an embedding space in which points that belong to the same class will

be close to each other. This effectively divides the training data into clusters of points from

the same class. We can now use these clusters implicitly and assume that test points that are

predicted correctly will be close or even within the cluster of training data of the same class, while

misclassified points will be between clusters or even within a cluster of an entirely different class.

Our confidence score is therefore based on the estimation of local density as induced by the

network, when points are represented using the effective embedding created by the trained

network in its penultimate layer. Local density at a point is estimated based on the Euclidean

distance in the embedded space between the point and its k nearest neighbors in the training set.

Specifically, let f (x) denote the embedding of x as defined by the trained neural network

classifier. Let A(x) = {x j
train}k

j=1 denote the set of k-nearest neighbors of x in the training set,

based on the Euclidean distance in the embedded space, and let {y j}k
j=1 denote the corresponding

class labels of the points in A(x). A probability space is constructed (as is customary) by assuming

that the likelihood that two points belong to the same class is proportional to the exponential of

the negative Euclidean distance between them. In accordance, the local probability that a point x

belongs to class c is proportional to the probability that it belongs to the same class as the subset

9



CHAPTER 3. NEW CONFIDENCE SCORE

of points in A(x) that belong to class c.

Based on this local probability, the confidence score D3(xi
test) for the assignment of point xi

test

to class c = ŷi is defined as follows:

(3.1) D3(xi
test)=

∑k
j=1,y j= ŷi e−|| f (xi

test)− f (x j
train)||2∑k

j=1 e−|| f (xi
test)− f (x j

train)||2

(3.1) returns a number between 0 to 1 such that the higher the local density of similarly labeled

train points, the higher the score is. Henceforth (3.1) is referred to as Distance score.1 We note

here that while intuitively it might be beneficial to add a scaling factor to the distance in (3.1),

such as the mean distance, we found it to have a deteriorating effect. This finding is in line with

other works (e.g. [45]) which used similar equations for similarity with no scaling.

As mentioned is Section 1, in order to achieve an effective embedding it helps to modify

somewhat the training procedure of the neural network classifier. The simplest, and most

straightforward, modification is to augment the network’s loss function during training with

an additional term. The resulting loss function is a linear combination of two terms, one for

classification denoted Lclass(X ,Y ), and another pair-wise distance based loss for the embedding

denoted Ldist(X ,Y ). This is defined as follows:

(3.2) L (X ,Y )=Lclass(X ,Y )+αLdist(X ,Y )

where

Ldist(X ,Y )= 1
P

P∑
p=1

Ldist(xp1 , xp2)(3.3)

Ldist(xi, x j)=
|| f (xi)− f (x j)||2 if yi = y j

max{0,(m−|| f (xi)− f (x j)||2)} if yi 6= y j

Ldist is defined by all pairs of points, denoted (xp1 , xp2). For each training minibatch, this set is

sampled with no replacement from the training points in the minibatch, with half as many pairs

as the size of the minibatch. In our experiments, Lclass(X ,Y ) is the regular cross entropy loss.

We note here that we also tried distance-based loss functions which do not limit the distance

between points of the same class to be exactly 0 (such as those in [22] and [50]). However, those

functions produced worse results, especially when the dataset had many classes.

Surprisingly, a desirable embedding can also be achieved by Adversarial Training, using the

fast gradient method suggested in [15]. In this method, given an input x with target y, and a

neural network with parameters θ, adversarial examples are generated using:

(3.4) x′ = x+ε sign(
h

x
Lclass(θ, x, y))

1Related measures of density, such as a simple count of the "correct" neighbors or the inverse of the distance,
behave similarly and perform comparably though slightly less well.
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3.2. ALTERNATIVE CONFIDENCE SCORES

In each step an adversarial example is generated for each point x in the batch and the current

parameters of the network, and classification loss is minimized for both the regular and adversar-

ial examples. Although originally designed to improve robustness, this method seems to improve

the network’s embedding for the purpose of density estimation, possibly because along the way

it increases the distance between pairs of adjacent points with different labels. Finally, while

this method can increase (and even double) the network’s training time, it has the advantage of

having fewer hyper parameters as compared to the distance-based loss. We note that we have

tried using the distance-based loss and adversarial training together while training the network,

but this procedure lead to a deterioration of the results.

3.2 Alternative Confidence Scores

As described in Section 2.1, given a trained network, two measure are usually used to evaluate

classification confidence:

Max margin: the maximal activation, after normalization, in the output layer of the network.

Entropy: the (negative) entropy of the activations in the output layer of the network.

As also noted in Section 2.1, the empirical study in [56] showed that these two measures are

typically as good as any other existing method for the evaluation of classification confidence.

Two recent methods have been shown to improve the reliability of the confidence score based

on Entropy: MC-Dropout [13] and Adversarial Training [15] as it was used in [29] to improve

the entropy score. In terms of computational cost, adversarial training increases (and sometimes

doubles) the training time, due to the computation of additional gradients and the addition of the

adversarial examples to the training set. MC-Dropout, on the other hand, does not change the

training time but increases the test time by orders of magnitude (typically 100-fold). Both methods

are complementary to our approach, in that they focus on modifications to the actual computation

of the network during either train or test time. After all is done, they both evaluate confidence

using the Entropy score. As we show in our experiments, adversarial training combined with our

proposed confidence score improves the final results significantly.

3.3 Our method: Comparative Computational Analysis

Unlike the two methods described above, MC-Dropout and Adversarial Training, our method

(or confidence score) takes an existing network and computes a new confidence score from the

network’s embedding and output activation. It can use any network, with or without adversarial

training or MC dropout. If the loss function of the network is suitably augmented (see discussion

above), empirical results in Section 4 show that our score always improves results over the

Entropy score of the given network.
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Train and test computational complexity: Considering the distance-based loss, [50] showed

that computing distances during the training of neural networks have negligible effect on training

time. Alternatively, when using adversarial training, additional computational cost is incurred as

mentioned above, while on the other hand fewer hyper parameters are left for tuning. During

test time, our method requires carrying over the embeddings of the training data and also the

computation of the k nearest neighbors for each sample.

Nearest neighbor classification has been studied extensively in the past 50 years, and conse-

quently there are many methods to perform either precise or approximate k-nn with reduced

time and space complexity (see [16] for a recent empirical comparison of the main methods). In

our experiments, while using either Condensed Nearest Neighbours [19] or Density Preserving

Sampling [5], we were able to reduce the memory requirements of the train set to 5% of its

original size without affecting performance. At this point the additional storage required for the

nearest neighbor step was much smaller than the size of the networks used for classification, and

the increase in space complexity became insignificant.

With regards to time complexity, recent studies have shown how modern GPU’s can be used

to speed up nearest neighbor computation by orders of magnitude [3, 14]. [25] also showed that

k-nn approximation with 99% recall can be accomplished 10-100 times faster as compared to

precise k-nn.

Combining such reductions in both space and time, we note that even for a very large

dataset, including for example 1M images embedded in a 1K dimensional space, the computation

complexity of the k nearest neighbors for each test sample requires at most 5M floating-point

operations. This is comparable and even much faster than a single forward run of this test sample

through a modern, relatively small, ResNets [20] with 2-30M parameters. Thus, our method

scales well even for very large datasets.

3.4 Self Training

In self training, a certain confidence score is used to rank all test samples in descending order,

at which point the K top ranked test samples are extracted. After adding the extracted K test

samples to the train set, and using the corresponding labels predicted by the network from

which we took the confidence score, a regular classification network is retrained from scratch. To

evaluate performance, we score the accuracy of the retrained classification network on the entire

test data, including the samples added to the train set (since their true labels remains unknown).

3.5 Ensembles of Classifiers

There are many ways to define ensembles of classifiers, and different ways to put them together.

Here we focus on ensembles which are obtained when using different training parameters with

12
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a single training method. This specifically means that we train several neural networks using

random initialization of the network parameters, along with random shuffling of the train points.

Henceforth Regular Networks will refer to networks that were trained only for classification

with the regular cross-entropy loss, Distance Networks will refer to networks that were trained

with the loss function defined in (3.2), and AT Networks will refer to networks that were trained

with adversarial examples as defined in (3.4).

Ensemble methods differ in how they weigh the predictions of different classifiers in the

ensemble. A number of options are in common use (see [31] for a recent review), and in accordance

are used for comparison in the experimental evaluation section: 1) softmax average, 2) simple

voting, 3) weighted softmax average (where each softmax vector is multiplied by its confidence

score), 4) confidence voting (where the most confident network gets n
2 votes), and 5) dictator

voting (the decision of the most confident network prevails). We evaluated methods 3−5 with

weights defined by either the Entropy score or the Distance score defined in (3.1).

3.6 Novelty Detection

Novelty detection seeks to identify points in the test set which belong to classes unseen in the

train set. To evaluate performance in this task we train a network with a known benchmark

dataset, while augmenting the test set with test points from another dataset that includes

different classes. Each confidence score is used to differentiate between known and unknown

samples. This is a binary classification task, and therefore we evaluate performance using ROC

curves.
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4
EXPERIMENTAL EVALUATION

Here we empirically evaluate the benefits of our proposed approach, comparing the

performance of the new confidence score with alternative existing scores in the 4 different

tasks described in Chapter 3.

4.1 Experimental Settings

4.1.1 Datasets

For the evaluation we used 3 data sets: CIFAR-100 [28], STL-10 [7] (32×32 version) and SVHN

[38]. In all cases, as is commonly done, the data was pre-processed using global contrast nor-

malization (GCN) and ZCA whitening [26]. No other method of data augmentation was used for

CIFAR-100 and SVHN, while for SVHN we also did not use the additional 5̃00K labeled images1.

For STL-10 we used cropping and flipping (horizontal and vertical) to check the robustness of our

method to heavy data augmentation.

4.1.2 Networks Architecture and Training Parameters

We now describe the neural networks used in the following experiments for the respective

datasets, including the hyper parameters used during training. All networks were trained using

the TensorFlow environment [1] with Exponential-Linear-Unit activations (ELU) [6] for non-

1Note that reported results denoted as "state-of-the-art" for these datasets often involve heavy augmentation.
In our study, in order to be able to do the exhaustive comparisons described below, we opted for the un-augmented
scenario as more flexible and yet informative enough for the purpose of comparison between different methods.
Therefore our numerical results should be compared to empirical studies which used similar un-augmented settings.
We specifically selected commonly used architectures that achieve good performance, close to the results of modern
ResNets, and yet flexible enough for extensive evaluations.
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linear activation. The networks were augmented with an L2 regularizer with weight decay factor

of 10−4. In all experiments we used batch size of 100.

CIFAR-100 and STL-10: for both datasets we used the network suggested in [6] with the

following architecture:

C(192,5) ⇒ P(2) ⇒ C(192,1) ⇒ C(240,3) ⇒ P(2) ⇒ C(240,1) ⇒ C(260,3) ⇒ P(2) ⇒ C(260,1) ⇒
C(280,2)⇒ P(2)⇒ C(280,1)⇒ C(300,2)⇒ P(2)⇒ C(300,1)⇒ FC(100)

C(n,k) denotes a convolution layer with n kernels of size k× k and stride 1. P(k) denotes a

max-pooling layer with window size k×k and stride 2, and FC(n) denotes a fully connected layer

with n output units. For STL-10 the last layer was replaced by FC(10). During training (only)

we applied dropout [48] before each max pooling layer (excluding the first) and after the last

convolution, with the corresponding drop probabilities of [0.1,0.2,0.3,0.4,0.5]. Note that the last

convolution layer output feature map size is 1×1, and thus, after reshaping, it can be treated as

an embedding vector of size 300.

We trained the network using Momentum optimizer [42]. For CIFAR-100 training was carried

over 80,000 steps and with the following learning rates: [steps 0-30K: 10−2, steps 30K-50K:

5∗10−3, steps 50K-65K: 5∗10−4, steps 65K-80K: 5∗10−5]. For STL-10 training was carried over

16,000 steps only using the following learning rates: [steps 0-6K: 10−2, steps 6K-10K: 5∗10−3,

steps 10K-13K: 5∗10−4, steps 13K-16K: 5∗10−5].

SVHN: for this dataset dataset we used the following architecture:

C(32,3) ⇒ C(32,3) ⇒ C(32,3) ⇒ P(2) ⇒ C(64,3) ⇒ C(64,3) ⇒ C(64,3) ⇒ P(2) ⇒ C(128,3) ⇒
C(128,3)⇒ C(128,3)⇒ P(2)⇒ C(256,3)⇒ C(256,3)⇒ P(2)⇒ FC(256)⇒ FC(10)

We trained the network using ADAM [27] optimizer for 16K steps with the following learning

rates: [steps 0-6K: 10−3, steps 6K-10K: 5∗10−4, steps 10K-16K: 5∗10−5].

Distance Loss Parameters: For the networks trained with distance loss, for each batch, we

randomly picked pairs of points so that at least 20% of the batch included pairs of points from

the same class. The margin m in (3.2) was set to 25 all cases and the parameter α in (3.2) was

set to 0.2.

Adversarial Training: we used (3.4) following [15], fixing ε= 0.1 in all the experiments.

4.1.3 Testing Parameters

Distance Score: for the distance score we observed that the number of k nearest neighbors

could be set to the maximum value, which is the number of samples in each class in the train
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Table 4.1: AUC Results of Correct Classification.

Confidence
Score

CIFAR-100
(Classifier acccuracy: 60%)

STL-10
(Classifier acccuracy: 70.5%)

SVHN
(Accuracy: 93.5%)

Reg. Dist. AT MCD Reg. Dist. AT MCD Reg. Dist. AT
Margin 0.828 0.834 0.844 0.836 0.804 0.775 0.812 0.804 0.904 0.896 0.909
Entropy 0.833 0.837 0.851 0.833 0.806 0.786 0.816 0.810 0.916 0.907 0.918
Distance 0.789 0.853 0.843 0.726 0.798 0.824 0.863 0.671 0.916 0.925 0.925

Table 4.1, legend. Leftmost column: Margin and Entropy denote the commonly used confidence scores described in
Section 3.2. Distance denotes our proposed method described in Section 3.1. Second line: Reg. denotes networks trained
with the entropy loss, Dist. denotes networks trained with the distance loss defined in (3.2), AT denotes networks
trained with adversarial training as defined in (3.4), and MCD denotes MC-Dropout when applied to networks
normally trained with the entropy loss. Since the network trained for SVHN was trained without dropout, MCD was
not applicable.

data. We also observed that smaller numbers (even k = 50) often worked as well. In accordance, k

was set to 500 (maximum value) in CIFAR-100 and STL-10 and to 50 in SVHN.

In general, the results reported below are not sensitive to the specific values of the hyper-

parameters as listed above, with only minor changes occurring when changing the values of k,α

and the margin m.

MC-Dropout: as proposed in [13], we used MC dropout in the following manner. We trained

each network as usual, but computed the predictions while using dropout during test. This was

repeated 100 times for each test example, and the average activation was delivered as output.

4.2 Error Prediction of Multi-class Labels

4.2.1 Single Network

We first compare the performance of our confidence score in the binary task of evaluating whether

the network’s predicted classification label is correct or not. While our results are independent

of the actual accuracy, we note that the accuracy is comparable to those achieved with ResNets

when not using augmentation for CIFAR-100 or when using only the regular training data for

SVHN (see [24] for example).

Performance in this binary task is evaluated using ROC curves computed separately for each

confidence score. Results on all three datasets can be seen in Table 4.1. In all cases our proposed

distance score, when computed on a suitably trained network, achieves significant improvement

over the alternative scores, even when those are enhanced by using either Adversarial Training

or MC-Dropout.

In this part we also tried two more alternative methods: De-normalized Max-Margin (2.1) and

applying the Distance score directly on the the Softmax, with or without training the network
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with the distance loss (3.2) on the Softmax layer itself. Both these methods performed poorly and

therefore will not be referenced any further.

4.2.2 Ensemble of Two Networks

To further test our distance score we evaluate performance over an ensemble of two networks.

Results are shown in Table 4.2. Here too, the distance score achieves significant improvement

over all other methods. We also note that the difference between the distance score computed

over Distance networks and the entropy score computed over adversarially trained networks, is

now much higher as compared to this difference when using only one network. As we show in

Section 4.4, adversarial training typically leads to decreased performance when using an ensemble

of networks and relying only on the entropy score (probably due to a decrease in variance among

the classifiers). This observation further supports the added value of our proposed confidence

score.

As a final note, we also used a hybrid architecture using a matched pair of one classification

network (of any kind) and a second Distance network. The embedding defined by the Distance

network is used to compute the distance score for the predictions of the first classification network.

Surprisingly, this method achieves the best results in both CIFAR-100 and SVHN while being

comparable to the best result in STL-10. This method is used later in Section 4.4 to improve

accuracy when running an ensemble of networks.

Table 4.2: AUC Results of Correct classification - Ensemble of 2 Networks.

Confidence
Score

CIFAR-100 STL-10 SVHN

Reg. Dist. AT Reg. Dist. AT Reg. Dist. AT
Max margin 0.840 0.846 0.856 0.802 0.792 0.814 0.909 0.901 0.911
Entropy 0.844 0.839 0.857 0.807 0.798 0.816 0.918 0.912 0.920
Distance (1) 0.775 0.863 0.862 0.815 0.834 0.866 0.916 0.924 0.926
Distance (2) 0.876 0.872 0.879 0.833 0.832 0.859 0.918 0.929 0.927

Table 4.2, legend. Notations are similar to those described in the legend of Table 4.1, with one distinction: Distance (1)
now denotes the regular architecture where the distance score is computed independently for each network in the pair
using its own embedding, while Distance (2) denotes the hybrid architecture where one network in the pair is fixed
to be a Distance network, and its embedding is used to compute the distance score for the prediction of the second
network in the pair.

4.3 Self-training

Next, we compare performance when using the different confidence scores for self training as

described in Section 3.4. Recall that the confidence score is used to rank the test points, where

subsequently the highest ranking points are taken with their corresponding labels, obtained from
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the the same networks which the confidence score was taken from. Next, these points are used

to augment the training set of a regular network. This means that while the ranking is done

by different networks (Distance, AT or Regular), the part of the re-training is done on the same

network.

In the graphs below, we varied the number of test points used for self-training (always taking

the top ranking points as determined by each confidence score respectively), and subsequently

evaluated accuracy over the entire test data. This procedure was repeated 5 times with different

networks, and the standard deviation of the accuracy difference in each repetition was used to

measure the statistical significance of the results. For better readability we show only the top

4 performing methods which were used for ranking: a) entropy score on a Regular network, b)

Distance score on a Distance network. c) entropy score on an AT network, d) Distance score on an

AT network.

CIFAR-100: This dataset contains 50K train samples and 10K test samples. Fig. 4.1 shows

the significant advantage of using our proposed confidence score for self training. Surprisingly,

while the distance score on the AT network is not the best in terms determining if a classification

is correct (as seen in Table 4.1), its ranking of test points produced the best results for the self

training task. This might be related to Adversarial Training giving "better" labels to misclassified

points, or having better ranking of them.

Figure 4.1: Accuracy when using self training with CIFAR 100. The X -axis denotes the number
of top ranking test points used for self training. For each method the legend states the scoring
method used for grading, and the networks which it was used on. Absolute accuracy is shown
for our scoring method and the best alternative method using line plots (corresponding to the
left Y -axis). The differences in accuracy between the two methods which uses our score and the
baseline method are shown using bar plots (right Y -axis), showing also the standard deviation of
the difference over the 5 repetitions.

Since adversarial training typically requires longer training time than using the distance loss
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(3.2), we notice that using our distance score together with a Distance network also achieves a

significant improvement over the baseline method.

In order to further evaluate the performance of self training based on our confidence score

and following [44], we computed for each self training session the average number of test points

which should have been labeled to begin with (and thus effectively be moved from the set of

test points to the set of train points), in order to achieve the same accuracy on the test dataset

(inclusive). Results of this analysis are shown in Table 4.3. Thus, in order to achieve the same

accuracy as achieved with self-training, we need to "have known" the true labels of about 800

test samples (out of 10,000).

Table 4.3: Average accuracy on CIFAR-100 test set, when using the real labels for a sub-set of the
test samples.

Number of samples 500 600 700 800 900
Accuracy (%) 61.31 61.85 62.58 63.05 63.65

STL-10: This dataset contains 5K train samples, which after augmentation becomes 30K

samples, 8K test samples, and 100K samples of unlabeled data including images that do not

belong to any of the classes in the train set. We can evaluate self-training in two scenarios: in

the non-transductive semi-supervised scenario, we rank for self-training only samples from the

unlabeled set; in the transductive semi-supervised scenario, we rank for self-training samples

from only the test set. Notice that since the number of samples added from the unlabeled dataset

is bigger compared to the original train set, we must multiply the training time by 3 in the

non-transductive scenario in order to guarantee full convergence.

Figure 4.2: Accuracy when using self training with STL-10, see caption of Fig. 4.1. Left: the
transductive semi-supervised scenario, using only samples from the test data. Right: the non
transductive semi-supervised scenario.

Results are shown in Fig. 4.2. We can see that, like the case with CIFAR-100, the distance

based-methods achieve significant improvement over baseline method. However, in the non-

transductive scenario the results of the methods based on adversarial training are significantly
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worse when increasing the number of unlabeled samples beyond a certain value. This might be

partially caused due to the lower accuracy of the AT network (68.8%) during training, compared

to the accuracy of Regular and Distance networks (70%).

SVHN: This dataset contains roughly 73K train samples and 26K test samples. Results are

shown in Fig. 4.3. Similarly to the case in the CIFAR-100 dataset the Distance score computed on

the AT network performed significantly better than all other methods, although it was worse (in

this case, much worse) in the correct classification task (see Table 4.1). We also note that even

without adversarial training, our Distance score achieves consistent (albeit small) improvement

over the baseline method.

Figure 4.3: Accuracy when using self training with SVHN, see caption of Fig. 4.1.

4.4 Ensemble Methods

In order to evaluate the improvement in performance when using our confidence score to direct

the integration of classifiers in an ensemble, we used a few common ways to define the integration

procedure, and a few ways to construct the ensemble itself. In all comparisons the number

of networks in the ensemble remained fixed at n. Our experiments included the following

ensemble compositions: (a) n regular networks, (b) n distance networks, (c) n AT (Adversarially

Trained) networks, and (d-f) n networks such that n
2 networks belong to one kind of networks

(regular, distance or AT) and the remaining n
2 networks belong to another kind, spanning all 3

combinations.

As described in Section 3.5, the predictions of classifiers in an ensemble can be integrated

using different criteria. In general we found that all the methods which did not use our distance

score (3.1), including methods which used any of the other confidence score for prediction weight-

ing, performed less well than a simple average of the softmax activation (method 1 in Section 3.5).
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Otherwise the best performance was obtained when using a weighted average (method 3 in

Section 3.5) with weights defined by our distance score (3.1). With variants (d-f) we also checked

two options of obtaining the distance score: (i) Each network defined its own confidence score; (ii)

in light of the advantage demonstrated by hybrid networks as shown in Section 4.2 and for each

pair of networks from different kinds, the distance score for both was computed while using the

embedding of only one of networks in the pair. MC-Dropout was not used in this section due to its

high computational cost.

While our experiments included all variants and all weighting options, only 4 cases are shown

in the following description of the results in order to improve readability: 1) the combination

achieving best performance; 2) the combination achieving best performance when not using

adversarial training (as AT entails additional computational load at train time); 3) the ensemble

variant achieving best performance without using the distance score (baseline), 4) ensemble

average when using adversarial training without distance score. Additional results for most of

the other conditions we tested can be found in Appendix A. Each experiment was repeated at

least 5 times, with no overlap between the networks.

CIFAR-100 and STL-10: Fig. 4.4 shows the ensemble accuracy for the methods mentioned

above when using these datasets. It can be clearly seen that weighting predictions based on

the distance score from (3.1) improves results significantly. The best results are achieved when

combining Distance Networks and Adversarial Networks, with significant improvement over an

ensemble which is composed of only one kind of networks (i.e. ensemble of Distance Networks

or AT networks only, the results of these kind of ensembles are not shown in the graph). Still,

we note importantly that the distance score is used to weight both kind of networks. Since

Adversarial Training is not always applicable due to its computational cost at train time, we

show that the combination of Distance networks and Regular networks can also lead to significant

improvement in performance when using the distance score and the hybrid architecture described

in Section 4.2. Finally we note that Adversarial networks alone achieve very poor results when

using the original ensemble average, further demonstrating the value of the distance score in

improving the performance of an ensemble of Adversarial networks alone.

SVHN: Results for this dataset are shown in Fig.4.4. While not as significant as those in the

other datasets (partly due to the high initial accuracy), they are still consistent with them,

demonstrating again the power and robustness of the distance score.

4.5 Novelty Detection

Finally, we compare the performance of the different confidence scores in the task of novelty

detection. In this task the confidence score is used to decide another binary classification problem:

does the test example belong to the set of classes the networks had been trained on, or rather
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Figure 4.4: Accuracy when using an ensemble of networks with CIFAR-100 (top left), STL-10 (top
right) and SVNH (bottom). The X -axis denotes the number of networks in the ensemble. Absolute
accuracy (marked on the left Y -axis) is shown for the 2 most successful ensemble methods among
all the methods we had evaluated (blue and yellow solid lines, see text), and 2 methods which
did not use our distance score including the best performing method in this set (red dotted line,
denoted baseline). Hybrid technique denotes that for each of the n

2 pairs of regular and distance
networks, we computed the distance score for both networks in the pair using the embeddings
of the distance network only. Differences in accuracy between the two top performers and the
top baseline method are shown using a bar plot (marked on the right Y -axis), with standard
deviation of the difference over (at least) 5 repetitions.

to some unknown class? Performance in this binary classification task is evaluated using the

corresponding ROC curve of each confidence score.

We used two contrived datasets to evaluate performance in this task, following the experi-

mental construction suggested in [29]. In the first experiment, we trained the network on the

STL-10 dataset, and then tested it on both STL-10 and SVHN test sets. In the second experiment

we switched between the datasets (and changed the trained network) making SVHN the known

dataset and STL-10 the novel one. The task requires to discriminate between the known and

the novel datasets. For comparison we computed novelty, as one often does, with a one-class

SVM classifier while using the same embeddings. Novelty thus computed showed much poorer

performance, possibly because this dataset involves many classes (one class SVM is typically

used with a single class), and therefore these results are not included here.
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Table 4.4: AUC results for novelty detection. Left: STL-10 (known) and SVHN (novel). Right:
SVHN (known) and STL-10 (novel).

Confidence
Score

STL-10/SVHN SVHN/STL-10

Reg. Dist. AT Reg. Dist. AT
Max margin 0.8078 0.849 0.86 0.9116 0.9225 0.9851
Entropy 0.8099 0.8566 0.8697 0.9171 0.9334 0.9918
Distance 0.7983 0.8701 0.901 0.9037 0.9339 0.9965

Results are shown in Table 4.4. Adversarial training, which was designed to handle this

sort of challenge, is not surprisingly the best performer. Nevertheless, we see that our proposed

confidence score improves the results even further, again demonstrating its added value.
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SUMMARY AND CONCLUSIONS

In this work we proposed a new confidence score for multi-class neural network classifiers.

The method proposed for obtaining this new score is scalable, simple to implement, and

can fit any kind of neural network. This method is different from other commonly used

methods as it is based on measuring the point density in the effective embedding space of the

network, thus providing a more coherent statistical measure for the distribution of the network’s

predictions.

We showed that the embedding of neural networks that were trained with a standard

classification loss, are not well suited for our proposed score. We therefore proposed two ways

of achieving such embeddings: the pair-wise distance loss and Adversarial training. While both

methods are not entirely new, our work is the first one to use these methods to achiev a better

confidence score using the networks’ embeddings.

We demonstrated the superiority of the new score several ways. First, we showed that

computing our proposed score is cheaper in terms of both train and test time, compared to the

improved entropy score achieved with MC-Dropout [13] and Adverserial Training [29]. Secondly,

we showed that our score of achieves superior results in 4 different tasks that require the use

of a confidence score. Specifically, our proposed confidence score achieves better results when

predicting the classifier’s prediction as correct or incorrect, when ranking test points for self-

training, when combining an ensemble of networks using a weighted average, and finally when

trying to detect unknown (novel) test samples. In all tasks we used a number of different datasets

and employed task-appropriate network architectures. We also repeated our experiment several

times in order to better establish the statistical significance of the results.

In a wider perspective, machine learning, and specifically deep learning methods become

increasingly popular. As the popularity of these methods rises the more they become a crucial
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part of the field. However, the classifier can not be simply trusted to provide reliable predictions

all the time. Moreover, classifiers failing to indicate when they are likely to be mistaken can

limit their adoption or cause serious accidents. In many fields, like medical diagnosis, security or

manufacturing, accurate predictions can be a matter of life and death. In those cases, it’s critical

to know how confident the classifier is and when an expert human intervention is required. In

this context, the more reliable the confidence score of the classifier is, the more effectively it can

be used, saving a lot of human effort and even lives.

We hope that our contribution to this area will help researchers and practitioners in all

fields make better and more clever use of their algorithms. Knowing better when not to use your

classifier means that when you use it, you can trust it more and make the best use out of it.
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ENSEMBLE METHODS VARIANTS TESTED DURING EXPERIMENTS

On the next page there is a table with all the variants we tested during the ensemble

methods experiments, along with sample results on the CIFAR-100 dataset, when using

10 networks. Notice that Hybrid Technique means that for each pair of networks from

different kinds, the distance score for both was computed while using the embedding of only one

of networks in the pair (either the Distance networks or the AT ones)
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APPENDIX A. ENSEMBLE METHODS VARIANTS TESTED DURING EXPERIMENTS

Table A.1: All the variants we tested during the ensemble methods experiments, along with a
sample of results on the CIFAR-100 dataset

Networks
used Ensemble method

Results on
CIFAR-100
10 networks

Regular Softmax Average 65.71
Regular Weighted average with entropy score 65.64
Regular Voting 65.35
Regular Confidence voting with entropy score 64.26
Regular Dictator voting with entropy score 64.67
Regular Weighted average with distance score 63.30
Regular Confidence voting with distance score 63.12
Regular Dictator voting with distance score 63.50
Distance Softmax Average 65.61
Distance Weighted average with entropy score 64.93
Distance Voting 64.53
Distance Confidence voting with entropy score 64.41
Distance Dictator voting with entropy score 65.13
Distance Weighted average with distance score 66.23
Distance Confidence voting with distance score 65.87
Distance Dictator voting with distance score 65.66
AT Softmax Average 63.18
AT Weighted average with entropy score 62.98
AT Voting 62.93
AT Confidence voting with entropy score 62.93
AT Dictator voting with entropy score 63.06
AT Weighted average with distance score 64.13
AT Confidence voting with distance score 64.21
AT Dictator voting with distance score 64.35
1/2n Distance + 1/2n Regular Softmax Average 65.62
1/2n Distance + 1/2n Regular Weighted average with entropy score 65.25
1/2n Distance + 1/2n Regular Voting 64.07
1/2n Distance + 1/2n Regular Confidence voting with entropy score 63.72
1/2n Distance + 1/2n Regular Dictator voting with entropy score 64.19
1/2n Distance + 1/2n Regular Weighted average with distance score - hybrid technique 66.37
1/2n Distance + 1/2n Regular Confidence voting with distance score - hybrid technique 65.59
1/2n Distance + 1/2n Regular Dictator voting with distance score - hybrid technique 65.16
1/2n Distance + 1/2n AT Softmax Average 66.58
1/2n Distance + 1/2n AT Weighted average with entropy score 65.39
1/2n Distance + 1/2n AT Voting 65.44
1/2n Distance + 1/2n AT Confidence voting with entropy score 65.32
1/2n Distance + 1/2n AT Dictator voting with entropy score 66.46
1/2n Distance + 1/2n AT Weighted average with distance score 67.09
1/2n Distance + 1/2n AT Confidence voting with distance score 66.04
1/2n Distance + 1/2n AT Dictator voting with distance score 65.76
1/2n Distance + 1/2n AT Weighted average with distance score - hybrid technique 66.81
1/2n Distance + 1/2n AT Confidence voting with distance score - hybrid technique 65.73
1/2n Distance + 1/2n AT Dictator voting with distance score - hybrid technique 64.96
1/2n AT + 1/2n Regular Softmax Average 64.35
1/2n AT + 1/2n Regular Weighted average with entropy score 63.75
1/2n AT + 1/2n Regular Voting 63.86
1/2n AT + 1/2n Regular Confidence voting with entropy score 63.69
1/2n AT + 1/2n Regular Dictator voting with entropy score 64.12
1/2n AT + 1/2n Regular Weighted average with distance score - hybrid technique 65.12
1/2n AT + 1/2n Regular Confidence voting with distance score - hybrid technique 65.32
1/2n AT + 1/2n Regular Dictator voting with distance score - hybrid technique 64.96
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