
Hierarchical Modeling and

Applications to Recognition Tasks

Thesis submitted for the degree of

”Doctor of Philosophy”

by

Alon Zweig

Submitted to the Senate of the Hebrew University

August / 2013

ii

This work was carried out under the supervision of:

Prof. Daphna Weinshall

To Roni & Ofri.

Acknowledgements

This thesis marks the end of a wonderful period in my life.

First and foremost I would like to thank my advisor Prof. Daphna Wein-

shall. I am grateful to have been guided by your wisdom, friendship and

support. Our discussions were priceless, your endless curiosity together

with the crisp clarity into the finest of the details were intellectually

stimulating and led me securely through my research path. I always

enjoyed our meetings.

I would also like to thank my thesis committee Professors Lihi-Zelnik

Manor and Amir Globerson for improving my work through their sug-

gestions and comments.

I enjoyed immensely studying at the Hebrew university and specifically at

the Computer Science Department where I met some of my best friends.

The people are truly great. The list is too long and I am afraid I’ll forget

somebody, so thanks everybody for great discussions, coffee breaks and

for making the travel to Jerusalem always worthwhile.

During the first years of my PhD I was part of DIRAC, an EU founded

project hosting a large group of researchers. Being part of DIRAC I

had the privilege to collaborate with Prof. Jörn Anemüller, Dr. Jörg-

Hendrik Bach, Dr. Barbara Caputo, Dagan Eshar, Avishai Hendel, Prof.

Hynek Hermansky, Dr. Roger Jie Luo, Dr. Fabian Nater, Dr. Francesco

Orabona, Prof. Tomas Pajdla and many others. To all the DIRAC

people, I benefited greatly from all our meetings and learnt a lot from

our collaborations.

To Dr. Margarita Osadchy, I always enjoyed coming to Haifa for our

deep discussions on object recognition. To Dr. Manik Varma, meeting

you in Delhi was a true intellectual experience.

To all those I forgot to mention and to all those I met in conferences,

summer schools, while organizing the vision seminar and other venues,

thanks for being a community of interesting and friendly colleagues.

To my grandmothers, Nita and late Savta Stella, thanks for your love

and always being so proud of me, it means a lot. My brother, Eytan,

after all these years meeting so many smart people you are still one of

the smartest people I know. I cherish the fact that we manage to stay

close despite the physical distance. To my parents, thanks for always

being so loving and supportive. You have always supported me in any

thing I did. It is probably the intellectual yet not pretentious home I

grew up in which encouraged my choice of a life of knowledge. Words

cannot express how lucky I feel growing up in such a warm and loving

family.

To Roni, my smart and beautiful wife, whom I met half way through

my doctoral studies. I cannot imagine how this period would have been

without you. Thanks for adding love and color to my life. Making me

laugh each day. I love you.

Abstract

In this thesis we investigate the notion of hierarchical organization of

tasks, specifically visual object class recognition tasks. As the visual

recognition field advances, we are able to consider a significantly larger

set of object classes simultaneously. The larger scale adds many chal-

lenges. Yet, exploring the relationship among tasks carries several po-

tential modeling benefits, such as speeding up search or classification

tasks, guide information sharing to improve the generalization proper-

ties of each of the individual tasks or better structure the class space to

improve discriminative modeling.

While exploiting hierarchical structures has recently become popular in

the object class recognition field, mostly these structures are considered

for speed up purposes. We consider hierarchies from a different per-

spective aiding in recognition tasks either by the notion of information

sharing or by enabling meaningful semantic labeling for unknown tasks

such as novel subclass detection.

We explore different types of hierarchies and propose a unified model for

the class membership and part membership hierarchies. In the context of

generalization analysis we define an explicit hierarchical learning struc-

ture with provable guarantees in the multi-task setting, showing that

an hierarchical information sharing approach can indeed improve gen-

eralization. We describe a general framework for novelty detection and

discuss its specific application to novel subclass detection. Finally we

consider the setting of sharing information while exploiting hierarchical

relations even when the hierarchy is not explicitly known.

The thesis covers both theoretical ideas and practical algorithms which

can scale up to very large recognition settings. Large scale object recog-

nition is a particularly motivating setting in which the number of rela-

tions among tasks is presumably large enabling a rich hierarchical model.

To validate our ideas, we provide both theoretical guarantees and many

experimental results testing the different applications we consider.

Contents

1 Introduction 1

1.1 Hierarchy in Visual Recognition . 2

1.2 Information Sharing . 4

1.2.1 Multi-Task Learning . 5

1.2.2 Knowledge-Transfer . 7

1.2.3 Theoretical Analysis . 9

1.2.4 Hierarchical Sharing . 9

1.3 Novelty Detection . 10

1.4 Overview and Outline . 11

2 Novel Subclass Detection 15

2.1 Incongruent Events Framework . 15

2.1.1 Label Hierarchy and Partial Order 16

2.1.2 Definition of Incongruent Events 18

2.1.2.1 Multiple Probabilistic Models for Each Concept . . . 18

2.1.2.2 Examples . 18

2.1.2.3 Incongruent Events 19

2.2 Algorithm . 20

2.2.1 Algorithm for Sub-Class Detection 22

2.3 Experiments . 24

3 Hierarchical Multi-Task Learning: a Cascade Approach Based on

the Notion of Task Relatedness 33

3.1 Hierarchical Multi-Task Paradigm . 35

3.1.1 Task Relatedness Background 35

3.1.2 Hierarchical Task Relatedness 36

3.1.3 Hierarchical Learning Paradigm, Cascade Approach 38

3.1.3.1 Iterative MT-ERM 38

3.1.3.2 Cascade Approach 40

3.2 Cascade Optimality . 44

3.2.1 Hierarchical Task Relatedness Properties 44

ix

CONTENTS

3.2.2 The property of Transformation-Multiplicativity 45

3.2.3 The property of Indifference 47

3.2.4 Optimality Proof . 49

3.3 Multi-Task Cascade ERM . 51

3.4 Experiment . 55

4 SIPO: Set Intersection Partial Order 61

4.1 Partial Order Representation . 62

4.1.1 Compactness Constraints . 64

4.2 Hierarchy Discovery Algorithm . 66

4.2.1 Algorithm Analysis . 70

4.3 Statistical SIPO Model . 72

4.3.1 Statistical Algorithm . 74

4.4 Experiment . 77

5 Hierarchical Regularization Cascade 79

5.1 Hierarchical Regularization Cascade for Multi Task Learning 81

5.1.1 Hierarchical Regularization . 82

5.1.2 Cascade Algorithm . 83

5.1.3 Batch Optimization . 84

5.2 Online Algorithm . 85

5.2.1 Regret Analysis . 85

5.3 Joint Learning Experiments . 89

5.3.1 Synthetic Data . 90

5.3.2 Real Data . 97

5.4 Knowledge Transfer . 102

5.4.1 Batch Method . 103

5.4.2 Online Method . 103

5.5 Knowledge-Transfer Experiments . 107

5.5.1 Synthetic Data . 108

5.5.2 Medium Size . 109

5.5.3 Large Size . 111

5.6 Summary . 112

x

CONTENTS

6 Epilogue 113

References 117

A Appendix I

A.1 Chapter 3 Appendix . I

A.1.1 Proof of lemma 6 . I

A.1.2 Indifference Sufficient Conditions Cont. II

A.1.3 Learning a Subset of Rectangle Dimensions V

A.2 Chapter 4 Appendix . VI

A.2.1 Finding Equivalence Sets . VI

A.2.2 Algorithm Analysis Continued VI

A.2.3 Run Time Analysis . X

xi

CONTENTS

xii

1

Introduction

Hierarchies are everywhere.

Consider societies where the notion of a hierarchy acts as the basis of social

organization: the caste system in India, the lower-middle-upper class in western

civilization, management hierarchy at the workplace, armies, schools etc. Hierarchies

add a structure of order, identifying specific properties, unique to different levels in

the hierarchy, such as assigning different groups of society to different levels in the

hierarchy, with different assumed capabilities, responsibilities, privileges etc.

In biological/physiological research, it has been shown that hierarchies play an

important role in perception. Various studies have shown different aspects of hier-

archal organization of object categories in humans. A well known example of such

a study of the nature of human hierarchical representation, is Rosch’s Basic-Level

theory [1]. A different study, by Kiani et al. [2], shows neurophysiological findings

of visual object hierarchy. Recently [3], a correspondence was shown between the

hierarchical structure of different scene categories and the hierarchical structure at

the perceptual processing level.

In computer science, the concept of hierarchies is a fundamental concept, which

is deeply rooted in many different areas. Hierarchies are used to organize models

such as the notion of inheritance in code design, efficient structures such as trees

for searching [4], compact representation of information such as Huffman coding [5]

etc.

In the pattern recognition field, hierarchical structures have also been used widely

to speed up processes such as nearest neighbor search using k-d trees [4], creating

efficient classifiers capturing hierarchical correlations in the data such as CART [6],

considering non-linear classifiers via several layers of processing in neural networks

etc.

Hierarchies are everywhere and are applied successfully in many applications. As

the fields of machine learning and visual object class recognition evolve, progressing

from the task of learning a specific object class, to settings where many object

1

1. INTRODUCTION

classes are considered simultaneously, new questions arise dealing with the modeling

of relations among the different object classes or individual learning tasks.

In this thesis we propose modeling these relationships via the notion of a hierar-

chy, presenting both theoretical models of hierarchies as well as practical applications

based on hierarchical structures for which we propose efficient algorithms. Our main

motivation and focus is the field of visual object class recognition, though the scope

of the methods we present is wider and applicable to more general fields of machine

learning and pattern recognition. Specifically, we apply the notion of hierarchy to

two main applications: novel subclass detection and information sharing.

The rest of the introduction is organized as follows: in 1.1 we give a general

summary of hierarchal methods in visual recognition. In 1.2 and 1.3 we present

the background and related work to the specific applications we consider: sharing

of information and novelty detection, respectively. Finally in 1.4 we present an

overview of the hierarchical methods we developed and give a short summary of each

of the four chapters in this thesis whilst stating their corresponding peer-reviewed

publications.

1.1 Hierarchy in Visual Recognition

The notion of semantic hierarchies in the visual recognition and machine learning

communities, has attracted an increasing amount of attention over the past few

years. As the field evolved from considering recognition tasks consisting of a single

object class or a small set of classes, to much larger scenarios where a system is

expected to deal with thousands or more categories, researchers in the field have

found that different types of hierarchies can be beneficial in many scenarios. This

includes: exploiting hierarchies for information sharing [7, 8, 9, 10, 11, 12] (see

Section 1.2.4), constructing an efficient search space in classification tasks [13, 14, 15,

16, 17, 18, 19], guiding the training of classifiers for a given hierarchy [9, 20, 21, 22],

fine grained/subordinate-level classification [23], learning distance matrices [24, 25]

and considering a richer semantic output label space [26].

Building hierarchies for efficient search As the amount of information grows,

with endless visual data available on the web and labeled datasets which keep grow-

2

1.1 Hierarchy in Visual Recognition

ing (e.g [27] which currently contains over 20K categories), organizing the data for

efficient access is becoming extremely important.

Consider the multi-class setting (classifying a sample into one of many classes):

traditionally this setting is approached using a group of binary classifiers in a 1-vs-1

or 1-vs-rest manner. Classification based on voting in the 1-vs-1 scheme is quadratic

in the number of classes, as all pairs of classes need to be considered. Embedding

the classifiers in a directed acyclic graph results in linear complexity in the number

of classes [28]. In the 1-vs-rest scheme, the classification is based on the max value

of all classifiers and thus, it is also linear in the number of classes. As the number

of classes grows, classification which is linear in the number of classes, might be too

slow. To address this issue, hierarchical structures are usually considered [13, 14,

15, 16, 17, 18, 19], achieving classification runtime which is sub-linear in the number

of classes. For instance, [16] speedup classification by training a classifier, based on

a supervised hierarchy known in advance, the classifier is trained using a structured

learning algorithm to guide the training according to the hierarchy structure.

Training classifiers based on data driven hierarchies is typically done in a two

stage approach: first the hierarchy is discovered and then classifiers are trained

for nodes in the hierarchy [13, 14, 15, 16, 17]. Such approaches may suffer from

reduced accuracy as the discovered hierarchal structure was not optimized for the

classification objective. [18, 19] propose training the classifiers and discovering the

hierarchy jointly, at a single learning step, thus choosing the structure which best fits

the task at hand while formalizing a clear trade-off between efficiency and accuracy.

Several different cues can be used to discover hierarchies: [13] build a hierarchy in

a top-down manner based on max-cut computed over KL-divergence between feature

distributions from different classes. Both [15] and [17] construct the hierarchy based

on the confusion matrix calculated for the different classes. [29] proposes a recursive

top-down approach splitting the classes into two at each step, based on k-means or

measures such as mean distance to the origin or size of class (when focusing on

efficiency rather then accuracy).

Originally suggested in [14] and recently adopted by [18] is the notion of relaxed

hierarchy, where clustering decisions for a subset of confusing classes is delayed to

a lower (more specific) level of the hierarchy. This flexibility eases the discovery of

separable clusters of classes, which might not be the case if a confusing class cannot

3

1. INTRODUCTION

be skipped. Both [14, 18] consider the more general DAG structure rather than

being limited to a tree.

In addition to the discriminative supervised approaches, unsupervised genera-

tive learning approaches were also considered to construct visual hierarchies [30,

31]. Both methods adopt the hierarchical LDA model [32] to the vision domain.

hLDA [32] describes a document (image) as a set of topics (visual words) chosen

along a path in a tree of topics.

Part Hierarchies Hierarchies structuring the object class space (class-membership)

are a natural choice when dealing with large setting, with many classes. Yet, a differ-

ent type of hierarchy is also popular in the visual recognition community - the part

membership hierarchy [33, 34, 35]. Such hierarchies consider specific parts which

are built out of more general parts in the hierarchy. Typically these hierarchies are

used to represent objects. In [33] the first layers of the hierarchy are built in an

unsupervised manner capturing general low level feature characteristic, on-top of

which class specific parts are trained in a supervised manner. [34] proposes rep-

resenting an image as a segmentation tree and constructing the part hierarchy by

finding shared segments among different images. In [35] a hierarchy of semantic

parts is built in two stages: first an initial hierarchy of fragments [36] is discovered

and then this hierarchy is used to find semantic equivalent fragments in all training

images.

1.2 Information Sharing

Information sharing can be a very powerful tool in various domains. Consider visual

object recognition where different categories typically share much in common: cars

and trucks can be found on the road and both classes have wheels, whilst cows and

horses have four legs and can be found in the field together, etc. Accordingly, many

different information sharing approaches have been developed [7, 8, 9, 10, 11, 12,

37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55], exploiting the

power of sharing.

Information sharing is usually considered in either the joint-learning or knowledge-

transfer settings. In the joint learning scenario we consider the multi-task and multi-

4

1.2 Information Sharing

class settings. Multi-task [38] is a setting where there are several individual tasks

which are trained jointly. For example, character recognition for different writers.

Multi-class is the case where there is only a single classification task involving several

possible labels (object classes), where the task is to assign each example a single

label. For Knowledge-Transfer [56], one typically assumes that k related models

have already been learnt, and these can be used to enhance the learning of a new

related task that may come with too few training examples.

Intuitively the more data and tasks there are, the more one can benefit from

sharing information between them. Typically, a single level of sharing is consid-

ered [40, 41, 43, 44, 47, 48, 49, 54]. However, applying such approaches to datasets

with many diverse tasks, focus the learning on shared information among all tasks,

which might miss out on some relevant information shared between a smaller group

of tasks. In many situations, the basic intuition is that it would be beneficial to

be able to share a lot of information with a few related objects, while sharing less

information with a larger set of less related objects. For example, we may encourage

modest information sharing between a wide range of recognition tasks, such as all

road vehicles and separately seek more active sharing among related objects, such as

all types of trucks. Following this, intuition hierarchical approaches to information

sharing have been proposed [7, 8, 9, 10, 11, 12], see discussion in Section 1.2.4.

1.2.1 Multi-Task Learning

In the multi-task learning setting several individual tasks are trained jointly. It

has been shown to improve the generalization performance of the individual tasks

learnt in parallel. Typically, the algorithmic and theoretical analysis of multi-task

learning, deals with a two-level structure: the group of all tasks and the level of

individual tasks. When designing a multi-task approach the main question is how

the information is shared. Popular approaches include neural networks, Bayesian

methods and manipulating a parameter’s matrix structure.

Neural Networks A natural approach to multi-task learning is to consider an

explicit structure in the form of a neural-network with shared nodes [38, 39]. Con-

sider a neural-network, trained for each of the individual tasks. Each such network

5

1. INTRODUCTION

consists of an input layer, hidden layers and an output node. By unifying neural-

networks of the individual tasks into a single neural-network with the same input

layer (assuming the tasks are defined over the same feature space), shared hidden

layers and an output layer with a single node for each of the tasks, we obtain a

multi-task learning approach. Training such a network, using the back-propagation

algorithm for instance, will cause updates originated by each of the nodes in the

output layer (each corresponding to a single task) to jointly effect the hidden layers.

Bayesian Methods Bayesian methods are typically applied to the multi-task

learning problem by considering a hierarchical Bayesian approach with 2 or more

layers. The bottom layers correspond to the individual aspects of each of the tasks

where the top layers correspond to the commonalities among the tasks and act as a

prior over the parameters of the individual tasks [42, 50]. Learning the prior is part

of the training process and is thus influenced by all tasks.

Matrix structure manipulation Another popular approach to formalize the

joint learning problem is to consider a matrix of parameters W being learnt where,

each column (or row) corresponds to the parameters of a single task. Then, by

manipulating the structure of this matrix, information can be shared. In [44] the

traditional Frobenius-norm used to regularize W, is replaced with the trace-norm.

The trace-norm regularization of W is known to be equivalent to a matrix decom-

position, W=FG where F and G are regularized using the Frobenius-norm [57].

F corresponds to the common features and the columns of G correspond to the

individual task classifiers in the shared features space.

A common approach to information sharing based on manipulating the matrix

structure, is to enforce joint feature selection [41, 49, 54]. In [41, 49] the regular-

ization term -||W||1,2 =
∑n

j=1 ||wj||2 is used. This term induces feature sparsity,

while favoring feature sharing between all tasks [41]. A different approach for joint

feature selection is taken by the ShareBoost algorithm [54], where a very small set

of features is found by a forward greedy selection approach, guided by a joint loss

function. It is shown that the resulting predictor uses few shared features (if such

a predictor exists) and that it has a small generalization error. In [47] a feature

learning approach is proposed where both a shared feature space and task specific

6

1.2 Information Sharing

weights are learnt. The shared feature space is learnt by using the ||W||1,2 regu-

larization term, where W represents the matrix of task weights (column per task),

thus encouraging the feature learning process to learn a sparse representation shared

among all tasks.

1.2.2 Knowledge-Transfer

In the knowledge-transfer setting we assume k related models have already been

learnt and these can be used to enhance the learning of a new related task. This

is a natural scenario in learning systems where we cannot assume we know or can

deal with, all learning tasks in advance. When a new task appears it might appear

with too few training examples. In such a scenario, we would like to be able to

bootstrap the learning process given our previous learnt models. The motivation

is that learning a new model should be easier, given the previously learnt models,

than learning it from scratch [58].

One of the main challenges in knowledge transfer is answering the question of

’what information to transfer?’. The typical answer can be categorized roughly into

3 categories: instance transfer, feature representation transfer or parameter transfer.

Instance Transfer In the instance transfer approach, available data (e.g. training

instances of pre trained tasks or auxiliary unlabeled samples), is used for the training

of the novel model. An exemplar based approach is presented in [48], where a new

task is trained using a sparse set of prototype samples, chosen during an earlier

learning stage. A boosting approach applying instance transfer is presented in [45],

where a sample set from a different distribution from that of the novel task, is used

in conjunction with the novel task data by using a weighting scheme, reflecting how

”good” these samples are for the novel class. In [7] we propose to share instances

by adding samples of closely related tasks to the training set of the novel task.

Feature Representation Transfer The feature representation approach uses a

learnt feature representation as the basis of information transfer to the novel task.

In [46], kernels are learnt for the known tasks and used to represent a new kernel

learnt for the novel task. A dictionary learning approach is presented in [55], where

7

1. INTRODUCTION

the novel task learns the weights of atoms in an existing dictionary. The dictionary

is a shared dictionary, learnt previously in a joint learning setting among all known

tasks.

Parameter Transfer In many scenarios one can assume that the learning problem

of the novel task is defined over the same set of parameters as the original tasks. In

such cases the learning process can benefit from parameter transfer. Such as in [52]

and [53], where both the original and novel tasks, are cast as SVM learning problems,

where the parameters defining a hyperplane are learnt. The parameters of the novel

task are constrained to be close to a weighted sum of the original tasks. In [51], shape

information is transferred between object classes. The shape model is parameterized

as a Gaussian distribution. An existing shape model is fully transfered to a novel

task by assuming that the variations within class, behave similarly for related classes

such as horse and zebra, while their mean appearance is different. Following this

assumption, only the covariance parameters of the pre-trained model are transferred

to the novel task via a weighted combination with the novel class covariance.

A crucial consideration when sharing information among tasks, is between which

tasks to share? In the knowledge-transfer literature [56] this question is usually

phrased as ’When to share?’. We would like to transfer knowledge from the most

relevant tasks and avoid tasks with negative transfer harming the learning process.

One might assume that the answer is given in advance such as in our hierarchical

combination approach [7] and in the shape transfer approach of [51]. If the relevance

of tasks is unknown a priori we would like to be able to infer it when the new task

arrives. In model parameter based transfer, this issue is typically addressed by

methods such as model weighting [52], where the pre-trained models are selected by

learning their relevant weights. While in instance transfer, individual samples are

weighted reflecting their relevance to the distribution of samples of the new task.

For example [45] proposes a boosting approach, where at each boosting round, the

weights of the auxiliary samples (unlabeled or from different tasks) is adjusted to

reflect their fit to the samples from the new task.

8

1.2 Information Sharing

1.2.3 Theoretical Analysis

Theoretical studies in this field focus on the reduction of the sample complexity of

a single task given other related tasks. [39] analyzes the potential gain under the

assumption that all tasks share a common inductive bias, reflected by a common,

near-optimal hypothesis class. [59] formulates a specific notion of task relatedness,

as a family of transformations of the sample generating distributions of the tasks.

This model enables the separation between information which is invariant under

these transformations, to information which is sensitive to these transformations,

thus the potential gain in multi-task learning lies in jointly learning the invariances.

For example, [59] shows that for certain learning tasks, e.g. when the family of

hypotheses is the set of rectangles in Rd, it is beneficial to decompose the problem

into two subproblems, first learning task invariant aspects of the problem, and then

learning the specific task aspects. Such a decomposition can be beneficial in small

sample scenarios where the original learning problem cannot be learnt given the

set of samples from the original task, but it can be learnt, provided that there are

enough samples from the related tasks to learn the tasks invariants. In addition, the

subproblem of learning only the tasks’ specific aspects should be an easier learning

problem, entailing a smaller hypothesis search space.

1.2.4 Hierarchical Sharing

Motivated by the potential gain in considering a diverse set of relations among tasks,

where one would like to share a lot of information with a few related tasks, while

sharing less information with a larger set of less related tasks, several hierarchical

approaches to information sharing have been proposed. The methods can be roughly

divided into two categories, assuming the hierarchy is known and assuming that it

is unknown and thus trying to infer it from the data.

Known hierarchy Typically, a known hierarchy can be ”borrowed” from different

domains, such as using a semantic hierarchy when learning visual content [7, 9].

In our earlier work [7] we showed that visual categories related by a hand-labeled

semantic hierarchy can share information and significantly improve the classification

results of the most specific classes in the hierarchy. Zhao et al. [9] considered a large

9

1. INTRODUCTION

scale categorization setting, where they use the structure of the WordNet semantic

hierarchy [60], to guide the grouping of a hierarchical group lasso learning approach.

Using such a semantic hierarchy has proven to be beneficial, but we cannot always

assume it is available or fits the learning domain at hand.

Unknown hierarchy Previous work investigating the sharing of information when

the hierarchy is unknown, attempted to find it explicitly by solving the difficult

problem of clustering the tasks into sharing groups [8, 10, 11, 12]. Such clustering

approaches either solve difficult problems such as the integer programing formula-

tion of [10] which cannot scale up to large datasets or approximate the solutions

by considering heuristics [8]. Two stage approaches such as the tree-guided group

lasso [12], separate the learning stage from the clustering stage by first finding the

grouping of the tasks and then learning, given the discovered groupings. Such ap-

proaches still deal with the hard problem of clustering whereas by separating the

clustering from the learning stage it is not clear if the clustering provides the best

grouping for the given learning task.

1.3 Novelty Detection

What happens when the future is not similar to the present? Machine learning

algorithms are typically trained on learning tasks reflecting the current knowledge

and available data. Natural organisms, on the other hand, especially developing

ones, such as babies, readily identify new unanticipated stimuli and situations, and

frequently generate an appropriate response.

By definition, an unexpected event is one whose probability to confront the

system is low, based on the data that has been previously observed. In line with

this observation, much of the computational work on novelty detection focuses on

the probabilistic modeling of known classes, identifying outliers of these distributions

as novel events (see e.g. [61, 62] for detailed surveys).

Previous work may estimate a spherically shaped boundary around a single class

data set [63], learn a hyper-plane which separates the class data set from the rest of

the feature space (one class SVM) [64], or utilize the non parametric Parzen-window

density estimation approach [65]. A few methods use a multi-class discriminative

10

1.4 Overview and Outline

approach, as for example for the detection of novel objects in videos [66] and for

the specific task of face verification [67]. To our knowledge, all novelty detection

approaches, which do not rely on samples of outliers or otherwise model the outliers

distribution, detect novelty by rejecting normality (i.e., novelty is detected when all

classifiers of known objects fail to accept a new sample).

In the context of object class recognition, a novel event can be a sample from a

novel subclass. For example, when a sample of a collie dog is presented to a system

which is trained to detect only poodles and German shepherds. In such a case,

we would like to be able to classify the sample as belonging to a novel object class,

unknown to the system. Such a response carries much more semantics than a simple

rejection, enabling the system to adapt appropriately and start learning the novel

class. Existing rejection based novelty detection approaches do not naturally handle

this case.

1.4 Overview and Outline

When considering a hierarchical approach, the first important question we need to

answer is: ’What is the ’correct’ hierarchy?’. We address this question by considering

both the setting where we can assume the hierarchy is known, (Chapter 2 and

Chapter 3) as well as the setting where it is unknown prior to the learning stage

(Chapter 4 and Chapter 5). To deal with the case where the hierarchy is unknown

we take two different approaches: an explicit and an implicit approach, Chapter 4

and Chapter 5 respectively. In the explicit approach we discover the hierarchy from

the data, whereas in the implicit approach we are able to exploit the hierarchical

relations among tasks without having to find the hierarchy explicitly.

Our hierarchical methods are applied to the novel subclass detection and infor-

mation sharing applications:

Novel Subclass Detection In comparison with existing work on novelty detec-

tion, an important characteristic of our approach, presented in Chapter 2, is that we

look for a level of description where the novel event is sufficiently probable. Rather

than simply respond to an event which is rejected by all classifiers, which often re-

quires no special attention (as in pure noise), we construct and exploit a hierarchy

11

1. INTRODUCTION

of representations. We attend to those events which are recognized (or accepted)

at some more abstract levels of description in the hierarchy, while being rejected by

the classifiers at the more specific (concrete) levels.

Information Sharing When considering large scale recognition tasks where many

objects exist, we can no longer assume that all tasks share the same relations. We

would like to be able to capture the diversity of relations among the tasks, thus

exploiting the potential of shared information in the data to its maximum. Following

this motivation, we take a hierarchical approach, where we seek to share a small

amount of information between a large group of tasks, while sharing a large amount

of information with a small groups of tasks. We developed hierarchical information

sharing algorithms dealing with the joint learning (multi-task/class) and knowledge-

transfer settings. Our work focuses both on a theoretical analysis seeking a better

understanding of under what conditions hierarchical sharing can be beneficial, as

well as designing practical algorithms which can scale up to large scale recognition

settings.

Our two approaches to hierarchical sharing are presented in Chapters 3 and 5.

In the first algorithm, chapter 3, we assume the hierarchy is known and is based

on a cascade of learning problems, where the joint learning is applied based on an

explicit grouping of tasks, defining new tasks which correspond to the hierarchical

organization of tasks. We define a hierarchical multi-task learning framework and

provide generalization bounds.

Our second algorithm, presented in chapter 5, encourages hierarchical sharing

in an implicit manner when the hierarchy is unknown; it is efficient and is designed

to scale up to large scale settings. We formalize the joint learning problem using a

matrix of parameters, where each column corresponds to the set of parameters of

a single task. Instead of enforcing an explicit structure over this matrix we enforce

implicitly hierarchical sharing by utilizing a cascade of sparsity regularization terms.

We thereby avoid the hard problem of clustering in the existing hierarchal approaches

to information sharing [8, 10, 11, 12]. This method is also extended to the knowledge-

transfer setting, based on the structure of shared information discovered during the

joint learning phase. Two knowledge-transfer algorithms are proposed. First we

consider a parameter transfer approach where the novel task is regularized to share

12

1.4 Overview and Outline

parameters with the original task. In the second algorithm we apply a feature

representation transfer, where we learn a dimensionality reduction guided by the

parameters, learnt using our regularization cascade for training the original tasks,

jointly.

Both our approaches are based on a cascade of learning problems, which are

inherently different. Our explicit approach in Chapter 3 is based on a cascade of

loss functions while our implicit approach in Chapter 5 is based on a cascade

characterized by the regularization term.

In the following we give a short description of each of the chapters in this thesis:

Chapter 2 We present our approach to novel subclass detection, where we are

able to classify a sample as belonging to a novel object class, unknown during the

training phase. Our method is based on a hierarchical organization of the object

classes which is known during the training phase. We present the incongruence

detection framework which declares novelty, by first looking for an accepting level

in the hierarchy, unlike common approaches to novelty, which declare novelty based

on rejection by all known models.

Publication: Daphna Weinshall, Alon Zweig, Hynek Hermansky, Stefan Kom-

brink, Frank W. Ohl, Jeorn Anemeuller,Jeorg-Hendrik Bach, Luc Van Gool, Fabian

Nater, Tomas Pajdla, Michal Havlena and Misha Pavel. Beyond Novelty Detec-

tion: Incongruent Events, when General and Specific Classifiers Disagree.

IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI), 34(10):1886-

1901, Oct 2012

Chapter 3 We propose a general framework for a full hierarchical multi-task set-

ting. We define an explicit notion of hierarchical tasks’ relatedness, where at each

level we assume that some aspects of the learning problem are shared. We suggest

a cascade approach, where at each level of the hierarchy, a learner learns jointly

the uniquely shared aspects of the tasks by finding a single shared hypothesis. This

shared hypothesis is used to bootstrap the preceding level in the hierarchy, forming a

hypothesis search space. We analyze sufficient conditions for our approach to reach

optimality and provide generalization guarantees, in an empirical risk minimization

setting.

13

1. INTRODUCTION

Publication: Alon Zweig and Daphna Weinshall. Hierarchical Multi-Task

Learning: a Cascade Approach Based on the Notion of Task Related-

ness. Theoretically Grounded Transfer Learning workshop, held at International

Conference on Machine Learning (ICML), June 2013

Chapter 4 Unlike chapters 2 and 3 where we assume the hierarchy is known, in

this chapter we present a general hierarchical model of tasks and an algorithm to

infer it from data. The model captures both part-membership (conjunctive) and

class-membership (disjunctive) hierarchies. We provide an algorithm for discovering

hierarchical structure in data. We start by assuming a binary set representation of

concepts (tasks). Each task is represented by a unique set of properties. Then, we

extend the model to a statistical setting.

Chapter 5 We present a hierarchical approach for information sharing among dif-

ferent classification tasks, in multi-task, multi-class and knowledge-transfer settings.

We propose a top-down iterative method, which begins by posing an optimization

problem with an incentive for large scale sharing, among all classes. This incentive

to share is gradually decreased, until there is no sharing and all tasks are considered

separately. The method therefore exploits different levels of sharing within a given

group of related tasks, without having to make hard decisions about the grouping

of tasks.

In order to deal with large scale problems, with many tasks and many classes,

we extend our batch approach to online setting and provide regret analysis of the

algorithm. Based on the structure of shared information discovered in the joint

learning settings, we propose two different knowledge-transfer methods for learning

novel tasks. The methods are designed to work within the very challenging large

scale settings. We tested our methods extensively on synthetic and real datasets,

showing significant improvement over baseline and state-of-the-art methods.

Publication: Alon Zweig and Daphna Weinshall. Hierarchical Regularization

Cascade for Joint Learning. In Proceedings of 30th International Conference on

Machine Learning (ICML), Atlanta GA, June 2013

14

2

Novel Subclass Detection

Say we are an American dog expert who can identify any American dog breed

instantly from a distance, such as the American Bulldog or Boston Terrier, but we

never saw the Australian Shepherd. How shall we react when we encounter the

Australian Shepherd for the first time? shall we run away hoping to avoid its claws?

cover our nose to avoid the stink? A typical curios human dog lover, will detect the

Australian shepherd as a dog, and react accordingly, such as asking the owner if the

dog can be pet. In case of a novel event we would like to be able to fit our response

as close as possible to the phenomena we encounter, avoiding claws or stink are not

normal reactions to dogs.

In this chapter we are motivated by the task of detecting a novel subclass as

such. Thus, enabling the system to react appropriately. This task is a specific

type of novelty detection. For which the traditional approach to declare novelty is

rejection of what is known [61, 62]. Rejection alone does not carry enough semantics

and will not enable a dog expert to respond appropriately in case of an encounter

with a new dog (see discussion in 1.3).

We view the subclass detection problem from the hierarchical point and formulate

a two stage approach, where we first look for a semantic level which accepts and

only then look for a rejection. For this we formulate the problem using the general

incongruent events framework we presented in [68].

The rest of this chapter is organized as follows. In Section 2.1 we introduce the

incongruent events framework. In section 2.2 we introduce the specific algorithm

for the novel subclass detection task and in section 2.3 we describe an experiment

showing promising results on two different data sets.

2.1 Incongruent Events Framework

We now define the concept of incongruent events as induced by a classification

process that can, in general, correspond to partial order on sets of event classes. This

15

2. NOVEL SUBCLASS DETECTION

partial order, represented by a directed graph (DAG) that captures subset-superset

relations among sets (as in algebra of sets) can also be interpreted in terms of two

category-forming operations: conjunctive and disjunctive hierarchies as described

in Section 2.1.1. We provide a unified definition in Section 2.1.2, and analyze its

implication for the two cases.

2.1.1 Label Hierarchy and Partial Order

The set of labels (or concepts) represents the knowledge base about the stimuli

domain, which is either given (by a teacher) or learnt. In cognitive systems such

knowledge is hardly ever a set; often, in fact, labels are given (or can be thought of)

as a hierarchy.

In general, a hierarchy can be represented by a directed graph, where each label

(a set of objects) corresponds to a single node in the graph. A directed edge exists

from label (specific child concept) a to (general parent concept) b, iff a corresponds

to a smaller set of events or objects in the world, which is contained in the set of

events or objects corresponding to label b, i.e., a ⊂ b. In this way the edges represent

a partial order defined over the set of labels or concepts.

Because the graph is directed, it defines for each concept a two distinct sets of

concepts (parent-child) related to it: disjunctive concepts which are smaller (subsets)

according to the partial order, i.e. they are linked to node a by incoming edges

converging on a; and conjunctive concepts which are larger (supersets) according to

the partial order, i.e. they are linked to node a by outgoing edges diverging from

a. If the DAG of partial order is a tree, only one of these sets is non trivial (larger

than 1).

We consider two possible tree-like hierarchies, which correspond to two interest-

ing intuitive cases:

Conjunctive Hierarchy. Modeling part membership, as in biological taxon-

omy or speech. For example, eyes, ears, and nose combine to form a head; head,

legs and tail combine to form a dog (see left panel of Fig. 2.1); and sequences of

phonemes constitute words and utterances. In this case, each node has a single child

and possibly many parents.

Disjunctive Hierarchy. Modeling class membership, as in human categoriza-

16

2.1 Incongruent Events Framework

tion – where objects can be classified at different levels of generality, from sub-

ordinate categories (most specific level), to basic level (intermediate level), to super-

ordinate categories (most general level). For example, a Beagle (sub-ordinate cat-

egory) is also a dog (basic level category), and it is also an animal (super-ordinate

category), see right panel of Fig. 2.1. In this case, each node has a single parent and

possibly many children.

Figure 2.1: Examples. Left: Conjunctive hierarchy, the concept of a dog requires the
conjunction of parts, including head, legs and tail. Right: Disjunctive hierarchy, the concept
of a dog is defined as the disjunction of more specific concepts, including Afghan, Beagle and
Collie.

The sets of disjunctive and conjunctive concepts induce constraints on the ob-

served features in different ways. Accordingly, the set of objects corresponding to a

given label (node) is included in the intersection of the objects in its set of conjunc-

tive concepts. Thus in the example shown in the left panel of Fig. 2.1, the concept of

Dog requires the conjunction of parts as in DOG ⊆ LEGS ∩HEAD ∩TAIL. To the

contrary, the set of objects corresponding to a given label (node) contains the union

of objects in its set of disjunctive concepts. In the example shown in the right panel

of Fig. 2.1, the class of dogs requires the disjunction of the individual members as

in DOG ⊇ AFGHAN ∪ BEAGEL ∪ COLLIE .

17

2. NOVEL SUBCLASS DETECTION

2.1.2 Definition of Incongruent Events

2.1.2.1 Multiple Probabilistic Models for Each Concept

For each node a, define As = {b ∈ G, b � a} - the set of disjunctive concepts,

corresponding to all nodes more specific (smaller) than a in accordance with the

given partial order. Similarly, define Ag = {b ∈ G, a � b} - the set of conjunctive

concepts, corresponding to all nodes more general (larger) than a in accordance with

the given partial order.

For each node a and training data T, we hypothesize 3 probabilistic models which

are derived from T in different ways, in order to determine whether a new data point

X can be described by concept a:

• Qa(X): a probabilistic model of class a, derived from training data T uncon-

strained by the partial order relations in the graph.

• Qs
a(X): a probabilistic model of class a which is based on the probability of

concepts in As, assuming their independence of each other. Typically, the

model incorporates a simple disjunctive relation between concepts in As.

• Qg
a(X): a probabilistic model of class a which is based on the probability of

concepts in Ag, assuming their independence of each other. Here the model

typically incorporates a simple conjunctive relation between concepts in Ag.

2.1.2.2 Examples

To illustrate, consider again the simple examples shown in Fig. 2.1, where our con-

cept of interest a is Dog.

In the Conjunctive hierarchy (left panel), |Ag| = 3 (Head, Legs, Tail) while

|As| = 1. We derive two different models for the class Dog:

1. QDog - obtained using training pictures of dogs and not dogs without body part

labels.

2. Qg
Dog - obtained using the outcome of models for Head, Legs and Tail, which

have been derived from the same training set T with body part labels only. If

18

2.1 Incongruent Events Framework

we further assume that concept a is the conjunction of its part member con-

cepts as defined above, and assuming that these part concepts are independent

of each other, we get

Qg
Dog =

∏
b∈Ag

Qb = QHead ·QLegs ·QTail (2.1)

In the disjunctive hierarchy (right panel), |As| = 3 (Afghan, Beagle, Collie) while

|Ag| = 1. We therefore derive two models for the class Dog:

1. QDog - obtained using training pictures of dogs and not dogs without breed

labels.

2. Qs
Dog - obtained using the outcome of models for Afghan, Beagle and Collie,

which have been derived from the same training set T with dog breed labels

only. If we further assume that class a is the disjunction of its sub-classes as

defined above, and once again assume that these sub-classes are independent

of each other, we get

Qs
Dog =

∑
b∈As

Qb = QAfghan +QBeagle +QCollie

2.1.2.3 Incongruent Events

In general, we expect the different models to provide roughly the same probabilistic

estimate for the presence of concept a in data X. A mismatch between the pre-

dictions of the different models may indicate that something new and interesting is

being observed, unpredicted by the existing knowledge of the system. In particular,

we are interested in the following discrepancy:

Definition: Observation X is incongruent if there exists a concept ′a′ such that

Qg
a(X)� Qa(X) or Qa(X)� Qs

a(X). (2.2)

In other words, observation X is incongruent if a discrepancy exists between the

inference of two classifiers, where the more general classifier is much more confident

in the existence of the object than the more specific classifier.

19

2. NOVEL SUBCLASS DETECTION

Classifiers come in different forms: they may accept or reject, they may generate

a (possibly probabilistic) hypothesis, or they may choose an action. For binary clas-

sifiers that either accept or reject, the definition above implies one of two mutually

exclusive cases: either the classifier based on the more general descriptions from

level g accepts X while the direct classier rejects it, or the direct classifier accepts

X while the classifier based on the more specific descriptions from level s rejects

it. In either case, the concept receives high probability at some more general level

(according to the partial order), but much lower probability when relying only on

some more specific level.

2.2 Algorithm

We now adopt the framework described above to the problem of novel class detection,

when given a Disjunctive Hierarchy. We assume a rich hierarchy, with non trivial

(i.e. of size larger than 1) sets of disjunctive concepts, see right panel of Fig. 2.1.

This assumption enables the use of discriminative classifiers.

As discussed in Section 2.1.2 and specifically in the second example there, in

a disjunctive hierarchy we have two classifiers for each label or concept: the more

general classifier Qconcept, and the specific disjunctive classifier Qs
concept. The assumed

classification scenario is multi-class, where several classes are already known.

In order to identify novel classes, our algorithm detects a discrepancy between

Qconcept and Qs
concept. The classifier Qconcept is trained in the usual way using all the

examples of the object, while the specific classifier Qs
concept is trained to discrimi-

natively distinguish between the concepts in the set of disjunctive concepts of the

object.

Algorithm 1 is formally described in the box below.

We tested the algorithm experimentally on two visual recognition datasets. We

found that discriminative methods, which capture distinctions between the related

known sub-classes, perform significantly better than generative methods. We demon-

strate in our experiments the importance of modeling the hierarchical relations

tightly. Finally, we compare the performance of the proposed approach to results

obtained from novelty detection based on one-class SVM outlier detection.

20

2.2 Algorithm

Algorithm 1 Unknown Class Identification
Input :

x test image

Cg general level classifier

Cj specific level classifiers, j = 1..|known sub-classes|

V c
Ci

average certainty of train or validation examples classified correctly as Ci

V w
Ci

average certainty of train or validation examples classified wrongly as Ci (zero if there
are none).

1. Classify x using Cg

2. if accept

Classify x using all Cj classifiers and obtain a set of certainty values VCj
(x)

Let i = arg max
j

VCj
(x)

Define S(x) = (VCi
(x)− V w

Ci
)/(V c

Ci
− V w

Ci
)

(a) if S(x) > 0.5

label x as belonging to a known class

(b) else label x as belonging to a novel (unknown) class

3. else label x as a background image

Basic Object Class Classifiers To verify the generality of our approach, we

tested it using two different embedded object class representation methods. For

conciseness we only describe results with method [69]; the results with method [70]

are comparable but slightly inferior, presumably due to the generative nature of the

method and the fact that it does not use negative examples when training classifiers.

The object recognition algorithm of [69] learns a generative relational part-based

object model, modeling appearance, location and scale. Location and scale are

described relative to some object location and scale, as captured by a star-like

Bayesian network. The model’s parameters are discriminatively optimized (given

21

2. NOVEL SUBCLASS DETECTION

negative examples during the training phase) using an extended boosting process.

Based on this model and some simplifying assumptions, the likelihood ratio test

function is approximated (using the MAP interpretation of the model) by

F (x) = max
C

P∑
k=1

max
u∈Q(x)

log p(u|C, θk)− ν (2.3)

with P parts, threshold ν, C denoting the object’s location and scale, and Q(x) the

set of extracted image features.

General Category Level Classifier In order to learn the general classifierQconcept,

we consider all the examples from the given sub-classes as the positive set of train-

ing examples. For negative examples we use either clutter or different unrelated

objects (none of which is from the known siblings). As we shall see in Section 2.3,

this general classifier demonstrates high acceptance rates when tested on the novel

sub-classes.

Specific Category Level Classifier The problem of learning the specific clas-

sifier Qs
concept is reduced to the standard novelty detection task of deciding whether

a new sample belongs to any of the known classes or not. However, the situation

is somewhat unique and we take advantage of this: while there are multiple known

classes, their number is bounded by the degree of the graph of partial orders (they

must all be sub-classes of a single abstract object). This suggests that a discrimi-

native approach could be effective. The algorithm is formally described in the next

section.

2.2.1 Algorithm for Sub-Class Detection

The discriminative training procedure of the specific level classifier is summarized

in Algorithm 2 with details subsequently provided.

Step 1, Discriminative Multi-Class Classification The specific level object

model learnt for each known class is optimized to separate the class from its siblings.

A new sample x is classified according to the most likely classification (max decision)

22

2.2 Algorithm

Algorithm 2 Train Known vs. Unknown Specific Class Classier

1. For each specific class, build a discriminative classifier with:
positive examples: all images from the specific class
negative examples: images from all sibling classes

2. Compute the Normalized Certainty function, and choose classification thresh-
old for novel classes.

3. Accept iff the normalized certainty is larger than the fixed threshold.

Ci. The output of the learnt classifier (2.3) provides an estimate for the measure of

classification certainty VCi
(x).

Step 2, Normalized Certainty Score Given VCi
(x), we seek a more sensitive

measure of certainty as to whether or not the classified examples belong to the

group of known sub-classes. To this end, we define a normalized score function,

which normalizes the certainty estimate VCi
(x) relative to the certainty estimates

of correct classification and wrong classification for the specific-class classifier, as

measured during training or validation.

Specifically, let V c
Ci

denote the average certainty of train or validation examples

classified correctly as Ci, and let V w
Ci

denote the average certainty of train or valida-

tion examples from all other sub-classes classified wrongly as belonging to class Ci.

The normalized score S(x) of x is calculated as follows:

S(x) =
(VCi

(x)− V w
Ci

)

(V c
Ci
− V w

Ci
)

(2.4)

If the classes can be well separated during training, that is V c
Ci
>> V w

Ci
and both

groups have low variance, the normalized score provides a reliable certainty measure

for the multi-class classification.

Step 3, Choosing a threshold Unlike the typical learning scenario, where pos-

itive (and sometimes negative) examples are given during training, in the case of

novelty detection no actual positive examples are known during training (since by

23

2. NOVEL SUBCLASS DETECTION

definition novel objects have never been observed before). Thus it becomes advanta-

geous to set more conservative limits on the learnt classifiers, more so than indicated

by the training set. Specifically, we set the threshold of the normalized certainty

measure, which lies in the range [0..1], to 0.5.

2.3 Experiments

Datasets We used two different hierarchies in our experiments. In the first hier-

archy, the general parent category level is the ’Motorbikes’, see Fig. 2.2. 22 object

classes, taken from [71], were added, in order to serve together with the original

data set as a joint pool of object classes from which the unseen-objects are sam-

pled. 22 object classes. In the second hierarchy, the general parent category level

is the ’Face’ level, while the more specific offspring levels are faces of six different

individuals, see Fig. 2.3.

Sport Road Cross Clutter
Motor Motor Motor

Figure 2.2: Examples from the object classes and clutter images, used to train and test
the different Category level models of the ’Motorbikes’ hierarchy. The more specific offspring
levels are: ’Sport-Motorbikes’, ’Road-Motorbikes’ and ’Cross-Motorbikes’. These images are
taken from the Caltech-256 [71] dataset. Clutter images are used as negative examples.

Method All experiments were repeated at least 25 times with different random

sampling of test and train examples. We used 39 images for the training of each

specific level class in the ’Motorbikes’ hierarchy, and 15 images in the ’Faces’ hier-

archy. For each dataset with n classes, n conditions are simulated, leaving each of

the classes out as the unknown (novel) class.

Basic Results Fig. 2.4 shows classification rates for the different types of test

examples: Known - new examples from all known classes during the training phase;

24

2.3 Experiments

KA KL KR MK

NA TM Other Other
Objects Objects

Figure 2.3: Examples from the object classes in the ’Faces’ hierarchy, taken from [72]. A
mixture of general object images were used as negative examples.

Unknown - examples from the unknown (novel) class which belong to the same Gen-

eral level as the Known classes but have been left out during training; Background

- examples not belonging to the general level which were used as negative examples

during the General level classifier training phase; and Unseen - examples of objects

from classes not seen during the training phase, neither as positive nor as negative

examples. The three possible types of classification are: Known - examples classified

as belonging to one of the known classes; Unknown - examples classified as belong-

ing to the unknown class; and Background - examples rejected by the General level

classifier.

The results in Fig. 2.4 show the desired effects: each set of examples - Known,

Unknown and Background, has the highest rate of correct classification in its own

category. As desired, we also see similar recognition rates (or high acceptance rates)

of the Known and Unknown classes by the general level classifier, indicating that

both are regarded as similarly belonging to the same general level. Finally, examples

from the Unseen set are rejected correctly by the general level classifier.

Discriminative Specific Classifiers Improve Performance We checked the

importance of using a discriminative approach by comparing our approach for build-

25

2. NOVEL SUBCLASS DETECTION

Figure 2.4: Classification ratios for 4 groups of samples: Known Classes, Unknown Class,
Background and sample of unseen classes. Bars corresponding to the three possible classifica-
tion rates are shown: left bar (blue) shows the known classification rate, middle bar (green)
shows the unknown classification rate, and right bar (red) shows the background classification
rate (rejection by the general level classifier). The left column plots correspond to the Motor-
bikes general level class, where the Cross (top), Sport (middle) and Road Motorbikes (bottom)
classes are each left out as the unknown class. The right column plots are representative plots
of the Faces general level class, where KA (top), KL (middle) and KR (bottom) are each left
out as the unknown class.

ing discriminative specific-level classifiers to non-discriminative approaches. Note

that the general level classifier remains the same throughout.

We varied the amount of discriminative information used when building the

specific level classifiers, by choosing different sets of examples as the negative training

set: 1) 1vsSiblings - Exploiting knowledge of sibling relations; the most discriminative

variant, where all train examples of the known sibling classes are used as the negative

set when training each specific known class classifier. 2) 1vsBck - No knowledge of

siblings relations; a less discriminative variant, where the negative set of examples

is similar to the one used when training the general level classifier.

Results are given in Fig. 2.5, showing that discriminative training with the

sibling classes as negative examples significantly enhances performance.

26

2.3 Experiments

Figure 2.5: ROC curves showing True-Unknown classification rate on the vertical axis vs.
False-Unknown Classification rate on the horizontal axis. We only plot examples accepted
by the General level classifier. 1vsSiblings denotes the most discriminative training protocol,
where specific class object models are learnt using the known siblings as the negative set.
1vsBck denotes the less discriminative training protocol where the set of negative examples
is the same as in the training of the General level classifier. Random Hierarchy denotes the
case where the hierarchy was built randomly, as described in the text. The top row plots
correspond to the Motorbikes general level class, where the Cross (left) and Sport Motorbikes
(right) classes are each left out as the unknown class. The bottom row plots are representative
plots of the Faces general level class, where KA (left) and KL (right) are each left out as the
unknown class. We only show two representative cases for each dataset, as the remaining cases
look very similar.

Novel Class Detector is Specific To test the validity of our novel class detec-

tion algorithm, we checked two challenging sets if images which have the potential

for false mis-classification as novel sub-class: (i) low quality images, or (ii) totally

unrelated novel classes (unseen in Fig. 2.4). For the second case, Fig. 2.4 shows that

by far most unseen examples are correctly rejected by the general level classifier.

To test the recognition of low quality images, we took images of objects from

known classes and added increasing amounts of Gaussian white noise to the images.

With this manipulation, background images continued to be correctly rejected by

the general level classifier as in Fig. 2.4, while the fraction of known objects correctly

classified decreased as we increased the noise.

27

2. NOVEL SUBCLASS DETECTION

In Fig. 2.6 we further examine the pattern of change in the misclassification

of samples from the known class with increasing levels of noise - whether a larger

fraction is misclassified as an unknown object class or as background. Specifically,

we show the ratio (FU-FB)/(FU+FB), where FU denotes false classification as un-

known class, and FB denotes false classification as background. The higher this

ratio is, the higher is the ratio of unknown class misclassifications to background

misclassifications. An increase in the false identification of low quality noisy images

as the unknown class should correspond to an increase in this expression as the noise

increases. In fact, in Fig. 2.6 we see the opposite - this expressions decreases with

noise. Thus, at least as it concerns low quality images due to Gaussian noise, our

model does not identify these images as coming from novel classes.

Figure 2.6: This figure shows the effect of noise on the rate of false classification of samples
from known classes. Each bar shows the average over all experiments of (FU-FB)/(FU+FB).
Results are shown for both the Motorbikes and Faces datasets, and each group of bars shows
results for a different class left out as the unknown. In each group of bars, the bars correspond
to increasing levels of noise, from the left-most bar with no noise to the fifth right-most bar
with the most noise.

How Veridical Should the Hierarchy be In order to explore the significance

of the hierarchy we run Algorithm 1 using different hierarchies imposed on the

same set of classes, where the different hierarchies are less faithful to the actual

28

2.3 Experiments

similarity between classes in the training set. The least reliable should be the random

hierarchy, obtained by assigning classes together in a random fashion. We expect

to see reduced benefit to our method as the hierarchy becomes less representative

of similarity relations in the data. At the same time, if our method maintains any

benefit with these sloppy hierarchies, it will testify to the robustness of the overall

approach.

We therefore compared the verdical hierarchy used above to the random hierar-

chy, obtained by randomly putting classes together regardless of their visual similar-

ity. As expected, our comparisons show a clear advantage to the verdical hierarchy.

In order to gain insight into the causes of the decrease in performance, we analyzed

separately the general and specific level classifiers. The comparison of acceptance

rate by the general level classifier using the veridical hierarchy vs. random hierarchy

is shown in Fig. 2.7. For examples that were accepted by the general level classifier,

correct unknown classification vs. false unknown classification is shown in Fig. 2.5,

for both the veridical and random hierarchy.

Results are clearly better in every aspect when using the veridical hierarchy.

The performance of the learnt general level classifier is clearly better (Fig. 2.7). The

distinction between known classes and the unknown class by the specific classifier

is improved (Fig. 2.5). We actually see that when using a discriminative approach

based on the random hierarchy, the accuracy of this distinction decreases to the level

of the non discriminative approach with the veridical hierarchy. Combining both

the general level classifier and the specific level classifier, clearly Algorithm 1 for the

identification of unknown classes performs signnificantly better with the veridical

hierarchy.

Comparison to alternative methods Novelty detection is often achieved with

single class classifiers. In the experiments above we used 1vsBck classifiers as proxy

to single class classifiers, and compared their performance to our approach in Fig. 2.5.

In order to compare our approach to some standard novelty detection method, we

chose the one class SVM [64]. Note that this is only a partial comparison, since

one class SVM (like any novelty detection method which is based on rejecting the

known) does not provide the distinction between novel object class and background,

as we do.

29

2. NOVEL SUBCLASS DETECTION

Figure 2.7: General level classifier acceptance rates, comparing the use of the verdical and
random hierarchies. Six bars show, from left to right respectively: verdical hierarchy known
classes (’Known’), random hierarchy known classes (’Rnd-Known’), verdical hierarchy un-
known class (’Unknown’), random hierarchy unknown class (’Rnd-Unknown’), verdical hierar-
chy background (’Background’), random hierarchy background (’Rnd-Background’). Results
are shown for the cases where the Cross-Motorbikes, Sport-Motorbikes or Road-Motorbikes
are left out as the unknown class, from left to right respectively.

For technical reasons, in order to conduct this comparison we need to create a

single vector representation for each instance in our dataset. To achieve this goal

we followed the scheme presented in [23], describing each image by a single vector

whose components are defined by the object class model of the general level class.

Given this image representation we modified our algorithm and replaced the specific

level classifier with a binary SVM classifier, basing the final decision on a voting

scheme.

We conducted this experiment on audio-visual data collected by a single Kyocera

camera with fish-eye lens and an attached microphone. In the recorded scenario, in-

dividuals walked towards the device and then read aloud identical text; we acquired

30 sequences with 17 speakers. We tested our method by choosing six speakers as

members of the trusted group, while the rest were assumed unknown. The com-

30

2.3 Experiments

parison was done separately for the audio and visual data. Fig. 2.8 shows the

comparison of our discriminative approach to the one class SVM novelty detection

approach using the visual data; clearly our approach achieves much better results

(similar improvement was obtained when using the auditory data).

Figure 2.8: True Positive vs. False Positive rates when detecting unknown vs. trusted
individuals. The unknown are regarded as positive events. Results are shown for our proposed
method (solid line) and one class SVM (dashed line).

31

2. NOVEL SUBCLASS DETECTION

32

3

Hierarchical Multi-Task Learning:

a Cascade Approach Based on the

Notion of Task Relatedness

We propose a general framework for a full hierarchical multi-task setting. We define

an explicit notion of hierarchical tasks relatedness, where at each level we assume

that some aspects of the learning problem are shared. We suggest a cascade ap-

proach, where at each level of the hierarchy a learner learns jointly the uniquely

shared aspects of the tasks by finding a single shared hypothesis. This shared

hypothesis is used to bootstrap the preceding level in the hierarchy, forming a hy-

pothesis search space. We analyze sufficient conditions for our approach to reach

optimality, and provide generalization guarantees in an empirical risk minimization

setting.

Multi-task learning is typically studied in a flat scenario, where all related tasks

are similarly treated. Here we formulate a hierarchal multi-task learning setting

which breaks this symmetry between the tasks, analyzing the potential gain in jointly

learning shared aspects of the tasks at each level of the hierarchy. We also analyze

the sample complexity of the hierarchical multi-task learning approach.

We consider a general hierarchical multi-task paradigm extending the common

two level approach. We build our notion of shared information among tasks on the

concept of task transformations . For this we adopt the task relatedness framework

of [59] and extend it to the hierarchical setting.

The problem with considering only a single level of task relations is that the

potential benefit from sharing information is derived from the size of the family of

transformations which relate all the tasks. Considering a bigger and more diverse

set of tasks usually means considering looser relations among those tasks, which in

turn decreases the benefit obtained from having access to more tasks and additional

samples. In our hierarchical setting, on the other hand, we benefit from adding tasks

33

3. HIERARCHICAL MULTI-TASK LEARNING: A CASCADE
APPROACH BASED ON THE NOTION OF TASK RELATEDNESS

even if they are related to our objective task in a rather loose manner.

To illustrate, consider the task of learning the size and location of a rectangle

in Rd given a small set of samples from the target rectangle and several samples

from other related rectangles (tasks). Suppose that the related tasks can be orga-

nized in a nested hierarchy, where as the level gets more abstract there are more

tasks (rectangles) in it, but the number of shared dimensions gets smaller. The

hierarchical ordering of tasks can be used to divide the original problem into sev-

eral sub-problems, where in each level the learner learns only the shared dimensions

of the tasks which are unique to that level, starting from the most abstract levels

with the most tasks and least shared dimensions. The knowledge about the shared

dimensions is transferred to the next level, where more dimensions are shared and

fewer tasks can be used for learning. Thus we gain by dividing the original problem

into easier subproblems and by adding more tasks even if this results in a looser

family of transformations relating all tasks.

Motivated by the potential in hierarchically grouping tasks, where levels rep-

resenting a looser notion of task relatedness correspond to many tasks and levels

representing a stricter notion correspond to fewer tasks, we propose a cascade ap-

proach, where at each level of the cascade the uniquely shared aspects are learnt

jointly. Compared to the original two-stage learning framework proposed for

learning based on task transformations (the MT-ERM framework), our approach

is more limited because at each stage of the cascade we are committed to a single

hypothesis. In the original framework, the knowledge from related tasks is used to

reduce the size of the search space, but no single hypothesis is singled out. However,

this original approach does not give a practical way to perform shared learning of in-

variances. By limiting ourselves to a more restrictive setting, we are able to propose

a constructive paradigm for which we can prove the optimality of the approach and

derive sample complexity bounds in an Empirical Risk Minimization setting [73].

To this end we impose two assumptions - transformation-multiplicativity and indif-

ference (see text).

The rest of this chapter is organized as follows. In Section 3.1 we review the

task relatedness framework of [59] and extend it to a hierarchy of task relations. We

present IMT-ERM (Iterative Multi Task-ERM), which is a hierarchical generaliza-

tion of MT-ERM. We then describe and analyze a specific learning approach based

34

3.1 Hierarchical Multi-Task Paradigm

on a learning cascade, CMT-ERM (Cascade Multi Task-ERM).

The optimality analysis of a single step in the cascade is presented in Section 3.2.

We describe some sufficient conditions under which the optimal shared transforma-

tion found by considering all tasks together is also optimal for a single task. In

Section 3.3 we extend our analysis to the ERM setting, providing generalization

error guarantees for a single stage in the hierarchy (Theorem 2). In Theorem 3 this

analysis is extended recursively to the whole hierarchy. In Section 3.4 we present an

experiment demonstrating the effectiveness of our approach.

3.1 Hierarchical Multi-Task Paradigm

Let us define our hierarchical multi-task paradigm. We start by reviewing the non-

hierarchical multi-task paradigm in Section 3.1.1. In Section 3.1.2 we extend this

paradigm to a hierarchical one. In Section 3.1.3 we describe a cascade approach to

the implementation of this paradigm, and outline some important ways by which it

differs from the basic approach.

3.1.1 Task Relatedness Background

We start by reviewing the multi-task learning scenario and notion of relatedness

presented in [59], following the same notations and stating the relevant definitions.

In this approach to multitask learning one wishes to learn a single task, and the

role of additional related tasks is only to aid the learning of this task. Formally,

the multi-task learning scenario can be stated as follows: Given domain X, n tasks

1, ..., n and unknown distributions P1,...Pn over X × {0, 1}, a learner is presented

with a sequence of random samples S1,...Sn drawn from these Pi’s respectively. The

learner seeks a hypothesis h : X→ {0, 1} such that, for (x, b) drawn randomly from

P1, h(x) = b with high probability. We focus on the extent to which the samples Si,

for i 6= 1 can be utilized to help find a good hypothesis for predicting the labels of

task 1.

Task relatedness is defined based on a set F of transformations f : X → X

(following definitions 1 and 2 in [59]). Tasks 1 and 2 are said to be F-related if

P1(x, b) = P2(f(x), b) or P2(x, b) = P1(f(x), b). Given a hypothesis space H over

35

3. HIERARCHICAL MULTI-TASK LEARNING: A CASCADE
APPROACH BASED ON THE NOTION OF TASK RELATEDNESS

domain X, we assume F acts as a group over H, namely F is closed under function

composition and H is closed under transformations from F. Two hypothesis h1, h2 ∈
H are said to be equivalent under F iff there exists f ∈ F such that h2 = h1 ◦ f , and

hypothesis equivalence under F is denoted by∼F. [h]∼F
= {h◦f : f ∈ F} denotes the

set of hypotheses which are equivalent up to transformations in F. H/ ∼F denotes

the family of all equivalence classes of H under∼F, namely, H/ ∼F= {[h]∼F
: h ∈ H}.

The learning scenario assumes that the learner gets samples {Si : i ≤ n}, where

each Si is a set of samples drawn i.i.d from Pi. The probability distributions are as-

sumed to be pairwise F-related. The learner knows the set of indices of the distribu-

tions, {1, ..., n} and the family of functions F, but does not know the data-generating

distribution nor which specific function f relates any given pair of distributions. In

this setting, [59] proposed to exploit the relatedness among tasks by first finding all

aspects of the tasks which are invariant under F, and then focus on learning the

specific F-sensitive elements of the target task. The potential benefit lies both in the

reduction of the search space from the original H to a smaller F-sensitive subspace

[h]∼F
, and from the bigger sample size available to learn the F-invariant aspects of

the task. However, the second potential benefit is not guaranteed and depends on

the complexity of finding a single [h]∼F
in H/ ∼F. The complexity of finding [h]∼F

is formalized using the notion of generalized VC-dimension [39].

3.1.2 Hierarchical Task Relatedness

Next we extend the multi-task learning setting to a hierarchical multi-task learning

setting. In the hierarchical setting our objective is the same as in the original one

- the learning of a single task by exploiting additional related tasks. Our approach

extends the original by assuming that the group of tasks {1, ..., n}, and the corre-

sponding family of transformation functions F, can be decomposed hierarchically.

We denote by l a single level in the hierarchy, 0 ≤ l ≤ L and Tl ⊆ {1, ..., n} the

group of related tasks in the l’s level of the hierarchy. Fl ⊂ F denotes a family of

transformations for which all task in Tl are pairwise Fl-related.

We assume that the set of transformations for each level 0 ≤ l ≤ L − 1 can

be written as a concatenation of the set of domain transformations corresponding

to the preceding level Fl+1 and a set of domain transformations Gl+1, hence Fl =

36

3.1 Hierarchical Multi-Task Paradigm

{g ◦f : g ∈ Gl+1, f ∈ Fl+1}. We call the set of transformations Gl the set of shared

transformations among tasks in Tl.

Definition 1 We say that {Tl,Fl,Gl}Ll=0 is a hierarchical decomposition of a set of

F-related tasks {1, ..., n} iff:

1. T0 = {1, .., n}

2. TL = {1}, hence TL represents the target task.

3. FL = {f}, where f is the identity transformation, hence f(x) = x.

4. for all 0 ≤ l ≤ L− 1:

(a) Tl+1 ⊂ Tl

(b) ∀i, j ∈ Tl, there exists f ∈ Fl such that Pi(x, b) = Pj(f(x), b)

(c) Tl+1 shares the set of transformations Gl+1

(d) Fl = {g ◦ f : g ∈ Gl+1, f ∈ Fl+1}.

5. Fl and Gl act as a group over H, for all 0 ≤ l ≤ L.

Figure 3.1: An illustration of the hierarchical decomposition {Tl,Fl,Gl}Ll=0. We assume an
indexed set of tasks, {1,..,n0}, where 1 is the objective task. The size of each group of tasks
decreases as the level increases, thus: n0 > nl−1 > nl > 1, for 0 < l < L. An arrow denotes
inclusion relations, TL ⊂ Tl ⊂ Tl−1 ⊂ T0 and FL ⊂ Fl ⊂ Fl−1 ⊂ F0.

Fig. 3.1 provides an illustration of the hierarchical decomposition. From the def-

inition of the hierarchical decomposition (4d) we see that the set of transformations

for level l can be obtained by concatenating the set of shared transformations of

levels l + 1 till L. This point will be crucial in understanding the benefit of the

cascade hierarchical approach.

37

3. HIERARCHICAL MULTI-TASK LEARNING: A CASCADE
APPROACH BASED ON THE NOTION OF TASK RELATEDNESS

Lemma 1 Fl+1 ⊂ Fl, for all 0 ≤ l ≤ L − 1. Since Gl+1 is a group and therefore

contains the identity transformation, the lemma follows from the definition in 4.d

above.

Lemma 2 Given h ∈ H, [h]∼Fl+1
⊂ [h]∼Fl

, for all 0 ≤ l ≤ L − 1. This is an

immediate consequence of Lemma 1 and the definition of [h]∼F
.

3.1.3 Hierarchical Learning Paradigm, Cascade Approach

In this section we present and motivate our cascade approach for hierarchical multi-

task learning. We start by presenting the IMT-ERM (Iterative MT-ERM) which

generalizes the MT-ERM (Multi-Task Empirical Risk Minimization) learning paradigm

defined in [59] to the hierarchical setting. This serves as a basis for our discussion,

motivating our proposed cascade. The cascade method is a more constructive ap-

proach for which we can provide precise generalization guarantees; this comes at the

cost of restricting the learning scope.

We follow standard notations and denote the empirical error of a hypothesis for

sample S as:

ÊrS(h) =
|{(x, b) ∈ S : h(x) 6= b}|

|S|
.

The true error of a hypothesis is:

ErP (h) = P ({(x, b) ∈ X× {0, 1} : h(x) 6= b}).

We define the error of any hypothesis space H as:

ErP (H) = inf
h∈H

Erp(h).

For notation convenience we shall denote the i’th task in Tl by li.

3.1.3.1 Iterative MT-ERM

Definition 2 Given H, n tasks hierarchically decomposed by {Tl,Fl,Gl}Ll=0 and

their sequence of labeled sample sets, S1, .., Sn, the IMT-ERM paradigm works as

38

3.1 Hierarchical Multi-Task Paradigm

follows:

1. H0 = H.

2. for l = 0..L

(a) Pick h = arg minh∈Hl infhl1 ,...,hl|Tl|∈[h]∼Fl

∑|Tl|
i=1Êr

Sli (hli)

(b) Hl+1 = [h]∼Fl

3. output h� the single hypothesis in [h]∼FL
as the learner’s hypothesis.

Note that the fact that h� is the single hypothesis in [h]∼FL
follows directly from

the definition of FL as containing only the identity transformation.

Following the definition of hierarchical decomposition one can readily see that

for L = 1 the IMT-ERM is exactly the MT-ERM. Specifically, the first iteration

corresponds to the first step of the MT-ERM - learning the aspects which are invari-

ant under F0. The second iteration corresponds to the second stage of MT-ERM

where only the training samples coming from the target task, the single task in TL,

are used to find a single predictor from [h]∼FL−1
, which is the single hypothesis in

[h]∼FL
.

The learning complexity of Step 2a, picking [h]∼Fl
∈ Hl/ ∼Fl

, is analyzed in [59].

It uses the notion of generalized VC-dimension from [39], denoted by dHl/∼Fl
(n),

where n refers to the number of tasks which is |Tl| in our setting.

The generalized VC-dimension determines the sample complexity; it has a lower

bound of sup{V Cdim([h]∼Fl
) : [h]∼Fl

∈ Hl/ ∼Fl
} and in the general case an upper-

bound of V Cdim(Hl). This analysis captures the interrelation between the set

of transformations Fl and the hypothesis space Hl. From Lemma 1 and Lemma

2 we know that both sup{V Cdim([h]∼Fl
) : [h]∼Fl

∈ Hl/ ∼Fl
} and V Cdim(Hl)

monotonically decrease with l, which gives rise to the potential of the hierarchical

approach.

The MT-ERM paradigm and its hierarchical extension IMT-ERM do not provide

a constructive way of preforming Step 2a. In the following we shall consider the

conditions under which Step 2a can be replaced by choosing a single hypothesis from

the equivalence class derived by the shared transformation at each level: [h]∼Gl
. This

yields a constructive approach with an explicit search complexity of V Cdim([h]∼Gl
),

for each level l in the hierarchy.

39

3. HIERARCHICAL MULTI-TASK LEARNING: A CASCADE
APPROACH BASED ON THE NOTION OF TASK RELATEDNESS

3.1.3.2 Cascade Approach

Following Definition 1, we see that each transformation f ∈ Fl can be expressed as

a concatenation of transformations from all of the shared transformation families

{Gi}Li=l+1. We propose a learning approach where we exploit the fact that the trans-

formations can be decomposed into shared transformations and learn together the

shared transformations at each level of the cascade. In order to preform this shared

learning we consider all tasks sharing a set of transformations as a single unified

task. For each such unified task representing level l, we search for a single hypoth-

esis in an equivalence class [h]∼Gl
where Gl is the shared family of transformations

and h is the hypothesis chosen in the previous stage. The unified task is defined

next.

For each level in the hierarchy 0 ≤ l ≤ L, we define the task representing the level

as the union of all tasks in Tl. As before we call the i’th task in Tl li ∈ {1..n}. Let

P1,...Pn be the probability distributions over X×{0, 1} of tasks {1..n} respectively.

We shall now define the probability distribution over X×{0, 1}, which describes the

single task al representing the union of all tasks in Tl as the average of distribution

of tasks in Tl. This is equivalent to defining a joint probability space where eash

task is given the same uniform prior. Hence:

Pal
(x, b) =

1

|Tl|

|Tl|∑
i=1

Pli(x, b) (3.1)

Lemma 3

ErPal (h) =
1

|Tl|

|Tl|∑
i=1

ErPli (h) (3.2)

This immediately follows from the definition of Pal
and ErP .

We denote by Sal the union of all samples from all tasks belonging to Tl, 0 ≤
l ≤ L. For a sufficiently large i.i.d sample, ÊrSal (h) converges to ErPal (h).

Next we define the CMT-ERM paradigm (Cascade Multi-Task ERM). Here for

each level 0 ≤ l ≤ L of the hierarchy we search for an optimal hypothesis for the

40

3.1 Hierarchical Multi-Task Paradigm

unified task al. The algorithm iterates through two steps. The first step in iteration

l defines the search space as the equivalence class [h]∼Gl
of the best hypothesis h

from the previous iteration. In the second step we search this equivalence class for a

single best hypothesis given task al. See Fig. 3.2 for an illustration of the algorithm.

Definition 3 Given H, n tasks hierarchically decomposed by {Tl,Fl,Gl}Ll=0 and

the sequence of labeled sample sets corresponding to each unified task Sa0 , .., SaL ,

the CMT-ERM paradigm works as follows:

1. Pick h ∈ H that minimizes ÊrSa0 (h)

2. for l = 0..L

(a) Hl = [h]∼Gl

(b) Pick h ∈ Hl that minimizes ÊrSal (h)

3. output h� = h.

Note that unlike the IMT-ERM or MT-ERM paradigms, the learning stage cor-

responding to the shared transformations from all tasks in Step 2b is a single well

defined ERM problem. The parameter governing the sample complexity of the

shared learning (learning task al) can also be precisely defined - V Cdim([h]∼Gl
).

The potential gain in such an approach lies in the increased number of samples

available for the unified tasks and the decrease in search complexity as compared to

the original V Cdim(H) (recall the rectangle example in the introduction, and see

discussion in Section A.1.3 of the Appendix).

In Step 1 we search over all H. This step corresponds to task a0, which is

the union over all tasks, for which we assume a sufficient amount of samples is

available. Under certain conditions the search for an optimal hypothesis in Step 1

can be avoided; for instance, we may choose a hypothesis which has minimal false-

negatives irrespective of the number of false positives. See example in Fig. 3.2 and

further discussion in Section 3.2.3.

The remaining analysis is divided into two parts: First, in Section 3.2 we consider

the conditions under which such an approach is applicable. We ask under what

conditions this approach guarantees optimality with respect to the original objective

41

3. HIERARCHICAL MULTI-TASK LEARNING: A CASCADE
APPROACH BASED ON THE NOTION OF TASK RELATEDNESS

task. Specifically, we ask when the transformation in Gl, which is optimal for the

unified task al, is also optimal for a single task in level l. In other words, under

what conditions arg ming∈Gl
ErPlj ([h ◦ g]∼Fl

) = arg ming∈Gl
ErPal (h ◦ g) ∀lj ∈ Tl.

Second, in Section 3.3 we extend our analysis to the PAC learning scenario,

providing generalization error guarantees for a single iteration of the CMT-ERM. In

Theorem 3 we finally provide generalization error guarantees based on the proposed

CMT-ERM approach.

42

3.1 Hierarchical Multi-Task Paradigm

Figure 3.2: An illustration of the CMT-ERM paradigm applied to learning rectangles in
R3. Each task requires to learn a single rectangle. This is an example of a hierarchy with
three levels for which G0 is the family of translations and scaling of the X axis, G1 is the
family of translations and scaling of the Y axis and G2 is the family of translations and
scaling of the Z axis. The shared axis of all 3 tasks is marked by red, the shared axis of the
two tasks at level l = 1 are marked by blue. For coherence we draw the rectangles and not
samples from the rectangles. Each rectangle learning task is specified by a distribution P r;
we denote each rectangle by r and assume a realizable scenario - P r({(x, 0) : x ∈ r}) = 0 and
P r({(x, 1) : x 6∈ r}) = 0 (only the area of the support r is drawn). We assume P r({(x, 0) :
x ∈ X}) < P r({(x, 1) : x ∈ X}). Each graph corresponds to a specific step of the algorithm,
starting from the top-left graph which corresponds to step 1 of the CMT-ERM paradigm.
Note that this is an example where we don’t need to find the optimal ERM solution but any
solution covering the support of the rectangles will suffice. The top-right graph corresponds to
the first iteration of step 2b, where the X axis is learnt. The bottom-left graph corresponds to
the second iteration of step 2b, where the Y axis is learnt. The bottom-right graph corresponds
to the third iteration of step 2b, where the Z axis is learnt from the single remaining task, the
top rectangle.

43

3. HIERARCHICAL MULTI-TASK LEARNING: A CASCADE
APPROACH BASED ON THE NOTION OF TASK RELATEDNESS

3.2 Cascade Optimality

In the cascade approach we compute the final hypothesis in stages defined by the

concatenation of transformations, solving at each step a simpler problem with a

larger sample. In this section we analyze the conditions under which an optimal

hypothesis of a single task can be found by searching through a cascade of shared

transformations, where each transformation fits a single level in the hierarchical

decomposition described above. We start by analyzing specific properties of the

optimal transformations given our hierarchical decompositions in Section 3.2.1. In

Sections 3.2.2 and 3.2.3 we present two properties of a cascade of shared transfor-

mations, which are the basis of the assumptions under which the cascade approach

can reach optimality. Finally, in Section 3.2.4 we state the assumptions and prove

that the cascade approach can reach optimality.

3.2.1 Hierarchical Task Relatedness Properties

We recall that from Lemma 2 in [59] we can deduce that for any task j ∈ Tl

ErPlj ([h]∼Fl
) = inf

h1,...h|Tl|∈[h]∼Fl

1

|Tl|

|Tl|∑
i=1

ErPli (hi) (3.3)

In the definition of the hierarchical decomposition above (Definition 1), we as-

sumed that tasks in Tl share the set of transformations Gl. In the following we

show that any g ∈ Gl which is optimal for a single task j ∈ Tl in the sense that it

minimizes ErPlj ([h ◦ g]∼Fl
), is optimal for all other tasks in Tl.

Lemma 4 For each j ∈ Tl, g
∗ = arg ming∈Gl

ErPlj ([h◦g]∼Fl
)⇔ ∀i ∈ Tl and ∀g ∈ Gl

ErPli ([h ◦ g∗]∼Fl
) ≤ ErPli ([h ◦ g]∼Fl

).

Proof ⇐: Immediate; if g∗ attains the minimum for all i ∈ Tl, it does so also for

j. �

⇒: Assume that g∗ = arg ming∈Gl
ErPlj ([h◦g]∼Fl

). Let f g ∈ Fl be the transformation

which minimizes ErPlj ([h◦g]∼Fl
), so that by definition ErPlj (h◦g ◦f g) = ErPlj ([h◦

44

3.2 Cascade Optimality

g]∼Fl
). Fl is the family of transformations between tasks in Tl, thus ∀i ∈ Tl ∃fij ∈ Fl,

such that ErPlj (h ◦ g ◦ f g) = ErPli (h ◦ g ◦ f g ◦ fij), ∀g ∈ Gl.

By the definition of Fl as a group we know that f g ◦ fij ∈ Fl. Now assume

that the lemma is false and therefore ErPli (h ◦ g ◦ f g ◦ fij) 6= ErPli ([h ◦ g]∼Fl
). It

follows that there exists z ∈ Fl such that ErPli (h ◦ g ◦ z) = ErPli ([h ◦ g]∼Fl
) and

ErPli (h ◦ g ◦ z) < ErPli (h ◦ g ◦ f g ◦ fij). Let fji ∈ Fl be the transformation from

task i to task j. Thus ErPlj (h ◦ g ◦ z ◦ fji) < ErPlj (h ◦ g ◦ f g), which contradicts the

definition of f g since z ◦ fji ∈ Fl.

We can therefore conclude that ErPli (h ◦ g ◦ f g ◦ fij) = ErPli ([h ◦ g]∼Fl
). Since

ErPlj (h◦g∗◦f g∗) ≤ ErPlj (h◦g◦f g) ∀g ∈ Gl , it follows that ErPli (h◦g∗◦f g∗ ◦fij) ≤
ErPli (h ◦ g ◦ f g ◦ fij) ∀i ∈ Tl. Thus, ∀i ∈ Tl and ∀g ∈ Gl Er

Pli ([h ◦ g∗]∼Fl
) ≤

ErPli ([h ◦ g]∼Fl
). �

Lemma 5 If g′ = arg ming∈GEr
P ([h ◦ g]∼F

) and f ′ = arg minf∈F Er
P (h ◦ g′ ◦ f),

then g′ = arg ming∈GEr
P (h ◦ g ◦ f ′)

Proof For each g ∈ G, denote by f g the optimal f ∈ F with respect to g, thus

f g = arg minf∈F Er
P (h ◦ g ◦ f). From the definition of g′ we know:

ErP (h ◦ g′ ◦ f ′) ≤ ErP (h ◦ g ◦ f g),∀g ∈ G. (3.4)

From the definition of f g we know:

ErP (h ◦ g ◦ f g) ≤ ErP (h ◦ g ◦ f ′),∀g ∈ G. (3.5)

From (3.4) and (3.5) we get that:

ErP (h ◦ g′ ◦ f ′) ≤ ErP (h ◦ g ◦ f ′),∀g ∈ G.

It follows that g′ = arg ming∈GEr
P (h ◦ g ◦ f ′). �

3.2.2 The property of Transformation-Multiplicativity

Definition 4 Two transformations taken from two families of transformations

g ∈ G and f ∈ F are multiplicative with respect to hypothesis h ∈ H iff h◦g◦f(x) =

45

3. HIERARCHICAL MULTI-TASK LEARNING: A CASCADE
APPROACH BASED ON THE NOTION OF TASK RELATEDNESS

h ◦ g(x) · h ◦ f(x).

It is easy to see that if g ∈ G and f ∈ F are multiplicative then {x|h ◦ g ◦ f(x) =

1} = {x|h ◦ g(x) = 1} ∩ {x|h ◦ f(x) = 1}. In other words, the support of the con-

catenated transformation is contained in the support of each of the transformations

under hypothesis h.

To illustrate the multiplicative property of transformations, let the family of

hypotheses H include all rectangles in R2. Let G denote the group of scale and

translation of the first dimension, and F denote the group of scale and translation

of the second dimension. We parametrize each rectangle by [c1, c2, s1, s2], where c1

and c2 denote the center of the rectangle, and [s1, s2] denote the rectangle’s sides

(width and height). Choose h ∈ H to be the rectangle [3, 3, 2, 2]. Choose g ∈ G to

be translation of 1 and scale of 2 of the first dimension, and f ∈ F similarly for the

second dimension.

With this choice, h ◦ g corresponds to rectangle [2, 3, 1, 2] and h ◦ f to [3, 2, 2, 1].

The intersection of their support corresponds to rectangle [2, 2, 1, 1] which is the

same as h ◦ g ◦ f(x). On the other hand if we were to consider just translations but

no scaling, we would get that h◦g is rectangle [2, 3, 2, 2] and h◦f [3, 2, 2, 2]. The in-

tersection of their support would be the rectangle parametrized by [2.5, 2.5, 1.5, 1.5];

it is not equal to h ◦ g ◦ f(x), which is rectangle [2, 2, 2, 2].

The transformation-multiplicativity property lets us write ErP (h ◦ g ◦ f) as

ErP (h ◦ g) plus a residual term, describing the gain obtained by adding the trans-

formation from F. We shall denote the residual term by Rgf , where

Rgf = P ({(x, b) ∈ X× {0, 1} : b = 1, h ◦ g(x) = 1, h ◦ f(x) = 0})

− P ({(x, b) ∈ X× {0, 1} : b = 0, h ◦ g(x) = 1, h ◦ f(x) = 0}) (3.6)

This term measures the volume of new errors introduced when adding transformation

f , while eliminating the volume of those errors of g which are corrected for by f .

Under the transformation-multiplicativity assumption, adding a transformation f

can change the overall classification value only for points in the support of h ◦
g. In the following, for the general case (not necessarily assuming transformation-

multiplicativity) we shall refer to this as the amount by which f ’corrects’ the support

of g.

46

3.2 Cascade Optimality

Lemma 6 If transformations g ∈ G and f ∈ F are multiplicative with respect to

hypothesis h ∈ H then:

ErP (h ◦ g ◦ f) = ErP (h ◦ g) +Rgf (3.7)

Proof See Appendix A.1.1.

Choosing a transformation f ∈ F which minimizes ErP (h ◦ g ◦ f) implies that

Rgf ≤ 0 as it can only decrease the overall error. This is stated formally in the

following lemma.

Lemma 7 f = arg minf ′∈F Er
P (h ◦ g ◦ f ′)⇒ Rgf ≤ 0

Proof The lemma follows from Lemma 6 and the fact that the group F contains

the identity transformation.

Lemma 6 thus shows that under the transformation-multiplicativity assumption,

the error ErP (h ◦ g ◦ f) can be decomposed into 2 terms: the error obtained by

choosing g ∈ G, ErP (h ◦ g), and a residual term Rgf referring to the change in

the overall classification value of points in the support of h ◦ g when adding a

transformation f ∈ F.

3.2.3 The property of Indifference

We say transformation f ∈ F is indifferent if for two transformations from a different

family of transformations g, g∗ ∈ G, where g∗ is optimal, the difference between the

amount f ’corrects’ the support of g and the amount f ’corrects’ the support of g∗

is bounded by the difference of the errors between g and g∗. Formally,

Definition 5 A transformation f ∈ F is said to be indifferent with respect to

distribution P , hypothesis h and transformation g ∈ G, if for g∗ = arg ming∈GEr
P (h◦

g) the following holds:

Rg∗f −Rgf ≤ ErP (h ◦ g)− ErP (h ◦ g∗) (3.8)

47

3. HIERARCHICAL MULTI-TASK LEARNING: A CASCADE
APPROACH BASED ON THE NOTION OF TASK RELATEDNESS

To illustrate scenarios where this property occurs, consider some family of hy-

pothesis H and two groups of transformations G and F. Assume that any two

transformations g ∈ G and f ∈ F are statistically independent for any h ∈ H,

namely,

P ({(x, b) : h ◦ g(x) = a, h ◦ f(x) = c}) =

P ({(x, b) : h ◦ g(x) = a}) · P ({(x, b) : h ◦ f(x) = c}) (3.9)

Based on this assumption and the definition of the residual Rgf , it is easy to see

that we can write the residual difference as:

Rg∗f −Rgf = (3.10)

[P ({(x, b) : b = 1, hg(x) = 0})− P ({(x, b) : b = 1, hg∗(x) = 0})]P ({(x, b) : b = 1, hf(x) = 0})+

[P ({(x, b) : b = 0, hg(x) = 1})− P ({(x, b) : b = 0, hg∗(x) = 1})]P ({(x, b) : b = 0, hf(x) = 0})

Consider the case where P ({(x, b) : b = 1, hg∗(x) = 0}) = 0 and P ({(x, b) : b =

1, hf(x) = 0}) = 0. Define H∗ = {h : P ({(x, b) : b = 1, hg∗(x) = 0}) = 0} and

F∗ = {f : P ({(x, b) : b = 1, hf(x) = 0}) = 0}. Under these definitions it is easy to

see that ∀h ∈ H∗, ∀g ∈ G and ∀f ∈ F∗ the following holds:

Rg∗f −Rgf ≤ (3.11)

[P ({(x, b) : b = 1, hg(x) = 0})− P ({(x, b) : b = 1, hg∗(x) = 0})]+

[P ({(x, b) : b = 0, hg(x) = 1})− P ({(x, b) : b = 0, hg∗(x) = 1})] =

ErP (h ◦ g)− ErP (h ◦ g∗).

Thus all f ∈ F∗ are indifferent with respect to P , any g ∈ G and any h ∈ H∗.

This is a simple example of indifference. In Appendix A.1.2 we consider several

other sets of sufficient conditions for which indifference occurs, assuming the statis-

tical independence of the transformations. Table A.1 in the Appendix summarizes

these conditions.

48

3.2 Cascade Optimality

3.2.4 Optimality Proof

Now we are ready to state the following two assumptions under which the opti-

mal transformation gl ∈ Gl for each of the tasks in Tl is the same as the optimal

transformation gal ∈ Gl for task al .

We use the following notations:

- gal = arg ming∈Gl
ErPal (h◦g), the optimal transformation with respect to the task

al, representing the union of tasks in Tl.

- gl = arg ming∈Gl
ErPli ([h ◦ g]∼Fl

), ∀i ∈ |Tl|, the optimal transformation which is

shared among all of the tasks in Tl (it follows from Lemma 4 that gl exists).

- f li = arg minf∈Fl
ErPli (h ◦ gl ◦ f), ∀i ∈ |Tl|, the optimal transformation which is

specific to each of the tasks in Tl.

Assumption 1 ∀i ∈ |Tl|, both gal , f li and gl , f li are transformation-multiplicative.

Assumption 2 ∀i ∈ |Tl|, f li is indifferent with respect to distribution Pal
, the

given hypothesis h and gl ∈ Gl.

Theorem 1 Under assumptions 1 and 2:

arg min
g∈Gl

ErPal (h ◦ g) = arg min
g∈Gl

ErPli ([h ◦ g]∼Fl
),∀i ∈ Tl

49

3. HIERARCHICAL MULTI-TASK LEARNING: A CASCADE
APPROACH BASED ON THE NOTION OF TASK RELATEDNESS

Proof

|Tl|∑
i=1

Rgalf li −
|Tl|∑
i=1

Rglf li ≤
|Tl|∑
i=1

ErPal (h ◦ gl)−
|Tl|∑
i=1

ErPal (h ◦ gal)⇔ (3.12)

|Tl|∑
i=1

Rgalf li −
|Tl|∑
i=1

Rglf li ≤ 1

|Tl|

|Tl|∑
i=1

|Tl|∑
i=1

ErPli (h ◦ gl)− 1

|Tl|

|Tl|∑
i=1

|Tl|∑
i=1

ErPli (h ◦ gal)⇔

(3.13)

|Tl|∑
i=1

Rgalf li −
|Tl|∑
i=1

Rglf li ≤
|Tl|∑
i=1

ErPli (h ◦ gl)−
|Tl|∑
i=1

ErPli (h ◦ gal)⇔ (3.14)

|Tl|∑
i=1

[ErPli (h ◦ gal) +Rgalf li] ≤
|Tl|∑
i=1

[ErPli (h ◦ gl) +Rglf li]⇔ (3.15)

|Tl|∑
i=1

ErPli (h ◦ gal ◦ f li) ≤
|Tl|∑
i=1

ErPli (h ◦ gl ◦ f li)⇔ (3.16)

|Tl|∑
i=1

ErPli (h ◦ gal ◦ f li) =

|Tl|∑
i=1

ErPli (h ◦ gl ◦ f li)⇔ (3.17)

|Tl|∑
i=1

ErPli (h ◦ gal ◦ f li) =

|Tl|∑
i=1

ErPli ([h ◦ gl]∼Fl
)⇔ (3.18)

|Tl|∑
i=1

ErPli ([h ◦ gal]∼Fl
) =

|Tl|∑
i=1

ErPli ([h ◦ gl]∼Fl
) (3.19)

In the derivation above: (3.12) follows from Assumption 2 and (3.12) ⇔ (3.13)

follows from the definition of the unified task (3.1). Note that in (3.12) the residual

is computed based on Pal
, and in (3.13) it is based on each of the Pli . (3.15) ⇔

(3.16) follows from Lemma 6. (3.16) ⇒ (3.17) uses the optimality of gl. (3.17) ⇔
(3.18) follows from the definition of f li and the definition of ErP ([h]∼F

). To see that

(3.18) ⇔ (3.19), assume otherwise; from the definition of ErP ([h]∼F
) we get that∑|Tl|

i=1 Er
Pli ([h ◦ gal]∼Fl

) <
∑|Tl|

i=1 Er
Pli (h ◦ gal ◦ f li), thus

∑|Tl|
i=1Er

Pli ([h ◦ gal]∼Fl
) <∑|Tl|

i=1 Er
Pli ([h ◦ gl]∼Fl

), which contradicts the optimality of gl .

gal = arg ming∈Gl
ErPal (h◦g) also attains the minimum of the sum over the error

50

3.3 Multi-Task Cascade ERM

of all tasks in Tl, thus:

gal = arg min
g∈Gl

|Tl|∑
i=1

ErPli ([h ◦ g]∼Fl
)

From (3.3) above it therefore follows that:

gal = arg min
g∈Gl

ErPli ([h ◦ g]∼Fl
),∀i ∈ Tl.�

(We note in passing that other transformations may also achieve this minimum.)

3.3 Multi-Task Cascade ERM

In the previous section we showed that the optimal transformation of a task can

be found by considering a group of tasks together. This implies a learning scenario

where searching for the optimal transformation of a single task can be done by

considering the group of tasks sharing this transformation, thus benefiting from the

bigger sample size contributed from the whole group.

Our discussion until now focused on the optimal solution. Now we extend this

analysis to the case where we cannot guarantee optimality of the solution. For

this we need to extend our assumptions to imply that a near optimal solution for

the group of tasks considered together is also near optimal for each of the tasks

considered separately, thus permitting the derivation of an ERM approach.

To begin with, instead of considering the transformation-multiplicativity only

for the optimal choice of transformations, we assume transformation-multiplicativity

between f li ∈ Fl, the optimal transformation for task li ∈ Tl, and any transformation

g ∈ Gl which is close to the optimal transformation gal . Let Gεl denote the set of

all transformations in Gl which have an error bigger by at most ε when measured

according to Pal
. Formally,

Definition 6 Given hypothesis h ∈ Hl−1, g ∈ Gεl iff:

ErPal (h ◦ g) ≤ ErPal (h ◦ gal) + ε

51

3. HIERARCHICAL MULTI-TASK LEARNING: A CASCADE
APPROACH BASED ON THE NOTION OF TASK RELATEDNESS

Next we extend the indifference assumption, adding a lower bound to the differ-

ence of residuals. Thus, the improvement achieved by adding the transformation to

a near optimal transformation is close to the improvement when adding a transfor-

mation to an optimal transformation.

In order to extend our cascade approach from two levels to the L + 1 levels in

the hierarchy, we extend the assumptions to the whole hierarchy:

Cascade assumptions: for l = 0..L and h ∈ Hl−1 the chosen hypothesis for

Pal−1:

1. ∀g ∈ Gεl , ∀i ∈ |Tl| and f li = arg minf∈Fl
ErPli (h ◦ g ◦ f), g and f li are multi-

plicative with respect to h; therefore

h ◦ g ◦ f li(x) = h ◦ g(x) · h ◦ f li(x)

2. For:

• gal = arg ming∈Gl
ErPal (h ◦ g)

• f̂ li = arg minf∈Fl
ErPli (h ◦ gal ◦ f), ∀i ∈ [1..|Tl|]

f̂ li is indifferent with respect to the distribution Pal
, hypothesis h and ∀g ∈ Gεl :

|
∑|Tl|

i=1R
gal f̂ li −

∑|Tl|
i=1R

gf̂ li | ≤
∑|Tl|

i=1Er
Pal (h ◦ g)−

∑|Tl|
i=1Er

Pal (h ◦ gal)

(Note that we consider H−1 to be the original hypothesis space H.)

For simplicity, in the following we shall refer to the strong form of Assumptions

1,2 stated above as transformation-multiplicativity and indifference respectively.

We can now analyze the error bound of a hypothesis composed of some original

hypothesis h, a shared transformation learnt via an ERM process g�, and the optimal

transformation for each task f li given the hypothesis h ◦ g�.

Theorem 2 Let d = V Cdim([h]∼Gl
), h∗ = arg minh∈[h]∼Gl

ErPal (h) and h� ∈ [h]∼Gl

denote the output of a standard ERM algorithm trained on task al with sample size

|Sal
|. Then for every ε and δ > 0 and if |Sal

| ≥ c0(1
ε
log 1

δ
+ d

ε
log 1

ε
), with probability

greater than (1− δ)

∀li ∈ Tl, ErPli ([h�]∼Fl
) ≤ ErPli ([h∗]∼Fl

) + 2ε

52

3.3 Multi-Task Cascade ERM

Proof We note that from the above definition of gal and h∗ = h ◦ gal , we may also

write h� as the original hypothesis h and the chosen transformation g� ∈ Gl such

that h� = h ◦ g�. We know that for a standard ERM algorithm, with probability

greater than (1− δ)

ErPal (h ◦ g�) ≤ ErPal (h ◦ gal) + ε (3.20)

From Lemma 3 we can write

|Tl|∑
i=1

ErPli (h ◦ g�) ≤
|Tl|∑
i=1

ErPli (h ◦ gal) + ε

From the transformation-multiplicativity assumption and Lemma 6 we can write

|Tl|∑
i=1

ErPli ([h ◦ g�]∼Fl
)−

|Tl|∑
i=1

Rg�f li ≤
|Tl|∑
i=1

ErPli ([h ◦ gal]∼Fl
)−

|Tl|∑
i=1

Rgal f̂ li + ε (3.21)

where f̂ li ∈ Fl are the optimal transformations for all li ∈ Tl given hypothesis h◦gal ,

and f li ∈ Fl are the optimal transformations for all li ∈ Tl given hypothesis h ◦ g�.

From the strong form of the indifference assumption we know that

|
|Tl|∑
i=1

Rgal f̂ li −
|Tl|∑
i=1

Rg�f̂ li | ≤
|Tl|∑
i=1

ErPal (h ◦ g�)−
|Tl|∑
i=1

ErPal (h ◦ gal)⇔ (3.22)

|
|Tl|∑
i=1

Rgal f̂ li −
|Tl|∑
i=1

Rg�f̂ li | ≤ 1

|Tl|

|Tl|∑
i=1

|Tl|∑
i=1

ErPli (h ◦ g�)− 1

|Tl|

|Tl|∑
i=1

|Tl|∑
i=1

ErPli (h ◦ gal)⇔

(3.23)

|
|Tl|∑
i=1

Rgal f̂ li −
|Tl|∑
i=1

Rg�f̂ li | ≤
|Tl|∑
i=1

ErPli (h ◦ g�)−
|Tl|∑
i=1

ErPli (h ◦ gal) (3.24)

(3.22) ⇔ (3.23) follows from the definition of the unified task (3.1). Note that in

(3.22) the residual is computed based on Pal
, while in (3.23) and (3.24) it is based

on each of the Pli .

Since f li ∈ Fl are the optimal transformations for all li ∈ Tl given hypothesis

53

3. HIERARCHICAL MULTI-TASK LEARNING: A CASCADE
APPROACH BASED ON THE NOTION OF TASK RELATEDNESS

h ◦ g�, we get that ∀i:

Rg�f li ≤ Rg�f̂ li (3.25)

From (3.20), (3.24) and (3.25) we can write

− ε ≤
|Tl|∑
i=1

Rgal f̂ li −
|Tl|∑
i=1

Rg�f li (3.26)

Putting together (3.21) and (3.26) gives

|Tl|∑
i=1

ErPli ([h ◦ g�]∼Fl
) ≤

|Tl|∑
i=1

ErPli ([h ◦ gal]∼Fl
) + 2ε (3.27)

From the definition of Fl and from Lemma 2 in [59] we can conclude that

∀li ∈ Tl, ErPli ([h ◦ g�]∼Fl
) ≤ ErPli ([h ◦ gal]∼Fl

) + 2ε (3.28)

�

Recall the CMT-ERM paradigm presented in Section 3.1.3.2. Theorem 2 deals

with the error accumulated in a single stage of the cascade, in which a near optimal

shared hypothesis has been found. In the following theorem we extend this analysis

to all levels in the hierarchy, and conclude the overall generalization analysis of the

CMT-ERM paradigm.

In the first iteration we choose a hypothesis rather than a transformation like in

the remaining iterations. In order to apply the same analysis we choose hypothesis

h ∈ H for Pa0 , and define G−1 to be the set of transformations for which [h]∼G−1
= H.

We note that as we don’t actually search over [h]∼G−1
but rather H, G−1 needs to

exist though we do not need to know it explicitly and we consider it just as a

notation for writing each hypothesis h′ ∈ H as h′ = h ◦ g′. For consistent notion

we define Sa−1 = Sa0 , where Sa0 is the sample set for choosing h ∈ H (recall the

definition of CMT-ERM). Thus in the following analysis the sample set size |Sa0| is
equal to |Sa−1| and is governed by V Cdim(H). When considering many tasks this

is a reasonable assumption. There are also cases when this step can be avoided see

54

3.4 Experiment

example in Fig. 3.2.

Theorem 3 states the generalization error for CMT-ERM when applied to the

hierarchically decomposed multi-task learning setting:

Theorem 3 Let {Tl,Fl,Gl}Ll=0 be a hierarchical decomposition of a set of F-related

tasks for which the cascade assumptions hold. Let h∗ = arg minh∈HEr
P1(h) and h�

the output of the CMT-ERM algorithm. For l = −1..L, let dl = V Cdim([h]∼Gl
), εl

the objective generalization error for each step in the algorithm, ε = 2
∑L

l=−1 εl and

|Sal
| the sample size available at each step of the algorithm. If δ > 0 and for every

l = −1..L, |Sal
| ≥ c0(1

εl
logL

δ
+ dl

εl
log 1

εl
), with probability greater than (1− δ)

ErP1(h�) ≤ ErP1(h∗) + ε

Proof The proof goes by induction on L. In our setting we are concerned with at

least one hierarchal level. For L = 1 we have three learning steps, choosing from

[h]∼G−1
, [h]∼G0

and [h]∼G1
. From Theorem 2 we know that given sample sets from all

tasks in each level with the size of each sample set |Sal
| defined as above, we obtain a

generalization error of at most 2εl when choosing an hypothesis from [h]∼Gl
. Putting

the three errors together we get an error of at most 2ε−1 + 2ε0 + 2ε1.

The induction step is straightforward given Theorem 2. Increasing the hierarchy

size L by adding level l adds a generalization error of at most 2εl. �

3.4 Experiment

In order to demonstrate when our proposed framework achieves improved perfor-

mance, we tested it in a controlled manner on a synthetic dataset we had created.

For that we consider the hypothesis class of conjunction classifiers ([74, 75]). We

assume an input space of boolean features. Each classifier in this hypothesis class

is expressed as a conjunction of a subset of the input boolean features1.

The set of transformations F are all possible feature swaps of length L, denoted

by i1...iL - j1...jL. A feature swap of length L is defined as swapping the values of

1More sophisticated conjunction classifiers over boolean functions can be used ([76, 77]), but
this goes beyond the scope of the current presentation.

55

3. HIERARCHICAL MULTI-TASK LEARNING: A CASCADE
APPROACH BASED ON THE NOTION OF TASK RELATEDNESS

the features indexed by i1...iL with the values of the features j1...jL. For example,

a swap transformation 1, 3 - 2, 4 applied to the binary sample 0101 will result in the

transformed binary sample 1010. We decompose the set of transformations F in the

following way: for each 0 ≤ l ≤ L, Fl corresponds to all swaps of length L− l among

the features that were not swapped yet. Gl+1 corresponds to all swaps of length 1

among the non swapped features. It is easy to see that the sets of transformations-

F,Fl and Gl+1 indeed follow definitions 1 and 2 in [59]. We note that each swap of

length L− l for 0 ≤ l ≤ L can be written as a swap of size L with l self swaps.

Same as for the example in Fig. 3.2 we consider the first hypothesis to be the

hypothesis which accepts all samples. With the above notations we do this by

concatenating L features valued ’1’ to all samples (both positive and negative) in

the training set. The first hypothesis is the conjunction of these added L features.

We note that choosing L features for a conjunction classifier is clearly equiv-

alent to search for a swap of length L given the defined conjunction over the L

dummy features concatenated to the original feature representation. We also note

that practically the search over the swap operations can be done on smaller search

space considering only swaps between the original features and the concatenated L

features.

Synthetic dataset The data defines a group of tasks related in a hierarchical

manner: the features correspond to nodes in a tree-like structure, and the number

of tasks sharing each feature decreases with the distance of the feature node from

the tree root. The input to the algorithm includes the sets of examples and labels

from all n tasks {Si}ni=1, as well as the hierarchical grouping of tasks.

More specifically, the data is created in the following manner: we define a binary

tree with n leaves. Each leaf in the tree represents a single binary classification task.

Each node in the tree corresponds to a single binary feature f ∈ {0, 1} . For a single

task we divide the features into two groups: task-specific and task-irrelevant. For

positive examples the task-irrelevant features have equal probability of taking the

value 1 or 0, whereas all the task-specific features are assigned the value 1. The

negative examples have equal probability of having the value 1 or 0 for all features.

The task-specific feature set is the set of features corresponding to all nodes on

the path from the leaf to the root, while all other nodes define the task-irrelevant

56

3.4 Experiment

feature set. For each group of tasks, their shared features are those corresponding

to common ancestors of the corresponding leaves.

We search for conjunctions of L features.1

For each leaf task, we consider the set {Tl}Ll=0 to correspond to the grouping of

tasks represented by the path from the leaf to the root in the synthetic dataset.

T0 corresponds to the root node representing all tasks. TL corresponds to the leaf

node representing the single objective task. The triplet {Tl,Fl,Gl}Ll=0 clearly obeys

definition 1 being a hierarchical decomposition of a set of F-related tasks.

We defined each set of samples Sal ∈ Sa0 , .., SaL to correspond to the union of

positive and negative samples from all tasks represented by the l’th node on the

path down from the root to the target task L.

The general cascade algorithm (definition 3) can be re-written for this specific

choice of H and G as follows:

1. Set h as the conjunction of the first L features.

2. Init Z the set of all features indices.

3. for l = 0..L

(a) find optimal h ∈ [h]∼Gl
:

i. Swap the l + 1 feature with a feature among all features in Z with

index greater than L+ 1 that minimizes ÊrSal (h)

ii. Remove this feature from Z

4. output h� = h.

We now claim that for this specific experimental setting, Assumptions 1 and 2

of theorem 1 hold.

Claim 1 Assumption 1 in theorem 1 holds.

The multiplicative property is derived directly from the definition of conjunction

of non overlapping sets of binary features.

1The assumption that all tasks have exactly L features used by their optimal classifier is valid
in case we consider balanced binary trees of hight L for creating the synthetic data.

57

3. HIERARCHICAL MULTI-TASK LEARNING: A CASCADE
APPROACH BASED ON THE NOTION OF TASK RELATEDNESS

Claim 2 Assumption 2 in theorem 1 holds.

First we note that by construction the features are statistically independent given

the label. Now let us consider the optimal transformation g∗ ∈ G. Each feature of a

negative example gets its value at random uniformly. Thus any choice of feature will

give the same false positive rate. On the other hand the optimal choice of feature

will correctly classify all positive examples. From this we can conclude that for both

types of errors the optimal choice of transformation g∗ is always less than or equal to

the error of any other choice of transformation. Thus together with the statistical

independence property we can conclude that the indifference property holds (see

Appendix for further discussion) and Assumption 2 is valid.

Results Figure 3.3 shows the performance of our approach compared to standard

baselines. First we consider the original two step approach for learning conjunction

classifiers, the Valiant step and Hassler step ([74, 75]) denoted by ’VHConj’. For

the ’VHConj’ approach each task is trained on it own. As a multi-task baseline

we consider the popular approach for training jointly a set of linear classifiers, by

minimizing a loss function (hinge loss) together with a group-lasso regularization

term. This approach is denoted by ’LinReg-L12’.

We consider a hierarchy of tasks with 64 individual tasks. We test our approach

on each task, measuring performance as a function of sample size. We show the mean

classification accuracy of all tasks averaged over 5 repetitions of the experiment.

With very few samples a conjunction classifier searching for exactly L features is

too restrictive as we cannot assume enough support to discover correctly all features.

To deal with such scenarios we consider two classifiers- the original conjunction

classifier using all the discovered features denoted by ’FullCascadeConj’ and a more

robust version which classifies as positive if L − 1 features take the value ’1’, and

denoted by ’PartialCascadeConj’. We note that the ’VConj’ is not restricted to a

pre-set number of features, thus this heuristic does not need to be applied to it.

We clearly see that the learning benefits much from our cascade approach. The

cascade conjunction approach outperforms significantly both the original conjunc-

tion baseline and the multi-task learning baseline. As expected for the very small

sample scenario the ’PartialCascadeConj’ performs best. For larger samples ’Full-

CascadeConj’ improves significantly. We were able to obtain the same results with-

58

3.4 Experiment

out assuming prior knowledge of the hierarchy, using the SIPO algorithm (described

in the next section) to discover it automatically.

Figure 3.3: Accuracy results for the synthetic dataset experiment. ’Y-axis’ corresponds to
accuracy. ’X-axis’ corresponds to sample size of the positive set (negative set has the same
size). Left plot corresponds to a small sample scenario. Right plot corresponds to a larger
sample size scenario. ’PartialCascadeConj’- denotes the classifier classifying as positive if L−1
features take the value ’1’; ’FullCascadeConj’ denotes the original conjunction classifier using
all the discovered features; ’VHConj’ denotes the two step approach based on Valiant’s step
and Hassler’s step; ’LinReg-L12’ corresponds to the multi-task baseline where training is done
using the group-lasso regularization term.

59

3. HIERARCHICAL MULTI-TASK LEARNING: A CASCADE
APPROACH BASED ON THE NOTION OF TASK RELATEDNESS

60

4

SIPO: Set Intersection Partial Or-

der

In chapters 2 and 3 we presented scenarios where knowing a hierarchical structure

over a set of predefined concepts (e.g. object categories) proves to be beneficial- the

novel subclass detection and multi-task learning scenarios. Clearly it is beneficial

to know a hierarchical structure of concepts. But, how can we discover it from data

when it is not known in advance?

In this chapter we present a general hierarchical model of tasks and an algorithm

to infer it from data. The model captures both part-membership (conjunctive) and

class-membership (disjunctive) hierarchies. We provide an algorithm for discovering

hierarchical structure in data. We start by assuming a binary set representation of

concepts (tasks). Each task is represented by a unique set of properties. Then, we

extend the model to a statistical setting.

The model captures both the part-membership and class-membership hierarchies

in a single hierarchy. Given a representation of an object class as a set of properties,

a grouping of several classes into a single more abstract class defines a co-occurring

set of properties shared by these classes. On the other hand a set of co-occurring

properties defines a grouping of one or more classes sharing these properties. The

connection between the two different hierarchies is achieved by the notion of partial

order. A hierarchy of classes defines a partial order among the classes, while inclusion

relations between sets of properties define partial order over these sets.

In section 4.1 we present the model, a partial order graph representation unifying

both the class membership and part membership hierarchies. In section 4.2 we

describe the algorithm constructing the hierarchical representation based on given

data. In section 4.3 we describe a statistical extension of the model- from the case

where each task is represented by a set of properties to the case where each task is

represented by a set of samples and each sample is represented by a set of properties.

Such a representation fits the regular learning scenario, where learning a concept is

61

4. SIPO: SET INTERSECTION PARTIAL ORDER

typically done from examples representing the specific concept. In 4.4 we present

promising experimental results showing that the statistical SIPO algorithm can be

used to discover the features of a conjunction classifier in a hierarchical setting of

learning tasks.

4.1 Partial Order Representation

Our hierarchical model is a partial order model capturing both the part-membership

(conjunctive concepts) and class-membership hierarchies (disjunctive concepts) 2.1.1.

In the following we regard the part-membership hierarchy as a property co-occurrences

hierarchy. We view the task of finding an object class hierarchy as finding common-

alities among object classes, see section 4.2. Finding such commonalities can be

thought of as computing the intersection of the sets of properties representing each

class. The set of properties representation is a general representation which can be

reduced to many of the recent object class representation approaches. This line of

thought lead us to propose the following dual representation model:

Given a finite set of properties P = {a,b,d, e...} and a matching set of boolean

functions (predicates) θ = {ψx|x∈P} each denoting whether sample s contains a

property, thus: ψa(s) = 1 iff the property a is present in s. We represent a single

class by the set of properties PC which each instance in this class always contains,

thus s∈C iff ψx(s) = 1 ∀x∈PC. This can also be expressed as a boolean function

which is a conjunction of all property functions, thus s∈C iff ψC(s) = 1 where

ψC(s) =
∧

x∈PC
ψx(s); we call ψC(s) the membership function of class C.

In the class-membership hierarchy we say that B � A iff ∀s ∈ A⇒ s ∈ B in the

part-membership hierarchy, or equivalently we say B � A iff ∀x ∈ PB ⇒ x ∈ PA.

Given our representation of classes as sets of properties, one can easily see that

defining the specific level class representation as the union of set of properties of all

its general level classes is equivalent to setting the samples belonging to a specific

level class to the intersection of the set of samples belonging to all of its general

level classes. This results in a partial order which is consistent with both class-

membership and part-membership hierarchies.

We note that by representing a specific class C as the union of the set of proper-

ties of its more general classes PaC we get that ψC(s) =
∧

p∈PaC

∧
x∈p ψx(s), thus

62

4.1 Partial Order Representation

the membership function of class C is the conjunction of the membership functions

of classes PaC. This fits our intuitive example of part-membership hierarchy from

above - if something has a leg, tail and head (conjunctions) than it is a dog, but just

knowing that there is a leg does not imply that there is a dog. Thus the conjunction

of the part detections is more specific than each separate part detection. Even more,

given a set of specific classes which we know share a common general class, we can

represent the general class using the intersection of property sets of all its specific

classes, thus we can compute the membership function. On the other hand, even

if we know the identity of all samples which belong to its specific sub-classes, we

cannot deduce the identity of all samples which belong to the general class, since

(from our definition) the union of all the samples belonging to the specific classes

is merely contained in the set of samples belonging to the general class1. Thus the

equality in DOG = AFGHAN ∪BEAGEL∪COLLIE holds only in a fully observable

world assumption where we know all categories.

Based on the set of properties representation of a class and the definition above

for specific and general levels we represent the partial order using a graph G =< V,E >.

Each node v ∈ V represents a class and is associated with two sets: Rv - the prop-

erty set which is the class representation, and Iv - all instances belonging to the

class represented by node v. Each edge (v,u) ∈ E indicates that v implies u, thus

u � v. Let Chv denote the set of children of node v, then:

1. Rv = ∪c∈ChvRc

2. Iv = ∩c∈ChvIc

When Chv = ∅:

1. Rv = {x}, where x is a single property from the property set.

2. Iv = {s|ψx(s) = 1}

Note, that as the representation of a node is based on the union of the repre-

sentations of its children, hence for each property used to represent at least one of

the classes there has to be a single node represented by this property alone. Let’s

denote the special set of nodes for which Chv = ∅ as Layer1 and the set of nodes

representing all known classes we call Layer2. We note that Layer1 ∪ Layer2 ⊆ V.

1This point is the basis of the novel class detection approach presented in 2.

63

4. SIPO: SET INTERSECTION PARTIAL ORDER

4.1.1 Compactness Constraints

Figure 4.1: Possible graphical structures for a given set of properties:
P = {a,b, c,d, e, f ,g,h, i, j,k} , and a set of labeled classes {A,B,C,D,E,F}. Each
class has the following sub set of properties: PA = {a,b}, PB = {a,b, c} , PC = {b,d, e}
, PD = {c,d, e} , PE = {d, e, f ,g,h, i, j} and PF = {d, e,g,h, i, j,k}. Layer1 nodes are
labeled with lower case. Layer2 nodes are labeled with upper case. Dashed lines (nodes and
edges) represent constraint violations. Bottom row shows a graph representation of the data
which satisfies all constraints. Top row shows possible subgraphs each has a single constraint
violated- 4.2, 4.3, 4.5 or 4.4 from left to right respectively.

For a given set of known classes and properties the description so far does not

describe a unique graph representation, as shown in figure 4.1. From all possible

graphs representing a legal partial order, we define the following constraints which

define a compact graph:

1. Data Consistency: Given a set of properties and a set of classes, we would like

the graph representation to maintain the known relation and not add any new

ones.

∀u ∈ Layer1 and v ∈ Layer2 ∃path(v,u)⇔ Ru ⊆ Pv (4.1)

2. Vertex Minimality Constraints: from the representation point of view, there

are two types of redundant vertices - those that represent the same class and

those that have the same property representation. First constraint - no two

64

4.1 Partial Order Representation

vertices may represent the same class:

¬∃s,v ∈ V such that

{u : path(u, s) ⊂ E,u ∈ Layer2} = {u : path(u, v) ⊂ E,u ∈ Layer2}(4.2)

Second constraint - no two vertices may have the same representation:

¬∃s,v ∈ V such that

{u : path(s, u) ⊂ E,u ∈ Layer1} = {u : path(v, u) ⊂ E,u ∈ Layer1}(4.3)

3. Maximal order: We would like to represent all order relations within the set

of known classes.

For example in Figure 4.1, all graphs represent a valid partial order, but the

rightmost graph in the top line does not show a maximal partial order rep-

resentation as there is no edge going from B to A so we cannot deduce from

the graph that A � B, while the bottom graph does show this relation. Thus

when presented with a sample from B represented by PB = {a,b, c} there will

be two satisfied nodes A and B where neither one is more specific than the

other.

{v : path(s, v) ∈ E,v ∈ Layer1} ⊂ {v : path(u, v) ∈ E,v ∈ Layer1} ⇔

path(u, s) ⊂ E (4.4)

4. Edge Minimality Constraint: Let va denote the node represented by only one

property a, and vab , vac and vabc denote classes represented by the sets of

properties {a,b}, {a, c} and {a,b, c} respectively. A possible graph would

have the following edges: (vabc,vab),(vabc,vac),(vabc,va). These edges are re-

dundant in the sense that (vabc,va) can be removed without effecting the

representation of vabc or violating the maximal order constraint.

¬∃e = (u,v) ∈ E such thatG∗ =< V,E\e > (4.5)

maintains the maximal order constraint andR∗u = Ru

65

4. SIPO: SET INTERSECTION PARTIAL ORDER

4.2 Hierarchy Discovery Algorithm

In our above discussion we dealt with representing the partial order given a set of

classes. In this section we deal with two problems:

a) Not all possible labels in the partial order are given in advance.

b) How to find this partial order among a set of given classes.

How do we deal with the case where not all possible labels in the partial order are

given in advance? For example an implicit description of the general level ’Motor-

bike’ class can be given by more specific motorbikes such as ’Cross-Motorbike’ and

’Sport-Motorbike’, without stating explicitly that both belong to the same general

level class ’Motorbike’. In such a case where a general class is not stated explic-

itly we’ll refer to it as a hidden general class. In the following we will deal with

discovering all the possible hidden general classes by finding commonalities among

known given classes. Given any two classes we say these classes have a general class

in common if the intersection of the feature sets representing the two classes is not

empty. Formally, We say a class C is a hidden general class with respect to a given

set of classes Γ iff ∃A,B ∈ Γ such that PC 6= ∅ and PC = PA ∩PB.

Under this definition finding all hidden general classes requires that we find all

possible intersections of representation sets between all subsets of known classes.

We propose algorithm 3 for finding all possible hidden general level classes

while simultaneously building a graph representation Gout =< Vout,Eout > consis-

tent with the proposed graph partial order representation. In order to do so we

start with an initial graph representation of a given set of classes which is consis-

tent with the above representation. For each property in x ∈ ∪c∈ΓPc we define a

vertex v,Rv = {x} andChv = ∅. For each class C ∈ Γ we define a vertex u with

a set of outgoing edges denoted ˆOut(u), where for each x ∈ PC there is a corre-

sponding edge (u,v) ∈ ˆOut(u). We denote the vertices corresponding to properties

as Layer1 and the vertices corresponding to classes as Layer2. Thus the input graph

Gin =< Vin,Ein > is defined by Vin = Layer1 ∪ Layer2 and Ein = ∪u∈Layer2 ˆOut(u).

We assume for now that in a given set of classes Γ there aren’t any two class A,B ∈ Γ

where PA ⊆ PB or PB ⊆ PA.

66

4.2 Hierarchy Discovery Algorithm

Now we shall describe the four basic operation carried out by the algorithm:

Split, Forward-Merge, Backward-Merge and Maximal-Ordering. These four oper-

ations enable the creation of new nodes based on the set of vertices connected by

outgoing edges Out(u) and the set of vertices connected by incoming edges In(u) of

each vertex u ∈ V.

Split(s,in(s)): The split operation creates a new node for each pair of incoming

edges in in(s) ⊂ In(s) of node s ∈ V. Intuitively this helps us mark an

intersection between the representation of two nodes as equivalent to Rs (the

representation of node s).

Formally:

∀u,v ∈ V such that {u,v} ∈ in(s) do:

Create a new node t with

• Out(t) = {s}

• In(t) = {u,v}

Forward-Merge(U): The Forward-Merge operation merges all nodes in a specific

set of nodes U which share the same incoming edges. Intuitively by doing

the merge operation after the split operation we find the maximum set of

intersection between the representation of any two vertices. This operation

is essential for maintaining the first vertex minimality constraint (eq. 4.2),

verifying that no two vertices may represent the same class. Let Ein
i denote

a set of nodes which all share the same parent nodes. Thus, ∀u,v ∈ Ein
i

In(u) ≡ In(v). Let Ein denote the group of maximal equivalence sets of nodes

according to the incoming edges. Thus, ∀u ∈ U,u ∈ ∪iEin
i and ∀Ein

i,Ein
j ∈

Ein, i 6= j ⇔ ∀u ∈ Ein
i and ∀v ∈ Ein

j In(u) 6= In(v).

Formally:

1. Compute the group of Ein over U.

2. ∀Ein
i ∈ Ein if |Ein

i| > 1

Create a new node n with

• Out(n) = {s|s ∈ Out(u) ∀u ∈ Ein
i}

67

4. SIPO: SET INTERSECTION PARTIAL ORDER

• In(n) = In(u) where u ∈ Ein
i

As Forward-Merge(U) is done sequentially after the Split(s,in(s)) opera-

tion, each node u ∈ U has exactly two incoming edges- {(x,u), (y,u)}, where

x,y ∈ ∪sin(s). We can compute Ein using the algorithm described in A.2.1

after sorting the two incoming edges to each node, given some predefined order

over all possible incoming edges. As input to the algorithm in A.2.1 we pass

U as the group of sets, and ∪sin(s) as the group of possible elements in each

set. Thus the runtime of Foward-Merge(U) is O(| ∪s in(s)| + |U|).

Backward-Merge(U): The Backward-Merge operation merges all nodes in a spe-

cific set of nodes U which share the same outgoing edges. Intuitively by doing

the Backward-Merge operation after the Forward-Merge we find the maximal

set of nodes which share the same representation. This operation is essential

for maintaining the second vertex minimality constraint (eq. 4.3), no two ver-

tices may have the same representation. Let Eout
i denote a set of nodes which

all share the same child nodes. Thus, ∀u,v ∈ Eout
i Out(u) ≡ Out(v). Let

Eout denote the group of maximal equivalence sets of nodes according to the

outgoing edges. Thus, ∀u ∈ U,u ∈ ∪iEout
i and ∀Eout

i,Eout
j ∈ Eout, i 6= j ⇔

∀u ∈ Eout
i and ∀v ∈ Eout

j Out(u) 6= Out(v).

Formally:

1. Compute the group of Eout over U.

2. ∀Eout
i ∈ Eout

Create a new node n with

• Out(n) = Out(u) where u ∈ Eout
i

• In(n) = {s|s ∈ In(u) ∀u ∈ Eout
i}

For the computation of Eout we can again use the algorithm described in A.2.1,

where U is the group of sets and ∪s−was−splits is the group of possible elements

in each set (outgoing edges). As mentioned in A.2.1 for each node u ∈ U the

elements (outgoing edges) should be sorted. Contrary to the computation of

Ein in the Forward-Merge(U) where each node has exactly two elements

(incoming edges) and thus sorting the elements of each node can be done in

68

4.2 Hierarchy Discovery Algorithm

constant time, the size of the possible elements considered for each node at

this stage can be at most | ∪s−was−split s|. In order to overcome the need for

sorting outgoing edges of each node at this stage we would like to keep the

Out(u) of each node, ordered according to some chosen order of the original

s nodes. This can be accomplished easily by keeping each Ein
i during the

Forward-Merge(U) ordered according to the order of Split(s,in(s)). The

runtime of Backward-Merge(U) is O(| ∪s−was−split s| +
∑

u |Out(u)|).

EdgeMin(U): Given a set of nodes U it may be the case that ∃u,v ∈ U for which

Ru ⊂ Rv. Under our partial order interpretation of the graph and in order

to maintain the maximal order and edge minimality constraints (eq. 4.4 and

4.5) we would like to connect by an edge each node to the most specific node

representing a more general level. When doing so we would like to delete

all edges to nodes more general than the newly connected node. This can

be achieved by checking for each pair of new nodes u,v ∈ U if Ru ⊂ Rv

(w.l.o.g). In such a case all edges connecting u to nodes in the intersection of

In(u) and In(v) should be deleted. This will ensure that ∀s ∈ In(u) ∩ In(v)

(for which Ru ⊂ Rv ⊂ Rs) s will be connected to the most specific general

node, v. Hence we achieve the maximal ordering (eq. 4.4) by maintaining

the connectivity between s to v and u, and the edge minimality (e. 4.5) by

deleting redundant edges- (s,u).

Formally:

1. for each p ∈ ∪s−was−splits create a list Lp

2. for each ui ∈ U go over all p ∈ Out(ui), and add i to Lp.

3. for each i choose p∗ = arg minp∈Out(ui) |Lp|

(a) for each p ∈ Out(ui) mark all j 6= i ∈ Lp∗ which appear in Lp.

i. if j appears in all Lp, conclude that Out(ui) ⊆ Out(uj)

4. for each j such that Out(ui) ⊆ Out(uj) do In(ui) = In(ui)\In(ui)∩In(uj)

Note that in the following algorithm EdgeMin(U) is preformed sequentially

after Backward-Merge(U), and thus for any two ui,uj ∈ U there cannot be

an identity between Out(ui) and Out(uj).

69

4. SIPO: SET INTERSECTION PARTIAL ORDER

Initializing all Lp takes O(| ∪s−was−split s|). Updating all Lp for all ui ∈ U

takes O(
∑

i |Out(ui)|). We assume a predefined order over ui ∈ U . Find-

ing p∗ for each i takes O(|Out(ui)|). Going over all other p ∈ Out(ui) and

checking for each j 6= i ∈ Lp∗ if it appears in Lp takes O(
∑

p∈Out(ui) |Lp|);
this can be achieved as we assume that Lp∗ and Lp are ordered, so com-

paring both lists can be done in a single pass with runtime O(|Lp|) as |Lp ∗
| < |Lp|. Thus, finding all containment relations among all ui ∈ U takes

O(
∑

i |Out(ui)| +
∑

i

∑
p∈Out(ui) |Lp|). Finding and deleting the edges in the

intersection of both nodes, step 4, can take O(|In(ui)|+|In(uj)|). Given a hash

table of size |∪i In(ui)| (we do not assume In(u) is ordered). Thus, in total we

can conclude that the runtime of the EdgeMin operation is O(
∑

i |Out(ui)|+∑
i

∑
p∈Out(ui) |Lp|+ |In(ui)|+ |In(uj)|).

The Algorithm is summarized below in Alg 3.

4.2.1 Algorithm Analysis

In this section we highlight the main guarantees of algorithm 3. A detailed analysis

is given in appendix A.2.2. Algorithm 3 discovers all non empty intersections and

produces a graphical representation which obeys all compactness constraints. We

calculate the runtime of the algorithm as a function of the size of the output- the

number of all non empty intersections. We note that in case the data is not sparse

in the number of non empty intersections the worst case analysis results in an expo-

nential runtime (computing the power set of the input classes). For the analysis we

denote by Γin the set of all classes in the input. Ω denotes the group of all possible

non empty intersections with a unique set of features. ĉi
k ∈ Ω denotes a group of

classes with k features in their intersection. ∆k ⊆ Ω denotes the group of intersec-

tions with k features. We also define the following measure- D̂l =
∑n−1

k=1 k#k where

#k =
∑

ĉi
k∈∆k

|ĉik|2. Theorem 1 states that all constraints are kept. Theorem 2 states

that all non empty intersections are discovered. Theorem 3 presents the runtime

which is governed by a quadratic term in the number of classes |ĉik|2 of each of the

existing intersections in the data.

70

4.2 Hierarchy Discovery Algorithm

Algorithm 3 SIPO: Set Intersection Partial Order
Input :

Gin =< Vin,Ein > where Vin = Layer1 ∪ Layer2 and Ein = ∪u∈Layer2Out(u)

Output:

Gout =< Vout,Eout >

1. Initialization:

- Vout = Vin,Eout = Ein,

- S = Layer1,∀s ∈ S in(s) = In(s),

- FWMerg = ∅, BWMerg = ∅, tmpS = ∅

2. While ∃s ∈ S such that in(s) 6= ∅ do:

(a) ∀s ∈ S do:

i. Split(s,in(s))

ii. add all nodes created by Split(s) to tmpS

iii. in(s) = ∅
(b) Forward-Merge(tmpS) and add all newly created nodes to FWMerg

(c) Backward-Merge(FWMerg) and add all newly created nodes to
BWMerg

(d) Vout = Vout ∪BWMerg

(e) EdgeMin(BWMerg)

(f) ∀s ∈ BWMerg and ∀u ∈ In(s), ∀v ∈ Out(s) do:

i. Eout = Eout\(u,v)

ii. Eout = Eout ∪ {(u, s), (s,v)}
iii. in(v) = in(v) ∪ s

3. ∀v ∈ Vout such that |Out(v)| == 1 do:

(a) for s = Out(v) and ∀u ∈ In(v)

i. Out(u) = Out(u) ∪Out(v)

ii. In(s) = In(s) ∪ In(v)

iii. Eout = Eout ∪ (u, s)

(b) Vout = Vout\v

71

4. SIPO: SET INTERSECTION PARTIAL ORDER

Theorem 1 Given Gin maintaining all constraints (1-5), the output graph Gout

also maintains all constraints (1-5) .

Theorem 2 For each subset ΓC ⊂ Γin such that ∩A∈ΓC
PA 6= ∅ there exists a

corresponding node in v ∈ Vout with Rv = ∩A∈ΓC
PA

Theorem 3 Alg 3 has runtime O(D̂l).

See appendix for detailed proofs.

4.3 Statistical SIPO Model

Until now we assumed a scenario where a class (or category) is described determin-

istically by a set of properties Pc which should appear in all instances of the class.

We would now like to relax this assumption and deal with the case where a group of

class properties, appear only probabilistically in each of its instances. Thus, instead

of requiring x∈Pc ⇒ ψx(s) = 1 ∀s ∈ C, we denote δCx ≡ P(ψx(s) = 1| s ∈ C), the

class dependent probability of property x. We say that property x belongs to class

C if its class dependent probability exceeds a certain threshold: x∈Pc ⇒ δCx > ρx,

in which case we shall refer to the property x as ”typical” to class C. In addition

properties can appear in classes where they are not typical, in which case we will

refer to them as noisy properties. We define a property as noisy with respect to a

given class if δCx ≤ ρx. ρx is a class independent probability of a specific property x

to appear in instances of classes where this property is not ”typical”.

We say that x is ”similarly typical” between classes if the class dependent values

δCx are similar. Formally we shall denote Xi a group of classes for which x is similarly

typical- δCx ∈ [δxi − λx, δxi + λx],∀C ∈ Xi.

For example, let Γ = [A,B,C,D,E] denote a group of classes, and [0.1, 0.4,

0.45, 0.78, 0.8] the corresponding class dependent probabilities [δAx , δ
B
x , δ

C
x , δ

D
x , δ

E
x]

of property x, where ρx = 0.2 and λx = 0.1. We will say that x is ”typical” to

classes B,C,D and E while B is ”similarly typical” to C with respect to x and also

D is ”similarly typical” to E with respect to x.

We now extend the notions of ”typical” and ”similarly typical” properties to a

72

4.3 Statistical SIPO Model

”typical group” of co-occurring properties, where x now denotes a group of proper-

ties, Pc a group of groups of properties and δCx ≡ P(
∧

x′∈x ψx′(s) = 1|s ∈ C).

In order to apply the graphical model and graph construction algorithm to this

statistical scenario we restrict the probability model using the following assumptions:

1. Noisy properties of a class are statistically independent.

2. If a group of properties is ”typical” to a class than each individual property is

also ”typical”.

3. A group of properties is said to be ”typical” to a class if δCx ≥
∏

x′∈x δ
c
x′ where x

denotes the group and x′ an individual property in the group.

Assumption 2 is a strong restriction as we might want to allow two or more

properties to be ”typical” only when they occur together but not separately, in such

a case we can define a new property as the conjunction of these property; the new

property will be typical, but the old properties and their conjunction won’t.

Statistical Intersection In the deterministic case, we presented Algorithm 3 for

finding all possible general classes. This algorithm is based on finding common-

alities among classes by computing the intersection between the property sets of

each class. The notion of intersection between the sets Pc can be extended to the

statistical scenario by regarding any ”similarly typical” group of properties between

two or more classes as a partial intersection between the group of classes. In the

deterministic case the intersection of a given group of classes contains all properties

shared by all classes in the group. In the statistical case it is more complicated:

two groups of properties x and y, which are both ”similarly typical” for a group of

classes Γ, may not be ”similarly typical” together with respect to the same group

of classes, hence t = x∪ y is not necessarily ”similarly typical” in Γ. In such a case

we will say that the intersection between a given group of classes is a set of sets of

”similarly typical” properties, as opposed to the deterministic scenario where the

intersection is a single group. Thus, we will say that the statistical intersection SI

of Γ is {x,y}, denoted SI(Γ) = {x,y}.

73

4. SIPO: SET INTERSECTION PARTIAL ORDER

Given the set Υ of all ”similarly typical” groups with respect to a group of classes

Γ, we define the statistical intersection of Γ as a set of ”similarly typical” groups of

properties with the following two conditions:

1. ∀x ∈ Υ ∃y ∈ SI(Γ) such that x ⊆ y.

2. ∀y ∈ SI(Γ) 6 ∃x ∈ Υ such that y ⊂ x.

It can be said that SI is the maximal set of ”similarly typical” groups with

respect to any group of classes.

4.3.1 Statistical Algorithm

We shall now extend Algorithm 3 to deal with the statistical scenario and build

a graph discovering all possible classes based on the statistical intersection while

organizing them according to the partial order representation. In the statistical

scenario we assume (as is common) that each known class is described using a set of

i.i.d samples from the class, each having its own set of properties. We estimate δCx

from the empirical probability of a group of properties x appearing in class C. For

now we assume that for each single property x the following parameters are given-

ρx, δxi and λx. We note that λx depends on our confidence in the value of δCx of

all classes. As δCx is the parameter of a Bernoulli random variable estimated by the

average of an empirical set sampled i.i.d, our confidence in this value grows with the

number of examples given for each class. This can guide the setting of λx- the more

samples we have the smaller we will set λx.

In order to compute the statistical intersection we are interested in the ”similarly

typical” groups. Thus if two classes have property x as a ”typical” property which

is not ”similarly typical” between the classes we would ignore this in the statistical

intersections computations. This leads to the following preprocessing of the data,

where we divide all single properties into the potential ”similarly typical” groups,

representing each such group as a node in Layer1. We note that a single property

can belong to several ”similarly typical” groups in case the similarity intervals of

these groups overlap. Each such group is represented as a property of its own. When

the ”similarly typical” groups overlap, we regard each intersection including proper-

ties representing different similarity groups of the same original property as several

74

4.3 Statistical SIPO Model

intersections, each containing only one possible similarity group of this property,

For example, suppose property y has 3 potential similarity groups defined by the

following intervals: [0.4,0.8],[0.5,0.9] and [0.6,1] and the values δAx , δBx and δCx are

0.6,0.6,0.8 respectively. We will say that y appears in the intersection of classes A,B

and C with respect to the third similarity group interval and in the intersection of

A and B with respect to the first and second similarity group intervals. This will

be represented in the graph by three possible nodes y1,y2 and y3, where y2 and y1

are descendants of a node representing classes A, B, and y3 is a descendant of a

node representing classes A, B, C.

Given the preprocessing creation of nodes representing the similarity groups of

each property, the original Split operation in Algorithm 3 remains the same and the

main modification is done in the Forward-Merge operation. Two points need to be

considered when computing the statistical intersection:

1. It is not straight-forward that for x and y which are similarly typical the group

x ∪ y is also similarly typical. This follows from the third assumption on the

probability model.

2. The statistical intersection is represented by several nodes, where each single

node represents a ”similarly typical” group of properties.

We address this point by looking at the output of the Forward-Merge as defined

above, and splitting each newly created node into a set of nodes representing the

statistical intersection between the parents of the new node. We define the following

node split operation:

Foward-Merge-Split(n): The output of the Forward-Merge (Algorithm 3) groups

all properties shared between two classes, say A and B, together into a single

node n. The properties are represented by the outgoing edges and the classes

by the incoming edges. As noted above from the fact that x and y are similarly

typical we cannot infer that the group t = x ∪ y is also such. This can be

verified by computing δAt and δBt and checking if t is ”similarly typical” in

accordance with assumption 3 on the probability distribution. δAt can be

computed by counting the number of samples from the class which have all

properties in t.

75

4. SIPO: SET INTERSECTION PARTIAL ORDER

This is represented by splitting the single node n into a set of nodes, assign-

ing a node to each maximal set of properties such that no properties can be

added to it without violating the ”similarly typical” relation. The single node

representing the intersection between classes A and B is replaced by the set

of nodes representing the statistical intersection. We propose the following

iterative algorithm:

1. Init SI= All single properties descending from the outgoing edges.

2. for each s ∈ SI

• find all x ∈ SI for which t = s ∪ x a ”similarly typical” group with

respect to classes A and B.

• If there is at least one t ”similarly typical” group

- Remove s and x from SI

- Insert all t into the end of SI

3. for each s ∈ SI

• For each property in s: if there exists another property representing

the same original property but a different similarity group, split this

node into two nodes, and keep track.

The complexity of checking if a group of properties is ”similarly typical” is

governed by the number of samples for each class. In case there are many

samples this can be an expensive operation. On the other hand, when there

are many samples the values of λx can be low as we are confident in our measure

of δCt , with the underlining sparsity assumption of intersection among classes

this means that only true (or confidant) intersections will be computed which

should be relatively rare.

In step 3 of the Forward-Merge-Split we keep track of all nodes which were split

due to a duplicate representation of the same property, which might occur in

case the similarity intervals overlap. If these nodes were not merged separately

during the Backward-Merge, we will unite them again.

76

4.4 Experiment

4.4 Experiment

Recall the experiment described in 3.4, where we assumed we know the true hierarchy

of tasks. We now repeat this experiment without assuming the hierarchy is known.

We test both the task hierarchy structure and the part membership hierarchy

discovered by the statistical SIPO algorithm. We used the synthetic data and re-

peated the exact same experiment described in Section 3.4. For each task we used

its positive samples as input to the SIPO algorithm. The output of SIPO represents

a hierarchy of tasks, where for each internal node n we can define a unified task

based on all tasks it represents (the tasks which are represented by the ancestor

nodes of node n in Layer2).

In order to apply the same learning algorithm used in Section 3.4, a cascade of

unified learning problems needs to be defined for each task. We define this cascade

for each task based on the longest path in the SIPO graph, starting from the node

representing the task to a node in Layer1. Each node in this cascade corresponds

to a single unified task. We denote this approach by ’FullSIPOERMConj’.

While the statistical SIPO algorithm discovers the task hierarchy structure, it

also discovers the part membership hierarchy. From this perspective, we can use

SIPO directly as a feature selection algorithm for the conjunction classifier. Instead

of using the discovered cascade to guide the cascade of learning steps defined in

Section 3.4, we can simply construct the conjunction classifier feature set by selecting

all features represented by the nodes in the SIPO graph corresponding to the cascade.

We denote this approach by ’SIPOConj’.

Fig. 4.2 shows the results. First we note that clearly the statistical SIPO algo-

rithm is able to discover the relevant hierarchical structure: ’FullCascadeConj’ and

’FullSIPOERMConj’ achieve the same results. Second we note that for the small

sample scenario, inferring the relevant features directly from the SIPO structure out-

performs significantly the risk minimization approach. All approaches outperform

the baseline conjunction classifier ’VHConj’.

77

4. SIPO: SET INTERSECTION PARTIAL ORDER

Figure 4.2: Accuracy results for the synthetic dataset experiment described in 3.4. The SIPO
based approaches are compared to the baseline and the the original conjunction classifier de-
scribed in 3.4, see Figure 3.3 for the results of the original experiment. ’Y-axis’ corresponds
to accuracy. ’X-axis’ corresponds to sample size of the positive set (negative set has the same
size). ’FullCascadeConj’ denotes the original conjunction classifier described in 3.4; ’VHConj’
denotes the two step approach based on Valiant’s step and Hassler’s step; ’FullSIPOERMConj’
denotes training the original conjunction classifier using the cascade of training tasks discov-
ered by SIPO; ’SIPOConj’ denotes the conjunction classifier which is defined by selecting all
features represented by the nodes in the SIPO graph corresponding to the discovered cascade.

78

5

Hierarchical Regularization Cascade

We present a hierarchical approach for information sharing among different classifi-

cation tasks, in multi-task, multi-class and knowledge-transfer settings. We propose

a top-down iterative method, which begins by posing an optimization problem with

an incentive for large scale sharing among all classes. This incentive to share is grad-

ually decreased, until there is no sharing and all tasks are considered separately. The

method therefore exploits different levels of sharing within a given group of related

tasks, without having to make hard decisions about the grouping of tasks.

In order to deal with large scale problems, with many tasks and many classes,

we extend our batch approach to online setting and provide regret analysis of the

algorithm. Based on the structure of shared information discovered in the joint

learning settings, we propose two different knowledge-transfer methods for learning

novel tasks. The methods are designed to work within the very challenging large

scale settings. We tested our methods extensively on synthetic and real datasets,

showing significant improvement over baseline and state-of-the-art methods.

More specifically, in the joint learning scenario, we propose a top-down iterative

feature selection approach: It starts with a high level where sharing features among

all tasks is induced. It then gradually decreases the incentive to share in successive

levels, until there is no sharing at all and all tasks are considered separately in

the last level. As a result, by decreasing the level of incentive to share, we achieve

sharing between different subsets of tasks. The final classifier is a linear combination

of diverse classifiers, where diversity is achieved by varying the regularization term.

The diversity of regularization we exploit is based on two commonly used reg-

ularization functions: the l1 norm [78] which induces feature sparsity, and the l1/l2

norm analyzed in [41] which induces feature sparsity while favoring feature sharing

between all tasks. Recently the sparse group lasso [79] algorithm has been intro-

duced, a linear combination of the lasso and group-lasso [80] algorithms, which can

yield sparse solutions in a selected group of variables, or in other words, it can

discover smaller groups than the original group constraint (l1/l2).

79

5. HIERARCHICAL REGULARIZATION CASCADE

We also developed two knowledge transfer approaches which are based on the

shared information discovered by the regularization cascade in a joint learning sce-

nario. In the knowledge transfer scenario we assume that some of the common

information shared by the pre-trained tasks and the novel task can and has been

found in the joint learning of the pre-trained tasks. When learning the novel class,

the challenge is to discover which elements of shared information found in the joint

learning of the pre-trained models is relevant, and possibly beneficial, to the training

of the new task.

We propose two fundamentally different ways to accomplish knowledge trans-

fer. In the first approach we use the pre-learnt structures to impose hierarchical

dimensionality reduction on the data, which makes possible the learning from small

sample of the new task. This approach is implemented in a batch algorithm. The

second approach is an online scheme which maintains the original feature space and

regularization structure used during the multi-task learning stage. In this second

approach the pre-learnt structures are used to boot-strap the online learning of the

new task.

Chapter Outline The main contribution of this chapter is to develop an implicit

hierarchical regularization approach for information sharing, inducing shared infor-

mation discovery in joint learning scenarios (see Section 5.1). Another important

contribution is the extension to the online setting where we are able to consider a lot

more learning tasks simultaneously, thus benefiting from the many different levels of

sharing in the data (see Section 5.2 for algorithm description and regret analysis).

In Section 5.3 we describe extensive experiments for the joint learning scenario on

both synthetic and five popular real datasets. The results show that our algorithm

performs better than baseline methods chosen for comparison, and state of the art

methods described in [10, 12]. It scales well to large data sets, achieving significantly

better results even when compared to the case where an explicit hierarchy is known

in advance [9]. In Section 5.4 we present our batch and online knowledge-transfer

approaches. In section 5.5 we describe the experiments for the knowledge-transfer

scenario showing promising results both on synthetic and real datasets of medium

and large size.

80

5.1 Hierarchical Regularization Cascade for Multi Task Learning

5.1 Hierarchical Regularization Cascade for Multi

Task Learning

We now describe our algorithm, which learns while sharing examples between tasks.

We focus only on classification tasks, though our approach can be easily generalized

to regression tasks.

Notations Let k denote the number of tasks or classes. In the multi-task setting

we assume that each task is binary, where x ∈ Rn is a datapoint and y ∈ {−1, 1} its

label. Each task comes with its own sample set Si = {(xs,ys)}mi
s=1, where mi is the

sample size and i ∈ {1...k}. In the multi-class setting we assume a single sample

set S = {(xs,ys)}ms=1, where ys ∈ {1..k}. Henceforth, when we refer to k classes or

tasks, we shall use the term tasks to refer to both without loss of generality.

Let n denote the number of features, matrix W ∈ Rn×k the matrix of feature

weights being learnt jointly for the k tasks, and wi the i’th column of W. Let b ∈ Rk

denote the vector of threshold parameters, where bi is the threshold parameter

corresponding to task i. ||W||1 denotes the l1 norm of W and ||W||1,2 denotes its

l1/l2 norm - ||W||1,2 =
∑n

j=1 ||wj||2, where wj is the j’th row of matrix W and

||wj||2 its l2 norm.

The classifiers we use for the i’th task are linear classifiers of the form f i(x) =

wi ∗ x+ bi. Binary task classification is obtained by taking the sign of f i(x), while

multi-class classification retrieves the class with maximal value of f i(x).

To simplify the presentation we henceforth omit the explicit reference to the bias

term b; in this notation b is concatenated to matrix W as the last row, and each

datapoint x has 1 added as its last element. Whenever the regularization of W is

discussed, it is assumed that the last row of W is not affected. The classifiers now

take the form f i(x) = wi ∗ x.

To measure loss we use the following multitask loss function:

L({Si}ki=1,W) =
k∑
i=1

∑
s∈Si

max(0, 1− ys ∗ f i(xs)) (5.1)

Without joint regularization this is just the sum of the hinge loss of k individual

81

5. HIERARCHICAL REGULARIZATION CASCADE

tasks. The multi-class loss function is defined as in [81]:

L(S,W) =
∑
s∈S

max(0, 1 + max
ys=i,j 6=i

(f j(xs)− f i(xs))) (5.2)

For brevity we will refer to both functions as L(W). Note that the choice of the

hinge loss is not essential, and any other smooth convex loss function can be used

(see [82]).

5.1.1 Hierarchical Regularization

We construct a hierarchy of regularization functions in order to generate a diverse

set of classifiers that can be combined to achieve better classification. The con-

struction of the regularization cascade is guided by the desire to achieve different

levels of information sharing among tasks. Specifically, at the highest level in the

hierarchy we encourage classifiers to share information among all tasks by using

regularization based on the l1/l2 norm. At the bottom of the hierarchy we induce

sparse regularization of the classifiers with no sharing by using the l1 norm. Inter-

mediate levels capture decreasing levels of sharing (going from top to bottom), by

using for regularization a linear combination of the l1 and l1/l2 norms. We denote

the regularization term of level l by ψl:

ψl(W) = φl((1− λl)||W||1,2 + λl||W||1) (5.3)

where λl is the mixing coefficient and φl is the regularization coefficient. The regu-

larization coefficient of the last row of Wl corresponding to bias b is 0.

For each individual task (column of Wl) we learn L classifiers, where each clas-

sifier is regularized differently. Choosing the L mixing terms λl ∈ [0..1] diversely

results in inducing L different levels of sharing, with maximal sharing at λl = 0 and

no incentive to share at λl = 1.1

1Note that while each regularization term ψl induces the sparsity of Wl, the output classifier∑L
l=1 Wl may not be sparse.

82

5.1 Hierarchical Regularization Cascade for Multi Task Learning

5.1.2 Cascade Algorithm

Learning all diversely regularized classifiers jointly involves a large number of param-

eters which increases multiplicatively with the number of levels L. A large number

of parameters could harm the generalization properties of any algorithm which at-

tempts to solve the optimization problem directly. We therefore propose an iterative

method presented in Algorithm 4, where each level is optimized separately using the

optimal value from higher levels in the hierarchy.

Specifically, we denote by L the preset number of levels in our algorithm. In each

level only a single set of parameters Wl is being learnt, with regularization uniquely

defined by λl. We start by inducing maximal sharing with λ1 = 0. As the algorithm

proceeds λl monotonically increases, inducing decreased amount of sharing between

tasks as compared to previous steps. In the last level we set λL = 1, to induce sparse

regularization with no incentive to share.

Thus starting from l = 1 up to l = L, the algorithm for sparse group learning

cascade solves

Wl = argmin
W

L(W + Wl−1) + ψl(W) (5.4)

The learnt parameters are aggregated through the learning cascade, where each

step l of the algorithm receives as input the learnt parameters up to that point-

Wl−1. Thus the combination of input parameters learnt earlier together with a

decrease in incentive to share is intended to guide the learning to focus on more

task/class specific information as compared to previous steps.

Note also that this sort of parameter passing between levels works only in con-

junction with the regularization; without regularization, the solution of each step

is not affected by the solution from previous steps. In our experiments we set

λl = l−1
L−1

for all l ∈ {1..L}, while the set of parameters {φl}Ll=1 is chosen using

cross-validation.

83

5. HIERARCHICAL REGULARIZATION CASCADE

Algorithm 4 Regularization cascade

Input : L , {λl}Ll=1, {φl}Ll=1

Output : W

1. W1 = argmin
W

L(W) + φ1||W||1,2

2. for l = 2 to L

(a) W = argmin
W

L(W + Wl−1) +

φl((1− λl)||W||1,2 + λl||W||1)

(b) Wl = Wl−1 + W

3. W = WL

5.1.3 Batch Optimization

At each step of the cascade we have a single unconstrained convex optimization

problem, where we minimize over a smooth convex loss function1 summed with a

non-smooth regularization term (5.4). This type of optimization problems has been

studied extensively in the optimization community in recent years [82, 83]. We used

two popular optimization methods [83, 84], which converge to the single global

optimum with rate of convergence O(1
T 2) for [83]. Both are iterative procedures

which solve at iteration t the following sub-problem:

min
Θt

(Θt −Θt−1)∇L(Θt) +
αt

2
||Θt −Θt−1||22 + φψ(W t)

where ψ(W t) = ((1−λ)||Wt||1,2 +λ||Wt||1) and αt is a constant factor correspond-

ing to the step size of iteration t. This sub-problem has a closed form solution

presented in [85], which yields an efficient implementation for solving a single iter-

ation of Algorithm 4. The complexity of the algorithm is L times the complexity of

solving (5.4).

1In our experiments we used the hinge loss which is non-differentiable at ’x=1’, at which point
we used the sub-gradient ’0’.

84

5.2 Online Algorithm

5.2 Online Algorithm

When the number of training examples is very large, it quickly becomes compu-

tationally prohibitive to solve (5.4), the main step of Algorithm 4. We therefore

developed an online algorithm which solves this optimization problem by consider-

ing one example at a time - the set of parameters Wl is updated each time a new

mini-sample appears containing a single example from each task.1

In order to solve (5.4) we adopt the efficient dual-averaging method proposed

by [86], which is a first-order method for solving stochastic and online regularized

learning problems. Specifically we build on the work of [87], who presented a closed

form-solution for the case of sparse group lasso needed for our specific implemen-

tation of the dual-averaging approach. The update performed at each time step by

the dual averaging method can be written as:

Wt = argmin
W

ŪW + ψl(W) +
γ√
t
h(W) (5.5)

where U denotes the subgradient of Lt(W+Wl−1) with respect to W, Ū the average

subgradient up to time t, h(W) = 1
2
||W||22 an auxiliary strongly convex function,

and γ a constant which determines the convergence properties of the algorithm.

Algorithm 5 describes our online algorithm. It follows from the analysis in [86]

that the run-time and memory complexity of the online algorithm based on up-

date (5.5) is linear in the dimensionality of the parameter-set, which in our setting

is nk. Note that in each time step a new example from each task is processed

through the entire cascade before moving on to the next example.

5.2.1 Regret Analysis

In online algorithms, regret measures the difference between the accumulated loss

over the sequence of examples produced by the online learning algorithm, as com-

pared to the loss with a single set of parameters used for all examples and op-

1In an online to batch setting it suffices to solve (5.4) by iterating over all examples within
each level before proceeding to the next level. This efficiently solves large scale problems, but it is
not a truly online method which can deal with a setting where examples appear sequentially and
are not known in advance.

85

5. HIERARCHICAL REGULARIZATION CASCADE

Algorithm 5 Online regularization cascade

Input : L, γ, {φl}Ll=1, {λl}Ll=1

Initialization: Ŵl
0 = 0, Ūl

0 = 0 ∀l ∈ {1..L} , W0
t = 0 ∀t

1. for t = 1,2,3,... do

(a) for l = 1 to L

i. Given Lt(W + Wl−1), compute a subgradient Ul
t ∈ ∂Lt(W + Wl−1)

ii. Ūl
t = t−1

t
Ūl
t−1 + 1

t
Ul
t

iii. Ŵl
t = argmin

W
Ūl
tW + ψl(W) + γ√

t
h(W)

iv. Wl
t = Wl−1

t + Ŵl
t

(b) Wt = WL
t

timally chosen in hindsight. For T iterations of the algorithm, we can write the

regret as RT (W∗) =
∑T

t=1(Lt(Wt) + ψ(Wt) − Lt(W∗) − ψ(W∗)), where W∗ =

argmin
W

∑T
t=1(Lt(W) + ψ(W)).

At each time step t, Algorithm 5 chooses for each level l > 1 of the cascade

the set of parameters Ŵl
t, to be added to the set of parameters Wl−1

t calculated in

the previous level of the cascade. Thus the loss in level l at time t Lt,Wl−1
t

(Ŵ) =

Lt(Ŵ + Wl−1
t) depends on both the example at time t and the estimate Wl−1

t

obtained in previous learning stages of the cascade. We define the following regret

function that compares the performance of the algorithm at level l to the best choice

of parameters for all levels up to level l:

Rl
T (Ŵl

∗) =
T∑
t=1

(Lt,Wl−1
t

(Ŵl
t) + ψl(Ŵl

t))−

T∑
t=1

(Lt,Wl−1
∗

(Ŵl
∗) + ψl(Ŵl

∗)) (5.6)

where Ŵl
∗ = argmin

W

∑T
t=1(Lt,Wl−1

∗
(W) + ψl(W)), W0

∗ = 0 and Wl
∗ =

∑l
k=1 Ŵk

∗ .

We note that the key difference between the usual definition of regret above and

the definition in (5.6) is that in the usual regret definition we consider the same

loss function for the learnt and optimal set of parameters. In (5.6), on the other

86

5.2 Online Algorithm

hand, we consider two different loss functions - Lt,Wl−1
t

and Lt,Wl−1
∗

, each involving

a different set of parameters derived from previous levels in the cascade.

We now state the main result, which provides an upper bound on the regret

(5.6).

Theorem 1. Suppose there exist G and D such that ∀t, l ||Ul
t|| < G and h(W) <

D2, and suppose that Rl
T (Ŵl

∗) ≥ −C
√
T ; then

Rl
T (Ŵl

∗) ≤ A
√
T +B(T + 1)

3
4 (5.7)

where A = (γD2 + G2

γ
), B = 4

3
(l− 1)G

√
2M
σ
A, C = −(M − 1)(γD2 + G2

γ
) for some

constant M > 1, and σ denotes the convexity parameter of ψ.

Proof. We assume in the statement of the theorem that

Rl
T (Ŵl

∗) ≥ −(M − 1)(γD2 +
G2

γ
)
√
T (5.8)

for some constant M > 1. This assumption is justified if the accumulated cost

obtained by the online algorithm is larger than the cost obtained by the optimal

batch algorithm for most of the training examples. We argue that if this assump-

tion is violated then the online algorithm is revealed to be a very good performer,

and it therefore makes little sense to judge its performance by the deviation from

another algorithm (the “optimal” batch algorithm) whose performance is worse for

a significant fraction of the training sample.

Using the definition of Lt,Wl−1
∗

and Lt,Wl−1
t

, we rewrite the regret (5.6) with a

single loss function

Rl
T (Ŵl

∗) =
T∑
t=1

(Lt,Wl−1
t

(Ŵl
t) + ψl(Ŵl

t))−

[
T∑
t=1

(Lt,Wl−1
t

(Ŵl
∗ + Wl−1

∗ −Wl−1
t) + ψl(Ŵl

∗))]

87

5. HIERARCHICAL REGULARIZATION CASCADE

From the convexity of Lt,Wl−1
t

it follows that

T∑
t=1

(Lt,Wl−1
t

(Ŵl
t)− Lt,Wl−1

t
(Ŵl

∗ + Wl−1
∗ −Wl−1

t))

≤
T∑
t=1

< U l
t ,Ŵ

l
t − Ŵl

∗ −Wl−1
∗ + Wl−1

t >

Under the conditions of the theorem, it is shown in (corollary 2a [86]) that

T∑
t=1

< Ut,Wt −W∗ > +ψ(Wt)− ψ(W∗)) ≤ ∆T

where ∆T = (γD2 + G2

γ
)
√
T . Using this result and the sublinearity of the inner

product, we get

Rl
T (Ŵl

∗) ≤ ∆T +
T∑
t=1

< U l
t ,W

l−1
t −Wl−1

∗ > (5.9)

From the definition of Wl−1
t =

∑l−1
k=1 Ŵk

t and Wl−1
∗ =

∑l−1
k=1 Ŵk

∗ and the Cauchy-

Schwarz inequality we get

Rl
T (Ŵl

∗) ≤ ∆T +
l−1∑
k=1

T∑
t=1

< U l
t ,Ŵ

k
t − Ŵk

∗ >

≤ ∆T +
l−1∑
k=1

T∑
t=1

||U l
t ||||Ŵk

t − Ŵk
∗ || (5.10)

We use the bound on ||Ŵk
t − Ŵk

∗ || from (theorem 1b [86]) and assumption (5.8) to

obtain

T∑
t=1

||Ŵk
t − Ŵk

∗ || ≤
T∑
t=1

√
2M∆t

σt+ γ
√
t

≤ Q

T∑
t=1

t−
1
4 ≤ Q

4

3
(T + 1)

3
4

88

5.3 Joint Learning Experiments

where Q =
√

2M
σ

(γD2 + G2

γ
). Inserting this last inequality into (5.10), and since

∀t, l ||Ul
t|| < G, we obtain

Rl
T (Ŵl

∗) ≤ ∆T + (l − 1)GQ
4

3
(T + 1)

3
4 (5.11)

from which (5.7) immediately follows.

5.3 Joint Learning Experiments

Comparison Methods. We compare our algorithms to three baseline methods,

representing three common optimization approaches: ’NoReg’ - where learning is

done simply by minimizing the loss function without regularization. ’L12’ - a com-

mon approach to multi-task learning where in addition to minimizing the loss func-

tion we also regularize for group sparseness (enforcing feature sharing) using the

l1/l2 norm. ’L1’- a very common regularization approach where the loss function is

regularized in order to induce sparsity by using the l1 norm. All methods are op-

timized using the same algorithms described above, where for the non-hierarchical

methods we set L = 1, for ’NoReg’ we set φ = 0, for ’L12’ we set λ = 0, and for

’L1’ we set λ = 1. The parameter φ for ’L12’ and ’L1’ is also chosen using cross

validation.

We also use for comparison three recent approaches which exploit relatedness

at multiple levels. (i) The single stage approach of [10] which simultaneously finds

the grouping of tasks and learns the tasks. (ii) The tree-guided algorithm of [12]

which can be viewed as a two stage approach, where the tasks are learnt after a

hierarchical grouping of tasks is either discovered or provided. We applied the tree-

guided algorithm in three conditions: when the true hierarchy is known, denoted

’TGGL-Opt’; when it is discovered by agglomerative clustering (as suggested in [12]),

denoted ’TGGL-Cluster’; or when randomly chosen (random permutation of the

leafs of a binary tree), denoted ’TGGL-Rand’. (iii) The method described in [9]

which is based on the work of [12] and extends it to a large scale setting where a

hierarchy of classes is assumed to be known.

89

5. HIERARCHICAL REGULARIZATION CASCADE

5.3.1 Synthetic Data

In order to understand when our proposed method is likely to achieve improved

performance, we tested it in a controlled manner on a synthetic dataset we had

created. We use the same data creation process as in the previous chapters 3 and 4.

This synthetic dataset defines a group of tasks related in a hierarchical manner: the

features correspond to nodes in a tree-like structure, and the number of tasks sharing

each feature decreases with the distance of the feature node from the tree root. We

tested to see if our approach is able to discover (implicitly) and exploit the hidden

structure thus defined. The inputs to the algorithm are the sets of examples and

labels from all k tasks {Si}ki=1, without any knowledge of the underlying structure.

More specifically, the data is created in the following manner: we define a binary

tree with k leaves. Each leaf in the tree represents a single binary classification task.

Each node in the tree corresponds to a single binary feature f ∈ {−1, 1} . For a

single task we divide the features into two groups: task-specific and task-irrelevant.

Task-irrelevant features have equal probability of having the value 1 or −1 for all

examples in the task. Task-specific features are assigned the value 1 for all positive

examples of the task. All negative examples of the task must have at least one

feature from the task-specific feature set with a value of −1.

The task-specific feature set is the set of features corresponding to all nodes on

the path from the leaf to the root, while all other nodes define the task-irrelevant

feature set. For each group of tasks, their shared features are those corresponding

to common ancestors of the corresponding leaves. Illustration is given in Fig. 5.1.

Figure 5.1: Synthetic data illustration. Left graph shows a tree of features corresponding to
four tasks. The task specific features of task 2, ’T2’, are highlighted in red. The task-irrelevant
features are marked blue. The table on the right shows a sample example for task ’T2’ given
the task tree to the left. Each row denotes a sample. Each column denotes a feature. ’Positive’
and ’Negative’ denote positive and negative examples.

90

5.3 Joint Learning Experiments

l = 1

l = 2

l = 4

Figure 5.2: Synthetic experiment learnt parameters Wl. Each plot corresponds to a single
matrix learnt at stage l of the cascade. The rows correspond to features and each column
corresponds to a single task.

Structure discovery: Feature weights learnt at different learning steps of the

cascade for an experiment with 100 synthetic tasks, 199 features and 20 positive

and negative examples per task, are shown in Fig 5.2. As can be seen, the first

learning stages, l = 1 and l = 2 capture shared information, while the last stage

l = 4 captures task specific features. The hierarchical shared structure of features

is discovered in the sense that higher levels in the cascade share the same set of

features, and as the cascade progresses the chosen features are shared by fewer

tasks. The pattern of learnt feature weights fits the engineered pattern of feature

generation.

Classification performance: We start by showing in Fig. 5.3a that our hierarchical

algorithm achieves the highest accuracy results, in both batch and online settings.

For the smallest sample size the ’L12’ baseline achieves similar performance, while

for the largest sample size the ’L1’ baseline closes the gap indicating that given

enough examples, sharing of information between classes becomes less important.

91

5. HIERARCHICAL REGULARIZATION CASCADE

We also see that the online Algorithm 5 converges to the performance of the batch

algorithm after seeing enough examples.

With a small sample size, it is common to present the data to an online algorithm

multiple times; in our case this achieves similar qualitative performance to Fig. 5.3a

(results are omitted). In Fig. 5.3b we show a comparison of the cascade to a group

of single level regularization schemes, using the same set of λ values we used in the

cascade. Clearly no single-level regularization achieves as good performance as the

hierarchical method.

The advantage of the hierarchical method is not due simply to the fact that it

employs a combination of classifiers, but rather that it clearly benefits from sharing

information. Specifically, when the cascade was applied to each task separately, it

achieved only 93.21% accuracy as compared to 95.4% accuracy when applied to all

the 100 tasks jointly.

To evaluate our implicit approach we compared it to the Tree-Guided Group

Lasso [12] (TGGL) where the hierarchy is assumed to be known - either provided by

a supervisor (the true hierarchy), clustered at pre-processing, or randomly chosen.

Fig. 5.4 shows results for 100 tasks and 20 positive examples each. We challenged

the discovery of task relatedness structure by adding to the original feature repre-

sentation a varying number (500-4000) of irrelevant features, where each irrelevant

feature takes the value ’-1’ or ’1’ randomly. Our method performs much better than

TGGL with random hierarchy or clustering-based hierarchy. Interestingly, this ad-

vantage is maintained even when TGGL gets to use the true hierarchy, with up to

1500 irrelevant features, possibly due to other beneficial features of the cascade.

92

5.3 Joint Learning Experiments

(a)

(b)

Figure 5.3: Synthetic data results, where accuracy results correspond to 10 repetitions of the
experiment. Above the ’Y’-axis measures the average accuracy over all tasks, and the ’X’-axis
the sample size. ’H’ denotes our hierarchical Algorithm with 5 levels, ’L11’ ,’L12’ and ’NoReg’
- the different baseline methods. (a) Results for both the batch and online algorithms with
a single presentation of the data. (b) A comparison of our cascade approach ’H’ to variants
corresponding to intermediate levels in the cascade, defined by the value λ.

93

5. HIERARCHICAL REGULARIZATION CASCADE

Figure 5.4: Synthetic data results. The ’Y’-axis measures the average accuracy over all
tasks, where accuracy results correspond to 10 repetitions of the experiment. Performance as
a function of the number of random features (’X’-axis). ’H’ denotes our hierarchical Algorithm
with 5 levels. We show comparison to the tree-guided group lasso algorithm based on the true
hierarchy ’TGGL-Opt’, clustered hierarchy ’TGGL-Cluster’ and random hierarchy ’TGGL-
Rand’.

94

5.3 Joint Learning Experiments

Parameter Robustness Fig. 5.5 shows the robustness of the hierarchical ap-

proach with respect to the regularization parameter φ. For all three regularizing

approaches we varied the value of φ in the range [0.01-2] with 0.01 jumps. For the

hierarchal approach we set φ1 = φ and φl = φl−1

2
for all l ∈ [2..L].

We also found the method to be quite robust to the parameter L determining

the number of levels in the cascade. Varying the value of L between 3 to 7 on the

synthetic data with 100 tasks gave close results in the range 94.5% to 95.5%.

Figure 5.5: Performance as a function of the regularization parameter φ. Synthetic data
with 100 examples per task. The ’Y’-axis corresponds the average accuracy of all tasks on 10
repetitions of the experiment. The ’X’-axis corresponds to the value of φ. Note that the max
values of each method are: 96.02, 94.23 and 92.30 for ’H’, ’L11’ and ’L12’ respectively.

Table 5.1: Varying the number of levels L

L = 2 L = 3 L = 4 L = 5 L = 6 L = 7 L = 8
92.42 95.47 95.73 94.74 95.21 94.48 93.52

Adding Tasks We examined the effect of the number of tasks in the multitask

setting. Ideally adding more tasks should never reduce performance, while in most

cases leading to improved performance. We tested two scenarios - adding tasks

which are similarly related to the existing group of tasks Fig. 5.6a, and adding tasks

which are loosely related to all other tasks but strongly related among themselves

Fig. 5.6b.

With additional tasks of the same degree of relatedness, we increase the amount

of information available for sharing. As expected, we see in Fig. 5.6a that perfor-

mance improves with increasing number of tasks, both for the hierarchical algorithm

95

5. HIERARCHICAL REGULARIZATION CASCADE

and for ’L12Reg’. ’L1Reg’ is not intended for information sharing, and therefore it is

not affected by increasing the number of tasks. When adding loosely related tasks,

we see in Fig. 5.6b that the performance of the hierarchical algorithm increases as

we add more tasks; for the ’L12Reg’ method, on the other hand, we see a significant

drop in performance. This is because in this case the overall relatedness among

all tasks decreases as additional tasks are added; the ’L12Reg’ method still tries to

share information among all tasks, and its performance therefore decreases.

(a) (b)

Figure 5.6: Adding tasks results. Plots correspond to the average 1-vs-rest accuracy as a
function the number of tasks, when (a) adding similarly related tasks and (b) adding loosely
related tasks. Blue denotes our hierarchical Algorithm 4, green the ’L1Reg’ baseline and black
the ’L12Reg’ baseline method.

Data Rotation Next, we wish to isolate the two factors of sparsity and shared

information. The synthetic data was constructed so that there is an increased level

of shared information between classes as a function of the distance between their

respective leaves in the defining tree of features. The shared features are also sparse.

In order to maintain the shared information and eliminate sparseness, we rotate the

vector of features; when the rotation is applied to more features, the amount of

sparseness decreases respectively.

Table 5.2 shows the comparative results both for the case when all features are

rotated and when only half are rotated (in which case the features being rotated

are chosen randomly). As expected, the regularization-free method - ’NoReg’ - is

not effected by any of this. The performance of ’L1Reg’, which assumes sparsity,

drops as expected, reaching baseline with full rotation, presumably because during

96

5.3 Joint Learning Experiments

Table 5.2: Performance comparison for the different methods applied to the Synthetic data.
’T 100 S 20’ denotes the multi-task setting with 100 tasks and 20 samples each, ’half rotated’
- the same setting as ’T 100 S 20’ with a random rotation of half of the features, and ’full
rotation’ - a random rotation of all the features.

T 100 S 20 half rotation full rotation
H 95.40 ± 0.17 90.37 ± 0.61 78.49 ± 0.16

L1Reg 92.54 ± 0.17 86.70 ± 0.59 73.01 ± 0.09
L12Reg 91.49 ± 0.2 85.56 ± 0.62 78.49 ± 0.16
NoReg 72.88 ± 0.19 72.81 ± 0.12 73.03 ± 0.10

cross-validation a very low value for the regularization parameter is chosen. The

two methods which exploit shared information, our hierarchical algorithm and the

’L12Reg’ baseline method, perform better than baseline even with no sparseness

(full rotation), showing the advantage of being able to share information.

5.3.2 Real Data

Small Scale [10] describe a multi-task experimental setting using two digit recog-

nition datasets MNIST [88] and USPS [89], which are small datasets with only 10

classes/digits. For comparison with [10], we ran our method on these datasets using

the same representations, and fixing L = 3 for both datasets. Table 5.3 shows all

results, demonstrating clear advantage to our method. The results of our basic base-

line methods ’NoReg’ and ’L1’ achieve similar or worse results,1 comparable to the

single task baseline approach presented in [10]. Thus, the advantage of the cascade

’H’ does not stem from the different optimization procedures, but rather reflects the

different approach to sharing.

Medium Scale We tested our batch approach on four medium sized data sets:

Cifar100 [90], Caltech101, Caltech256 [91] and MIT-Indoor Scene dataset [92] with

100, 102, 257 and 67 categories in each dataset respectively. We tested both the

1’NoReg’ - 9.5% ± 0.2 and 17% ± 0.5 for USPS and MNIST respectively; ’L1’ - 8.8% ± 0.5
and 16% ± 0.8 for USPS and MNIST respectively.

97

5. HIERARCHICAL REGULARIZATION CASCADE

Table 5.3: Error rates on digit datasets

USPS MNIST

H 6.8% ± 0.2 13.4% ± 0.5

Kang et al. 8.4% ± 0.3 15.2% ± 0.3

multi-class and multi-task settings1. For the multi-task setting we consider the 1-

vs-All tasks. For Cifar-100 we fixed L = 5 for the number of levels in the cascade,

and for the larger datasets of Caltech101/256 and Indoor-Scene we used L = 4.

We also investigated a variety of features: for the Cifar-100 we used the global

Gist [93] representation embedded in an approximation of the RBF feature space

using random projections as suggested by [94], resulting in a 768 feature vector.

For the Caltech101/256 we used the output of the first stage of Gehler et al’s kernel

combination approach [95] (which achieves state of the art on Caltech101/256) as the

set of features. For the MIT-Indoor Scene dataset we used Object Bank features [96],

which achieves state-of-the-art results on this and other datasets.

We tested the Cifar-100 dataset in the multi-task and multi-class settings. We

used 410 images from each class as the training set, 30 images as a validation set, and

60 images as the test set. For the multi-task setting we considered the 100 1-vs-rest

classification tasks. For each binary task, we used all images in the train set of each

class as the positive set, and 5 examples from each class in the ’rest’ set of classes

as the negative set. The experiment was repeated 10 times using different random

splits of the data. Results are shown in Table 5.4, showing similar performance for

the cascade and the competing Tree-Guided Group Lasso method.

In our experiments with the MIT-Indoor Scene dataset we used 20, 50 and 80

images per scene category as a training set, and 80, 50 and 20 images per category

as test set respectively. We repeated the experiment 10 times for random splits of

the data, including the single predefined data split provided by [92] as a banchmark.

Loss was measured using the multi-class hinge loss (5.2). Fig. 5.7-left shows the

classification results of the cascade approach, which significantly outperformed the

1In the binary tasks we measured accuracy by the standard measure #True−Positive
2∗#Positive +

#True−Negative
2∗#Negative , and report the average accuracy for several tasks. In the multi-class setting we

report the average recall.

98

5.3 Joint Learning Experiments

Table 5.4: Cifar-100: accuracy results. ’Baselines’ denotes - ’L1’, ’L12’ and ’NoReg’
which showed similar performance.

multi-class 1-vs-rest

H 21.93 ± 0.38 79.91 ± 0.22

Baselines 18.23 ± 0.28 76.98 ± 0.17

TGGL-Cluster - 79.97 ± 0.10

TGGL-Rand - 80.25 ± 0.10

Figure 5.7: Real data results. ’Y’-axis measures the average accuracy over all tasks.
Left, Multiclass accuracy results on the MIT-Indoor-Scene dataset, for 4 experimental
conditions: 20, 50, and 80 images used for training respectively, and ’OrigSplit’ - the
single predefined split of [92]. Right, Multi-task 1-vs-rest results for the Caltehc256
dataset, where ’LPB’ denotes our implementation of the binary version of the approach
presented in [95] (see text). The ’X’-axis varies with sample size.

baseline methods and the previously reported state of the art result of 37.6% [96],

achieving 45.9% using the exact same feature representation. We also significantly

outperformed ’TGGL-Cluster’ and ’TGGL-Rand’.

With Caltech101 and Caltech256 we used the data provided by [95] for com-

parisons in both their original multi-class scenario and a new multi-task scenario.

We tested our approach using the exact same experimental setting of [95] given

the scripts and data provided by the authors. In the original multi-class setting

addressed in [95] our results compare to their state-of-the-art results both for 30

training images (78.1%) in the Caltech101 and for 50 images (50%) in the Cal-

tech256.

In the multi-task scenario we trained a single 1-vs-rest classifier for each class.

In addition to our regular baseline comparisons we implemented a variant of the

ν-LPB method, which was used in [95] as the basis to their multi-class approach.

Fig. 5.7-right shows results for the multi-task setting on the Caltech256. First

99

5. HIERARCHICAL REGULARIZATION CASCADE

we note that our algorithm outperforms all other methods including ν-LPB. We

also note that given this dataset all regularization approaches exceed the NoReg

baseline, indicating that this data is sparse and benefits from information sharing.

(Results for the Caltech101 are similar and have therefore been omitted.)

Large Scale We demonstrate the ability of our online method to scale up to

large datasets with many labels and many examples per each label by testing it

on the ILSVRC(2010) challenge [97]. This is a large scale visual object recognition

challenge, with 1000 categories and 668-3047 examples per category. With so many

categories the usual l1/l2 regularization is expected to be too crude, identifying only

a few shared features among such a big group of diverse classes. On the other hand,

we expect our hierarchical method to capture varying levels of useful information to

share.

Since the representation is not under investigation here, we only compare our

method to other methods which used a similar representation, preferring when pos-

sible to use representation scripts provided by the authors. With the ILSVRC(2010)

challenge we compared our method to [9], which is also a hierarchical scheme based

on the tree guided group lasso approach of [12]. We compared our method to the

hierarchical scheme of [9] (using their exact same feature representation). Rather

than compute the hierarchy from the data, their method takes advantage of a known

semantic word-net hierarchy, which is used to define a hierarchical group-lasso reg-

ularization and calculate a similarity matrix augmented into the loss function. The

comparison was done on the single split of the data provided by the challenge [97] .

Table 5.5: ILSVRC(2010): Classification accuracy of the best of N decisions, Top N .

Top 1 Top 2 Top 3 Top 4 Top 5
Alg 5 0.285 0.361 0.403 0.434 0.456

Zhao et al 0.221 0.302 0.366 0.411 0.435

Table 5.5 shows our performance as compared to that of [9]. We show accuracy

rates when considering the 1-5 top classified labels. In all settings we achieve sig-

nificantly better performance using the exact same image representation and much

less labeled information.

100

5.3 Joint Learning Experiments

In Fig 5.8 we show the error rates for the Top-1 scenario, considering a single

classification. We show results when training using all the data Fig 5.8-left, and

when using only 100 examples per each task Fig 5.8-right. The results are shown as

a function of the number of repetitions of the algorithm over all the data.

At convergence we see an improvement of 1.67% in accuracy when using the

cascade with 7 levels, 28.96% compared to 27.29%. [9] obtained an improvement of

1.8% in accuracy when comparing their approach to their own baseline, 22.1% vs.

20.3%. We obtained a similar rate of improvement using much less information (not

knowing the hierarchy) for a higher range of accuracies.

We note that our baseline approaches converge after 20 repetitions when using all

the data, (for clarity we show only up to 15 repetitions in the left plot of Fig 5.8).

This effectively means the same runtime, as the cascade runtime is linear in the

number of levels where each level has the same complexity of the baseline approaches.

On the other hand the online cascade algorithm 5 can be trivially parallelized where

as the repetitions over the data for a single baseline cannot. Thus, in a parallel

setting the gain in runtime would be linear in the number of levels of the cascade. A

trivial parallelization can be implemented by running each level of the online cascade

on a time stamp shifted by l thus the first level of the cascade will see at time t the

t sample while level l will see sample t− l.

Figure 5.8: Real data, showing performance of Top-1 classification on the
ILSVRC(2010) challenge [97] using all examples (left plot) or only 100 examples per
each category (right plot). Here the ’X’-axis corresponds to repetitions over the train-
ing data. In the left plot ’H-L5’ and ’H-L7’ denote our hierarchical algorithm with 5
and 7 levels respectively. In the right plot ’H’ corresponds to 5 levels in our hierar-
chical algorithm. The error bars in correspond to the standard error given 3 different
choices of 100 Examples.

101

5. HIERARCHICAL REGULARIZATION CASCADE

Discussion For small and medium scale datasets we see that our cascade approach

and the batch Algorithm 4 outperform the baseline methods significantly. For the

large scale dataset the online Algorithm 5 significantly outperforms all other baseline

methods. It is interesting to note that even when the alternative baseline methods

perform poorly, implying that the regularization functions are not beneficial on their

own, combining them as we do in our hierarchical approach improves performance.

This can be explained by the fact that a linear combination of classifiers is known

to improve performance if the classifiers are accurate and diverse.

When comparing to the recent related work of [12] denoted TGGL, we see that

our implicit approach performs significantly better with the synthetic and MIT-

Indoor scene datasets, while on the Cifar dataset we obtain similar results . With the

synthetic dataset we saw that as the clustering of the task hierarchy becomes more

challenging, TGGL with clustering degrades quickly while the performance of our

method degrades more gracefully. We expect this to be the case in many real world

problems where the underlining hierarchy is not known in advance. Furthermore, we

note that with the small scale digit datasets our approach outperformed significantly

the reported results of [10]. Finally, we note that our approach can be used in a

pure online setting while these two alternative methods cannot.

We also compared with a third method [9] using the ILSVRC(2010) challenge [97];

this is a challenging large scale visual categorization task, whose size - both the num-

ber of categories and the number of examples per category, provides the challenges

particularly suitable for our approach. The online algorithm makes it possible to

scale up to such a big dataset, while the hierarchical sharing is important with pos-

sibly many relevant levels of sharing between the tasks. Particularly encouraging is

the improvement in performance when compared to the aforementioned work where

an explicit hierarchy was provided to the algorithm.

5.4 Knowledge Transfer

In this section we discuss methods to transfer information to novel classes, where

information transfer is based on the cascade of matrices {Wl}Ll=1 built during the

training of pre-trained models. The method is illustrated in Fig. 5.9.

We describe two distinct knowledge-transfer methods. The first is a batch al-

102

5.4 Knowledge Transfer

gorithm described in Section 5.4.1, which is based on dimensionality reduction of

pre-trained models. This method is particularly useful when the data lies in a high

dimensional feature space, and the number of examples from the novel task is too

small to learn effectively in such a space. The second is an online method described

in Section 5.4.2, which maintains the same regularization structure and parameters

of the online multi-task setting. When the dataset is large and an online method is

called for, this approach is particularly useful for bootstrapping the online learning

of novel classes, achieving higher performance at the early stages of the learning as

compared to a non transfer approach.

5.4.1 Batch Method

In order to overcome the problem of small sample, we use the learnt models {Wl}Ll=1

to perform dimensionality reduction via projection; now the new task is represented

in L sub-spaces that capture the structure of the shared information between the

previous k tasks (see illustration in Fig. 5.9).

The method is described below in Algorithm 6. At each level l we project the

new data-points onto the subspace spanned by the top z left singular-vectors of Wl.

The projection matrix Pl is defined by the first z columns of the orthonormal matrix

Ul, where svd(Wl) = UlΣVl. Thus the modeling of the new task involves z ∗ L
parameters, which are learned in a cascade where each learning problem deals with

only z parameters. Note that in the l’th level we project the data onto the unique

subspace characteristic of level l. In order to pass the parameters to the next level

we project back to the original feature space, which is accomplished by (Pl)t in Step

2d.

5.4.2 Online Method

We assume that a related set of tasks has been learnt using the online Algorithm 5,

capturing various levels of shared information. Then, in order to initialize the online

learning of a new single task or group of tasks, we use their learnt matrix of param-

eters together with the regularization structure underlying the learning cascade.

The online knowledge-transfer algorithm is described below in Algorithm 7; it

succeeds told iterations of Algorithm 5. The input to the algorithm is the same set

103

5. HIERARCHICAL REGULARIZATION CASCADE

Algorithm 6 Knowledge-Transfer with shared features projections
Input :

L number of levels

{Pl}Ll=1 Set of projections matrices learnt from the k pre-trained tasks

Output :

W

1. W0 = 0

2. for l = 1 to L

(a) Projection:

i. x̂ = Plt ∗ x, ∀i ∈ [1..k] and ∀x ∈ Si

ii. ŵl−1 = Plt ∗wl−1

(b) Ŵ = argmin
W

L({Ŝi}ki=1,W + Ŵl−1)

(c) Backprojection: w = Pl ∗ ŵ

(d) wl = wl−1 + w

3. w = wL

of parameters used for Algorithm 5 and its intermediate calculations - the cascade

{Wl
old}Ll=1 and the set of final average subgradients {Ūl

old}Ll=1. These are used to ap-

proximate future subgradients of the already learnt tasks, since Algorithm 7 receives

no additional data-points for these tasks. The parameters of Algorithm 5 are used

because cross-validation for parameter estimation is not possible with small sample.

Below we denote the vector corresponding to the mean value of each feature as

mean(Wl
old). We denote the concatenation of columns by ◦. In order to account

for the difference between the old time step told to the new time step t we consider

h(W) to be the squared l2 norm applied to each column separately. We calculate the

inner product of the resulting vector with γ√
told◦t

in step 1(a).(iv);
√

told ◦ t denotes

a vector derived by the concatenation of k times told with t.

104

5.4 Knowledge Transfer

Algorithm 7 Online Knowledge-Transfer learning cascade
Input :

L, {λl}Ll=1, {φl}Ll=1, γ set of parameters as in Algorithm 5

{Ūl
old}Ll=1 the average subgradient of the last iteration of Algorithm 5

{Wl
old}Ll=1 the set of parameters learnt by Algorithm 5

told number of temporal iterations of Algorithm 5

Initialization:

Ŵl
0 = Wl

old ◦mean(Wl
old), Ūl

0 = Ūl
old ◦ 0 ∀l ∈ {1..L}

W0
t = 0 ∀t

1. for t = 1,2,3,... do

(a) for l = 1 to L

i. Given the function Lt,Wl−1
t

, compute a subgradient Ul
t,new ∈ ∂Lt,Wl−1

t

ii. Ūl
t,new = t−1

t
Ūl
t−1,new + 1

t
Ul
t,new

iii. Ūl
t = Ūl

old ◦ Ūl
t,new

iv. Ŵl
t = argmin

W
Ūl
tW + ψl(W)+ < γ√

told◦t
, h(W) >

v. Wl
t = Wl

old ◦ (Wl−1
t,new + Ŵl

t,new)

(b) Wt = WL
t

105

5. HIERARCHICAL REGULARIZATION CASCADE

Figure 5.9: Illustration of the knowledge transfer approach, explained from top to bottom.
First we pre-train jointly K recognition tasks. The output of the multi-task (’MTL’) train-
ing stage can be visualized as a sum of matrices each corresponding to a different level of
shared information among tasks. This output is passed on to the knowledge-transfer (’KT’)
phase where task ’K+1’ is learnt given a small set of examples. We consider two methods for
transferring the hierarchical structure of shared information. The first method is a batch algo-
rithm, which is based on dimensionality reduction to the sub-spaces of common information.
’α’ denotes the linear classifier coefficients of the new task in each reduced sub-space, while ’π’
denotes the dimensionality reduction projection. The second method is an online algorithm
with knowledge transfer happening in the original feature space, where the pre-trained classi-
fiers are used to bootstrap the classifier of the novel task. The color blue corresponds to value
’0’ and red to ’1’.

106

5.5 Knowledge-Transfer Experiments

5.5 Knowledge-Transfer Experiments

In this section we evaluate our algorithms for knowledge transfer in small sample

scenarios. We start by comparing the different methods on controlled synthetic data

in Section 5.5.1. We then test the performance of our method using several real

datasets employing different image representation schemes in two different settings:

medium size, with several tens of classes and a dimensionality of 1000 features as

image representation in Section 5.5.2; and large size, with hundreds of classes and

an image representation of 21000 features in Section 5.5.3. We also compared the

performance in a ’1-vs-Rest’ setting and in a setting with a common negative class

(as in clutter).

The methods used for comparison are the following:

Batch methods

• KT-Batch-H: corresponds to Algorithm 6 where knowledge-transfer is based

on the projection matrices extracted from the batch cascade learning.

• KT-Batch-NoReg: here knowledge transfer corresponds to Algorithm 6 with

L = 1 and φ = 0, where information is transferred from the previously learnt

models which were learnt in a single level with no regularization and no incen-

tive to share information.

Online methods

• KT-On-H: corresponds to Algorithm 7 where we transfer information given

the full cascade of regularization functions.

• KT-On-L12: corresponds to Algorithm 7 with L = 1 and λ = 0, where a single

level of information transfer is based on models trained to share information

between all tasks equally.

Baseline methods from Section 5.3, without Knowledge Transfer:

• NoKT-Batch: corresponds to the multi-task batch algorithm with L = 1 and

φ = 0.

• NoKT-On-NoReg: corresponds to the multi-task online Algorithm 5 with L =

1 and φ = 0.

107

5. HIERARCHICAL REGULARIZATION CASCADE

5.5.1 Synthetic Data

In order to understand when our proposed method is likely to achieve improved per-

formance in knowledge transfer, we tested it in a controlled manner on the synthetic

dataset described in Section 5.3.1.

To test Algorithms 6 and 7 we trained 99 tasks using the multi-task batch and on-

line algorithms with only 99 tasks, keeping the remaining task aside as the unknown

novel task. Each known task was trained with 50 examples, with 10 repetitions

over the data for the online Algorithm 5. After this multi-task pre-processing had

finished, we trained the left out task using Algorithms 6 and 7 with either 1-10, 20

or 50 examples (with 100 repetitions in the online Algorithm 7). This was done

100 times, leaving out in turn each of the original tasks. In the batch knowledge-

transfer we chose the rank of each projection matrix to keep 99.9% of the variance

in the data. In the hierarchical knowledge-transfer this resulted in approximately

10 dimensions at the top level of the cascade, and 90 dimensions at the lowest level

of the cascade.

As can be seen in Fig. 5.10a, our Knowledge-Transfer methods based on shared

multi-task models achieve the best performance as compared to the alternative meth-

ods. The online knowledge-transfer method achieves the best results on this dataset.

Note that with very small samples, the method which attempts to share informa-

tion with all tasks equally - KT-On-L12 - achieves the best performance. As the

sample increases to 50, Algorithm 7 is able to perform better by exploiting the

different levels of sharing given by the hierarchical approach KT-On-H. For both

online Knowledge-Transfer options we see a significant improvement in performance

as compared to the online with no knowledge transfer approach, NoKT-On-NoReg.

Looking at the batch method we see that Knowledge-Transfer based on sharing

information between the original models, KT-Batch-H, outperforms significantly the

knowledge-transfer based on no sharing of information in the original model training,

KT-Batch-NoReg. The KT-Batch-NoReg actually performs no better than the no

knowledge-transfer approach NoKT-Batch.

It is also interesting to note that the difference in average performance between

the novel task to the pre-trained tasks is less than 0.5% for 50 training examples when

using the hierarchical knowledge-transfer. This indicates that in this experiment

108

5.5 Knowledge-Transfer Experiments

our hierarchical knowledge-transfer method reaches the potential of sharing as in

the multi-task method, which outperforms all other methods on this synthetic data.

(a) (b)

Figure 5.10: Results: in all plots the ’Y’-axis corresponds to the average accuracy over all
tasks, and the ’X’-axis to the sample size. (a) Results for Synthetic data experiment. (b)
results for the large size imagenet experiment.

5.5.2 Medium Size

We tested our method with real data, starting with a moderate problem size and

only 31 classes. For these experiments we used a subset of the ILSVRC(2010) chal-

lenge [97], which is an image dataset organized according to the WordNet hierarchy.

From this huge dataset we chose 31 classes (synsets)1 for the set of pre-trained known

classes with many training examples. This group of classes was chosen heuristically

to contain varying levels of relatedness among classes, grouping together various

terrestrial, aerial and sea vehicles, buildings, sea animals etc. For the novel classes

with small sample we considered 30 randomly chosen classes from the remaining 969

classes in the dataset. The set of features used to describe images in this data set

is based on the Sift features quantized into a codebook of 1000 words, which was

tf-idf normalized.

We considered binary learning tasks where each chosen class, either pre-trained

or novel, is contrasted with a set of images (negative examples) chosen from a group

of different classes. The negative set was constructed in two ways: In the 1-vs-Rest

1quail, partridge, hare, Angora rabbit, wood rabbit, indri, Madagascar cat, orangutan, chim-
panzee, gorilla, fire engine, garbage truck, pickup truck, trailer truck, police wagon, recreational
vehicle, half track, snowmobile, tractor, tricycle, fiddler crab, king crab, silver salmon, rainbow
trout, striper, airliner, warplane, lifeboat, catamaran, boathouse and church building.

109

5. HIERARCHICAL REGULARIZATION CASCADE

(a) (b)

Figure 5.11: Mid-size experiment accuracy results, with (a) common negative set, and (b)
1-vs-Rest. In all plots the ’Y’-axis corresponds to the average accuracy over all tasks, and the
’X’-axis to the sample size.

condition the negative set of classes, the Rest, was defined as the group of 31 classes

from which knowledge is transferred. In the second condition the negative set in-

cluded 31 different classes sampled randomly from the original dataset excluding

the small sample classes and the set of pre-trained classes. In this second condition

all classes, both pre-trained and novel, had the exact same set of negative exam-

ples. This condition resembles previous experiments with knowledge-transfer [7, 52],

where all tasks share the same negative set.

In both conditions the pre-trained models were trained using 480 positive exam-

ples and 480 negative examples. For the positive set of the small sample classes, we

considered a sample size in the range 1-20. For the negative set we used all examples

from each negative group (480 examples per class in the 1-vs-Rest condition and 480

in total in the second condition). Examples were weighted according to sample size.

For the pre-trained models we used a validation set of 60 examples per class; we

used 100 examples per each class as its test set.

We considered each of the novel 30 classes separately. The experiment was

repeated 8 times with different random splits of the data, for both the pre-trained

and novel tasks. In the batch knowledge transfer methods we set the projection

rank to maintain 99.9% of the variance in the original models learnt.

Results for the condition with shared negative set are shown in Fig. 5.11a. Re-

sults for the 1-vs-Rest condition are shown in Fig. 5.11b. We see that knowledge-

transfer methods achieve improved performance as compared to alternative meth-

ods. In both conditions the best performer is the hierarchical batch approach

110

5.5 Knowledge-Transfer Experiments

for Knowledge-transfer, KT-Batch-H. The poor performance of the KT-Online-L12

can be explained by the fact that the regularization coefficient φ chosen by cross-

validation during the multi-task pre-learning phase of the pre-trained models was

chosen to be very low, indicating that a single level of sharing is not sufficient for

this data.

5.5.3 Large Size

As the ultimate knowledge transfer challenge, we tested our method with real data

and large problem size. Thus we used all 1000 classes from the ILSVRC(2010) chal-

lenge [97]. Each image was represented by a vector of 21000 dimensions, following

the representation scheme used by [9]. 900 classes were chosen randomly as pre-

trained classes, while the remaining 100 classes were used as the novel classes with

small sample. We considered 1-vs-Rest tasks as explained above. Pre-trained tasks

were trained using 500 examples from the positive class and 500 examples chosen

randomly from the remaining 899 classes. We used the online Algorithm 5 with 2

repetitions over the training data to train pre-trained tasks.

During test, the set of negative examples in the 1-vs-Rest condition was chosen

randomly from all of the dataset, total of 999 classes. We used the labeled test set

provided by [97]. As small sample we considered 1-20 examples per class. Due

to the original large image representation, in the batch knowledge-transfer methods

we fixed the projection rank to maintain only 80% of the variance in the original

models learnt.

We note that once the pre-trained models are computed, each step of training

with the projected batch approach is faster than each step of the online approach as

the online Algorithm 7 needs at each step to consider all the pre-trained parameters

in order to compute the regularization value, while the batch Algorithm 6 considers

these parameters only once during the projection phase. Using a big image represen-

tation as we do the online methods becomes computationally expensive if repeating

the experiment for each of the novel small samples classes separately.

Results are shown in Fig. 5.10b. Clearly all methods inducing information shar-

ing outperformed significantly the batch and online learning with no sharing. The

NoKT-on-NoReg method performed poorly similarly to NoKT-batch and was omit-

111

5. HIERARCHICAL REGULARIZATION CASCADE

ted for brevity. KT-on-L12 also performed poorly due to the very low regularization

parameter φ automatically chosen.

5.6 Summary

We presented a hierarchical approach for information sharing both in joint learning

and knowledge-transfer scenarios. Our methods are based on a cascade of regularized

minimization problems designed to induce implicit hierarchical sharing of informa-

tion. Particular care was put into the design of efficient methods which enable the

scaling up to large settings, considering a wide range of hierarchical relations among

task.

For the joint learning scenario we described two efficient batch and online learning

algorithms implementing the cascade. For the online algorithm we provided a regret

bound from which it follows that the average regret of our learning method converges.

The method was tested both on synthetic data and seven real datasets, showing

significant advantage over baseline methods, and similar or improved performance

as compared to alternative state of the art methods.

Using the output of the joint learning phase we are able to transform informa-

tion from pre-trained tasks to novel tasks. We designed two different methods to

transfer knowledge from a set of known tasks to new tasks. Knowledge transfer is

typically needed when the sample available for the training of the new tasks is too

small. Our methods were designed to be useful under conditions where either the

object representation is very large (the knowledge-transfer batch method), or with

streaming data which can be best managed with an online approach (the knowledge-

transfer online method). Basing our methods on pre-trained models learnt jointly

we are able to transfer varying levels of shared information according to the im-

plicit hierarchy captured during the joint training phase. We conducted a number

of experiments, testing different settings of knowledge-transfer on real and synthetic

datasets. Unambiguously our proposed knowledge transfer methods achieved the

highest performance in all the experiments. To our knowledge we demonstrated the

largest visual object recognition knowledge-transfer experiment of this type.

112

6

Epilogue

In this thesis I presented hierarchical models of recognition tasks, considering both

the case when a hierarchy is known and the case when it is unknown. In the unknown

case, I proposed two different approaches; a formal model together with a structure

discovery algorithm and an implicit approach for exploiting the hierarchal structure

while avoiding the hard problem of its discovery.

I started by considering the task of novel subclass detection (chapter 2) based

on a known hierarchy. First, considering an accepting level enables our approach

to separate novel subclass detection from poor signal detection, a distinction which

is challenging for the common approaches to novelty detection, which are based only

on a rejection cue in a non hierarchical architecture. I also show the importance of

knowing the veridical hierarchy.

In chapter 3, I presented a general hierarchical multi-task learning framework, ex-

tending the commonly used two-level hierarchy in multi-task settings, to a multi-level

hierarchy. A full hierarchical view of multi-task learning enables tasks of varying

degrees of relatedness to contribute in the learning process. I consider a top-down

cascade learning approach, starting from the most abstract level, where at each level

of the hierarchy a single optimal hypothesis for the unified task (unifying all tasks

at that level) is chosen. This hypothesis is then used to define the inductive bias

for the next level in the hierarchy. The complexity of each learning stage is deter-

mined by the size of the hypothesis equivalence class, defined by applying the shared

transformations in each level to the chosen hypothesis of the previous level. I state

sufficient conditions for the optimality of our approach and provide generalization

guarantees. Finally I described an experimental setting demonstrating the potential

in the proposed approach.

Following chapters 2 and 3, where I assume the hierarchy is known, I present in

chapter 4, a general hierarchical model of classes and an algorithm to infer it from

data. This is a unified model for both the class-membership and part-membership

hierarchies. I provide run time guarantees based on the complexity of the rela-

113

6. EPILOGUE

tionships within a given set of classes and prove that the output of the algorithm

indeed obeys the defined constraints of the model. I also present the usage of such

a hierarchy for the case of classification based on conjunction of features.

In chapter 5, I presented an implicit hierarchical approach to information sharing

based on a cascade of regularized minimization problems. The implicit approach

which avoids the hard problem of explicitly discovering the hierarchy together with

the efficient algorithm enabled us to scale up to large scenarios in both the multi-

task and knowledge-transfer settings. Our method can also be applied to an online

setting where I assume a continuous flow of data and prove that the average regret

of the online learning algorithm converges. An extensive set of experiments was

conducted, considering a large set of datasets on which I showed very promising

results, compared to the natural baselines and existing state of the art methods.

The general use of hierarchies in the context of recognition tasks and the specific

contributions in this thesis serves two purposes. Improving the original recognition

tasks and enriching the knowledge base of recognition systems by considering an

ontology. In the context of improving recognition tasks, the main contribution of this

thesis lies in the methods suggested for information sharing, where I contribute to the

existing hierarchical methods by providing a novel theoretical framework, together

with generalization guarantees and by presenting efficient algorithms dealing with

the unknown hierarchy scenario, scaling up to much larger settings with promising

recognition results.

The second type of contribution, is in the semantic organization of knowledge.

With the advance in recognition tasks, such as specific object as well as object

class recognition, the field today is advancing back to its historical origins, where

a perceptual system is considered as part of a whole AI system, which can harness

its ontological knowledge towards inference of its’ perceptual environment. For

instance, the presented novel subclass detection algorithm is a sheer instance of such

inference, where the known hierarchical organization of classes enables a semantic

inference of unknown signals. To this end, I believe the SIPO model is important

in its contribution to the problem of explicitly structuring the knowledge base.

The structure discovery algorithm based on the SIPO model is efficient in the

sense that its complexity is dependent on the size of the output. However considering

groupings of concepts, the size of the output could be exponential. My hypothesis

114

is that for an ontology to be effective it has to consider sparse relations among the

concepts it contains. Assuming that true relations among concepts are sparse, the

output size would not be exponential and the proposed SIPO algorithm would deal

with the data efficiently. For large scale scenarios considering the magnitude of con-

cepts a modern system should deal with and the noisy nature of signals supporting

these concepts (which could challenge the discovery of the true sparse relations), I

believe it would be beneficial to focus future research on scaling up the structure

discovery algorithm by relaxing the requirement that all intersections are found in

the SIPO model.

Finally, considering advancing both recognition tasks and the modeling of their

relations is essentially a classical chicken and egg problem, as I have shown, the

relations can help the tasks while clearly having better models of the tasks could

assist the modeling of their relations. A future direction which I view as particularly

interesting, is trying to infer the hierarchical structure of tasks from the task specific

parameters learnt by the implicit information sharing method I present, thereby

initiating a bootstrapping learning approach, starting from an implicit hierarchical

representation and ending up with an explicit hierarchical model.

115

6. EPILOGUE

116

References

[1] E. Rosch. Basic Objects in Natural Categories. Cognitive Psychology, 8(3):382–

439, 1976. 1

[2] R. Kiani, H. Esteky, K. Mirpour, and K. Tanaka. Object Category Struc-

ture in Response Patterns of Neuronal Population in Monkey Inferior

Temporal Cortex. Journal of Neurophysiology, 97(6):4296, 2007. 1

[3] Ilan Kadar and Ohad Ben-Shahar. A perceptual paradigm and psy-

chophysical evidence for hierarchy in scene gist processing. Journal of vision,

12(13), 2012. 1

[4] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E.

Leiserson. Introduction to Algorithms. McGraw-Hill Higher Education, 2nd edition,

2001. 1

[5] David A Huffman. A method for the construction of minimum-redundancy

codes. Proceedings of the IRE, 40(9):1098–1101, 1952. 1

[6] L. Brieman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Classification

and regression trees. Wadsworth Inc, 67, 1984. 1

[7] A. Zweig and D. Weinshall. Exploiting Object Hierarchy: Combining

Models from Different Category Levels. Proc. ICCV, 2007. 2, 4, 5, 7, 8, 9, 110

[8] A. Torralba, K.P. Murphy, and W.T. Freeman. Sharing visual features

for multiclass and multiview object detection. T-PAMI, IEEE, 29(5):854–869,

2007. 2, 4, 5, 10, 12

[9] B. Zhao, L. Fei-Fei, and E.P. Xing. Large-Scale Category Structure Aware

Image Categorization. Proc. NIPS, 2011. 2, 4, 5, 9, 80, 89, 100, 101, 102, 111

[10] Z. Kang, K. Grauman, and F. Sha. Learning with Whom to Share in

Multi-task Feature Learning. NIPS, 2011. 2, 4, 5, 10, 12, 80, 89, 97, 102

[11] P. Jawanpuria and J.S. Nath. A Convex Feature Learning Formulation for

Latent Task Structure Discovery. ICML, 2012. 2, 4, 5, 10, 12

[12] S. Kim and E.P. Xing. Tree-Guided Group Lasso for Multi-Task Regression

with Structured Sparsity. ICML, 2010. 2, 4, 5, 10, 12, 80, 89, 92, 100, 102

117

REFERENCES

[13] Yangchi Chen, Melba M Crawford, and Joydeep Ghosh. Integrating sup-

port vector machines in a hierarchical output space decomposition frame-

work. In Geoscience and Remote Sensing Symposium, 2004. IGARSS’04. Proceed-

ings. 2004 IEEE International, 2, pages 949–952. IEEE, 2004. 2, 3

[14] Marcin Marsza lek and Cordelia Schmid. Constructing Category Hierar-

chies for Visual Recognition. In European Conference on Computer Vision, IV

of LNCS, pages 479–491. Springer, oct 2008. 2, 3, 4

[15] Gregory Griffin and Pietro Perona. Learning and using taxonomies for

fast visual categorization. In Computer Vision and Pattern Recognition, 2008.

CVPR 2008. IEEE Conference on, pages 1–8. IEEE, 2008. 2, 3

[16] Alexander Binder, Motoaki Kawanabe, and Ulf Brefeld. Efficient clas-

sification of images with taxonomies. In Computer Vision–ACCV 2009, pages

351–362. Springer, 2010. 2, 3

[17] S. Bengio, J. Weston, and D. Grangier. Label embedding trees for large

multi-class tasks. NIPS, 2010. 2, 3

[18] T. Gao and D. Koller. Discriminative learning of relaxed hierarchy for

large-scale visual recognition. ICCV, 2011. 2, 3, 4

[19] Jia Deng, Sanjeev Satheesh, Alexander C Berg, and Li Fei-Fei. Fast and

balanced: Efficient label tree learning for large scale object recognition.

Advances in Neural Information Processing Systems, 24:567–575, 2011. 2, 3

[20] Ofer Dekel, Joseph Keshet, and Yoram Singer. Large margin hierarchical

classification. In Proceedings of the twenty-first international conference on Machine

learning, page 27. ACM, 2004. 2

[21] O. Dekel. Distribution-Calibrated Hierarchical Classification. 2

[22] D. Zhou, L. Xiao, and M. Wu. Hierarchical classification via orthogonal

transfer. In ICML, 2011. 2

[23] A. Bar-Hillel and D. Weinshall. Subordinate class recognition using re-

lational object models. Proc. NIPS, 19, 2006. 2, 30

118

http://lear.inrialpes.fr/pubs/2008/MS08
http://lear.inrialpes.fr/pubs/2008/MS08

REFERENCES

[24] S.J. Hwang, K. Grauman, and F. Sha. Learning a Tree of Metrics with

Disjoint Visual Features. NIPS, 2011. 2

[25] N. Verma, D. Mahajan, S. Sellamanickam, and V. Nair. Learning hierar-

chical similarity metrics. In CVPR. IEEE, 2012. 2

[26] Jia Deng, Alexander C Berg, Kai Li, and Li Fei-Fei. What does classifying

more than 10,000 image categories tell us? In Computer Vision–ECCV 2010,

pages 71–84. Springer, 2010. 2

[27] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet:

A Large-Scale Hierarchical Image Database. In CVPR09, 2009. 3

[28] John C Platt, Nello Cristianini, and John Shawe-Taylor. Large margin

DAGs for multiclass classification. Advances in neural information processing

systems, 12(3):547–553, 2000. 3

[29] Volkan Vural and Jennifer G Dy. A hierarchical method for multi-class

support vector machines. In Proceedings of the twenty-first international confer-

ence on Machine learning, page 105. ACM, 2004. 3

[30] E. Bart, I. Porteous, P. Perona, and M. Welling. Unsupervised learn-

ing of visual taxonomies. In IEEE Conference on Computer Vision and Pattern

Recognition, 2008. CVPR 2008, pages 1–8, 2008. 4

[31] J. Sivic, B.C. Russell, A. Zisserman, W.T. Freeman, and A.A. Efros. Un-

supervised discovery of visual object class hierarchies. In IEEE Conference

on Computer Vision and Pattern Recognition, 2008. CVPR 2008, pages 1–8, 2008. 4

[32] T Griffiths, M Jordan, and J Tenenbaum. Hierarchical topic models and

the nested Chinese restaurant process. Advances in neural information process-

ing systems, 16:106–114, 2004. 4

[33] S. Fidler and A. Leonardis. Towards scalable representations of object

categories: Learning a hierarchy of parts. In IEEE Conference on Computer

Vision and Pattern Recognition, 2007. CVPR’07, pages 1–8, 2007. 4

[34] Narendra Ahuja and Sinisa Todorovic. Learning the taxonomy and mod-

els of categories present in arbitrary images. In Computer Vision, 2007. ICCV

2007. IEEE 11th International Conference on, pages 1–8. IEEE, 2007. 4

119

REFERENCES

[35] B. Epshtein and S. Ullman. Semantic hierarchies for recognizing objects

and parts. In IEEE Conference on Computer Vision and Pattern Recognition, 2007.

CVPR’07, pages 1–8, 2007. 4

[36] Boris Epshtein and S Uliman. Feature hierarchies for object classification.

In Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on, 1,

pages 220–227. IEEE, 2005. 4

[37] Sebastian Thrun and L. Pratt. Learning To Learn. Kluwer Academic Publishers,

November 1997. 4

[38] R. Caruana. Multitask learning. Machine Learning, 28(1):41–75, 1997. 4, 5

[39] J. Baxter. A model of inductive bias learning. J. Artif. Intell. Res. (JAIR),

12:149–198, 2000. 4, 5, 9, 36, 39

[40] M. Fink, S. Shalev-Shwartz, Y. Singer, and S. Ullman. Online multiclass

learning by interclass hypothesis sharing. In Proceedings of the 23rd interna-

tional conference on Machine learning, pages 313–320. ACM, 2006. 4, 5

[41] G. Obozinski, B. Taskar, and M. Jordan. Joint covariate selection for

grouped classification. Department of Statistics, U. of California, Berkeley, Tech.

Rep, 743, 2007. 4, 5, 6, 79

[42] Y. Xue, X. Liao, L. Carin, and B. Krishnapuram. Multi-task learning for

classification with Dirichlet process priors. The Journal of Machine Learning

Research, 8:35–63, 2007. 4, 6

[43] Y. Zhang and D.Y. Yeung. A Convex Formulation for Learning Task Re-

lationships in Multi-Task Learning. In UAI, 2010. 4, 5

[44] Y. Amit, M. Fink, N. Srebro, and S. Ullman. Uncovering shared structures

in multiclass classification. In Proceedings of the 24th international conference on

Machine learning, pages 17–24. ACM New York, NY, USA, 2007. 4, 5, 6

[45] Wenyuan Dai, Qiang Yang, Gui-Rong Xue, and Yong Yu. Boosting for

transfer learning. In Proceedings of the 24th international conference on Machine

learning, pages 193–200. ACM, 2007. 4, 7, 8

120

REFERENCES

[46] Ulrich Rückert and Stefan Kramer. Kernel-based inductive transfer. In

Machine Learning and Knowledge Discovery in Databases, pages 220–233. Springer,

2008. 4, 7

[47] Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Con-

vex multi-task feature learning. Machine Learning, 73(3):243–272, 2008. 4, 5,

6

[48] A. Quattoni, M. Collins, and T. Darrell. Transfer learning for image

classification with sparse prototype representations. In CVPR, 2008. 4, 5, 7

[49] J. Duchi and Y. Singer. Boosting with structural sparsity. In ICML, pages

297–304. ACM, 2009. 4, 5, 6

[50] H. Daume III. Bayesian multitask learning with latent hierarchies. In Pro-

ceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence,

pages 135–142. AUAI Press, 2009. 4, 6

[51] Michael Stark, Michael Goesele, and Bernt Schiele. A shape-based

object class model for knowledge transfer. In Computer Vision, 2009 IEEE

12th International Conference on, pages 373–380. IEEE, 2009. 4, 8

[52] T. Tommasi, F. Orabona, and B. Caputo. Safety in numbers: Learning

categories from few examples with multi model knowledge transfer. In

CVPR, 2010. 4, 8, 110

[53] Yusuf Aytar and Andrew Zisserman. Tabula rasa: Model transfer for

object category detection. In Computer Vision (ICCV), 2011 IEEE International

Conference on, pages 2252–2259. IEEE, 2011. 4, 8

[54] S. Shalev-Shwartz, Y. Wexler, and A. Shashua. ShareBoost: Efficient

Multiclass Learning with Feature Sharing. Proc. NIPS, 2011. 4, 5, 6

[55] Andreas Maurer, Massimiliano Pontil, and Bernardino Romera-Paredes.

Sparse coding for multitask and transfer learning. In Proceedings of the 30th

international conference on Machine learning, 2013. 4, 7

[56] S.J. Pan and Q. Yang. A survey on transfer learning. Knowledge and Data

Engineering, IEEE Transactions on, 22(10):1345–1359, 2010. 5, 8

121

REFERENCES

[57] Nathan Srebro, Jason Rennie, and Tommi S Jaakkola. Maximum-margin

matrix factorization. In Advances in neural information processing systems, pages

1329–1336, 2004. 6

[58] Sebastian Thrun. Is learning the n-th thing any easier than learning the

first? Advances in neural information processing systems, pages 640–646, 1996. 7

[59] S. Ben-David and R.S. Borbely. A notion of task relatedness yielding

provable multiple-task learning guarantees. Machine Learning, 73(3):273–287,

2008. 9, 33, 34, 35, 36, 38, 39, 44, 54, 56

[60] George A. Miller. WordNet: A Lexical Database for English. Communi-

cations of the ACM, 38:39–41, 1995. 10

[61] M. Markou and S. Singh. Novelty detection: a review-part 1: statistical

approaches. Signal Processing, 83(12):2499 – 2521, 2003. 10, 15

[62] M. Markou and S. Singh. Novelty detection: a review-part 2: neural

network based approaches. Signal Processing, 83(12):2481–2497, 2003. 10, 15

[63] D.M.J. Tax and R.P.W. Duin. Support Vector Data Description. Machine

Learning, 54(1):45–66, 2004. 10

[64] B. Scholkopf, R.C. Williamson, A.J. Smola, J. Shawe-Taylor, and

J. Platt. Support vector method for novelty detection. NIPS, 2000. 10,

29

[65] D.Y. Yeung and C. Chow. Parzen-window network intrusion detectors.

ICPR, 2002. 10

[66] CP Diehl and II JB. Real-time object classification and novelty detection

forcollaborative video surveillance. IJCNN, 2002. 11

[67] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric dis-

criminatively, with application to face verification. Proc. of Computer Vision

and Pattern Recognition Conference, 2005. 11

[68] Daphna Weinshall, Alon Zweig, Hynek Hermansky, Stefan Kombrink,

Frank W Ohl, J Bach, Luc Van Gool, Fabian Nater, Tomas Pajdla,

Michal Havlena, et al. Beyond novelty detection: Incongruent events,

122

REFERENCES

when general and specific classifiers disagree. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, 34(10):1886–1901, 2012. 15

[69] A. Bar-Hillel, T. Hertz, and D. Weinshall. Efficient learning of relational

object class models. Proc. ICCV, 2005. 21

[70] B. Leibe, A. Leonardis, and B. Schiele. Robust object detection with

interleaved categorization and segmentation. IJCV, 77(1):259–289, 2008. 21

[71] G. Griffin, A. Holub, and P. Perona. Caltech-256 Object Category

Dataset. Technical Report UCB/CSD-04-1366, California Institute of Technology,

2007. 24

[72] M. Lyons, S. Akamatsu, M. Kamachi, and J. Gyoba. Coding facial expres-

sions with gabor wavelets. Proc. ICAFGR, pages 200–205, 1998. 25

[73] V.N. Vapnik. The nature of statistical learning theory. Springer Verlag, 2000. 34

[74] Leslie G. Valiant. A theory of the learnable. Communications of the ACM,

27(11):1134–1142, 1984. 55, 58

[75] David Haussler. Quantifying inductive bias: AI learning algorithms and

Valiant’s learning framework. Artificial intelligence, 36(2):177–221, 1988. 55, 58

[76] Mario Marchand and John Shawe Taylor. The set covering machine. The

Journal of Machine Learning Research, 3:723–746, 2003. 55

[77] Mohak Shah, Mario Marchand, and Jacques Corbeil. Feature selection

with conjunctions of decision stumps and learning from microarray data.

Pattern Analysis and Machine Intelligence, IEEE Transactions on, 34(1):174–186,

2012. 55

[78] R. Tibshirani. Regression shrinkage and selection via the lasso. J. Royal

Statist. Soc.. B, 58:267–288, 1996. 79

[79] J. Friedman, T. Hastie, and R. Tibshirani. A note on the group lasso and

a sparse group lasso. Arxiv preprint arXiv:1001.0736, 2010. 79

[80] M. Yuan and Y. Lin. Model selection and estimation in regression with

grouped variables. J. Royal Statist. Soc.. B, 68(1):49–67, 2006. 79

123

http://www.vision.caltech.edu/Image_Datasets/Caltech256
http://www.vision.caltech.edu/Image_Datasets/Caltech256

REFERENCES

[81] K. Crammer and Y. Singer. On the algorithmic implementation of multi-

class kernel-based vector machines. JMLR, 2:265–292, 2002. 82

[82] S.J. Wright, R.D. Nowak, and M.A.T. Figueiredo. Sparse reconstruc-

tion by separable approximation. Signal Processing, IEEE Transactions on,

57(7):2479–2493, 2009. 82, 84

[83] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algo-

rithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–

202, 2009. 84

[84] I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algo-

rithm for linear inverse problems with a sparsity constraint. Communications

on pure and applied mathematics, 57(11):1413–1457, 2004. 84

[85] P. Sprechmann, I. Raḿırez, G. Sapiro, and Y.C. Eldar. C-HiLasso: A

Collaborative Hierarchical Sparse Modeling Framework. Signal Processing,

IEEE Transactions on, 59(9):4183–4198, 2011. 84

[86] L. Xiao. Dual averaging methods for regularized stochastic learning and

online optimization. JMLR, 2010. 85, 88

[87] H. Yang, Z. Xu, I. King, and M. Lyu. Online learning for group lasso. ICML,

2010. 85

[88] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324,

1998. 97

[89] J.J. Hull. A database for handwritten text recognition research. Pattern

Analysis and Machine Intelligence, IEEE Transactions on, 16(5):550–554, 1994. 97

[90] A. Krizhevsky and GE Hinton. Learning multiple layers of features from

tiny images. Master’s thesis, Department of Computer Science, University of

Toronto, 2009. 97

[91] G. Griffin, A. Holub, and P. Perona. Caltech-256 object category dataset.

2007. 97

124

REFERENCES

[92] A. Quattoni and A. Torralba. Recognizing indoor scenes. CVPR, 2009. 97,

98, 99

[93] Aude Oliva and Antonio Torralba. Modeling the shape of the scene:

A holistic representation of the spatial envelope. International journal of

computer vision, 42(3):145–175, 2001. 98

[94] A. Rahimi and B. Recht. Random features for large-scale kernel machines.

NIPS, 2007. 98

[95] P. Gehler and S. Nowozin. On feature combination for multiclass object

classification. In ICCV, 2009. 98, 99

[96] L.J. Li, H. Su, E.P. Xing, and L. Fei-Fei. Object bank: A high-level image

representation for scene classification and semantic feature sparsification.

NIPS, 2010. 98, 99

[97] A. Berg, J. Deng, and L. Fei-Fei. Large scale visual recognition challenge

2010, 2010. 100, 101, 102, 109, 111

[98] A. Blumer, A. Ehrenfeucht, D. Haussler, and M.K. Warmuth. Learnabil-

ity and the Vapnik-Chervonenkis dimension. Journal of the ACM (JACM),

36(4):929–965, 1989. V

125

http://www.image-net.org/challenges/LSVRC/2010/index
http://www.image-net.org/challenges/LSVRC/2010/index

A

Appendix

A.1 Chapter 3 Appendix

A.1.1 Proof of lemma 6

Proof For clarity in the proof below, we omit the domain X×{0, 1} when referring

to (x, b) and use the shorthand hf(X) for h ◦ f(X).

ErP (h ◦ g ◦ f) = P ({(x, b) : hgf(x) 6= b}) =

P ({(x, b) : hgf(x) 6= b, hf(x) = 1}) + P ({(x, b) : hgf(x) 6= b, hf(x) = 0}) = (A.1)

P ({(x, b) : hg(x)hf(x) 6= b, hf(x) = 1}) + P ({(x, b) : hgf(x) 6= b, hf(x) = 0}) =

P ({(x, b) : hg(x) 6= b, hf(x) = 1}) + P ({(x, b) : hgf(x) 6= b, hf(x) = 0}) =

P ({(x, b) : hg(x) 6= b, hf(x) = 1}) + P ({(x, b) : hgf(x) 6= b, hf(x) = 0})+

P ({(x, b) : hg(x) 6= b, hf(x) = 0})− P ({(x, b) : hg(x) 6= b, hf(x) = 0}) =

P ({(x, b) : hg(x) 6= b}) + P ({(x, b) : hgf(x) 6= b, hf(x) = 0})−

P ({(x, b) : hg(x) 6= b, hf(x) = 0}) = (A.2)

P ({(x, b) : hg(x) 6= b}) + P ({(x, b) : b = 1, hg(x) = 1, hf(x) = 0})+

P ({(x, b) : b = 1, hg(x) = 0, hf(x) = 0})− P ({(x, b) : b = 1, hg(x) = 0, hf(x) = 0})−

P ({(x, b) : b = 0, hg(x) = 1, hf(x) = 0}) =

P ({(x, b) : hg(x) 6= b}) + P ({(x, b) : b = 1, hg(x) = 1, hf(x) = 0})−

P ({(x, b) : b = 0, hg(x) = 1, hf(x) = 0}) =

ErP (h ◦ g)− P ({(x, b) : b = 0, hg(x) = 1, hf(x) = 0})+

P ({(x, b) : b = 1, hg(x) = 1, hf(x) = 0}) =

ErP (h ◦ g) +Rgf .

Derivations (A.1) and (A.2) above follow from the transformation-multiplicativity.

�

I

A. APPENDIX

A.1.2 Indifference Sufficient Conditions Cont.

In this section we continue our analysis of the sufficient conditions of the indifference

property. We introduce the following notations: g∗ = arg ming∈GEr
P (h ◦ g), and

ε = ErP (h ◦ g∗) = ε−g∗ + ε+g∗ where:

• ε−g∗ = P ({(x, b) : b = 1, hg∗(x) = 0})

• ε+g∗ = P ({(x, b) : b = 0, hg∗(x) = 1})

For simplicity we also define:

• ε−f = P ({(x, b) : b = 1, hf(x) = 0})

• e = P ({(x, b) : b = 0, hf(x) = 0})

Recall the example from Section 3.2.3 where ε−g∗ = 0 and ε−f = 0, in the following

we would like to consider richer scenarios when we cannot assume an errorless choice

of g ∈ G given the specific distribution P and hypothesis h ∈ H. Whereas this

scenario is typically more interesting it is of particular interest in our hierarchical

setting where even if we assume that each of the single tasks is realizable the task

representing their union might not be.

All sufficient conditions presented in this section are summarized in Table A.1.

We rewrite (3.10) as:

Rg∗f −Rgf = [P ({(x, b) : b = 1, hg(x) = 0})− ε−g∗] ∗ ε−f + (A.3)

[P ({(x, b) : b = 0, hg(x) = 1})− ε+g∗] ∗ e

We are interested in analyzing the conditions under which indifference occurs.

Thus

[P ({(x, b) : b = 1, hg(x) = 0})− ε−g∗] ∗ ε−f + [P ({(x, b) : b = 0, hg(x) = 1})− ε+g∗] ∗ e ≤
(A.4)

[P ({(x, b) : b = 1, hg(x) = 0})− ε−g∗] + [P ({(x, b) : b = 0, hg(x) = 1})− ε+g∗]

From the optimality of g∗ we know that at least one of its errors is smaller than

any other g. It is easy to see that inequality (A.4) is true if both error types of g∗

are smaller than g.

II

A.1 Chapter 3 Appendix

Next we analyze the case where g∗ has only one type of errors which is smaller

than the error of g. We focus our analysis on the behavior of transformation f

with respect to distribution P . Specifically, we are interested in the true negative

component e and the false negative component ε−f .

In our hierarchical setting, at each level l of the hierarchy we define a unified

task by the distribution Pal
defined in (3.1). In our analysis of the optimality of the

cascade approach in Section 3.2.4, we are interested in the optimal transformation

from Gl which is optimal with respect to the unified task distribution Pal
and with the

transformation from Fl which is optimal with respect to the distribution of a specific

task belonging to level l. Thus, the following discussion of indifference focuses on

the case where the transformation f is optimal with respect to distribution Pli , but

e and ε−f are calculated according to distribution Pal
. To clarify this point, consider

ε−f which captures the rate of false negative classification with respect to Pal
; it

does not, however, capture the rate of false negative classification with respect to

Pli when some error is due to samples from other tasks.

Another example for a sufficient condition for the indifference property is the

case where e = ε−f , when clearly inequality (A.4) is true.

Note that indifference occurs when e = ε−f regardless of the behavior of the

optimal transformation g∗ ∈ G. This is not the case if e ≤ ε−f or e ≥ ε−f . The

conditions concerning g∗ ∈ G in each of these cases are analyzed in Corollary 1 and

2.

Corollary 1 describes the sufficent condition on g given e ≤ ε−f .

Corollary 1 When P ({(x, b) : b = 0, hf(x) = 0}) ≤ P ({(x, b) : b = 1, hf(x) =

0}), inequality (A.4) is true if P ({(x, b) : b = 1, hg(x) = 0}) ≤ ε−g∗

III

A. APPENDIX

Proof

e ≤ ε−f ⇒ (A.5)

0 ≤ [ε−g∗ − P ({(x, b) : b = 1, hg(x) = 0})] ∗ (ε−f − 1)+

[ε−g∗ − P ({(x, b) : b = 1, hg(x) = 0})] ∗ (1− e)⇒ (A.6)

0 ≤ [P ({(x, b) : b = 1, hg(x) = 0})− ε−g∗] ∗ (1− ε−f)+

[ε−g∗ − P ({(x, b) : b = 1, hg(x) = 0})] ∗ (1− e)⇒

0 ≤ [P ({(x, b) : b = 1, hg(x) = 0})− ε−g∗] ∗ (1− ε−f)+

[ε−g∗ + ε+g∗ − P ({(x, b) : b = 1, hg(x) = 0})− ε+g∗] ∗ (1− e)⇒ (A.7)

0 ≤ [P ({(x, b) : b = 1, hg(x) = 0})− ε−g∗] ∗ (1− ε−f)+

[P ({(x, b) : b = 0, hg(x) = 1})− ε+g∗] ∗ (1− e) (A.8)

A.5⇒ A.6, due to the assumption that P ({(x, b) : b = 1, hg(x) = 0}) ≤ ε−g∗ . A.7

⇒ A.8 due to the sub-optimality of g: P ({(x, b) : b = 1, hg(x) = 0}) + P ({(x, b) :

b = 0, hg(x) = 1}) > ε−g∗ + ε+g∗ . �

Corollary 2 describes the sufficient condition on g given ε−f ≤ e.

Corollary 2 When P ({(x, b) : b = 1, hf(x) = 0}) ≤ P ({(x, b) : b = 0, hf(x) =

0}), inequality (A.4) is true if P ({(x, b) : b = 0, hg(x) = 1}) ≤ ε+g∗

Proof symmetric to the proof of Corollary 1.

g ∈ G f ∈ F

1 P ({(x, b) : b = 1, hg∗(x) = 0}) = 0}) P ({(x, b) : b = 1, hf(x) = 0}) = 0})
2 ε−g∗ < P ({(x, b) : b = 1, hg(x) = 0}) -

ε+g∗ < P ({(x, b) : b = 0, hg(x) = 1}) -
3 - e = ε−f
4 P ({(x, b) : b = 1, hg(x) = 0}) ≤ ε−g∗ e ≤ ε−f
5 P ({(x, b) : b = 0, hg(x) = 1}) ≤ ε+g∗ e ≥ ε−f

Table A.1: A summary of sufficient conditions for the indifference property assuming g ∈ G

and f ∈ F are statistically independent (see (3.9)). Each row represents a single set of sufficient
conditions. ’-’ specifies there is no constraint on g ∈ G or f ∈ F.

IV

A.1 Chapter 3 Appendix

A.1.3 Learning a Subset of Rectangle Dimensions

The problem of learning an axis-aligned rectangle in Rd has VC-dimension of 2d

([98]). In the following corollary we show that the subproblem of learning n ≤ d

dimension of the rectangle given the d− n dimensions is an easier learning task.

Corollary 3 Let r be an axis-aligned rectangle in Rd, and let F (r) be the class

of all Euclidean shifts and Scale of a chosen set of n ≤ d dimensions of r, where all

other d− n dimensions are fixed. Then V Cdim(F (r)) ≤ 2n.

Proof Suppose F (r) shatters set U . Thus there exists h ∈ F (r) such that ∀x ∈ U ,

h(x) = 1. This means that the axis-aligned faces of the rectangle in the d− n fixed

dimensions must be located such that all points are within the boundaries of these

faces.

Thus for any point x ∈ U to be labeled zero there has to exist h ∈ F (r) such

that h(x) = 0, hence the zero labeling is obtained by shift and scaling of the n

dimensions. Assume V Cdim(F (r)) ≥ 2n + 1, thus all 2n+1 points have to be

within the boundaries of the fixed faces of the rectangle. We note that there are

only 2n extremum values, points can have when considering only n dimensions.

Thus, for 2n + 1 points there has to exist at least one point, y ∈ U , which does

not attain the maximum value nor minimum value of any of the n dimensions. For

h ∈ F (r) if h(y) = 0 there has to exist another point x ∈ U for which h(x) = 0,

thus U cannot be shattered. �

V

A. APPENDIX

A.2 Chapter 4 Appendix

A.2.1 Finding Equivalence Sets

In this section we present an algorithm for finding all equivalences between sets

within a given group of sets S. Each set s ∈ S, contains several elements from a

finite set P, thus s ⊆ P. Two sets are said to be equivalent if they are identical in

the elements that they contain. The output of the algorithm is a grouping EP of all

equivalence sets. The elements in each set in the input are assumed to be sorted

according to some predefined ordering of P . Given such sorted sets equivalence

can be found simply by a sequential pass over all elements in each set, each time

comparing the k’th element in all sets of size k or bigger. Sets which are equivalent

will be identical in all elements. An efficient implementation has runtime of O(|P|
+

∑
|s|).

A.2.2 Algorithm Analysis Continued

In the following we show that Algorithm 3 indeed finds all possible intersections

and represents the partial order correctly maintaining all constraints. For clarity we

shall start by defining the following notations. A hidden class is denoted by C. Γin

denotes the set of all classes in the input. PC denotes the set of properties of class

C. ΓC ⊂ Γin denotes all classes in the input which share the same properties as C,

i.e. ∀A ∈ ΓC, PC ⊂ PA, hence every A ∈ ΓC is a subclass of the hidden general

class C. We shall say that a path between a known class (e.g. A ∈ Γin) to one of

its properties- p ∈ PA is active at the i’th iteration of Algorithm 3 if there exists a

path between the known class to a node in in(p).

Lemma 1 For each edge (u,v) in the output graph Gout =< Vout,Eout > where

both u,v ∈ Vout\Vin, u was discovered before v.

This is easy to see as nodes are discovered using intersection of properties and

Rv ⊂ Ru, thus u has to be discovered first.

Lemma 2 For a class C discovered at the i’th iteration of Algorithm 3 there are

at least i+1 classes from Γin that share the properties PC.

VI

A.2 Chapter 4 Appendix

Algorithm 8 Find Equivalence
Input :

P set of possible elements

S group of sets, for each set i ∈ S, s ⊆ P

Output:

EP A grouping of the sets in S into maximal equivalence sets according to identity
on elements of P.

1. Lists = |P| empty lists.

2. EP = FindEq(S,Lists,1);

—————————————————————————-
FindEq(S,Lists,ind)

1. init empty list EP

2. add all s ∈ S for which |s| = ind− 1 to EP

3. add each s with |s| ≥ ind to Lists(s(ind))

4. add each non empty list as a list to TempList, and empty Lists

5. for each list in TempList compute Ek
P = FindEq(TempList(k),Lists,ind+1)

6. add all Ek
P to EP

VII

A. APPENDIX

This lemma is straight forward from the fact that at each iteration at least two

nodes in the graph are intersected in the process of discovering a new node.

Lemma 3 When all paths between classes in ΓC to all properties in PC are active,

either C will be discovered or a class B where PC ⊂ PB will be discovered.

Proof When all paths are active we know that an intersection between a subset

or all classes in ΓC can be computed as all classes share the properties in PC. From

lemma 1, when two (or more) classes share a large set of properties, this intersection

is discovered first (lemma 1).

Theorem 1 Given Gin maintaining all constraints (4.1- 4.5), the output graph

Gout also maintains all constraints (4.1- 4.5) .

The different operations used during the algorithm are tailored to maintain the

constraints- The data consistency constraint (4.1) is maintained by being data

driven- only adding nodes representing intersection of existing ones. While replac-

ing each single edge in Gin with a path in Gout, thus maintaining all the original

connectivity without loosing any information.

The merging operations verify that both types of vertex minimality (4.2 and

4.3) constraints are maintained at each iteration. The fact that each intersection

is computed in only one single iteration of the algorithm (lemma 7) maintain the

vertex minimality constraints throughout the run of the algorithm.

The max order constraint (4.4) is maintained by discovering nodes according to

the partial order (lemma 1) and connecting these nodes to all nodes contributing to

their discovery (step 2.f).

The edge minimality constraint (4.5) is maintained by the EdgeMin operation.

Lemma 4 By the i’th iteration of step 2 in algorithm 3 all intersections of i + 1

classes from Γin have been discovered.

Proof By induction on the number of iterations. We will start by proving that at

the first iteration all intersections of pairs of classes from Γin are found. At step 2.a.

nodes are created for each pair of classes which intersect and for each property in the

VIII

A.2 Chapter 4 Appendix

intersection. At step 2.b. nodes corresponding to the same pair of classes are merged

and the result is list of nodes, FWMERG, which contains nodes corresponding to

all pairwise non empty intersections. Each node in FWMERG is kept or unified

with another node with the same representation. Thus, all pairwise intersections

are discovered and represented in the graph either by a node of their own or by

a node representing an intersection of a larger set of classes which share the same

properties as an intersection of unified pairs.

Let’s assume the Lemma is true for the i-1 iteration.

From lemma 2 we know that all intersections discovered at step greater than step

i will contain at least i + 2 properties. Hence either an intersection of length i + 1

is discovered prior to or during step i, or its not discovered at all. Let’s denote by

C an intersection of i + 1 classes which was not discovered prior to or during step

i. From lemma 2 we can also conclude that no class B for which PC ⊂ PB, can

be discovered in step i, as it will be have less than i+ 1 classes in its intersections.

Putting this together with lemma 3 we can conclude that if all paths between classes

in ΓC to all properties in PC are active, C has to be discovered up until step i. Thus

for class C not to be discovered at least one path in not active. Let’s denote A ∈ ΓC

as a class in the origin of such a path and denote by j < i + 1 the latest iteration

class A had an active path to all the features in PC. Thus, at iteration j + 1 of

the algorithm no intersection between A to any of the classes in ΓC was found.

Such an intersection contains all features in PC thus, if existed, it would have kept

all paths from A to the properties in PC alive. From lemma 1 we know that till

C is discovered, only more specific classes can be discovered. From the induction

assumption we know that all such specific classes are discovered. Thus, before C is

discovered, all paths between classes in ΓC end up at nodes in in(p) which are more

specific than C. Thus there always exists at least one intersection between them

before C is discovered (the intersection of all classes in ΓC). Thus all paths have to

remain active before C is discovered, which contradicts the assumption that such a

class A with j < i+ 1 exists. �

The following theorem states that all possible intersections among the original

group of classes is discovered by Algorithm 3.

IX

A. APPENDIX

Theorem 2 For each subset ΓC ⊂ Γin such that ∩A∈ΓC
PA 6= ∅ there exists a

corresponding node in v ∈ Vout with Rv = ∩A∈ΓC
PA

The proof is straightforward from lemma 4.

A.2.3 Run Time Analysis

Our proposed algorithm simultaneously produces an ordering over classes while find-

ing all possible intersections of representation sets between all known classes. For

each such intersection both its representation and the maximal group of classes

intersected are maintained in our graph structure.

For our run time analysis let’s denote the input as:

Γ a family of m classes.

P the set of all possible n features, used for the representation of classes in Γ.

ci ∈ Γ where i = 1..m, a single class.

pi ⊂ P where i = 1..m, the representing feature set of each class.

Finding all possible intersections among the classes in Γ while for each intersec-

tion maintaining the features in P and all classes in the intersection which share

these features, has a run time which is at least the size of the desired output. Let’s

denote the group of all possible intersections with a unique set of features as Ω. The

desired output is {(ĉi, p̂i)}|Ω|i=1 where:

ĉi ∈ Ω a group of classes from Γ which have a non empty intersection of their

corresponding set of representing features.

p̂i ⊂ P the features in the intersection of the representation of all classes in ĉi.

Note, that Ω is defined such that ∀i 6= j, p̂i 6≡ p̂j. Let’s denote the description

length of {(ĉi, p̂i)}|Ω|i=1 as Dl.

Dl can be computed by summing over the number of features and classes in all

intersections in Ω, thus Dl =
∑n−1

k=1 k#k. Here k denotes the size of the intersec-

tion (number of features), and #k denotes the sum of group sizes which have an

X

A.2 Chapter 4 Appendix

intersection with k features, thus #k =
∑

ĉi
k∈∆k

|ĉik|. ∆k ⊆ Ω denotes the group of

intersections with k features, thus ∀ĉik ∈ ∆k, |p̂ik| = k.

Now let’s define D̂l as Dl where #k =
∑

ĉi
k∈∆k

|ĉik|2. The difference between D̂l

and Dl is that we sum over the square of the number of classes in a single intersection

of k features.

We start by analyzing a single iteration of step 2 in the algorithm. Let Ωi−1 ⊆ Ω

denote the set of intersections found during the i’th-1 iteration of step 2. Let Si

denote the set of all pairs of group of classes in Ωi−1 which have a non empty

intersection found at the i’th iteration of step 2. Thus, ∀ĉk, ĉj ∈ Ωi−1, j 6= k

we define cikj = ĉk ∪ ĉj and its corresponding set of features as pikj = p̂k ∩ p̂j.

pikj 6= ∅ iff cikj ∈ Si. Note that Si is not the same as Ωi but rather a temporary

set computed during the consecutive Split and ForwradMerge operations; this point

will be explained in details in the following proof of lemma 4. For simplicity we

mark the set of nodes which were intersected in a single round as ∪sin(s), ignoring

the case where |in(s)| = 1 as such a node won’t be intersected and won’t affect the

runtime analysis.

Lemma 5 The run time of the i’th iteration of step 2 in Alg 3 is O(
∑

cij∈Si |pij|+∑
ci+1
j ∈Si+1 |pi+1

j |).

Proof This can be seen by following the different phases taken during the i’th

iteration of step 2. During the split phase only edges that connect to new graph

nodes (nodes representing Ωi−1) created during the i-1 iteration of step 2 undergo

a split. Each two edges coupled together during the split represent an intersection

between two sets in Ωi−1 and share a single feature. For each intersection of two

sets in Ωi−1 the number of resulting couplings of edges during the split phase is the

number of features in the intersection. This is done for every intersecting pair from

Ωi−1. Thus the Split phase takes:
∑

cij∈Si |pij|.
Following the above analysis of the Forward-Merge one can construct Ein (the

group of equivalence sets of nodes according to the incoming edges) and preform the

node updates simultaneously in O(| ∪s in(s)| + |U|). Here U represents the sets of

nodes built during the Split phase, hence |U| =
∑

cij∈Si |pij|, and ∪sin(s) represents

XI

A. APPENDIX

the set of nodes which were intersected during the Split phase, thus all sets in Ωi−1

which have at least one intersection with another set from Ωi−1. It is easy to see

that | ∪s in(s)| ≤ |Si| ≤
∑

cij∈Si |pij|, so we can conclude that the runtime of each

Forward-Merge is O(
∑

cij∈Si |pij|).

Backward-Merge is applied to the output of the Forward-Merge which is Si.

Following the above analysis of the Backward-Merge we can construct Eout (the

group of equivalence sets of nodes according to the outgoing edges) and perform the

node updates simultaneously in O(| ∪s−was−split s| +
∑

cij∈Si |pij|). Here ∪s−was−splits
represents the sets of nodes which were split, thus |∪s−was−splits| <

∑
cij∈Si |pij|. Note

that in the run time analysis of Backward-Merge we used the notation
∑

u |Out(u)|
which is equivalent to

∑
cij∈Si |pij|, as U represents Si, u represents cij and thus

Out(u) and pij are the same. We can conclude that the runtime of Backward-Merge

is O(
∑

cij∈Si |pij|)

The EdgeMin operation is applied to the output of the Backward-Merge which

contains at most |Si| nodes. For each node u ∈ U (the input set of EdgeMin)

there is at least one node in Si which has the same features as in the Out(u) set.

Thus,
∑

i |Out(ui)| ≤
∑

cij∈Si |pij|. The size of the list calculated for each feature p

marking the nodes represented by this feature is the same as the size of in(p) at

round i+1. Thus
∑

p∈Out(ui) |L(p)| is the number of intersections node ui will have

in round i+1, and therefore going over all nodes which would be intersected during

round i+1 we get that
∑

i

∑
p∈Out(ui) |L(p)| =

∑
ci+1
j ∈Si+1 |pi+1

j | is the runtime of the

Split operation during stage i+1. As discussed above, in order to delete efficiently

the edges during the EdgeMin operation we need a hash table of size | ∪i In(ui)|.
As in the Forward-Merge it is easy to see that | ∪i In(ui)| ≤ |Si|. Thus, initializing

such a table and preforming the delete operation at runtime O(|In(ui)| + |In(uj)|)
can be bounded by |Si| ≤

∑
cij∈Si |pij|. To conclude, the runtime of the EdgeMin

operation is O(
∑

cij∈Si |pij|+
∑

ci+1
j ∈Si+1 |pi+1

j |).

Summing up the runtime of all procedures done during a single iteration of step

2, we get that the run time of the i’th iteration is O(
∑

cij∈Si |pij|+
∑

ci+1
j ∈Si+1 |pi+1

j |).
�

Lemma 6 Empty intersections are never computed.

XII

A.2 Chapter 4 Appendix

Proof This is easy to see as intersections are computed by looking at each features

to obtain the classes that have these features. Classes which don’t share features

will never be considered to have an intersection.

Lemma 7 A non empty intersection between any ∆ ⊆ Ω is discovered exactly

once.

Proof Once an intersection is discovered the paths between all classes in ∆ to the

properties shared by all these classes are updated and all go through a single node

representing ∆. No other path between these classes to the features is kept alive.

Lemma 8 ∀ĉj ∈ Ω the corresponding p̂j can be calculated at most |ĉj|2 times.

Proof The lemma follows from the fact that we start by looking at intersections

of pairs. In the worst case all subgroups of classes intersected when creating the

group ĉj, contain a single class.

Theorem 3 Alg 3 has runtime O(D̂l).

Proof From lemma 8 and lemma 5 we can bound the runtime of a single iteration

of step 2 by
∑

cij∈Si |pij| <
∑

ĉj∈Ωi |ĉj|2|p̂j|, as |ĉj|2 is the upper bound on the

number of times |p̂j| is summed in the left part of the equation. From theorem

2 we know that all intersections between classes in Γ are found. From lemma 7

we get that each intersection of a group of classes is calculated exactly once, and

no empty intersections are calculated. Thus the intersections calculated during

all the iterations of step 2 are exactly the intersections represented in Ω and by

switching from summation over iterations to summation accourding to |p̂j| we get,∑
i

∑
ĉj∈Ωi |ĉj|2|p̂j| =

∑n−1
k=1 k

∑
ĉi

k∈∆k

|ĉik|2 = D̂l. It follows that the runtime of Step

2 of the algorithm is O(D̂l). In Step 3 we perform a single pass over all nodes in

the graph which takes |Ω| steps. As |Ω| < |D̂l| we can conclude that the runtime of

the algorithm is dominated by the runtime of Step 2 O(D̂l) �.

XIII

	1 Introduction
	1.1 Hierarchy in Visual Recognition
	1.2 Information Sharing
	1.2.1 Multi-Task Learning
	1.2.2 Knowledge-Transfer
	1.2.3 Theoretical Analysis
	1.2.4 Hierarchical Sharing

	1.3 Novelty Detection
	1.4 Overview and Outline

	2 Novel Subclass Detection
	2.1 Incongruent Events Framework
	2.1.1 Label Hierarchy and Partial Order
	2.1.2 Definition of Incongruent Events
	2.1.2.1 Multiple Probabilistic Models for Each Concept
	2.1.2.2 Examples
	2.1.2.3 Incongruent Events

	2.2 Algorithm
	2.2.1 Algorithm for Sub-Class Detection

	2.3 Experiments

	3 Hierarchical Multi-Task Learning: a Cascade Approach Based on the Notion of Task Relatedness
	3.1 Hierarchical Multi-Task Paradigm
	3.1.1 Task Relatedness Background
	3.1.2 Hierarchical Task Relatedness
	3.1.3 Hierarchical Learning Paradigm, Cascade Approach
	3.1.3.1 Iterative MT-ERM
	3.1.3.2 Cascade Approach

	3.2 Cascade Optimality
	3.2.1 Hierarchical Task Relatedness Properties
	3.2.2 The property of Transformation-Multiplicativity
	3.2.3 The property of Indifference
	3.2.4 Optimality Proof

	3.3 Multi-Task Cascade ERM
	3.4 Experiment

	4 SIPO: Set Intersection Partial Order
	4.1 Partial Order Representation
	4.1.1 Compactness Constraints

	4.2 Hierarchy Discovery Algorithm
	4.2.1 Algorithm Analysis

	4.3 Statistical SIPO Model
	4.3.1 Statistical Algorithm

	4.4 Experiment

	5 Hierarchical Regularization Cascade
	5.1 Hierarchical Regularization Cascade for Multi Task Learning
	5.1.1 Hierarchical Regularization
	5.1.2 Cascade Algorithm
	5.1.3 Batch Optimization

	5.2 Online Algorithm
	5.2.1 Regret Analysis

	5.3 Joint Learning Experiments
	5.3.1 Synthetic Data
	5.3.2 Real Data

	5.4 Knowledge Transfer
	5.4.1 Batch Method
	5.4.2 Online Method

	5.5 Knowledge-Transfer Experiments
	5.5.1 Synthetic Data
	5.5.2 Medium Size
	5.5.3 Large Size

	5.6 Summary

	6 Epilogue
	References
	A Appendix
	A.1 Chapter 3 Appendix
	A.1.1 Proof of lemma 6
	A.1.2 Indifference Sufficient Conditions Cont.
	A.1.3 Learning a Subset of Rectangle Dimensions

	A.2 Chapter 4 Appendix
	A.2.1 Finding Equivalence Sets
	A.2.2 Algorithm Analysis Continued
	A.2.3 Run Time Analysis

