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Abstract

We survey the problem of learning linear models, in the binary and multiclass
settings. In both cases, our goal is to find a linear model with least probability
of mistake.

This problem is known to be NP-hard and even NP-hard to learn improp-
erly (under relevant assumptions). Nonetheless, under certain assumptions
about the input the problem has an algorithm with worst-case polynomial
time complexity.

At first glance these assumptions seem to vary greatly. Starting from the
realizable assumption, which entails that the labeling is deterministic and
can be realized by a linear function, and ending with simply the existence of
a predictor with margin and a low error rate. However all of these methods
can be seen as generalized linear models, namely the optimal classifier can be
used to estimate the distribution of the labels given any example.

On a different note, all of these methods are based on convex optimization
and they are are generally split into two groups, offline, or batch, methods
and online methods. Offline methods are based on minimizing a surrogate
convex loss function over a sample taken from the distribution. This function
is called a surrogate since it replaces the zero-one loss (number of mistakes).
Online methods include Perceptron-like algorithms and can all be seen as
special cases of online linear optimization. We show that all known online
methods are in fact approximations to offline methods.
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Chapter 1

Introduction

1.1 Learning linear models

This section briefly introduces statistical learning and linear models for bi-
nary and multiclass classification.

Let us start with an introduction to statistical learning. We are given
a sample space X , a label space Y and an unknown distribution D over the
product space X×Y . The goal is to find a function h : X → Y that minimizes
the probability of error,

Pr(x,y)∼D[h(x) 6= y]

Clearly, in order to estimate the function h we need to have some kind
of access to the distribution D. This access is realized by an oracle which
samples independently from D.

Let us say a learning problem is learnable if there exists an algorithm A
with access to the oracle that returns a function h which satisfies

Pr(x,y)∼D[h(x) 6= y] ≤ inf
h′

Pr(x,y)∼D[h′(x) 6= y] + ε

for a small ε > 0 with high probability.
Note that the goal of A is to estimate the optimal h from a finite number of

examples drawn from the distribution. As such, the No-Free-Lunch theorem
tells us that if we let h be any function, then for any algorithm A there exists
distributions D such that A will fail to estimate the optimal h with high
probability.

1



CHAPTER 1. INTRODUCTION 2

One approach for overcoming this difficulty is to say that h belongs to
a hypothesis class H. Then the output of A is compared to the optimal
function in H.

A popular hypothesis class is a class of linear functions. It is here that
this section will split into two parts, binary and multiclass classification.

1.1.1 Binary

Here we assume that X ⊆ Rd, Y = {−1, 1} and that

H = {x 7→ sign(〈w,x〉) : w ∈ Rd}

Let w ∈ Rd by a vector which represents a halfspace. Any example
x ∈ X satisfying 〈w,x〉 > 0 is classified as 1 and otherwise as −1. In fact,
w is perpendicular to the hyperplane which bounds the halfspace.

w

Figure 1.1: An example of a halfspace in R2. The red area is one which is
classified as −1 and the rest of the space is classified as 1.

1.1.2 Multiclass

Once again assume that X ⊆ Rd except now Y = [k] := {1, ..., k}, k is the
number of classes, and

H = {x 7→ arg maxz∈[k](Wx)z : W ∈ Rk×d}

For a geometric intuition, the space of Rd is split into k tangential cones.
Each y’th cone is pointed and convex and contains all points satisfying a set
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of linear inequalities,

∀z ∈ [k]\{y} (Wx)y > (Wx)z

Let ez is the z’th canonical basis vector of Rk. An equivalent viewpoint is
that for every two classes, z and y, the halfspace represented by W>(ez−ey)
classifies between the two classes. For every example of class z we have
〈W>(ez − ey),x〉 > 0 and for every example of class y we have 〈W>(ez −
ey),x〉 ≤ 0.

Figure 1.2: An example of a multiclass linear classifier in R2. The red, green
and blue areas represent a partition of the space into three classes.

1.2 Hardness of learning

In this section we will state results showing that under relevant assumptions
learning linear models is computationally hard. The section will focus on
learning halfspaces, but since halfspaces are a special class of multiclass linear
models the results hold for multiclass as well.

Guruswami and Raghavendra ([21]) have shown that given ε, δ > 0 and a
set of examples from {0, 1}d, it is hard to distinguish between the case that
(1 − ε)-fraction could be explained by a halfspace and the case that (1/2 +
δ)-fraction could be explained by a halfspace. Since any δ-weak learning
algorithm could be used to distinguish between the two cases, the result
follows. In a follow-up paper ([19]) Feldman et al. have shown an analogous
result for when the sample space is Qd.
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Both results are based on hardness of maximizing satisfiability of linear
inequalities. They prove hardness of proper learning, meaning when the
algorithm has to return a hypothesis which is itself a halfspace.

The work of Daniely et al. ([17]) is based on a stronger assumption than
P 6= NP, that it is hard to refute random SAT formulas. They show that it
is hard to distinguish between a realizable sample and a random one. These
random samples are unrealizable with high probability and this entails that
it is hard to distinguish between a realizable sample and an unrealizable one
(w.h.p.). Specifically, any improper weak learning algorithm can be used to
distinguish between the different kinds of samples and the results follows.

1.3 A motivating example

After presenting the problem and showing that it is generally hard, we now
tend to present how machine learning literature had tried to overcome this
hardness. As a motivating example let us now present the idea behind soft-
SVM ([14]).

Define the zero-one loss:

`0−1(α) = 1[α≤0]

For a halfspace w and an example (x, y), `0−1(y〈w,x〉) is 1 if w mistakes on
(x, y) and zero otherwise. Since the expected zero-one loss is the probability
of mistake, one would like to find a halfspace with minimum zero-one loss.

The above is NP-hard in general. The approach of soft-SVM is to replace
the zero-one loss with a different loss function, the hinge loss:

`hinge(α) = max{0, 1− α}

The hinge loss is convex, bounded from below and we can find its minima
efficiently. Another important property is that it upper bounds the zero-one
loss. Since it replaces the zero-one loss it is one type of a surrogate loss
function.

If we could learn with respect to the hinge loss, meaning we could find a
halfspace w for which

E[`hinge(y〈w,x〉)] ≤ min
w′

E[`hinge(y〈w′,x〉)] + ε
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Figure 1.3: In red the hinge loss and in blue the zero-one loss.

then also
E[`0−1(y〈w,x〉)] ≤ min

w′
E[`hinge(y〈w′,x〉)] + ε

What does this mean?

• If the minimizer of the hinge loss is minimizer of the zero-one loss then
we have found the optimal halfspace.

• If the minimum expected hinge loss is small, then we have found a good
classifier.

That brings up the question, can we guarantee any of these conditions?
If we can, under what assumptions? These are the type of questions that we
would try and answer for the remainder of this thesis.

1.4 Contributions

Our contributions are as following:

1. We have compiled a survey of major known results, both positive and
negative, regarding surrogate convex loss minimization.

2. We show simple algorithms for learning halfspaces with random noise.
Both in the batch (section 4.4) and online (chapter 9) settings.

3. In chapter 11 we show that known online algorithms for learning linear
models are in fact approximations of the batch case, i.e. minimizing a
surrogate convex loss over a sample from the distribution.
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1.5 Preliminaries

1.5.1 Notation

We will denote scalars as non-capital letters, vectors as bold non-capital
letters and matrices and random variables as capital letters. Denote the
indicator function as 1[P ] for a predicate P , which is 1 if P holds and 0
otherwise.

Our examples are taken from Rd. Abbreviating [k] for {1, ..., k}, the labels
are taken from {−1, 1} in the binary case and from [k] in the multiclass case,
where k is the number of classes.

Loss functions are denoted as ` subscripted by their name. We find it
easier to use a few equivalent notations for loss functions, each useful in
different chapters:

1. In the binary case as functions from the real line, for example:
`hinge(α) = max{0, 1− α}. This form is easier to visualize and for ana-
lyzing notions of consistency. Given an example (x, y) for a halfspace
w ∈ Rd the actual loss is `(y〈w,x〉).

2. In the multiclass case as functions from Rk. Each label y ∈ [k] has a
loss associated with it, denoted as `(y). For example:
`

(y)
cs (α) = maxz∈[k]{1[z 6=y] +αz −αy}. The actual loss is `(y)(Wx) for a

matrix W ∈ Rk×d.

3. As functions from Rd (or Rk×d) parametrized by an example, e.g.
`hinge(w; (x, y)) = max{0, 1−y〈w,x〉}. This form is useful as some loss
functions cannot be written in the previous forms.

4. In the online setting, given the t’th example (x(t), y(t)) we will abbrevi-
ate `(t)(w) for `(t)(w; (x(t), y(t))).

1.5.2 Margin

In some parts of this manuscript we will assume the existence margin. Most
researchers in machine learning know the definition of margin in the realizable
case, but here we will define it more generally.

Assumption 1 (Margin). Define the margin loss:

`margin(α) = 1[α≤1]
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Suppose for all x ∈ X , ‖x‖ ≤ 1, we will say the distribution is separable
with error ν and margin γ if there exists a halfspace ‖w‖ = 1/γ with an
expected margin loss of ν.

Equivalently, if instead we have a bound ‖x‖ ≤ R for all x ∈ X and
‖w‖ = B then we say that the margin is 1/(RB).
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Surrogate Loss Minimization
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Chapter 2

Consistency

The notion of consistency deals with statistical properties of surrogate loss
functions. We would like to show that if the expected surrogate loss converges
to its minimum value then the same is true for the zero-one loss.

We will allow the hypotheses to be any function, not only linear. This
point will prove itself to be crucial to consistency results. We will discuss
this further in the last part of the section.

From now on this chapter will split into two, discussing the binary and
multiclass cases. For each case, we will present different loss functions and
show whether they are consistent or not.

2.1 Binary

In this section we will survey the papers [38, 5].

Definition 1 (Consistency). A surrogate loss ` : R → R is consistent if for
any distribution and for any sequence of functions fn : X → R such that

lim
n→∞

E`(yfn(x)) = inf
f ′

E`(yf ′(x))

then
lim
n→∞

E`0−1(yfn(x)) = inf
f ′

E`0−1(yf ′(x))

2.1.1 Classification Calibration

Let us now define the notion of classification calibration and show equivalence
to consistency.

9
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Start by considering the expected conditional loss

E[`(Y f(X))|X = x] =

Pr[Y = 1|X = x]`(f(x)) + Pr[Y = −1|X = x]`(−f(x))

and denote η = Pr[Y = 1|X = x]. Since f can be any function f(x) can
attain any value and so the x has no influence on the value above. Using
this idea we can define the general conditional risk

Cη(α) = η`(α) + (1− η)`(−α)

Intuitively, for a ”good” loss function we expect that the sign of a α
attaining the minimum of Cη to correspond with the most probable label.
More concretely, if η > 1/2 then any minimal α must be positive and if
η < 1/2 then that α must be negative.

This is formalized by the following definitions. First, define the functions
H and H−:

H(η) = inf
α
Cη(α)

H−(η) = inf
α:α(η−1/2)≤0

Cη(α)

where H is the minimum value of the general conditional risk for a given η
and H− is the minimum value conditioned on the sign of α not corresponding
with the most probable label.

Definition 2 (Classification Calibration). A loss function ` : R → R is
classification calibrated if for all η ∈ [0, 1] such that η 6= 1/2

H−(η) > H(η)

The proof of the following theorem can be found in the papers cited at
the beginning of the chapter.

Theorem 1. The following statements are equivalent:

1. ` is classification calibrated.

2. ` is consistent.
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2.1.2 Simplified conditions

We will state a couple of results which simplify the characterization of classi-
fication calibration. The first is a theorem stating a necessary and sufficient
condition for classification calibration of convex loss functions.

Theorem 2. Let ` be convex. Then ` is classification calibrated if and only
if it is differentiable at 0 and `′(0) < 0.

The following lemma states that any nonnegative classification calibrated
loss must upper bound the zero-one loss.

Lemma 1. If ` : R → [0,∞), then there exists a γ > 0 such that γ`(α) ≥
1[α≤0] for all α ∈ R.

2.1.3 Examples

Based on the previous results, let us review some common consistent loss
functions.

Exponential `exp(α) = exp(−α)

Hinge `hinge(α) = max{0, 1− α}

Squared Hinge `sqr-hinge(α) = max{0, 1− α}2

Square `square(α) = (1− α)2

Logistic `logistic(α) = log(1 + exp(−α))

One-sided Huber `osh(α) =


0, α ≥ 1
1
2
(1− α)2, 0 ≤ α < 1

1
2
− α, otherwise
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(a) Exponential (b) Hinge (c) Squared hinge

(d) Square (e) Logistic (f) One-sided Huber

Figure 2.1: Consistent binary loss functions

2.2 Multiclass

This section will present the papers [37, 35].
We will consider functions of the form `(y) : Rk → R, where k is the

number of classes and y ∈ [k] is a label. Define the zero-one loss as:

`
(y)
0−1(α) = 1[∃z∈[k] αz≥αy ]

Let us define the notion of consistency similarly to the binary case.

Definition 3 (Consistency). A family of surrogate loss functions {`(y) : Rk →
R}ky=1 is consistent if for any distribution and for any sequence of functions
fn : X → Rk such that

lim
n→∞

E`(y)(fn(x)) = inf
f ′

E`(y)(f ′(x))

then
lim
n→∞

E`(y)
0−1(fn(x)) = inf

f ′
E`(y)

0−1(f ′(x))
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2.2.1 Classification Calibration

Define the expected conditional loss as:

C`(α,q) =
k∑
y=1

qy`
(y)(α)

and the suboptimality with respect to the zero-one loss:

W (α,q) = C`0−1(α,q)− inf
α′
C`0−1(α

′,q)

then similarly to the binary case, we can define the notion of classification
calibration:

Definition 4 (Classification Calibration). A family of surrogate loss func-
tions {`(y) : Rk → R}ky=1 is classification calibrated if for any ε > 0 and any
distribution q over [k]:

inf
α:W (α,q)>ε

C`(α,q) > inf
α′
C`(α

′,q)

Intuitively, a loss function is classification calibrated if any α which at-
tains the minimum expected conditional loss has αy > αz for all z 6= y.

To complete the analogy to the binary case, we have the following theo-
rem.

Theorem 3. The following are equivalent:

1. {`(y)}ky=1 is classification calibrated.

2. {`(y)}ky=1 is consistent.

2.2.2 Examples

Let us review some common multiclass loss functions, the first three are not
consistent and the rest are consistent.

Crammer and Singer [15] `
(y)
cs (α) = maxz∈[k]{1[z 6=y] + αz −αy}

Weston and Watkins [36] `
(y)
ww(α) =

∑
z 6=y max{0, 1 + αz −αy}
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Lee, Lin and Wahba [24] `
(y)
llw(α) =

∑
z 6=y max{0, 1 + αz}

subject to
∑k

z=1 αz = 0.

Logistic `
(y)
logistic(α) = log(

∑k
z=1 exp(αz))−αy

Smooth max-of-hinge [33] `
(y)
smh(α) = ‖α−ey‖2−minu∈∆ ‖α−u‖2, where

ey is the y’th canonical basis vector of Rk and ∆ is the (k − 1)-
dimensional probability simplex.

Square `
(y)
sqr(α) = (1−αy)

2 +
∑

z 6=y α
2
z

Let us show proofs for a couple of these examples.

Claim 1. The Crammer and Singer loss is not consistent because it is not
classification calibrated.

Proof. For the distribution q = (3/7, 2/7, 2/7) on three classes, a minimum

of the expected conditional loss, minα

∑k
y=1 qy`

(y)
cs (α), is attained at α = 0.

This solution has an expected conditional zero-one loss of 1 instead of the
optimal 4/7.

Claim 2. The logistic loss is classification calibrated and therefore consistent.

Proof. Let q be any distribution over [k]. Assume WLOG that q1 is the
largest and q2 is the largest such that q1 − q2 > ε. First, the minimum
expected conditional loss is

min
α

k∑
y=1

qy`
(y)
logistic(α) = −

k∑
y=1

qy log qy

Secondly,

min
W (α,q)>ε

k∑
y=1

qy`
(y)
logistic(α)

by our assumption is the same as

min
α:α2≥α1

k∑
y=1

qy`
(y)
logistic(α) = −(q1 + q2) log((q1 + q2)/2)−

k∑
y=3

qy log qy

which is always larger than −
∑k

y=1 qy log qy. Therefore the logistic loss is
classification calibrated.
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2.3 Discussion

The definition of consistency assumes that the function f is such that the
surrogate loss ` can attain any value over any point in its domain. However,
by the no-free-lunch theorem we know that we cannot learn unless we restrict
f to be from a ”small” hypothesis class. Later on, we will show that unless the
surrogate is free to use any function, even for cases in which the Bayes-optimal
predictor is linear, convergence to an optimal predictor is not guaranteed.
More surprisingly, the latter is true even when it is possible to minimize the
zero-one loss efficiently such as in the realizable case.



Chapter 3

The realizable case

This is a simple case where the labeling function is linear and deterministic.
In this section we will show that under the realizable assumption it is possible
to learn linear models efficiently. We will show that the minimizer of certain
surrogate losses is bound to be the optimal predictor, however for other
surrogate losses, albeit consistent, the minimizer is not guaranteed to be
optimal.

The results in this chapter are as following. First, for the binary case.

Proposition 1. Under the realizable assumption:

1. Any minimizer of the expected hinge loss is guaranteed to be an optimal
predictor.

2. Minimizing a consistent surrogate loss function does not guarantee a
small zero-one loss. In particular, there exists a distribution under
which the minimizer of the square loss fails to be an optimal predictor.

An analogous result for the multiclass case.

Proposition 2. Under the realizable assumption:

1. Any minimizer of the expected Crammer and Singer loss is guaranteed
to be an optimal predictor.

2. Minimizing a consistent surrogate loss function does not guarantee a
small zero-one loss. In particular, there exists a distribution under
which the minimizer of the multiclass square loss fails to be an optimal
predictor.

16
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The results in these prepositions are well known in machine learning folk-
lore and are made rigorous here. The reader should note that with regard
to the second part of proposition 2, Long and Serevido ([25]) have shown an
example in which the Lee, Lin and Wahba loss fails in the realizable case.

3.1 Binary

Assumption 2 (Realizable). There exists a halfspace w? ∈ Rd such that for
all x ∈ X

Pr[Y = 1|X = x] = 1[〈w?,x〉>0]

We will start by showing the hinge loss can always find an optimal predic-
tor. We assume that there is a w? for which y〈w?,x〉 > 0 for all pairs (x, y).
Up to scale, we can assume y〈w?,x〉 ≥ 1 and therefore `hinge(w

?, (x, y)) = 0.
Since the hinge loss is non-negative, w? is a minimizer. Any other w̄ for which
`hinge(w̄, (x, y)) = 0 must satisfy y〈w̄,x〉 ≥ 1 for all (x, y). This proves the
first part of proposition 1.

On the other hand, consider the square loss and the following distribution
on R2. The distribution is concentrated on three points x1 = (−1, 1), x2 =
(0.9, 1) and x3 = (1, 1). x1 and x2 are labeled −1 and x3 is labeled 1. x1 and
x3 appear with probability 0.45 and x2 with probability 0.1. A minimizer the
expected hinge loss is w̄ = (20,−19). A minimizer of expected square loss
is ŵ = (910/1081,−190/1081) with an expected zero-one loss of 0.1. This
proves the second part of proposition 1.

3.2 Multiclass

Assumption 3 (Realizable). There exists a matrix W ? ∈ Rk×d such that
for all x ∈ X

E[eY |X = x] = arg maxez :z∈[k]〈ez,W ?x〉

where W ? is such that the maximum on the right hand side is always unique.

For part of proposition 2, consider the Crammer and Singer loss. Similarly
to the binary hinge loss it can be shown that a minimizer of the expected
Crammer and Singer loss has zero-one loss of 0.

Now consider the multiclass square loss `(y)(α) = (αy − 1)2 +
∑

z 6=y α
2
z.

It can be validated that this loss is in fact consistent. Also consider the
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x1 x2 x3

w̄
ŵ

Figure 3.1: The halfspace returned by minimizing the expected hinge loss is
depicted in red, while the one returned by minimizing the expected square
in blue.

following distribution over R2. The distribution is uniform on three points
x1 = (0, 1), x2 = (0.5, 0.5) and x3 = (1, 0). Each xi is labeled i.

A minimizer the expected Crammer and Singer loss is

W̄ =

 −7/3 5/3
2/3 2/3
5/3 −7/3


while a minimizer of expected ` is

Ŵ =

 −1/6 5/6
1/3 1/3
5/6 −1/6


Ŵ classifies x1 and x3 correctly but misclassifies x2 as either a 1, a 2 or
a 3, so the zero-one loss of Ŵ is 1/3. This completes the second part of
proposition 2.
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x1

x2

x3

Figure 3.2: Distribution on which the multiclass square loss fails.



Chapter 4

Random noise

In this chapter we will focus on binary classification. We assume that the
distribution over the data was a realizable distribution which has been cor-
rupted with uniform random noise. In other words there is a halfspace w?

such that for any x ∈ X

Pr[Y = 1|X = x] =

{
1− η, 〈w?,x〉 > 0

η, 〈w?,x〉 ≤ 0

for a parameter η ∈ [0, 1/2).
The outline for this chapter is as following. We review Kearns’ statistical

query model and the methods of [8, 12] for learning under random noise in
the statistical query model. We will then finish by showing a much simpler
method based on surrogate loss minimization.

Throughout this chapter, we will assume that X is bounded, namely that
‖x‖ ≤ 1 for all x ∈ X . Our results are as following:

Proposition 3. Under the random noise assumption, the optimal halfspace
can be found in polynomial time. Moreover, by assuming margin as well
a simple surrogate loss minimization procedure suffices to find the optimal
halfspace.

The fact that halfspaces are learnable with random noise is well known
by works of [8, 12]. The surrogate loss for random noise is novel and is based
on the article of [26].

20
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4.1 Statistical queries

Let us start by defining the notion of a statistical query ([23]).

Definition 5 (Statistical Query). A Statistical Query is a pair (χ, τ), where
χ : X × {−1, 1} → [0, 1] is a polynomial-time computable function and τ an
accuracy parameter. Namely, a statistical query is a request for an estimator
P̂χ of Pχ = E[χ(x, y)] satisfying:

Pχ − τ ≤ P̂χ ≤ Pχ + τ

with high probability.

Such a query can be implemented in polynomial time with confidence 1−δ
by simply estimating the expectation over poly(1/τ, log(1/δ)) samples. Then
clearly, any class efficiently learnable using statistical queries is efficiently
learnable in the PAC model. However, the converse is not true. For example
learning parity functions, which are efficiently learnable in the PAC model,
can be shown to be hard using statistical queries.

4.1.1 Statistical queries in the presence of noise

Aslam and Decatur ([3]) had showed that in the random noise model, any
statistical query with respect to the original distribution can be cast as a
linear function of several estimates. Each such estimate can be evaluated as
a statistical query over the noisy distribution.

Lemma 2. For any noise rate η < 1/2, any statistical query (χ, τ) can be
computed with confidence 1− δ in time and sample complexities of
poly(1/τ, log(1/δ), 1/(1− 2η)).

The manner of computing such statistical queries will be presented when
we will present Cohen’s algorithm. In the mean time, note that the above
lemma entails that any algorithm which uses statistical queries can be auto-
matically made robust to random noise.

4.2 Blum’s algorithm

The algorithm of [8] improperly learns halfspaces under random noise. It
returns a decision list of halfspaces. Each halfspace is capable of classifying an
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example as 1, −1 or ”I don’t know”. Any example to be classified is checked
against the first halfspace, if it returns 1 or −1 the example is classified as
such. If it returns ”I don’t know” the example is checked against the second
halfspace and so on. The process continues until one of the halfspaces returns
a label or until the decision list is exhausted. In the latter case a random
label is returned.

We shall begin by introducing the different subroutines which we will
later combine to the full algorithm.

4.2.1 Outlier removal

Assume the data is given to a finite precision of b bits and that the it lies
in the Euclidean unit ball. The following lemma states that points can be
removed from the training set S, such that the resulting training S ′ is still
fairly large and no point in S ′ is too far from any halfspace.

Lemma 3 (Outlier Removal). For any set S ⊆ Rd and any ε > 0 there exists
a subset S ′ ⊆ S such that:

• |S ′| ≥ (1− ε− 2−db)|S|

• for every w ∈ Rd, maxx∈S′〈w,x〉2 ≤ βEx∈S′ [〈w,x〉2]

where β = O(d7b/ε). Moreover, such a set S ′ can be computed in polynomial
time.

The expectations above are taken with respect to the empirical distribu-
tion.

The algorithm from the lemma computes the second-moment matrix A =
Ex∈S[xx>] and transforms the data by applying A−1/2x (assuming A is full
rank). In the new space, we have for all ‖w‖ = 1, Ex∈S[〈w,x〉2] = 1. The
algorithm removes all points for which ‖x‖ is large. Then the process is
repeated until the conditions of the theorem are satisfied.

A key point is that after the algorithm is done, a large fraction of the ex-
amples in S ′ have margin in the transformed space. To see this, note that for
all w of unit norm, Ex∈S′ [〈w,x〉2] = 1 and that implies that maxx∈S′ ‖x‖2 ≤
βd. Thus for any w (of unit norm),

Ex∈S[cos(w,x)2] = Ex∈S′ [
〈w,x〉2

‖x‖2
] ≥ Ex∈S′ [〈w,x〉2]

maxx∈S′ ‖x‖2
≥ 1

βd
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This means that at least a 1/(2βd)-fraction of points in S ′ satisfy
cos(w,x)2 ≥ 1/(2βd).

4.2.2 Modified Perceptron

We now proceed to present the next building block of Blum’s algorithm, the
modified Perceptron algorithm. It defers from the original Perceptron (8) in
two ways. First, the algorithm returns a vector w such that all misclassified
samples x ∈ S ′ satisfy | cos(w,x)| ≤ σ with high probability, for a parameter
σ. Second, the algorithm uses statistical queries to estimate the update step.
Note that statistical queries can be used to estimate conditional expectations
by expanding the expectation to a quotient of two other expectations.

With the output of the outlier removal algorithm (3), by setting σ =√
1/(2βd) we can guarantee that a 1/(2βd)-fraction of the points would be

classified correctly. The rest of the points would be classified as ”I don’t
know”.

Algorithm 1 Modified Perceptron

1) Input: S, σ
2) Denote τ = ε/(6βd)
3) Sample w at random uniformly from the unit sphere
4) Perform a statistical query

((x, y) 7→ 1[sign(〈w?,x〉) cos(w,x)≤−σ], τ)

and halt if the result is at most 2τ .
5) Perform statistical queries to estimate

E(x,y)∈S[sign(〈w?,x〉)x|sign(〈w?,x〉) cos(w,x) ≤ −σ]

with confidence σ3/(16
√
d log(d)). Denote xupdate as the result and exe-

cute:

w← w − 〈w,xupdate〉
‖xupdate‖2

xupdate

6) If performed more than (1/σ2) log(d) updates, go back to step (3).

In the original paper, the authors show a direct approach in estimating
the quantities in steps (4) and (5) of algorithm 1. It is similar to the approach
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of Cohen’s algorithm which we will review in the next section.

Algorithm 2 Blum’s Algorithm

Input: S, accuracy ε
Denote σ =

√
1/(2βd)

Create an empty decision list
repeat

Apply the outlier removal lemma on S.
Run the modified Perceptron on the transformed S ′ with parameter σ
Remove all points classified correctly by w from S ′, add w to the decision
list.

until reached the desired accuracy.

4.3 Cohen’s algorithm

Unlike algorithm 2, the following algorithm properly learns halfspaces with
random noise. Meaning the hypothesis returned by the algorithm is itself a
halfspace.

The algorithm employs the ellipsoid algorithm as a black box in order
to find an ε-correct hypothesis with high probability. At each iteration,
the algorithm implements the separation oracle as finding a witness for the
current hypothesis. Denote the current hypothesis as w, a witness v is any
vector that satisfies two inequalities with high probability:

1. w? is correct on v: 〈w?,v〉 > 0

2. w mistakes on v: 〈w,v〉 < 0

In order to explain how a witness is found, first define the following quan-
tities:

m̃− = E[1[y〈w,x〉≤0]yx]

m̃+ = E[1[y〈w,x〉≥0]yx]

m− = E[1[sign(〈w?,x〉)〈w,x〉≤0]sign(〈w?,x〉)x]

m+ = E[1[sign(〈w?,x〉)〈w,x〉≥0]sign(〈w?,x〉)x]

The quantity m− is the one we would like to estimate. It is the one we
would use if we were running the Perceptron algorithm with respect to the
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original distribution (before it has been corrupted with random noise). We
cannot estimate m− directly (since we do not know w?) but instead we can
use estimates of m̃− and m̃+ since

m− =
(1− η)m̃− + ηm̃+

1− 2η

Unfortunately, m̃− and m̃+ cannot be estimated with high probability as
the estimates depend on Pr[y〈w,x〉 ≤ 0] and Pr[y〈w,x〉 ≥ 0] and these can
be arbitrarily small. Let us introduce a new small positive constant ν and
define the following:

m−,ν =
(1− η − ν)m̃− + (η + ν)m̃+

1− 2η

= (1− ν

1− 2η
)m− +

ν

1− 2η
m+

Any accurate estimate of m−,ν is guaranteed to fulfill the first witness prop-
erty, however not the second.

That brings us to this next idea. Note that w? is still the optimal
hypothesis even if we restrict the distribution to a subset of the original
domain. Therefore, we can restrict the distribution to a slice of the form
{x ∈ X : a ≤ |〈w,x〉| ≤ a(1 + µ)}, which guarantees that on the restricted
distribution m−,ν satisfies the second witness property.

Such a slice could be identified in the following manner. Sample enough
points from D and throw away all slices from which not enough points have
been sampled. Then, return a slice with a maximum proportion of mistakes
made by w on the samples from that slice. One could show that on such
a slice can be identified with high probability, and that m−,ν satisfies the
second witness property.

Finally, throughout the execution of the algorithm, the lemma 3 (outlier
removal) is used each time the distribution is restricted. This is done so that
m−,ν could be estimated by a number of samples which is independent of the
margin.

4.4 Surrogate loss

The previous couple of algorithms are quite complicated. The main reason
is that their sample and runtime complexities do not depend on the margin.
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In this section we will show that if one is willing to assume margin then a far
simpler algorithm suffices to solve the problem. We will follow an approach
similar to [26].

Consider the loss function:

`rn(α) =
1

1− 2η
max{(1− η)(1− α),−η(1 + α)}

This loss function is an unbiased estimator for a hinge-like function with
respect to the original distribution (without noise):

(1− η)`rn(α) + η`rn(−α) =


0, α ≥ 1

1−2η

(1− η)( 1
1−2η
− α), − 1

1−2η
< α < 1

1−2η

1− α, otherwise

and for any x and any w the expected conditional loss is

(1− η)`rn(sign(〈w?,x〉)〈w,x〉) + η`rn(−sign(〈w?,x〉)〈w,x〉)

Figure 4.1: In blue, the loss `rn for η = 0.1. Its conditional expectation is
depicted in red.

If we assume margin, that for any x, |〈w?,x〉| ≥ 1/(1 − 2η), then w? is
the minimizer of the expected loss and any other minimizer has the same
predictions as w?.
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By standard bounds from the general setting of learning, a minimizer ŵ
of the empirical `rn with m samples has

E[`rn(ŵ)] ≤ E[`rn(w?)] +O

(√
1

m

)

with high probability. By our construction E[`rn(ŵ)] ≥ Pr[sign(〈ŵ,x〉) 6=
sign(〈w?,x〉)] and E[`rn(w?)] = 0, so

Pr[sign(〈ŵ,x〉) 6= sign(〈w?,x〉)] ≤ O

(√
1

m

)

with high probability. This completes the proof of proposition 3.



Chapter 5

Generalized linear models

In this chapter we will present the generalized linear model assumption which
is a generalization of the realizable and random noise assumptions. This
will be both for binary and multiclass settings. In essence, this assumption
entails that the distribution of the label given any example is a function of
the optimal predictor. This function would have certain properties which
would enable us to learn efficiently. Moreover, unlike the previous chapters,
here we are interested in estimating these conditional distributions, namely
it becomes a problem of regression rather than classification.

We have the following results in this chapter.

Proposition 4. A generalized linear model assumption entails the existence
of a convex surrogate loss functions, such that its minimizer is an optimal
predictor.

The proof of this proposition is based on the article of [1].

5.1 Binary

Throughout this section we will define the label space to be Y = {0, 1}
instead of {−1, 1} as it was defined thus far.

Definition 6 (Generalized linear model). A generalized linear model (GLM)
is a generative assumption which entails there exists a monotone nondecreas-
ing function g : R → [0, 1] and a halfspace represented by w? such that for
all x,

Pr[Y = 1|X = x] = g(〈w?,x〉)

28



CHAPTER 5. GENERALIZED LINEAR MODELS 29

The function g is called a link function.

5.1.1 Examples

Before moving on to show how we could learn such models let us show some
examples.

Realizable The realizable assumption is a special case of GLMs with the
link function g(α) = 1[α>0].

Random noise This is also a GLM with

g(α) =

{
1− η, α > 0

η, otherwise

Logistic The logistic regression model is a GLM with

g(α) =
1

1 + exp(−α)

Ramp This GLM is given by the link function

g(α) =


0, α ≤ 0

α, 0 < α < 1

1, α ≥ 1

(a) Realizable (b) Random noise with η = 0.1

(c) Logistic (d) Ramp

Figure 5.1: Examples

These examples are in part there to show that the GLM assumption is
strictly weaker than the realizable and random noise assumptions.
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5.1.2 Learning generalized linear models

Our goal is to find a predict the probability that Y = 1 with good accuracy.
Meaning we want to find a w that minimizes E[(g(〈w,x〉) − g(〈w?,x〉))2].
As one can see for the realizable and random noise models this is similar
to minimizing the zero-one loss, but in general this is a regression problem
rather than a classification problem.

We will focus on the case where g is continuous and L-Lipschitz. These
additional assumptions entail that there exists a convex differentiable func-
tion Φ : R→ R such that g ≡ Φ′. Now we can define the following surrogate
loss:

`(w; (x, y)) = Φ(〈w,x〉)− y〈w,x〉
Let us see a couple of examples of such loss functions.

Logistic The loss given for the logistic link function is the logistic loss:

`logistic(w; (x, y)) = log(1 + exp(〈w,x〉))− y〈w,x〉

Ramp The loss given for the ramp link function is the one-sided Huber loss
(up to constants):

`osh(w; (x, y)) =


y(1/2− 〈w,x〉), 〈w,x〉 ≤ 0

1/2(〈w,x〉 − y)2, 0 < 〈w,x〉 < 1

(1− y)(〈w,x〉 − 1/2), otherwise

The following lemma shows that a minimizer of the expected surrogate
loss is also a Bayes-optimal predictor.

Lemma 4 ([1]). Suppose g : R → [0, 1] is a monotone nondecreasing and
continuous function and that the GLM assumption holds, then w? is a min-
imizer of E[`(w; (x, y))]. Furthermore, if w̄ is a (different) minimizer of
E[`(w; (x, y))], then Pr[Y = 1|X = x] = g(〈w̄,x〉).

Finally, since we assumed g is L-Lipschitz then Φ is L-strongly smooth
and therefore ` is L-strongly smooth with respect to 〈w,x〉. Because w? is
a bayes-optimal predictor then for all x, 〈w?,x〉 is a pointwise minimizer of
the conditional expected loss. That means that for any other w (Theorem
2.1.5 in [27]),

E[`(w; (X, Y ))− `(w?; (X, Y ))|X = x] ≥ 1

2L
(g(〈w,x〉)− g(〈w?,x〉))2



CHAPTER 5. GENERALIZED LINEAR MODELS 31

and taking the expectation over X,

E[`(w; (X, Y ))]− `(w?; (X, Y ))] ≥ 1

2L
E[(g(〈w, X〉)− g(〈w?, X〉))2]

Once again by bounds from the general setting of learning, given enough
samples we can ensure that for a w which minimizes the empirical loss, the
quantity on the right hand side is small with high probability.

5.2 Multiclass

The definition of multiclass GLMs is an extension of binary GLMs.

Definition 7 (Generalized linear model). A generalized linear model (GLM)
is a generative assumption which entails there exists a convex differentiable
function Φ : Rk → R and a matrix W ? ∈ Rk×d such that for all x,

E[eY |X = x] = g(W ?x)

where g ≡ ∇Φ.

The link function now maps W ?x to a k-dimensional distribution vector,
in which the i’th entry is the probability of Y = i given x.

To learn multiclass GLMs, as in the binary case we can define the follow-
ing consistent loss function:

`(W ; (x, y)) = Φ(Wx)− (Wx)y

and once again if we assume that g is L-Lipschitz that entails the Φ is L-
smooth. That means that for any matrix W ,

E[`(W ; (X, Y ))]− `(W ?; (X, Y ))] ≥ 1

2L
E[‖g(WX)− g(W ?X)‖2]

5.2.1 Examples

Here are a couple of examples of multiclass GLMs.

Logistic This model corresponds to multinomial logistic regression.

g(α)y =
exp(αy)∑k
z=1 exp(αz)
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(a) Logistic (b) Projection

Figure 5.2: Multiclass link functions depicted for three class in R2. The
probability of each class is assigned a color: red, green and blue - the higher
the probability of the class the stronger its color component.

Projection This GLM is given by g(α) = arg minv∈∆ ‖v −α‖, where ∆ is
the (k − 1)-dimensional probability simplex.

For the above link functions we have the following loss functions:

Logistic `(W ; (x, y)) = log(
∑k

z=1 exp(〈ez,Wx〉))− (Wx)y

Projection `(W ; (x, y)) = minv∈∆ ‖Wx − v‖2 − ‖Wx − ey‖2 (up to con-
stants)



Chapter 6

Learning halfspaces with
margin

In this section, we focus on binary classification. We will first show an
example from [6] proving that without any assumptions on the distribution,
minimizing a convex and consistent surrogate loss can result in an arbitrarily
bad predictor.

We will continue by adding an assumption of margin and state results
from [6, 16] showing that any learner based on minimizing a surrogate convex
loss can approximate the optimal zero-one loss by a factor of Ω(1/γ).

Proposition 5. We have the following results in this chapter:

1. Without margin, there exists a distribution under which minimizing any
convex and consistent surrogate loss would result in an arbitrarily bad
predictor.

2. Convex surrogate loss functions give an Ω(1/γ) approximation factor.

3. There is an algorithm which returns the optimal halfspace with time
and sample complexities of O(exp(1/γ2)).

The example of the first part of the proposition is due to [6]. The proofs
in the second part are from [6, 16]. Finally, the algorithm of the third part
is due to [32].

33
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6.1 Failure in the general case

In this section we will show a distribution over which a minimizer of any
convex consistent surrogate loss will return a predictor with high zero-one
loss.

Let ν < 1/2. Consider a distribution over R concentrated on four points:

• −1 labeled 1 with probability ν/2.

• −β labeled −1 with probability (1− ν)/2.

• β labeled 1 with probability (1− ν)/2.

• 1 labeled −1 with probability ν/2.

An optimal halfspace would be one which classifies the right of zero as
1, and suffer a zero-one loss of ν. However for any minimizer of a consistent
and convex surrogate loss there’s a β small enough such that it would classify
the right of zero as −1, because the points close to zero suffer a small loss
compared to the ones far from zero. Such a halfspace would have a zero-one
loss of 1− ν. By reducing ν and β appropriately, we can make sure that the
zero-one loss of halfspace minimizing the surrogate loss is arbitrarily close to
1.

−1

1

−β
−1

β

1

1

−1

Figure 6.1: Any minimizer of a consistent and convex surrogate loss would
classify the right of zero as −1.

6.2 Approximation under margin

For this section we will assume that a margin exists (1). We assume there is
a predictor w? with a margin loss of ν and margin γ. We have the following
trivial claim.

Claim 3. For any minimizer w of the expected hinge loss:

E[`hinge(y〈w,x〉)] ≤
(

1 +
1

γ

)
ν
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This next theorem states that the approximation ratio of the hinge loss
is optimal up to a factor of 2, compared to all other convex and consistent
surrogate loss functions.

Theorem 4. Let ` be any convex and consistent surrogate loss. For any
γ > 0, there exists a distribution such that for any minimizer w of the
expected loss:

E[`(y〈w,x〉)] ≥ 1

2
min

{(
1 +

1

γ

)
ν, 1

}

6.3 Learning kernel-based halfspaces

In this section we will present the work of [32]. This is an algorithm for im-
properly learning halfspaces in the agnostic setting under the assumption of
margin. Unlike the previous section, this algorithm returns an exact solution
but requires sample and runtime complexities which are exponential in the
margin.

Define the label space to be Y = {0, 1}. Then we can define the error of
an hypothesis h : X → [0, 1] as:

err(h) = E[|h(x)− y|]

Suppose h is of the form x 7→ φ0−1(〈w,x〉) where φ0−1(α) = 1[α>0], then
err(h) is exactly the zero-one loss. The function φ0−1 is called a transfer
function.

The first idea behind the algorithm is to approximate φ0−1 by an L-
Lipschitz transfer function:

φsig(α) =
1

1 + exp(−4Lα)

for which we can define a hypothesis classHsig = {x 7→ φsig(〈w,x〉) : w ∈ X}.
Unfortunately it is NP-hard to learn this hypothesis class.

This is where this next idea comes into play. We will improperly learnHsig

by a larger hypothesis class ∪pHp for Hp = {x 7→ p(〈w,x〉) : w ∈ X}. The
transfer functions p are polynomials chosen in such a way as to approximate
φsig.

In order to learn with respect to these polynomials we can use the follow-
ing kernel mapping:

k(x,x′) =
1

1− 〈x,x′〉/2
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It implements an inner product of an RKHS V given by a feature mapping
ψ, which maps each x to a vector of its monomials (up to constants). We
can also define an appropriate hypothesis class:

HB = {x 7→ 〈v, ψ(x)〉 : v ∈ V, ‖v‖2 ≤ B}

The algorithm involves sampling m examples and returning the hypoth-
esis h which minimizes

min
h∈HB

1

m

m∑
i=1

|h(xi)− yi|

The hypothesis h is called an ERM predictor. Using the Representer theorem
([30]), we know h is of the form h(·) =

∑m
i=1 αik(xi, ·). Then to find h we

actually need to minimize

min
α1,...,αm

1

m

m∑
i=1

|
m∑
j=1

αjk(xj,xi)− yi| s.t.
m∑

i,j=1

αiαjk(xi,xj) ≤ B

Let us finish this section by presenting a theoretical guarantee for the
algorithm.

Theorem 5. Let ε, δ ∈ (0, 1). For any L ≥ 3, let

B = 6L4 + exp(9L log

(
2L

ε

)
+ 5)

and let m be a sample size satisfying

m ≥ 8B

ε2

(
2 + 9

√
log

(
8

δ

))2

Then for any distribution D, with probability at least 1−δ, any ERM predictor
ĥ ∈ HB with respect to HB satisfies

err(ĥ) ≤ min
h∈Hsig

err(h) + ε
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6.3.1 Lower bound

One could think if maybe a different algorithm could do better and this is
an open question. However for kernel-based learners, as the one presented
above, we will show that this result is tight. The results presented here are
due to [16].

This next theorem is an extension of theorem 4. It includes the case
where one is allowed to use kernels. It states that if the sample complexity
is at most polynomial in the inverse margin, then the best approximation
factor achievable is at least an order of 1/γ.

Theorem 6. Let ` be an convex surrogate loss. Let A be an kernel-based
learning algorithm w.r.t ` with sample complexity at most poly(1/γ). Then
for every γ > 0 there exists a distribution such that w.p. at least 1 −
10 exp(−1/γ) the algorithm A returns a hypothesis h for which

E[`0−1(h)] ≥ ν · Ω
(

1

γ · poly(log(1/γ))

)
The next theorem states that if a kernel-based algorithm is able get a

better approximation, then its sample complexity is exponential in 1/γ.

Theorem 7. Let ` be an convex surrogate loss, let ε > 0 and let A be an
kernel-based learning algorithm w.r.t `, such that for every γ > 0 there exists
a distribution for which w.p. at least 1/2 the algorithm A returns a hypothesis
h such that

E[`0−1(h)] ≤ ν ·
(

1

γ

)1−ε

then the sample complexity of A is Ω(exp((1/γ)a(ε)) for some a(ε) > 0.



Chapter 7

Square Loss

Consider the binary case. In this section we will show that the square loss
returns the optimal classifier for certain class of distributions. The reader is
reminded that the square loss is defined as

`square(α) = (α− 1)2

Suppose the expectation µ = E[yx] and the covariance Σ = E[xx>]−µµ>
are well defined. For simplicity, let us further assume that Σ is invertible but
note that the results for when it is not invertible are similar. We will show
the following result:

Proposition 6. Let ŵ be the halfspace returned by minimizing the expected
square loss, then

sup
D

Pr
(x,y)∼D

[y〈ŵ,x〉 ≤ 0] =
1

1 + 〈µ,Σ−1µ〉

where the supremum is taken with respect to all distributions with mean µ
and covariance Σ.

Once again, this is yet another result which is well known in machine
learning folklore. As far as we know, this is the first time it has been proven
rigorously.

For any halfspace w ∈ Rd, the random variable y〈w,x〉 has an expectation
of 〈w,µ〉 and variance w>Σw. By Cantelli’s inequality ([10]):

Pr[y〈w,x〉 ≤ 0] ≤ 1
1+〈w,µ〉2/〈w,Σw〉
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One can check that the w that minimizes the right hand side is propor-
tional to Σ−1µ. Since Cantelli’s inequality is tight, such a w would be the
optimal classifier if µ and Σ are sufficient statistics for the distribution of
yx, for example when yx is distributed normally. With that being said, for
arbitrary distributions the above bound can be loose.

Claim 4. The halfspace returned by minimizing the square loss is propor-
tional to Σ−1µ.

Proof. We would like to find a w for which the gradient of the expected
square loss is zero,

E[xx>w − yx] = 0

Plugging in the definition of µ and Σ and re-arranging,

w = (Σ + µµ>)−1µ

By the Sherman-Morrison formula ([34]) we have

(Σ + µµ>)−1 = Σ−1 − 1

1 + 〈µ,Σ−1µ〉
Σ−1µµ>Σ−1

plugging that back in

w =
1

1 + 〈µ,Σ−1µ〉
Σ−1µ

which is proportional to Σ−1µ as required.

The proof of proposition 6 is complete.



Part II

Online Methods
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In the previous part the learning procedure were of the form:

• Sample from the distribution.

• Minimize an expected convex loss, with the expectation taken over the
empirical distribution generated by the sample.

The methods that we will present in this part are online, namely an
adversary generates the examples, rather than being samples IID from some
distribution, but the adversary is confined to label these examples in a certain
manner (to be defined later). We will not discuss online versions of algorithms
mentioned in the previous part.

The reader should note that online algorithms are applicable to the batch
setting as well. This is done by online-to-batch conversion. Generally if the
algorithm is run on a certain sample then one of its iterates has that its
relative error is comparable to the average regret. This iterate can be found
with high probability by returning the one which minimizes its error on a
validation set.

As in the previous part, the methods that we shall discuss will gradually
allow for weaker assumptions. Starting from the Perceptron algorithm, that
finds an optimal halfspace in the realizable setting, and ending with the
Isotron algorithm, which is an extension of generalized linear models.

Finally, we will show how all of these methods can be seen as instances of
online convex optimization. As such, each such method could be converted
to an equivalent offline method.



Chapter 8

Perceptron

For this chapter we assume that the distribution is separable with margin (2,
1). We will present the binary version first and then its multiclass extension.
Lastly, we will relax the separability assumption.

Proposition 7. We show the following:

1. Under the realizable assumption, the Perceptron algorithm has a mis-
take bound of 1/γ2.

2. Without the realizable assumption, the Perceptron’s mistake bound de-
pends on the performance of the best predictor w.r.t the appropriate
surrogate loss function.

3. The Perceptron algorithm is easily extended to the multiclass setting.

The first part of the proposition is due to [2, 29]. Part 2 is taken from
[31]. Part 3 is based on the article of [13].

8.1 Perceptron

The Perceptron algorithm ([2, 29]) is an algorithm for finding a point in a
polyhedron, where the polyhedron is given by a set of linear inequalities. In
our case these inequalities are of the form y〈w,x〉 > 0 for all examples (x, y).

To facilitate the analysis of the algorithm first we need to assume the
following:

1. The sample space is bounded – for all x ∈ X , ‖x‖ ≤ R.
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Algorithm 3 Perceptron

Initialize: w(1) = 0
for t = 1, 2, ..., T do

Receive an example (x(t), y(t)).
if the example is misclassified, meaning y(y)〈w(t),x(t)〉 ≤ 0 then

w(t+1) ← w(t) + y(t)x(t)

else
w(t+1) ← w(t)

end if
end for
return w(T+1)

2. There exists a halfspace w? with ‖w?‖ ≤ B such that w? separates the
data with margin. Namely for each example (x, y), y〈w?,x〉 ≥ 1.

The next theorem implies that after a bounded number of mistakes, the
Perceptron algorithm returns the optimal predictor.

Theorem 8 ([28, 7]). Suppose the conditions above hold, then Perceptron
makes at most (RB)2 mistakes.

8.1.1 Dependence on margin

The reader should be aware that there are versions of Perceptron (not online)
which find an optimal halfspace without their runtime being dependent on
the margin. For example, see [18].

8.2 Analysis for the inseparable case

In this section we will present an analysis for Perceptron which is based on
online learning bounds ([31]). In particular, we will define the notion of a
data-dependent surrogate loss.

The key notion is that the Perceptron algorithm can be seen as gradient
descent over a series of loss functions (with a constant step size of 1). At time
t we have our current predictor w(t) and are given an example (x(t), y(t)). Let

us define the loss function `
(t)
Perc as 1−y(t)〈w,x(t)〉 if w(t) mistakes on (x(t), y(t))

and as zero otherwise.
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These loss functions have a couple of important properties:

1. At w(t) we have `
(t)
Perc(w

(t)) ≥ 1[y(t)〈w,x(t)〉≤0].

2. Let z(t) be the gradient of `
(t)
Perc at w(t). Then z(t) = y(t)x(t) if w(t)

mistakes on (x(t), y(t)) and z(t) = 0 otherwise.

By applying any standard online convex optimization algorithm (such as
gradient descent or RFTL) on these loss functions, we have the following
regret bound:

T∑
t=1

`
(t)
Perc(w

(t))−
T∑
t=1

`
(t)
Perc(u) ≤ 1

2β
‖u‖2 +

β

2

T∑
t=1

‖z(t)‖2

for any ‖u‖ ≤ B and β is a parameter of the algorithm.
Let M be the number of mistakes the algorithm makes. Then,

M −
T∑
t=1

`
(t)
Perc(u) ≤ 1

2β
‖u‖2 +

β

2
MR2

We can now optimize over β, rearrange and get the expression

M −R‖u‖
√
M −

T∑
t=1

`
(t)
Perc(u) ≤ 0

which entails that

M ≤
T∑
t=1

`
(t)
Perc(u) +R‖u‖

√√√√ T∑
t=1

`
(t)
Perc(u) +R2‖u‖2

As a special case, if there exists a u such that y(t)〈u,x(t)〉 ≥ 1 for all t,
then

M ≤ R2‖u‖2

This completes the proof of the second part of proposition 7.
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8.3 Multiclass Perceptron

In this section we will show an extension of Perceptron to the multiclass
setting.

The first way to approach this problem is to reduce to the binary case.
Suppose we have k classes, note that the optimal predictor must satisfy k−1
linear inequalities for each example (x, y):

∀z 6= y (Wx)y > (Wx)z

We can replace a matrix W ∈ Rk×d with a (kd)-dimensional vector by
concatenating its rows. Then replace each example (x, y) with k − 1 (kd)-
dimensional vectors denoted {xz}z 6=y. Each xz is split into k d-dimensional
blocks. The y’th block contains the original x, the z’th block contains −x
and the rest of the blocks are zeros:

xz = (0, · · · , x︸︷︷︸
y

,0, · · · , −x︸︷︷︸
z

,0, · · · )

After applying this transformation we could run the Perceptron algo-
rithm. Under the same assumptions we get that it makes at most (RB)2

mistakes.
The reader should note that when machine learning researchers mention

the multiclass Perceptron, they usually refer to the following algorithm, which
stems from [13].
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Algorithm 4 Multiclass Perceptron

Initialize: W (1) = 0
for t = 1, 2, ..., T do

Receive an example (x(t), y(t)).
Calculate r = maxz∈[k](Wx(t))z
if the example is misclassified, meaning (Wx(t))y(t) ≤ r then

Set ŷ ∈ arg maxz∈[k](Wx(t))z
W (t+1) ← W (t) + ey(t)(x

(t))> − eŷ(x
(t))>

else
W (t+1) ← W (t)

end if
end for
return W (T+1)



Chapter 9

Random Noise

In this chapter, we will apply the technique of data dependent surrogate loss
functions, introduced in the previous chapter, to learning halfspaces with
random noise (4). Our goal is to obtain a mistake bound for this setting.

Proposition 8. Our results are the following:

1. We show a simple extension of Perceptron to the random noise case.

2. This algorithm has a mistake bound of O(
√
T/(γ(1 − 2η))) with high

probability.

The algorithm presented in this chapter and its analysis are novel.

9.1 Noisy Perceptron

Define the following loss family:

`(t)
prn(w) =

{
1−η
1−2η

(1− y(t)〈w,x(t)〉), y(t)〈w(t),x(t)〉 ≤ 0

− η
1−2η

(1 + y(t)〈w,x(t)〉), y(t)〈w(t),x(t)〉 > 0

We claim that this loss family is an unbiased estimate for the Percetpron loss
w.r.t the original distribution. Namely, for any w we have that

Ey(t) [`prn(w; (x(t), y(t)))|{y(i)}ti=1] = `Perc(w; (x(t), sign(〈w?,x(t)〉))) (9.1)
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Let us start by obtaining a regret bound for these loss functions. Once
again by applying gradient descent, for example, with parameter β we have
the following bound:

T∑
t=1

`(t)
prn(w(t))−

T∑
t=1

`(t)
prn(u) ≤ 1

2β
‖u‖2 +

β

2

T∑
t=1

‖z(t)‖2

for any ‖u‖ ≤ B.
Note that we have that ‖z(t)‖ ≤ RB/(1 − 2η) for all t ∈ [T ]. Plugging

that in, setting w? for u and optimizing over β we get

T∑
t=1

`(t)
prn(w(t))−

T∑
t=1

`(t)
prn(w?) ≤ RB

√
T

1− 2η
(9.2)

We would now like to use that regret bound in order to obtain a high
probability mistake bound. For this purpose define the following random
variables:

V (t) = Ey(t) [`(t)
prn(w(t))− `(t)

prn(w?)|{y(i)}ti=1]− (`(t)
prn(w(t))− `(t)

prn(w?))

The sequence {V (t)}Tt=1 forms a martingale difference sequence with respect
to {y(t)}Tt=1 since

E[V (t)|{y(i)}ti=1] = 0

also, each V (t) is bounded since by our assumptions

|V (t)| ≤ 4RB

1− 2η

Under these conditions we can apply the Hoeffding-Azuma ([4]) inequal-
ity, such that with probability at least 1−δ the following concentration bound
holds:

T∑
t=1

V (t) ≤ RB

1− 2η

√
8T log

1

δ
(9.3)

Let us now combine equations 9.1, 9.2 and 9.3. With probability at least
1− δ,

T∑
t=1

`
(t)
Perc(w

(t))−
T∑
t=1

`
(t)
Perc(w

?) ≤ RB
√
T

1− 2η
+

RB

1− 2η

√
8T log

1

δ
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To complete the mistake bound, let us notice that `
(t)
Perc(w

?) ≤ 0 for all

t ∈ [T ] and that
∑T

t=1 `
(t)
Perc(w

(t)) ≥ M where M is the number of mistakes.
We got:

M ≤ RB
√
T

1− 2η
+

RB

1− 2η

√
8T log

1

δ

This completes proposition 8.



Chapter 10

Isotron

The results from chapter 5 assume that the link function g is known to
the learner. However it is still possible to learn the model even when g is
unknown. The Isotron ([22]) handles this case by combining the Perceptron
algorithm with isotonic regression.

Algorithm 5 Isotron

Initialize: w(1) = 0
for t = 1, 2, ..., T do

Sample fresh m examples {xi, yi}mi=1 ⊂ Rd × {0, 1}
g(t) = PAV((〈w(t),x1〉, y1), ..., (〈w(t),xm〉, ym))
w(t+1) = w(t) + 1

m

∑m
i=1[yi − g(t)(〈w(t),xi〉)]xi

end for

At each time t, the Isotron algorithm alternates between estimating g(t)

given w(t), and updating w(t+1) given g(t). We will show that after enough
iterations, the algorithm allows us to recover a good estimate of w? and g
for which the GLM assumption holds.

Before showing the convergence guarantee, let us explain how the Isotron
estimates g(t) at every iteration. This is done using the PAV routine: Initially,
the values of 〈w,xi〉 are sorted in a nondecreasing order. Each sample is
assigned to its own pool. The prediction in each pool is the average label
over all samples in the pool. The pools are then arbitrarily merged and the
predictions updated until the resulting function is nondecreasing. Finally,
linear interpolation is performed between the different pools.
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Theorem 9. Suppose {xi, yi}mTi=1 ⊆ Bd × {0, 1} satisfy the GLM assumption
for monotonic nondecreasing L-Lipschitz g? and ‖w?‖ ≤ 1. Suppose L ≥ 1,
T ≥ 1 and m ≥ (6T log(eT )/L)2. Then for all h(t)(x) = g(t)(〈w(t),x〉)
computed by the Isotron:

E[
T∑
t=1

err(h(t))−
T∑
t=1

err(f)] ≤ 8L2

where err(h) = (1/m)
∑m

i=1(h(xi) − yi)
2, f(x) = g?(〈w?,x〉) and Bd is the

d-dimensional unit ball.

10.1 Extension to multiclass

In this section we will present an extension of Isotron to the multiclass setting.
Recall that in the multiclass setting the link function g was a gradient of a

k-dimensional convex function Φ. That means that estimating g is equivalent
to estimating Φ. Unfortunately, this is an extremely rich class; the sample
complexity of estimating a uniformly bounded convex, Lipschitz function in
k dimensions grows exponentially with k ([9]).

To overcome this problem, the approach taken in [1] is to assume that g−1

is a linear combination of a finite basis of functions. In their experiments,
they typically take this basis to be the set of all monomials of degree at most
3.

They then give an algorithm for learning under this setting. The algo-
rithm does not estimate g−1 but only the conditional probabilities E[ey|x]
for each example in the training set. Also, the algorithm does not come with
proper theoretical guarantees.



Chapter 11

Online-to-Offline conversion

In this chapter we show the following:

Proposition 9. For certain learning problems, online algorithms which op-
timize data dependent surrogates can converted to batch convex optimization
problems.

This novel result reveals a certain connection between online and batch
learning algorithms, as well as a nontrivial re-parametrization of Isotron as
a convex surrogate loss minimization problem.

11.1 Setup

Throughout the chapter we will consider a series of data dependent surrogates
{`(t)}Tt=1. These are surrogates for the true error measure we would like to
minimize, denoted as err(t)(w) for any halfspace w. We assume that w? has
an error of 0.

Assume that each surrogate `(t) is fully determined by the current exam-
ple (x(t), y(t)) and the previous iterate w(t). Note that the previous iterates
are themselves random variables determined by y(1), ..., y(t). We need our
surrogates to fulfill two important properties:

1. At any time, the expected loss of w? is not much larger than the optimal
error independently of the previous actions of the learner. Formally,

Ey(t)
[
sup
w(t)

`(t)(w?)

]
≤ ε
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where ε = O(
√

1/T ) (usually ε = 0).

2. At any time t, given any sequence of labels y(1), ..., y(t−1), the expected
loss of w(t) upper bounds the error at w(t):

Ey(t) [`(t)(w(t))|{y(i)}t−1
i=1] ≥ err(t)(w(t))

In the online setting, the goal of the learner is to have sublinear regret in
terms of the error, namely:

T∑
t=1

err(t)(w(t)) ≤ Tε+O(
√
T )

for any sequence x(1), ...,x(T ).
In the remainder of the chapter we will show that the properties presented

above are enough to ensure that. We will also that this setup is enough to
create loss function such that when minimized in the batch setting will ensure

Eerr(1)(ŵ) ≤ ε+O

(√
1

T

)
where ŵ is the minimizer of the surrogate loss. In this setting we have some
underlying distribution generating our sample x(1), ...,x(T ) and we would like
the above inequality to hold in expectation. Note that here we assume that
the expected err are interchangeable.

11.2 Examples

In this section we will see that those properties hold for the methods pre-
sented in this part.

11.2.1 Perceptron

The Perceptron requires the realizable assumption and so the labels {y(t)}Tt=1

and the iterates {w(t)}Tt=1 are all deterministic. Our error measure is the
zero-one loss err(t)(w(t)) = 1[y(t)〈w(t),x(t)〉≤0]. Recall that the Perceptron loss
is

`
(t)
Perc(w) =

{
1− y(t)〈w,x(t)〉, y(t)〈w(t),x(t)〉 ≤ 0

0, otherwise
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For the first property:

sup
w(t)

`
(t)
Perc(w

?) = max{0, 1− y(t)〈w?,x(t)〉} = 0

where ε = 0, and for the second property:

`
(t)
Perc(w

(t)) ≥ err(t)(w(t))

11.2.2 Noisy Perceptron

Recall the loss functions for the noisy Perceptron were:

`(t)
prn(w) =

{
1−η
1−2η

(1− y(t)〈w,x(t)〉), y(t)〈w(t),x(t)〉 ≤ 0

− η
1−2η

(1 + y(t)〈w,x(t)〉), y(t)〈w(t),x(t)〉 > 0

Our error measure is err(t)(w(t)) = 1[sign(〈w?,x(t)〉)〈w(t),x(t)〉≤0].
For the first property:

Ey(t) [sup
w(t)

`(t)
prn(w?)]

= Ey(t)
1

1− 2η
max{(1− η)(1− y(t)〈w?,x(t)〉),−η(1 + y(t)〈w?,x(t)〉)}

≤ 0

where, once again, ε = 0. For the second property,

Ey(t) [`(t)
prn(w(t); (x(t), y(t)))|y(1), ..., y(t−1)] = `

(t)
Perc(w

(t); (x(t), sign(〈w?,x(t)〉)))
≥ err(t)(w(t))

11.2.3 Isotron

This example is somewhat more complex than the previous two. Each loss
function `(t) observes m examples (instead of just one). Recall that we as-
sume there is a halfspace w? and a monotone nondecreasing and L-Lipschitz
function g? such that

Pr[y
(t)
i = 1] = g?(〈w?,x

(t)
i 〉)

for all t ∈ [T ] and i ∈ [m]. We also assume that ‖w?‖ = 1 and that ‖x‖ ≤ 1
for all x ∈ X .
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For simplicity, denote ŷ
(t)
i = g(t)(〈w(t),x

(t)
i 〉). Then the error measure is

err(t)(w(t)) =
1

Lm

m∑
i=1

(g?(〈w?,x
(t)
i 〉)− ŷ

(t)
i )2

and the loss function is

`(t)(w) = err(t)(w(t)) +
1

m

m∑
i=1

(ŷ
(t)
i − y

(t)
i )〈w,x(t)

i 〉

We would now like to show that our two properties hold. To show the
first property, first we need to extend g? such that it is tightly bounded in
[0, 1]. We will extend it to the interval [−2, 2] (by linear interpolation) such
that g?(−2) = 0 and g?(2) = 1. The extension allows us to define its inverse:

v(y) = inf{s ∈ [−2, 2] : g?(s) = y}

By lemma 3 from [22] we have the following import statements:

m∑
i=1

(ŷ
(t)
i − y

(t)
i )v(ŷ

(t)
i ) = 0 (11.1)

(g?(〈w?,x
(t)
i 〉)− ŷ

(t)
i )(〈w?,x

(t)
i 〉 − v(ŷ

(t)
i )) ≥ 1

L
(g?(〈w?,x

(t)
i 〉)− ŷ

(t)
i )2 (11.2)

where 11.1 is a property of the PAV algorithm and 11.2 comes from the fact
that g? is nondecreasing and Lipchitz. Then we have that

E{y(t)i }mi=1

[
sup
w(t)

`(t)(w?)

]
= E{y(t)i }mi=1

sup
w(t)

{
err(t)(w(t)) +

1

m

m∑
i=1

(ŷ
(t)
i − y

(t)
i )〈w?,x

(t)
i 〉

}

= E{y(t)i }mi=1
sup
w(t)

{
err(t)(w(t)) +

1

m

m∑
i=1

(ŷ
(t)
i − g?(〈w?,x

(t)
i 〉))〈w?,x

(t)
i 〉

}
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focusing on the second summand,

m∑
i=1

(ŷ
(t)
i − g?(〈w?,x

(t)
i 〉))〈w?,x

(t)
i 〉

=
m∑
i=1

(ŷ
(t)
i − g?(〈w?,x

(t)
i 〉))(〈w?,x

(t)
i 〉 − v(ŷ

(t)
i ))

+
m∑
i=1

(ŷ
(t)
i − g?(〈w?,x

(t)
i 〉))v(ŷ

(t)
i )

By inequality 11.2 the first summand is at most −err(t)(w(t)). By equa-
tion 11.1 the second summand equals to

m∑
i=1

(y
(t)
i − g?(〈w?,x

(t)
i 〉))v(ŷ

(t)
i )

Putting it all together, so far we have got that

E{y(t)i }mi=1

[
sup
w(t)

`(t)(w?)

]
≤ E{y(t)i }mi=1

[
sup
w(t)

1

m

m∑
i=1

(y
(t)
i − g?(〈w?,x

(t)
i 〉))v(ŷ

(t)
i )

]

Note that the sequence y
(t)
i − g?(〈w?,x

(t)
i 〉) is bounded IID with mean

zero and that the v(ŷ
(t)
i ) is a bounded and nondecreasing sequence. Then to

bound the above expression we need the following concentration inequality.

Lemma 5 ([22]). For any integer m ≥ 1 and reals a < b let X1, ..., Xm be
independent random variables, with E[Xi] = 0, each in the bounded range
[−1, 1]. Let A1, ..., Am be a sequence of random variables such that a ≤ A1 ≤
A2 ≤ ... ≤ Am ≤ b. Note that the sequence Ai need not be independent and
may depend on the Xis as well. Then,

E
[
A1X1 + ...+ AmXm

m

]
≤ (b− a)

√
2

m

Even though the lemma isnt stated in this manner, we could take a supre-
mum over A1, ..., Am inside the expectation as long as they are monotone
nondecreasing and bounded in [a, b]. The proof of the lemma would remain
the same.
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Finally, the first property holds for ε = 4
√

2/m since

E{y(t)i }mi=1
[sup
w(t)

`(t)(w?)] ≤ ε

Note that here m = Ω(T ) and our assumption about ε holds.
To show that the second property holds, notice that the PAV algorithm

solves

min
{ŷ(t)i }mi=1nondecreasing

m∑
i=1

(ŷ
(t)
i − y

(t)
i )2

and that the solution ŷ
(t)
i +〈w(t),x

(t)
i 〉 is feasible since it is nondecreasing with

respect to 〈w(t),x
(t)
i 〉. Then by optimality conditions for convex programs

we have that

m∑
i=1

(ŷ
(t)
i − y

(t)
i )(ŷ

(t)
i − (ŷ

(t)
i + 〈w(t),x

(t)
i 〉)) ≤ 0

and so
m∑
i=1

(ŷ
(t)
i − y

(t)
i )〈w(t),x

(t)
i 〉 ≥ 0

That entails that the second property holds since

E{y(t)i }mi=1
[`(t)(w(t))|{y(1)

i }mi=1, ..., {y
(t−1)
i }mi=1] ≥ err(t)(w(t))

11.3 Online setting

In this section we will show how the two properties are enough for online
learning. For that we assume that ‖z(t)‖ ≤ R (the gradients of `(t) at w(t)

are bounded), ‖w?‖ ≤ B and |`(t)(w)| ≤ C for all ‖w‖ ≤ B (the losses are
bounded).

Recall that we can obtain the following regret bound

T∑
t=1

`(t)(w(t))−
T∑
t=1

`(t)(w?) ≤
√

2RBT (11.3)

Define the following random variable:

U (t) = Ey(t) [`(t)(w(t))− `(t)(w?)|{y(i)}t−1
i=1]− (`(t)(w(t))− `(t)(w?))
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The sequence {U (t)}Tt=1 for a bounded martingale difference sequence. By
the Hoeffding-Azuma inequality with probability at least 1− δ:

T∑
t=1

U (t) ≤ C

√
8T log

1

δ
(11.4)

Combining inequalities 11.3 and 11.4 we have that

T∑
t=1

Ey(t) [`(t)(w(t))− `(t)(w?)|{y(i)}t−1
i=1] ≤

√
2RBT + C

√
8T log

1

δ

then our two properties entail that

T∑
t=1

err(t)(w(t)) ≤ εT +
√

2RBT + C

√
8T log

1

δ

as required.

11.4 Offline setting

In this section we will show how the two properties relate two the offline
setting. Formally, we would like to solve the following convex program:

min
w

1

T

T∑
t=1

sup
w(t)

`(t)(w)

over a sample S = {(x(t), y(t))}Tt=1 taken independently from the distribution
D.

Let ŵ be a minimizer of the above program. Then,

ES

[
1

T

T∑
t=1

sup
w(t)

`(t)(ŵ)

]
≤ ES

[
1

T

T∑
t=1

sup
w(t)

`(t)(w?)

]
≤ ε

by the first property. Also,

ES

[
1

T

T∑
t=1

sup
w(t)

`(t)(ŵ)

]
= ES

[
1

T

T∑
t=1

Ey(t)
[
sup
w(t)

`(t)(ŵ)|{y(i)}t−1
i=1

]]

≥ ES

[
1

T

T∑
t=1

err(t)(ŵ)

]
= Eerr(1)(ŵ)
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Here the first equality is by the tower property of expectation and the second
equality holds since we assume that the error measures are interchangeable in
expectation. Since we are taking the supremum over w(t), replacing it with
ŵ would only decrease the expression. Afterwards the inequality follows by
the second property.

11.5 More examples

In this section we will show what the batch version of the three examples
look like.

Perceptron For this we have for all t ∈ [T ],

sup
w(t)

`(t)(w) = max{0, 1− y(t)〈w,x(t)〉} = `hinge(w)

Noisy Perceptron Here:

sup
w(t)

`(t)(w) = max

{
1− η
1− 2η

(1− y(t)〈w,x(t)〉),− η

1− 2η
(1 + y(t)〈w,x(t)〉)

}
= `rm(w)

Isotron For each w denote g
(t)
w as the function returned from the PAV al-

gorithm for w over the sample {(x(t)
i , y

(t)
i )}mi=1.

Denote G(t) = {x 7→ g
(t)
w (〈w,x〉) : ‖w‖ ≤ 1}, then

sup
w(t)

`(t)(w) =

sup
g∈G(t)

{
1

Lm

m∑
i=1

(g(x
(t)
i )− g?(〈w?,x

(t)
i 〉))2 +

1

m

m∑
i=1

(g(x
(t)
i )− y(t)

i )〈w,x(t)
i 〉

}



Appendix A

Online learning primer

This will be a short primer on online learning, based on [31]. The reader is
also referred to [11] for a more thorough introduction.

A.1 Online learning

Online learning is usually thought of as a game between a learner and an
adversary. The game goes on for T rounds, in each round the adversary
supplies the learner with an example x(t) and the learner has to predict its
label as p(t). The learner then receives the true label y(t) from the adversary.
The goal of the learner is to make the least number of mistakes, typically
sublinear in T .

Algorithm 6 Online learning

for t = 1, 2, ..., T do
Receive example x(t) ∈ X .
Predict p(t) ∈ Y .
Receive true label y(t) ∈ Y .
Suffer loss 1[y(t) 6=p(t)].

end for

60
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A.2 Online convex optimization

We will also require the setup of online convex optimization. It can be
formulated in a similar manner to the online learning game. At each iteration
t the learner presents a predictor w(t) residing in some convex set S. It then
receives a convex loss function `(t) : S → R and suffers a loss `(t)(w(t)).

Algorithm 7 Online convex optimization

for t = 1, 2, ..., T do
Predict w(t) ∈ S.
Receive loss function `(t) : S → R.
Suffer loss `(t)(w(t)).

end for

In this setting we will require the learner to have a small regret (typically
sublinear in T ) with respect to any vector in S. The regret of the learner
with respect to u ∈ S is

regret(u) =
T∑
t=1

`(t)(w(t))−
T∑
t=1

`(t)(u)

Suppose the `(t)’s are differentiable, one of the main algorithms for learn-
ing is gradient descent. Let β > 0 be a step size parameter, the predictor at
time t is w(t) = −β

∑t
i=1 zi where zi = ∇`(i)(w(i)). This achieves a regret

with respect to any u ∈ S:

regret(u) ≤ 1

2β
‖u‖2 + β

T∑
t=1

‖zt‖2
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