Learning from weak representations
using

distance functions and generative models

Thesis for the degree of

DOCTOR of PHILOSOPHY

by

Aharon Bar-Hillel

SUBMITTED TO THE SENATE OF

THE HEBREW UNIVERSITY OF JERUSALEM

October 2006



This work was carried out under the supervision of Prof. Daphna Weinshall



Acknowledgements

To be inserted.



Abstract

This thesis discusses two different problem domains, in which learning takes place using a weak initial repre-
sentation and partial supervision. The first is distance function learning from data augmented with equivalence
constraints, which are constraints stating whether two points come from the same or a different source. The sec-
ond problem is learning recognition of visual object class categories, where the natural image representation is
an unordered set of patch descriptors. A short introduction describes the similarities between the two problems,
which can be viewed as instances of representation learning. Then the two problems are discussed in two separats

chapters:

Chapter 2 - Learning with equivalence constraints: We consider distance function learning as learning of a
classifier defined over point pairs, and investigate its theoretical relations to the multi-class learning prob-
lem. Specifically we show that the two problems are equivalent in terms of learnability, and that a good
solution for the former (a good distance function) leads to a solution of the latter. We then present two
methods for parametric distance function learning from positive equivalence constraints. The first algo-
rithm, termed RCA, learns a Mahalanobis metric and its optimality for this parametric family is proven
under several criteria. The second method, termed coding similarity, is derived based on informational-
theoretic considerations, and it leads to a non-Mahalanobis parametric form. This similarity is analytically
shown to have deep connections with the Fisher Linear Discriminant(FLD) and RCA, and it has an empirical

advantage over Mahalanobis metrics in several applications.

Chapter 3 - Learning object class recognition: Unlike traditional learning from ordered vectors, this problem

is naturally posed as learning from sets of features with internal relations. We suggest an approach which
combines a relational generative, part-based object model with a discriminative, boosting-based optimiza-
tion method. The learning complexity is linear in the number of model parts and image features, compared
to the exponential complexity of traditional methods for relational model learning. The improved efficiency
allows scalable learning of relational models with many parts. Based on this algorithm, we then suggest a
two stage method for the recognition of subordinate classes (e.g. cross motorcycles or dining tables). In
the first stage a model of the basic category is learned, and it is used to form a part-based vector represen-
tation for images. Classification is then done by applying SVM to the new representation. We show that
this method allows inter-task knowledge transfer and that it outperforms simpler methods which do not take

advantage of the similarity between subordinate categories.
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Chapter 1

Introduction

This thesis presents work done in two seemingly unrelated research domains: learning distance functions from
equivalence constraints, and learning object models from unsegmented images. However, my interest in these re-
search domains derives from the same source; that is, my deep conviction about the role of representation learning.
Both tasks can be seen from a wider perspective as instances of learning an intermediate means (distance func
tion/object model) of clustering or classification, using partial supervision (equivalence constraints/unsegmented
images). Similar issues arise in both domains, as knowledge transfer between related learning tasks and the divi-
sion of labor between representation and prediction learning.
| start the introduction by presenting and motivating the general notion of representation learning, which is

the unifying aspect of the work presented here, in section 1.1. | then continue with more specific introductions
for the two chapters of the thesis. Section 1.2 starts with a discussion of the distance, metric and similarity
concepts, and their relations with representation, feature synthesis and classification. | then survey the relevant
literature on distance function learning. In section 1.3 | discuss the representation problem in the object recognition
domain. Here the gap between the initial representation and a useful one is especially pronounced, and the debat:
regarding proper representation is at the core of contemporary research. | briefly present the problem and the

relevant literature, with emphasis on the research areas to which my work belongs.
1.1 Learning from a weak representation

The notions of ‘weak representation’ and ‘Representation leaning’, while discussed in the literature [12,31,135],
are relatively vague, and do not have an agreed formal definition. | first outline the rationale for the introduction
of these concepts in section 1.1.1. Then, in section 1.1.2 | characterize representation learning as applying to

both distance function and input-data transformation learning. In 1.1.3 | consider the conditions under which



representation learning should be separated from classifier learning. Section 1.1.4 provides a short summary of

research included in the next chapters, with an emphasis on the ‘representation learning’ perspective.

1.1.1 Motivation

Several observations prompted my interest in representation learning. The first, basic one is that in my opinion,
the traditional supervised learning problem is to a large extent solved. In saying that, | refer to a binary classifi-
cation problem with a large labeled training set and a reasonable data representation. Learning tools developed
over the last few decades, specifically SVMs and boosting algorithms, are usually able to solve such problems
efficiently and accurately. Specifically, SVMs [118, 144] combine very good empirical performance with a well
developed theory, including a large margin aspect which provides generalization guaranties. A combination of
empirical success and margin-based generalization bounds have also been documented for boosting, or combine
classifiers in general [10].

However, in all but the simplest real world problems, the human machine learning expert has to devise a proper
representation when solving a new problem. Preparing the data for learning often requires complex processing,
chosen in a trial-and-error process by the human expert. Without such a representation choice step, classification
results are at best mediocre. The intuition here is that a large portion of the ‘learning’ is actually done by the human
designer, and not by the machine. From an engineering perspective, automating this second order representatior
learning is the next desirable step in the automation of learning.

Another source (and for me, the most profound) of inspiration for representation learning is the human-machine
performance comparison. Current machine classifiers may outperform human for problems with large data sets
and many features. Humans are clearly superior in learning problems which have some similarity to problems
already encountered by them, and with learning from a small sample. This generalization between related tasks
implies that humans pervasively use second order learning and representation learning. Such issues, also termed il
the literature ‘learning to learn’ [135], ‘inductive transfer’ [31] or ‘learning with points sets’ [102], are attracting
growing attention in the machine learning and computer vision communities both from the theoretical [13,16] and
the practical [53, 56, 101] points of view. Thus the tasks of understanding the human and improving the machines

can both benefit from research on these lines.

1.1.2 Representation Learning

Clustering and classification algorithms take a description of a set of data instances as input. In most cases, eact

data instance is described using an ordered feature vector (for example, this is the input for decision trees [114]



or k-means clustering [50]). Alternatively, some algorithms accept as input a matrix of distances or similarities
between the input data instances. Examples are graph based clustering algorithms, a wide family of algorithms
including agglomerative [50], spectral [128] and stochastic [24, 61] formulations, or the Support Vector Machine
which requires only the Gram matrix for learning. Formally, the task of a learning algostisnto find a mapping

f: X — Y from data instances iX to a finite label set” = {1,2,..M}. The mapping is defined on the whole

data domain for classification, and on the data instances alone for clustering.

Successful application of a learning algorithm typically relies on several underlying assumptions. Some ex-
amples are: Classes should preferably be connected and convex, or at least not too fragmented. Vector entree
with the same index in different instances should be measurements of ‘the same quantity’, i.e. should have the
same relation w.r.t to the prediction label (this is the basis of the ‘feature’ notion). A reasonable portion of the
features should be relevant to the prediction label. For distance based algorithms, the distance between two in-
stances should in general decrease with the likelihood of their belonging to the same cluster. When some of these
assumptions fail, we say that the representation is ‘weak’.

A weak representation can be improved by changing the input given to the learning algorithm. One possibil-
ity is to apply a pre-processing transformatibrto the data instances before these are subjected to the learning
algorithm. In the case of classification, the learned classifiean then be applied to the original domain via
the compositiory - T'(z). For distance based algorithms a second possibility exists; namely, altering the distance
function used. While distance functions operate on pairs of points and not on single points like a data transfor-
mation, the functional role they play as an input modifier is similar. Again, a classifier can be applied to the data
using a compositiorf - d(x) 2 f(d(z1,2),..,d(x,, z)). In both cases it is well known empirically that classi-
fier performance critically depends on the transformation/distance function used. Most traditional algorithms are
very sensitive to the data representation, while SVM and graph-based clustering rely heavily on the quality of the
kernel/distance function used. The parallelism between distance and transformation learning can be made formal
for certain restricted distance families, which are formally equivalent to specific transformation families. This is
the case with kernels in general and specifically with Mahalanobis metrics, which can be equated with linear data
transformations.

Based on this functional similarity, | use the term ‘representation learning’ to denote both distance function and
transformation learning. Such learning aims to reduce the human role in the choice of data pre-processing, and can
be regarded as ‘pre-process’ learning. In both cases of transformation and distance learning, it is formally easy to
see that if the family of considered representations is not limited, then choosing an optimal, ideal representation

makes classifier learning redundant. For example, one may learn a representation transformation which sends eacl



data instance to its label. A similar construction is possible for distance functions, and we discuss the theoretical
connections between classifier and distance function learning extensively in paper [A] in this thesis. Of course,
in practical cases representation learning is limited to a predefined family of hypotheses. The fuzzy borderline
between the two, however, raises a question regarding the need for two separate learning stages (i.e. representatio

and clustering/classification) and the division of labor between them.
1.1.3 Do we need a separate stage of representation learning?

The notion of two sequential learning stages, i.e. representation learning followed by clustering/ classification
(I use the term ‘prediction’ for clustering/classification in what follows), immediately raises some difficulties. One
problem is the choice of optimization goal for the representation learning stage. In classification the learning task
is well defined: learn a classifier with minimal generalization error. The optimization argument can be defined with
clear relation to this error. Usually some smooth loss function of the training error (that is, a statistical estimator
of the generalization error) is used, possibly with a regularization term. This is the discriminative choice, used
for example by boosting and SVMs, and the minimization of such a directly relevant loss function is an important
ingredient in the power of these methods. In contrast, representation learning learns only an intermediate construct,
and the utility of a specific representation for the final classification is hard to predict a-priori. Hence it is unclear
how to define a good optimization argument, and the problem, like clustering, is an ill-posed problem.

A related claim may be stated as follows: Assume that our goal is to find a clagsifieX — Y which
minimizes some los$1(h) overh € H. In a two stage approach we first choose a representation (transformation
or distance functiony € G by minimizing some los€.2(g) and then learn a classifier on the transformed input,
so the final classifier is a compositian= f - g. Compare this to a single stage approach, in which we choose
h € H = F - G which minimizeL, (h) directly. Assume that the learning algorithms are able to find the optimal
functions f*, g*, h* which achieve the minimal losses. In this case we can see that a direct single stage approach

is equal or better than a two stage one:

Li(fY=minLi(f-¢*) > min Li(f -g)= Li(h*

() =minLi(fg%) > min La(f -g) = La(h")
These arguments show that under ideal conditions direct learning is preferable to a two stage approach. Why
should we therefore turn to a sequential, two stage learning process? There are several possible answers to thi

guestion.

e Algorithmic reasons: While direct minimization leads to better losses, it requires search in a more complex
function spacé - GG. This search is often intractable, leading to high computational complexities and sub-

optimal solutions. Splitting the problem into two separate search stages may alleviate this problem.
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¢ Design related reasons:The separation of learning into two separate modules of representation and pre-
diction learning creates a more modular system, which has several advantages. First, it is easier in this way
to reuse existing prediction (i.e. clustering and classification) algorithms, and design only the representa-
tion learning module. The design, research and programming of the two separate modules is easier than
the construction of a complete unified system learning directly from weak representation, and it leads to
specialization. Finally, a two stage approach creates a flexible system, in which the same representation
learning module can be used with various prediction algorithms and vice versa. In this way, it is easier to
extend existing algorithms to new domain (by replacing the representation learning module) and new tasks

(by replacing the prediction module)

e ‘Learning to learn’ reasons: Separating the learning process into two stages opens the door to knowledge
transfer between tasks. In this scenario the representation fugdsgaointly learnt from samples of several
related learning tasks. Hengeés a shared component, learnt from a relatively large sample not available for
each learning problem alone. Successful learningadfows prediction learning in each of the related tasks

to begin with improved representation. This in turn can lead to higher accuracies with smaller samples.

The papers included in this thesis are mostly related to representation learning of two kinds: improving the
distance function for clustering, and creating a meaningful ordered vector representation for images. In both cases
the dilemma of choosing between a one or two stage approach appears, and the argumentations sketched out aboy

play an important role.

1.1.4 The included papers

Here | summarize the main contributions of the papers and sections included in this thesis, from the ‘represen-

tation learning’ point of view:

e “Learning with Equivalence Constraints, and the relation to Multiclass Classification” - In this paper we
examine whether distance function learning can, at least in theory, completely replace classifier learning.
We consider binary distance functions, where an ideal function should return ‘1’ for pairs of points from the
same class, and ‘0’ for pairs from different classes. The natural learning inputs are equivalence constraints
stating that two points are from the same class (a ‘positive’ constraint) or not (a ‘negative’ constraint).
We establish the connections between a classification learning problem and the induced distance learning
problem in terms of error and required sample size, and show that a concept class is learnable iff its induced

distance functions class is learnable. We then show algorithmically how a learned binary distance function



with small error can be used to produce clustering and classifiers with small errors.

“Learning a Mahalanobis metric from equivalence constraints” - We suggest an algorithm (termed RCA)
for Mahalanobis metric learning, which improves clustering results using K-means [B] and graph-based
clustering [F]. Since the distance hypotheses family is limited to Mahalanobis metrics, the algorithm can be
regarded as learning a linear data transformation, and it is therefore not limited to distance-based algorithms.
The algorithm uses positive equivalence constraints alone, and it is conceptually simple and computation-
ally efficient. It is shown to be optimal with respect to several criteria, including information preservation
between initial and final representation, minimization of the average distance between constrained points,
and generative model estimation under simple Gaussian assumptions. It is empirically shown to improve

clustering results, including dramatic improvement in a face recognition application.

“Learning distance function by Coding similarity” - Here we define ‘similarity’ and its goals using information-
theoretic terms. The similarity between two instances is related to the gain in coding length obtained by
moving from independent to joint encoding of the pair. We then suggest a simple algorithm for distance
function estimation from positive equivalence constraints, under simplified Gaussian assumptions. The re-
sulting distance is shown to have close relations with other techniques, i.e. FLD and RCA. It is not a metric,
and so its usage for clustering is limited to distance based (graph based) clustering algorithms. However,
this distance is shown to be empirically superior to RCA and another algorithm in such clustering, and it

enables knowledge transfer between tasks in a face retrieval problem.

“Efficient learning of relational object class models” - When learning from unsegmented images, the pre-
liminary image representation used in most of the current work is an unordered set of image patches with
various locations and scales. This representation is extremely weak, as it is both unordered and highly
redundant (usually hundreds of patches represent a single image). In this work our main tool for repre-
sentation transformation is a generative, part-based object model. When applied to an image, the model
selects features and orders them into ordered part vectors, which are then used for image classification. We
consider models of varying complexity, with an emphasis on relational models, in which both the appear-
ance of parts and their relative positions are described. In this work we do not use a two-stage approach
which separates representation from classifier learning. Instead, model learning and classification are jointly
optimized to minimize a discriminative loss. The optimization method is based on a non-trivial boosting
extension, iterating between weak hypothesis learning and inference of the object’s size and location. The

combination of generative models with discriminative optimization solves an inherent problem in traditional



maximume-likelihood learning of such models, and it is the main contribution of the work.

e “Subordinate class recognition using relational object models” - In this paper we suggest a two stage learning
method for the recognition of subordinate image categories, such as cross motorcycles or dining tables. The
method is inspired by cognitive psychology observations regarding the primacy of basic level categories in
object recognition and the structural similarity between sub-ordinate categories of the same basic category.
In the first representation learning stage, a model of the basic category is learned using images from several
subordinates. In the classification stage part vectors, created using the model, are subjected to an SVM for
sub-ordinate level classification. The empirical accuracy obtained in this method is often higher than other
methods which do not use the representation/classification split or do not rely on the joint sample from all
subordinates during representation learning. Thus the main contribution of the work is in showing the utility

of inter-task transfer between sub-ordinate category recognition tasks.

The paper descriptions given above focus on the relatively abstract perspective of ‘representation learning’.
While this may provide an interesting global view of the thesis, the papers are not presented in the context in which
they were originally conceived and published. A more detailed presentation of the problem domain and related

work is given next in section 1.2 for distance function learning, and in section 1.3 for visual object recognition.
1.2 Learning distance functions

The importance of the distance function for learning algorithms has been gradually acknowledged in the last
20-25 years, and many distance learning techniques have been suggested for the improvement of classification
retrieval and clustering. In section 1.2.1 | briefly consider concepts and techniques related to distance learning.
Then in section 1.2.2 | describe the literature regarding fully supervised distance learning, i.e. learning from
labels. In section 1.2.3 | describe the main techniques developed for distance learning from the partial information

of equivalence constraints.
1.2.1 Distance learning: related concepts and techniques

| discuss the relations between the concepts of distance, metric and similarity in section 1.2.1.1. Then | present

distance function learning in the context of related techniques in section 1.2.1.2.
1.2.1.1 Related concepts

The basic intuition for the distance concept is geometric, starting with Euclidean spatial distance. This intuition

is captured in the mathematical, axiomatized notions of a metric and an inner product. These notions are very
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useful since they extend a large portion of traditional Euclidean geometry to large, flexible families of spaces.
Specifically useful is the inner product (‘kernel’) concept, generalizing the Euclidean dot product. The existence
of an inner product endows a space with an induced metric and geometry, and so allows the application of a large
‘kernel-based’ algorithm family including the SVM, SVR(Support Vector Regression) and others [118]. Therefore
the similarity between two points is often measured using a kéfiiel y), and the distance between them is given

by the induced metrig/K (z,z) + K (y,y) — 2K (z, y).

While paving the way to powerful algorithms, the ‘metric’ and ‘kernel’ notions are limited by their axioms.
There are several contexts in which these requirements are not naturally met, and more general families of dis-
tance functions should be discussed. Robust distance functions, which ignore outliers and irrelevant aspects in the
matching of two items tend to violate the triangle inequality [77]. This is mainly since the matched aspects of an
instance depend on the second instance, and vary between distance computations. Such distance functions corr
monly arise in machine vision problems which require part-based comparison, and in human similarity judgments.
Specifically, it was shown in [141] that human similarity judgments often violate the symmetry and triangle in-
equality metric requirements. In other contexts it is the self-similarity requiremé#nt ¢') > 0 with equality iff
x = z') which poses problems. In [99] it is shown that the optimal distance function for nearest-neighbor classifi-
cation is not metric due to violation of this requirement. In [A] we showed that classifier learning can be replaced
by distance function learning, but the relevant distance functions are binary functions which violate the self sim-
ilarity requirement. Finally, in many practical cases (specifically for image comparisons) distance computations
rely on a complex process, and it is very hard to ensure that they obey the metric axioms.

Some attempts have been made to define a general, widely applicable notion of non-metric similarity. Using
several intuitive axioms, Lin [92] derived an information theoretic based similarity definition for discrete value
vectors. This similarity can be easily learned from event frequencies, and it has been successfully applied to
document retrieval [3]. In [82], the similarity between two items is defined based on the likelihood of a shared
common generative source for them. In [F] we suggest an information-theoretic definition of similarity which is
different from the one used in [92], and is very similar to the one used in [82]. Unlike previous papers, this work

suggests an efficient similarity learning method for continuous variable vectors.
1.2.1.2 Related techniques

The research regarding distance function learning has some natural overlap with several related research areas
In general, any algorithm which learns a representation transformation of the inpuf @gtacan be regarded

as a distance learning algorithm, where the distance learnt is the distance in the new datdBpacd’(z')).



However in many cases, and specifically when the transformation is relatively simple, this aspect is disregarded.

e Feature selection this is probably the simplest form of representation learning, and it has been researched
extensively in recent years (See [87] for a review of traditional methods, [68] for a more updated summary).
As in distance learning, it includes stand-alone representation learning algorithms (termed “filters” in this
contexts), and others, which are optimized in conjunction with a specific classifier ( “Wrappers”). While
some of the optimization arguments suggested rely primarily on distances in the reduced space (e.g. [62]),

usually the relation to distance learning is not mentioned.

e Feature weighting In this framework one learns weights for the input features, which are then usually
used in a KNN algorithm (see [151] for a review). While this is a richer input transformation than feature
selection (it includes feature selection as a specific case), it is still very limited in terms of distance function
learning, and can be equated with learning of a diagonal Mahalanobis metric. Recent work of this sort
is sometimes labeled “feature selection” (e.g. the “Simba” algorithm in [62]) and sometimes “distance

learning” (see [120, 158])).

e Linear projections- Learning a linear projectiod is equivalent to learning a low rank Mahalanobis metric
B = A'A. The most popular projections are the Linear Discriminant Analysis (LDA or FLD), first sug-
gested in [58], or its extensions (such as [117]). Learning LDA from equivalence constraints is considered
in [18],[B],[F], with differences in estimation method and in post-projection treatment. While in [18] the
constraint-based LDA is considered as a distance metric in itself, in [B] it is shown to be the optimal pro-
jection to precede another regular Mahalanobis metric, termed RCA. In [F] it is shown to be the optimal

projection for yet another non-Mahalanobis distance measure, i.e. Gaussian coding similarity.

Another related corpus of literature deals with hand-designed distance functions for specific tasks, such as visual
object recognition [17,66]. Such methods do not involve automated learning, though often several parameters are
determined using cross-validation. A more general approach is the “tangent distance” suggested by [130], in which

the distance function is adapted to a set of invariance transformations of the input data.
1.2.2 Learning from labels

Considerable work has been done regarding distance function learning in the fully supervised scenario, with
the aim of improving classification. Most of these methods require explicit labels for training, but some actually
learn from equivalence constraints, which can easily be extracted from labels. With some exceptions, we focus in

this section on the former set of methods, and defer the discussion of the latter to the next section. Interestingly,
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the distance learned from labels are almost always metric. The literature can be divided into two rather different
branches, pursued by different research communities: Metric learning for KNN classifiers, and Kernel learning

for SVMs.
1.2.2.1 Metrics for nearest neighbor classification

Learning a metric for KNN is not radically different from metric learning for clustering or retrieval, but the task
differences lead to a subtle difference in the characteristics of the optimization argument. Specifically, in KNN
only relations between 'near’ points count. Consider for example a metric in which a certain class is manifested in
several distinct clusters, which are relatively well separated from other classes. This may be a good representation
for KNN, but bad for clustering and instance based retrieval, since each instance is connected only to a small
portion of the relevant class.

Improving NN classification using distance learning was already studied by Short and Fukunaga in [129],
where the optimal metric for NN is characterized in terms of the local class densities and their gradients. This is a
local metric, which has to be estimated for each point separately, and an algorithm is suggested for its estimation
and incorporation into the NN classification. Other methods which adapt the metric on a local basis have been
suggested more recently, based on different ideas. Specifically, local LDA adaptation was suggested in [69], and
computing distances from local label-dependent hyperplanes was suggested in [146].

While not optimal, learning a global Mahalanobis metric is simpler, and this is the more popular alternative.
In [96], the ‘0 — 1" error on nearest neighbor is smoothed using a stochastic formulation, and optimization of this
argument is done using gradient descent. Only a diagonal Mahalanobis metric is learned. In [64] a similar method
is used to learn a full Mahalanobis metric. Yet another stochastic and smooth loss is suggested in [63], with the
advantage of leading to a convex optimization problem. In [150] the optimization cost is based on a notion of
large NN classification margin, and the optimization is done via semi-definite programming (SDP). In addition,
there are methods which were published as learning Mahalanobis metric from labels, with classification in mind,
but actually do not rely on full labels but on equivalence constraint information. In [163], distances between pairs
of points are modified according to the label equivalence (i.e. the distance between points with the same label is
shrunk, and the opposite for points with different labels), and a linear transformation is sought which approximates
the modified distances. In [125] the problem is presented as a large margin classification problem over point pairs.

The resulting SDP problem formulation is solved using an online algorithm.

10



1.2.2.2 Kernel learning for SVMs

Learning the kernel for SVM classification has a relatively short history, and itis still a controversial issue. There
are some encouraging theoretical and empirical results, but still no persuasive examples of empirical improvements
in the ‘large data set’ scenario (as far as | know). From the theory point of view, Srebro and Ben-David [131] have

recently shown that for a kernel family with pseudo-dimension d, and a classifier learned with matigm

gap between the training error and generalization error is bounded®y(d + 1/42)/n), with n denoting the
training sample size. Since the equivalent bound for a single kergéliél /v2) /n, and since we can bound the
pseudo-dimension of several interesting kernel families, this is an encouraging bound.

In practice, kernel learning methods usually learn the Gram matrix, and not a kernel function defined on the
whole product space of point pairs. Such methods are limited to a transductive learning scenario. Cristianini et
al. [42] first approached this problem using the influential concept of “Kernel alignment”. Alternative approaches
suggested include learning the kernel matrix by boosting [39], semi-definite programming [86], Gradient descent
of generalization bounds [26] and generative modeling [164]. Another set of research papers has dealt with
learning the parameters (usually 2-3 parameters at most) for a pre-defined kernel family. In common practice such
assessment is made using cross validation, but alternative methods include statistical estimation [109] or gradient
descent of generalization error estimates [35], where the latter method has been used to learn a large number o
parameters.

There has been only a little work on kernel function learning in the inductive setting. In [73] we presented a
kernel function learning algorithm, based on product-space boosting. The method is an adaptation of a previous
method for distance learning from equivalence constraints [71], and it relies on a weak learner which incorporates
equivalence constraints into a mixture of Gaussians fitting process [126]. This algorithm is shown to enable
significant knowledge transfer between related classification tasks with small samples. Another algorithm which
may be used for kernel learning is presented in [157], where an existing kernel matrix is modified, and then

approximated by a learned Mahalanobis metric in the induced feature space.
1.2.3 Learning from equivalence constraints

In recent years there has been a growing interest in learning from partial information in the form of equivalence
constraints. Formally, these are tripléts, z2,y), wherez, z, are data points ang € {+1,—1} is a label
indicating whether the two points are similar (from the same class/cluster) or dissimilar. There are two essential
sources for the interest in such constraints: their availability in some learning contexts and the fact that they

are a natural input for distance function learning. Regarding availability, there are several scenarios in which

11



equivalence constraints can be obtained automatically or with low cost in human labor, while labels are not readily
available [70]. In video [159] or surveillance [70] applications one can often achieve such constraints based on the
Markovian dependency between successive frames of a movie. For example, it is often possible to automatically
identify that the human face in two such frames is the same, based on low level continuity cues. Other scenarios
are information retrieval with user feedback [2,38], or distributed learning with many uncoordinated teachers [70].
In these cases, equivalence constraints can be acquired in a cheap and robust manner, while labels are much hard
to achieve. The other reason for the extensive usage of equivalence constraints is that when we regard the distanc
function learning as a classification problem on the product space (i.e., with pairs of points as input), the natural
‘labels’ are equivalence constraints [A]. Because of this characteristic of equivalence constraints, fully supervised
distance learning algorithms, which receive labeled points as input, often turns them into equivalence constraints
and operate directly on the latter (for example [37,113,125, 163]).

While binary equivalence constraints (positive or negative) have received most of the attention, several related
supervision forms have also been considered. Specifically, soft constraints, indicating the likelihood of several
points being together were considered in [88]. In general such constraints are less appealing since they are harde
to obtain in real life scenarios and harder to incorporate, potentially leading to hard inference problems. Another
form of supervision, which can be regarded as even weaker than equivalence constraints are ‘relative comparisons’,
used to learn distances mainly in retrieval contexts [4,115,120]. These are triplets of the form “A is more similar
to B than to C". Notice that such triplets can always be extracted from labels, and sometimes even from a set of
positive and negative equivalence constraints (if certain points appear in both positive and negative constraints),
but not the other way around. For information retrieval, in which the order of the retrieved items is the important
aspect, such triplets seem like natural supervision.

In what follows, | will consider how equivalence constraints have been used for distance function learning in

the domains of information retrieval 1.2.3.1 and semi-supervised clustering 1.2.3.2

1.2.3.1 Image retrieval and verification

In a common paradigm for information retrieval, and specifically for image retrieval, distances between a query
and items in the data base are computed, and the most similar items are returned. A closely related task is
verification, where the query is accompanied by a conjectured identity and the task is to verify whether the query
indeed has that identity. This task is mostly employed in face recognition, and its implementation usually relies
on distance computation as well. The retrieval task is rather similar to classification: the question can be posed as

“which items are from the same class as the query?”. One might therefore expect that distance function leaning
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for retrieval should not be that different from distance learning for classification. This howewnet,tfse case,
due to several emphasis differences between classification and practical image retrieval.

As | noted in section 1.2.2.1, distance learning for KNN emphasizes relations between ‘near’ points, while in
retrieval, at least a-priori, all the pairs of points have equal importance. Due to this difference, metric learning
algorithms for KNN usually rely on explicit labels, from which only the relevant equivalence constraints are ex-
tracted. Distance learning algorithms for image retrieval, even when they are declared as ‘learning from labels’,
are usually defined and operate with equivalence constraint input [37,98,113]. Other differences in learning arise
due to the difference between the data domains used in traditional classification and the much more problematic
input of object and face image retrieval. While traditional classification is usually done with a pre-defined vec-
tor representation with several dozens of features at most, for images usually no such representation exists anc
thousands of features are usually considered. Due to the increased input complexity, Mahalanobis metric learn-
ing, which is the most popular approach for classification (see section 1.2.2.1), is usually prohibitive for learning
distance from images. Instead, often distance functions are learned which are not metric [99, 113], and feature se-
lection and synthesis is an important aspect of the distance learning [4,99]. Finally, inter-task knowledge transfer,
usually not considered in traditional classification, arises naturally in several retrieval applications, specifically in
face retrieval and verification [37,99, 113]. In such application one has to learn a distance function from a set of
faces, and apply it to faces which were not seen during the training period.

Recently, some distance learning methods have been specifically designed in the context of face and object re-
trieval. In [98,99] a non-metric distance is learned which is a linear combination of elementary distance functions.
The method is based on a discriminative probabilistic model and its optimization, for a given set of elementary
distance functions, is a convex problem. The set of elementary distance functions is chosen with a greedy local
search. In [4] a similar linear combination of elementary distance functions is learned using product-space boost-
ing from relative comparison triplets. In [37] a distance function of the fd(h, I,) = ||G([1) — G(I2)|| is
learned from equivalence constraints, whéres a non-linear transformation of the image implemented as a con-
volutional network. This distance is clearly metric, and its optimization is done using back propagation gradient
descent. Another suggestion, put forward by [113], is to learn the discrimination between ‘11 and 12 are the same’
and ‘I1 and 12 are different’ in thdifference spacd.e. the space of vector differencés— I,. The method is
applied to face images, properly aligned and projected using PCA, and the distinction is learned using standard
SVM.

When the input data are simpler than real images, learning a Mahalanobis metric has been considered for visual

recognition and retrieval tasks [56,115]. In [56] an online algorithm developed for classification (POLA, [125]) is
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used for character recognition. The algorithm recently suggested in [115] learns a Mahalanobis metric with low
L; norm from relative comparisons, using linear programming optimization. However, while its declared aim is
retrieval, it was only empirically tested with traditional low dimensional data sets from the UCI repository [23].
Other distance learning algorithms which have been used for image retrieval are the Distboost algorithm [72], the
LLMA algorithm [34], RCA [B], and Gaussian Coding Similarity [F]. These algorithms have also been used for

semi-supervised clustering, and | defer their discussion to the next section.
1.2.3.2 Semi-supervised clustering

In the scenario we discuss in this section a data set whlabeled data points is augmented with a (usually
small) set of equivalence constraints. In contrast to labeled data, from ifich) equivalence constraints can
be extracted, the amounts of equivalence constraints considered in this task are usually a fractowl @t most
linear inn with small constants. The task is clustering, i.e. partitioning of the data into mutually exclusive sets
according to a ‘natural’ equivalence relation. This original clustering task is clearly ill-posed, but with the advent
of semi-supervision it is less so, as the partition chosen should strive to obey the constraints, and it is hence less
arbitrary. In practice, clustering and related distance learning algorithms are tested on labeled data sets, for which
the required partition is known (though the labels are hidden from the clustering algorithms), and performance is
judged based on agreement with the known labelling.

Equivalence constraints have been incorporated into the clustering process in two distinct ways: direct incor-
poration and distance function learning. In direct incorporation, clustering algorithms are altered in order to use
the information contained in the equivalence constraints, and prefer partitions which obey them. Several known
clustering algorithms have been augmented in this way, including K-means [148], complete linkage [83], EM of
a Gaussian mixture model [126] and Normalized-cut [19]. In the second way, a distance function is learned from
the equivalence constraints, and this distance function is then used in a second clustering stage. For graph-base
clustering techniques (which are solely distance based), the distance function is used to compute the input distance
matrix. For other clustering technigues, which require explicit vector representation, the transformation compati-
ble with the distance matrix is used to re-present the data before clustering. Of course, in this case, only distance
functions for which an equivalent transformation is readily available can be used. The two methods of distance
learning and direct incorporation can be used together. In [21], the two methods were jointly and separately used
with the k-means clustering algorithm. The results indicate that the contributions of the direct incorporation and
distance learning do not completely overlap, and joint usage is preferable. The empirical results in [B], which

were also obtained with k-means, show a general performance advantage of distance learning methods over direc
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incorporation for this algorithm.

Mahalanobis Metric learning. Like in the classification task, the Mahalanobis metrics family has received
considerable research attention. Since a learned Mahalanobis rheliriectly entails a linear data transformation

B = A‘%, it is conveniently used with standard vector-based clustering algorithms. Usually such metrics are used
in conjunction with K-means, or the constrained K-means [148] algorithm. The first algorithms suggested for
Mahalanobis metric from equivalence constraints were suggested in [127,158]. In [158], the metric is learned from
positive and negative constraints using PSD convex optimization. The suggested algorithm is iterative, based on
interleaved steps of projections and gradient descent. In [127] the simpler Relevant Components Analysis (RCA)
method was initially presented, learning a Mahalanobis metric from positive constraints alone. This method is
further developed and analyzed in [6] and in [B]. The cost suggested by RCA is optimized in a closed form solution,
which require a single matrix inversion. This algorithm was later expanded to include negative constraints in [160].
In [156] it was expanded using a boosting process to include both types of constraints, as well as unlabelled data.
In [139] a kernelized version of RCA was presented, and in [152] RCA and its kernel extension were analyzed
from a quantum physics perspective. In [18] a low-rank Mahalanobis metric is suggested, based on estimation
of the LDA projection from positive equivalence constraints. As mentioned in section 1.2.1.2, similar constraint-
based LDA has been shown to be an optimal pre-processing stage for technigues discussed in this thesis, RCA [B]
and Gaussian Coding similarity [F].

Several kernel-oriented methods have been suggested for Mahalanobis metric learning. These methods can b
used to learn a simple Mahalanobis metric on the input space, or a Mahalanobis metric on a high dimensional
space, computed via the kernel trick. In [84] a metric is learned from positive and negative constraints by de-
manding that the (kernel mediated) distance between dissimilar points should be enlarged by a certain margin
and vice versa, thus increasing the kernel alignment [42]. The resulting optimization is a quadratic programming
similar to ther-SVM algorithm, but over point pairs. A similar formulation is studied in [157], but here a lin-
ear transformation is applied to (kernel mediated) pairwise similarities to achieve improved kernel alignment. A
third kernel oriented, margin-based approach to Mahalanobis metric learning from constraints is POLA [125],

mentioned earlier in the context of fully supervised learning.

Non-linear methods. As Mahalanobis metrics correspond to a globally linear transformation of the input space,
they are sometimes not expressive enough for complex distance function learning. One possibility for learning
non-linear metrics is by learning a Mahalanobis metric in a high dimensional space via the kernel trick, as dis-

cussed in the previous paragraph. Several other solutions have been suggested that learn a non-linear distanc

15



function directly in the input space. The Distboost algorithm [71] learns a non-metric distance function from
positive and negative equivalence constraints using product space boosting. The weak hypotheses combined are
soft partitions of the feature space learned with a weighted version of the constrained EM algorithm [126]. Since
the distance is non-metric, there is no explicit data transformation associated with it, and it has been used with
graph-based clustering algorithms, which are purely distance based. The LLMA (Locally Linear Metric Adapta-
tion) algorithm [32] learns an input transformation which is globally non-linear as a combination of local linear
transformation. Only positive constraints are used, and the cost tries to bring these points closer together while
keeping the local neighborhood topology structure undistorted. A kernel-based version of this algorithm was later
presented in [33]. Finally, the Gaussian Coding Similarity (GCS), described in this thesis [F], is a hon-metric
distance function derived from information-theoretic principles and Gaussian assumptions. Like RCA, this is a
relatively simple and efficient technique, requiring only the estimation and inverse of two covariance matrices. It

was used to improve graph-based clustering results, as well as for image retrieval.

1.3 Learning Image classification

Perhaps more than in any other research domain, the representation problem lies in the core of research in
visual object recognition. This problem has been studied for decades, with many different approaches and repre-
sentations. A brief survey of several methods put forward in the2lagears is given in section 1.3.1. | believe
that unlike the traditional view of classification in machine learning, image understanding tasks require a joint
solution for the classification and feature extraction tasks, with context and feedback playing important roles.
While these notions are very old, their applicability to current learning in vision is highly controversial. In sec-
tion 1.3.2 | present a suggested viewpoint for feature extraction and classification, and try to argue for its validity
and usefulness.

In the last few years, a major research trend has focused on the problem of object class recognition from unseg-
mented images, with the images initially represented via sets of local patch descriptors. In this research context,
the more general debate regarding the utility of context focuses mainly on questions regarding the modeling of
spatial relations between object parts. This research context is presented in section 1.3.3 with an emphasis on
generative model learning, in which the contribution of papers [C],[D] is made. In section 1.3.4 | survey the re-
cent literature regarding discrimination between similar classes and knowledge transfer between recognition tasks,

which is mostly relevant to paper [E] in this thesis.
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1.3.1 Suggested approaches to object recognition

Image understanding requires answers to high semantic questions such as “what are the objects in this image?”,
“where are they?”, “what do they do?”. There is an enormous gap between these questions and the initial pixel
image data representation. These initial data are formed by a complex interplay of object viewpoint, camera
position and illumination conditions, which renders isolated single pixel values meaningless w.r.t the high semantic
variables. | cannot hope to cover all the relevant literature in this brief introduction. Instead | merely outline several
approaches which have been influential in my scientific education. Specifically | consider earlier approaches based

on 3D models in section 1.3.1.1, and approaches based on 2D appearance or shape matching in section 1.3.1.2.
1.3.1.1 Object recognition using 3D models

Traditional object recognition systems typically relied on a data base of 3D object models, where recognition
requires a match between the input 2D image and model from the data base. Typical processing stages in such &
system include extraction of low level geometrical features, perceptual grouping, data base search and indexing,
and finally a verification alignment stage. While this description is clearly schematic, it does grossly characterize
several systems [95, 122] and provides a convenient thematic framework for the presentation of several lines of

work.

Perceptual grouping. The first stage toward recognition in such systems is the extraction of low level geometric
features from the image, e.g. edge maps, edgels or ‘interest points’ obtained using an interest point detector
[119]. These low level features are usually not distinctive enough, and so perceptual grouping techniques can be
applied to gather them into more sematic groups, which can be used as keys for a data base indexing mechanism
Perceptual grouping relies on basic Gestalt principles such as smoothness and proximity [124], parallelism and
co-linearity [95]. Specifically, in [124] edgels are combined to form salient (i.e. long and smooth) curves using an
efficient recursive technique. In the SCERPO system presented in [95] straight lines are gathered into ‘meaningful’
guadruplets, used later in a probabilistic indexing system. In [122] contours are extracted using a stick growing
method. The most salient ones are then described using appearance based patches and serve as indexing ke)
While such low level grouping was useful in several systems, using perceptual grouping to obtain higher level 3D
structures has not been that successful. A known attempt to base recognition on simple 3D elements is Biederman'’s
‘Recognition By Components (RBC)’ or ‘Geons’ Theory [20] which was a source of inspiration for several systems

(a similar notion was suggested earlier by Binford [22]). In this representation objects are described as ensembles

of simple parts, termed ‘Geons’, which have a certain degree of viewpoint invariance. However, as discussed
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in [45], these systems apparently failed because of two main difficulties: an inability to extract Geons reliably, and

the instability of Geon decomposition.

Indexing and correspondence. After extracting a set of features from the image, these features have to be
matched against similar features in the 3D model database. The match can be based on appearance similarity [122
or more commonly on geometric properties, hopefully invariants [155]. Specifically in the ‘Geometric hashing’
technique of [155], k-tuples of interest points are used to produce geometric invariants, by expressing one point
in the reference frame induced by the others (3 points are enough for affine invariance). These invariants are then
matched against the database and vote for the object identity and pose. In [138] this framework is expanded to
work with lines as input and with a smooth, probabilistic voting schema. One main problem of this method is
the high sensitivity of the invariants. While successful for single object recognition, the invariants are usually not

stable enough to allow for recognition of an object class.

Alignment and verification Given a correspondence between several image features (points or lines) and 3D
model features, a final matching can be done by solving for the optimal transformation which brings the 3D model
as close as possible to the image. The computed transformation can then be used to project other points in the
model and verify their existence in the image. Such a verification stage, used for example in [11, 76, 95], is
often the most robust phase of the system, and it enables the rejection of most false alarms. This step is usually
relatively expensive, so alignment can only be applied to a small set of filtered correspondence hypotheses. The
main drawback of this method is its reliance on explicit 3D object models, which cannot be learned automatically
and are hard to encode manually. A certain remedy for this last point is studied in [142], where a 3D model is
represented using a set of 2D object images, and the input image is matched to a linear combination of the 2D

model images.
1.3.1.2 2D shape and appearance based approaches

During the 1990s new techniques for object recognition became popular including shape-based image retrieval
and appearance-based classification. These techniques do not rely on a 3d model database, and they graduall

introduced machine learning techniques into computer vision.

Shape representation and comparison. In this context "shape” denotes the outline contour of an object in an
image. Such contours can be extracted by applying an edge detector to an image, followed by some perceptual

grouping into point sets, lines or curves. Several simple distances were successfully used to compare shapes repre
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sented as points sets, including the Chamfer distance, originally presented in [7] and the Hausdurff distance [75].
The former, which is more immune to clutter (as it involves a mean operation between pairwise point distances
where the Hausdorff distance takes the maximum), compares favorably with the modern shape context represen-
tation (see below) in [134]. A more sophisticated edit distance between shapes was suggested by Gdalyahu anc
Weinshall in [60]. Here the shapes are represented as polygons, with the length and absolute orientation describ-
ing the polygon edge constituents. The distance between two shapes is computed using dynamic programming. A
different shape representation is obtained when one considers the shape’s internal skeleton instead of the bound
ary, i.e. the medial axis [165] or its shock graph extension [121]. These structures are often regarded as more
stable with respect to noisy segmentation than the contour line. Comparing two such graphs is highly non trivial,
and in [121] it is done using a graph edit distance algorithm. Finally, Belongie et al [15] suggest representing a
shape using a set of feature descriptors localized on the shape edge points, termed 'shape context’. This descripto
measures the distribution of other shape edge points using a log-polar histogram. Two shapes are compared by
matching the two sets of feature descriptors, and this can be done optimally using the Hungarian method for two
sets of equal size and a one-to-one correspondence. In general, while some good methods for shape compariso
were suggested, the main problem with this school is the difficulty to reliably extract shape contour from cluttered

natural images.

Appearance based methods. During the 1990s, an influential line of work dropped 3D models altogether

and resorted to direct appearance based comparison between images (or between an image and an appearan
model/prototype). This allows learning techniques to be used naturally. The comparison is usually done with
global templates [50], hence such method depends on a good alignment between the compared images. In [28]
such a template matching approach was compared to an approach based on geometrical features in a face recogn
tion task, and exhibited superior performance. Appearance based comparison is often done in a reduced sub-space
in order to ignore irrelevant variability. Standard techniques used to find appropriate subspaces for face recognition
are PCA [140] and LDA [14]. The limitation of using a global template can be partially overcome by using a slid-
ing window approach, in which windows from all possible locations at several scales are compared to the object
template. Such approaches were successfully used for face detection [133, 147]. Other appearance-based ar
proaches use histograms of local appearance features as the main descriptor. | defer discussion of such approache

to the next section.
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1.3.2 Context and feedback

I now try to sketch out the main differences between two possible approaches to feature extraction and classi-
fication: the traditional mechanisms of machine learning, and the (so | believe) required mechanisms for image

understanding. This done in section 1.3.2.1, and | then argue for the second option in 1.3.2.2.

1.3.2.1 A contextual view of feature extraction

Feature extraction and representation is an issue of growing interest in machine learning, as partially surveyed
in section 1.2. However, in most of the cases the features are simple constant functions of the data, and all of
them are applied to the data at the test phase. ‘Which features to calculate’ is not a function of the exemplar to be
classified. Intuitively, this is not the right policy when it comes to visual object concepts. When | am presented
with a picture of a cat, features such as size, head shape and whiskers are the ones | use, and these features a
not the ones | need when the picture is of a can of olives. | can’t even compute these features for a can of olives.
Representation learning in this case involves more than learning intermediate features, and can be viewed as ¢
control learning problem: We need to learn a strategy to select which features to calculate as a function of the test
data. When considering a test data example, a decision has to be made as to which features should be computed t
represent it. These new features should then be used to decide which features to compute next. Trying to compute
all the features that might be relevant to some label in advance is not computationally feasible, nor required, for
tasks such as object recognition.

The dependence of feature extraction on the class label suggests that classification and feature extraction shoulc
be done together in a feedback loop, where models of the presumed objects and their location guide the search
for relevant features in a top-down fashion. Such guidance is possible due to a rich set of appearance and spatial
relations which typically exist between scenes, objects and parts. Viewed this way, classifying an example is not
a matter of calculating a fixed set of features and returning the label of the region in which the feature vector lies.
Instead, classifying is done after a dynamic process, in which models that received some support in the initial data
led to the calculation of additional features, and competed until one of them won. Such a view of classification
can explain our inability to compare two very different objects: it is much harder (even meaningless) to compare a
dog and an olive can, while comparing a dog and a cat is easy and natural. If features are computed ‘on demand’
by a learnt model, a dog and a can live in different feature spaces, and no natural distance between them can be

determined.
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1.3.2.2 The case for context

The view of classification and feature extraction in humans as a joint, iterative process is hundreds of years old.
In the writings of the philosopher Immanuel Kant [81] the application of a concept to a sensation manifold (i.e. for
us, pixels) is termed ‘judgment’, and it is described as a mutual, loopy interaction between the two. Recent human
vision research assigns an important role to prior shape expectations in the task of object segregation. Peterson e
al. [112] showed that familiarity with a shape enhanced the tendency to interpret it as a figure, even when traditional
segmentation biases such as convexity and enclosure specify it as ground. Another line of studies, conducted by
Needham et al. [106,107] showed effects of prior object knowledge on object segregation in 4.5 month old infants.
From a physiological perspective, massive top down fibers are known to exist in the visual ventral pathway [80],
which is the main path used for object recognition in humans. The fibers exist along the entire path, from IT to
V4, V2 and V1, and given their dominance top down guidance of intermediate representation in humans seems
fairly plausible.

The view of classification and feature extraction as a joint process has been influential from the early days of
computer vision, and can be seen clearly in more recent annotation systems developed for image understanding
such as SCHEMA and CITE [46, 48, 49]. Specifically, in [48] learning an object recognition scheme is explicitly
considered as a ‘control’ problem, with bottom-up and top-down information channels. However, the usefulness
of context and top-down feedback for contemporary machine vision technique is controversial, and there are good
arguments for both sides. Frequent segmentation failures of objects [25], shapes [111] and parts [45] in bottom-up
methods seems to indicate a need for top-down guidance. Some positive evidence for the utility of context comes
from methods which use a graphical model to represent spatial relations between object parts (this framework
will be described in length in section 1.3.3.3). Comparisons made between models with varying degree graph
connectivity [40],[D], indicate that a higher degree of spatial relations provides better recognition performance,
though the increase is slight for high connectivity. Another recent line of work by Torralba et al. [104,136] shows
the utility of a global context variable, modeling the scene type. An interesting phenomenon seen in [136] is that
the spatial context is very helpful for the detection of small items, such as a computer mouse, but less helpful for
larger objects like a monitor.

On the other hand, recognition systems built according to the feed-forward paradigm are usually much simpler
and more efficient. Since this paradigm is in accordance with current machine learning tools and theory, it allows
for easier integration of powerful learning techniques. Currently such systems obtain the best results in the task of
object class recognition on the common benchmarks of the Caltech 101 data set [90] or the Pascal challenge [5].

The situation however, is usually the reverse for localization tasks(see the results of [5]). In [153] a comparison
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is made between a context variable computed using simple feedforward operations on the surrounding object
area, and a context variable based on detection of related objects in a street scenario. Both kinds of context are
found to make a marginal contribution to an appearance based object classifier, and specifically the contribution

of related objects context is lower than that of the simpler context. | believe these results can be explained by

the relatively weak contextual connection between the objects considered (compared for example with the spatial

relations between parts in an object, which are often much tighter), and the relatively low difficulty of the task for

the appearance based classifier.
1.3.3 Parts and wholes

Over the last several years initial image representation as a set of patch descriptors has gained considerable pop
ularity. Such a representation currently dominates research in object and object class recognition, and give a new
twist to the controversy regarding the importance of context and feedback. In 1.3.3.1 | describe this representation
and the types of part based object representations typically learned from it. In this recognition scenario, incorpora-
tion of contextual information is usually done by inclusion of spatial part relations in the object description, which
influence the choice of relevant image features. | describe algorithms which do not incorporate such information

in section 1.3.3.2, and algorithms that do include it in 1.3.3.3.
1.3.3.1 The 'set of patches’ representation

The recent popularity of the ‘set of patches’ representation starts with articles by Sali and Uliman [116] and
Burl et a. [29]. It can be thought of as a compromise between earlier representations. On the axis of local-
versus-global features, it stands between global templates, which are not flexible enough to capture inner-class
variability, and local geometric features such as edgels and interest points, which are not discriminative enough.
This trade-off motivates using patch features of intermediate complexity in [116, 143]. The trade-off presented
in [29] is different, where a part based model describing part appearance and spatial part relations is considered as
a compromise between purely appearance based and purely geometric methods.

In several papers, the set of patches extracted from an image are chosen using manual segmentation [40,52,85]
In this case, the relevant object parts are chosen a-priori, and each image can be represented using an ordere
feature vector by concatenating the chosen parts in a pre-defined order. This ordered vector has high semantic
value, and learning in this scenario can be done using traditional machine learning tools. However, in most of the
work done, such manual intervention is not assumed, and only image labels are supplied. In this case the learning

problem is much harder.
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Without manual feature segmentation, features are extracted for each image automatically. The locations and
scales of the patches are chosen using interest point detectors (e.g. in [54, 110]), on edge locations [97], or at
random [79]. The patches extracted are represented using simple ‘patch descriptors’. Standard dimensionality
reduction techniques were used such as PCA [54] and DCT [C,D], but gradient-based descriptors as SIFT [94]
are more popular, as they seem to have more discriminative power [100]. The result is an image representation as
an unordered set of features, where the semantic roles of the features are unknown. Typically the set is also large
(usually hundreds of features per image are considered) and highly redundant. The learning problem is naturally
considered as a supervised learning problem with unordered sets. Alternatively, if we consider the problem as
predicting hidden labels for each patch (i.e. 1 ifitis an object patch and 0 if it is not), the problem can be regarded
as a semi-supervised problem in a Multiple Instance Learning (MIL) framework (see [36] for details).

While other approaches are possible, a natural approach to the learning problem in this case introduces an
ordered vector intermediate representation, whose elements are termed ‘Parts’. In this view, the image features
extracted do not have known semantic roles, but the parts are fixed semantic carriers, with a fixed predictive
function w.r.t the unknown label. In a face recognition example the parts are eyes, nose and mouth, and they
are implemented by features chosen from the unordered set. In a context-free model, the features implementing
each part are chosen independently, e.g. the chosen eye does not affect the choice of a nose. In a contextua
model, the choice of features implementing each part depends on the chosen features for other parts. Usually
spatial dependence is considered, demanding that the parts are places in a specific spatial relation to each othe
Enforcing such dependence between the parts is often done using some form of feedback inference, though othel
techniques are possible.

Due to these considerations, the distinction between contextual and non-contextual models roughly corresponds
to the distinction between simple feed-forward methods and algorithms which include feedback, and to the dis-
tinction between appearance based algorithms and those which model spatial part relations. | review these two

algorithm families in the next subsections.
1.3.3.2 Context free, feed forward systems

The simplest object model used for class recognition from feature sets is the ‘bag of features’ model. The object
is described by a set of independent parts, each described using an appearance template. Each part is implemente
and scored by one or more features from the image. Learning such model is done in a discriminative fashion,
with an emphasis on good parts selection, where ‘good parts’ are those that tend to appear in object images and

not in background images. Despite the limited expressiveness of such models, their simplicity allows efficient and
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accurate minimization of tight classification related loss functions, and they have been used with great success
in the last few years. Currently such methods have a dominant influence, as can be judged by considering the
competing methods in the PASCAL challenge [5], which are mostly of this kind.

‘Bag of feature’ approaches differ in the type of features used and their extraction, and in the details of the
feature voting mechanisms, but they primarily differ in the learning and part selection method. In the line of work
of Ullman et al. [116, 143, 145] part prototypes are image fragments selected in order to approximately maximize
the mutual information between the fragment existence and the class label. The classifier over the chosen feature
detectors (i.e. parts) is learned using Naive Bayes [116, 143], or TAN network and SVM [145]. In [110],[C] the
combined fragment selection and classification are achieved using a boosting algorithm. While in [110] feature
detectors are binary weak hypotheses, in [C] these are probabilistic part models, combined into a generative object
model. In [30] a discriminative probabilistic bag-of-features model is presented and classification is done by model
averaging, approximated by a Markov chain. Dorko and Schmid [47] used a Gaussian mixture model trained over
features from all the images to obtain part prototypes. The most discriminative prototypes are then chosen and
combined in a simple voting scheme for the class label. An interesting biologically motivated bag-of-features
system was suggested in [123]. This system was later extended and applied to a localization task using the sliding
window approach in [105]. In the methods outlined above the part response is computed based on its single best
match with an image feature. In a slightly different approach averages of part responses over the features are
computed, which results in a histogram representation for the image. Such feature histograms were successfully
used in [43, 44].

While the methods mentioned above compare an image to a model, several distance based methods which
compare two images directly were recently suggested. Intuitively such a comparison should be based on a cor-
respondence established between the two feature sets, but this is not always the case. For example, the kerne
suggested in [154] compares two feature sets based on the principal angle between the linear spaces they spar
without correspondence establishment. Grauman and Darrell [66] suggested a pyramid match kernel, which relies
on an implicit, approximate feature correspondence. Other distance-based methods do rely on explicit correspon-
dence, and can be regarded as context-free if the matching is established for each feature in the source image
independently. Such a method, in which the matching is based on appearance and absolute location is successfully
used in [161] over the Caltech101 data set.

Context-free models usually rely on appearance and drop spatial part relations altogether, but this is not always
the case. In [1] an intermediate representation is considered which includes, in addition to standard appearance-

based feature detectors, binary indicators of spatial relations between detected features. The relation indicators
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are computed based on the responses of the feature indicators in a feed-forward manner, so this is a context-
free system. This approach was applied to car localization using a sliding window approach. Similar usage of
‘late’ spatial relation features appeared in [162], where such relations were considered as weak hypotheses in late

boosting rounds.

1.3.3.3 Relational models and spatial context

Relational part based object representations typically model the appearance of object parts and their relative
locations (often termed ‘shape’). Such representations, also termed constellation models, were already suggestec
by [57], but the recent interest in them started with work by Perona et al. [29, 54, 55, 74, 91, 149]. Initially,
appearance models were learned from images with manual segmentations, followed by shape learning from images
taken under strictly controlled conditions [29]. However, these restrictions were gradually removed in subsequent
work. In [149] learning was already done with unsegmented images, but still in a two stage fashion. In [54] this
latter disadvantage was removed, via an EM-based optimization of joint appearance and shape model. In these
papers the model studied was a generative model, and classification was done using a likelihood ratio test against
a simple background model. In addition, the spatial relations modeled were a full clique, i.e. the location of each
part depended on all the other parts. Since several feature candidates are possible for each part, evaluating the join
probability for all the possible image-to-model matching hypotheses is exponential in the number of parts.

In order to improve the computational complexity of generative model evaluation, spatial graphical models
of lower connectivity were recently suggested in [55],[D], [41, 93, 132]. In [55] a star-like model was suggested,
where the locations of all parts were described relative to a single ‘root’ part. This allowed evaluation of an existing
model with time complexity linear in the number of parts, but learning remained exponential. An alternative
technique for learning star models or K-fans generalization of such models was presented in [41]. In this technique
efficient EM learning becomes possible based on an approximation allowing two parts to be implemented by
a single feature. However, the global maximum likelihood optimum of such approximated learning occurs in
models with repetitive parts [D]. In order to avoid this, heuristic laborious initialization of the model is done
in [41], to ensure that the EM converges to a local maximum without repetitive parts. The analysis presented
in [D] showed that in a purely generative setting one has to chose between exponential learning complexity (as
done in [55]) and optimality of models with repetitive parts (as done in [41]). The solution suggested in [D] is
based on discriminative optimization of a generative star-like model, which enables linear learning complexity
in a model with diverse parts. An alternative solution proposed independently in [93] and [132] allows linear

learning complexity by relaxing the constraint stating that a part is to be implemented by a single image feature.
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This, however, lead to a less intuitive ‘part’ concept, implemented in many image patches. Such parts are less
convenient for further processing in tasks such as localization or sub-class recognition (as suggested in [E]).

A closely related alternative to generative object models, termed Implicit Shape Model (ISM) was successfully
applied in [59, 89] for object localization and segmentation. The object description is similar to [D], i.e. object
parts are described by an appearance model and an offset from a reference point on the object. At localization
time probabilistic Hough voting is used to identify the most likely object position, and this information is then
propagated back to allow object segmentation. In [59] a second verification stage is added, in which object
hypotheses generated are further filtered using an SVM classifier. While highly successful in localization tasks,
model learning in these systems is done using hand segmented images.

Finally, contextual part relations can also be embedded into a distance-based approach, comparing two images
directly. An example of such an approach is presented in [17], in which the distance depends on explicit corre-
spondence established between the feature sets from the two images. The correspondence is found by maximizing
a cost including terms scoring the appearance matches and terms scoring the similarity of spatial relations between

matched features. The optimization is done via relaxation of integer quadratic programming.

1.3.4 Similar object classes and knowledge transfer

In paper [E] we consider how a model of an object class can be further used to discriminate sub-classes of
the class. This is an approach to distinction between similar object classes, based on knowledge transfer betweer
related recognition tasks. In this section | briefly discuss distinction between similar classes, knowledge transfer

between tasks, and work combining these notions in the research literature.

Similar object classes. The distinction between similar visual object classes is in general a harder problem than
standard object class categorization, and it has received less research attention. Actually, all the work | know of
(up to paper [E]) have dealt with the two specific cases of face and car type recognition. Gender discrimination
was already considered in the early 1990s using geometric features [27] or the appearance-based approach [65]
The geometric approach of [27] relies on specific face features, as mouth width or distance between the eyes, and
it was designed by hand to the specific task. In [65] a neural network is applied to aligned face images. While
this method is more general, it requires exact detection and strict alignment of the faces, and it is less applicable
to more flexible (non-rigid) objects. In [103] a similar approach to gender discrimination was successfully applied
using an SVM classifier and specifically for sma&ll (x 12 pixels) images the SVM outperformed average human
classification. Similar global template based approaches were applied to person recognition [113] and to ethnic

classification [67].
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Some work has recently been done on the practical problem of distinction between different kinds of cars.
Usually the cars are segmented from a video recording and they share the same viewpoint. In [97] the features
used are large SIFT features (covering large portions of the car), located on edge points. Edge points are shown
to be more stable than interest point detectors in this kind of data. Object class models are learned based on
appearance alone, or on appearance and absolute position, and classification is made using an LRT. In [111]
a dense correspondence between the interiors of two objects is established by expanding correspondence of the

silhouettes or of the shock graph skeletons. This correspondence is then used for an appearance based compariso

Learning hypothesis bias for object class recognition. Intuitively, knowledge transfer between object recogni-
tion tasks should be primarily useful when the objects are similar. Nevertheless, a large portion of the work done
on this subject considers non-similar object classes, with the aim of learning a general representation bias for a
large family of classes. Such a general bias for digit recognition was learned in [101] using a prior over align-
ment transformations, and in [73] using a distance function. For object class recognition, several approaches were
suggested which learn a general bias through some form of intermediate representation [9, 108, 137]. In [137] 21
object categories are learned using ‘joint boosting’, which encourages usage of patch features common to several
categories. It is estimated that the number of features required to achieve a certain performance level grows only
logarithmically with the number of classes. In [108] an intermediate representation of ‘compositions’, which are
ensembles of proximate patch features, is learned from all object classes together. These compositions are ther
used as parts in a relational part based model. The model is applied in feed-forward manner, and it is shown
to perform much better than a simple bag-of-features composed of the original patches. Bart and Ullman [9]
suggested representing a new class image using its similarities to already learned classes, as measured using sc
value classifiers trained previously. Nearest neighbor classification in this ‘similarities space’ representation en-
ables one-shot learning (learning from a single image). A considerable improvement is obtained over independent
classifiers trained in isolation from two images (object and background) each.

Several papers have considered learning a general recognition bias via a prior over generative models [74, 91].
In [91] a prior is learned over the parameters of the constellation model from [54], and the model averaging
in the classification stage is approximated using a variational technique. The parameter prior for each class is
learned from Maximum likelihood models of the other classes. In [74] a two-stage extension of the constellation
model approach is suggested. Here the application of the model to an image makes a (soft) selection of relevant
image features, and those are then used in a discriminative SVM classification. The method is applied to all
the Caltech-101 data set, with the generative models learned from airplanes and faces alone. Clearly the useful

knowledge transferred via these models can only be of a very general nature, mostly related to natural object
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fragment statistics.

Knowledge transfer between similar tasks. Several recent approaches to learning from similar classes were
recently suggested. In [8] Bart and Ullman studied an approach to one-shot learning in which fragment selection
for a new class model is done based on similarity with fragments chosen for other classes trained earlier. Unlike
in the methods presented in the previous paragraph, only classes which are similar to the new class affect the
construction of the new model. In [53] Ferench et al. considered an object identification task, where many small
subclasses (corresponding to specific objects) from a known object category have to be identified. Their approach
is based on learning a binary distance function, accepting a pair of images and determining whether they have the
same identity or not. The distance function decision is based on a set of parts, defined by expected appearance
and absolute position (the objects in the images are roughly aligned). The method is applied to faces and cars. An
improved discriminative learning technique for a similar binary distance is suggested in [78].

Distinction between similar classes based on a model of the joint class is considered in [51],[E]. In [51] it is
claimed that distinction between similar classes is usually based on small features, whose identity can only be
determined based on their location with respect to larger features shared by all the classes. For example, an earring
may be an important cue for gender recognition. Such features are termed ‘satellite features’ and the large, stable
features are termed ‘anchor’ features. Recognition and learning in the suggested system consist of three distinct
phases, where first anchor patches are found (learnt), followed by detection of satellite features and finally, naive
base classification based on the satellite features. The method is tested on cars and faces. In [E] a similar, but more
general idea is employed, where the notion of a ‘joint class’ is equated with 'basic-level class’ in the cognitive
psychology sense, and the task is posed as a distinction between sub-classes. A two stage method is suggeste!
where first the object parts are identified using a part-based model of the basic-class (learned using the algorithm
from [D]), and then sub-class SVM discrimination is done using a vector of part descriptions. The method is tested
on 6 different basic classes, and shown to have a performance advantage over independent classifier learning
While this approach does not include an explicit ‘anchor’ vs. ‘satellite’ parts distinction, these part categories
roughly coincide with parts learned at earlier and late rounds of the algorithm from [D] respectively. This is
because the parts first chosen by the boosting algorithm in [D] are the most characteristic of the class, in terms of
both appearance and spatial relations, and the parts found later are less stable and characteristically found only in &
subset of the object images. The discrimination relevance of satellite features, shown in [51] can therefore explain
the improved sub-class discrimination of the method when large amounts of model parts are used (in contrast, for

example, with the performance of basic class recognition, which typically requires half the number of parts).
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Chapter 2

Distance Learning with equivalence

constraints

This chapter contains the following research papers:

[A] A.Bar-Hillel and D. Weinshall: “Learning with equivalence constraints, and the relation to multiclass Clas-

sification ”, inthe Sixteenth Annual Conference On Learning Theory (C(840-654, Springer 2003.

[B] A. Bar-Hillel, T. Hertz, N. Shental and D. Weinshall: “Learning a Mahalanobis metric from equivalence

constraints”, indJournal of Machine Learning Resear6fJun): 937-965, 2005.

[F] A. Bar-Hillel and D. Weinshall: “Learning distance function by coding similarity”, Technical report, 2006.

Papers [A] and [B] are publications, and they appear in sections 2.1, 2.2 in their original publication format.

The technical report [F] was not published, and it appears here in section 2.3
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Learning with Equivalence Constraints, and the
Relation to Multiclass Learning

Aharon Bar-Hillel and Daphna Weinshall

School of Computer Sci. and Eng. & Center for Neural Computation
Hebrew University, Jerusalem 91904, Israel
{aharonbh,daphna}@cs.huji.ac.il
WWW home page: http://www.ca.huji.ac.il/~daphna

Abstract. We study the problem of learning partitions using equiva-
lence constraints as input. This is a binary classification problem in the
product space of pairs of datapoints. The training data includes pairs of
datapoints which are labeled as coming from the same class or not. This
kind of data appears naturally in applications where explicit labeling of
datapoints is hard to get, but relations between datapoints can be more
easily obtained, using, for example, Markovian dependency (as in video
clips).

Our problem is an unlabeled partition problem, and is therefore tightly
related to multiclass classification. We show that the solutions of the
two problems are related, in the sense that a good solution to the binary
classification problem entails the existence of a good solution to the mul-
ticlass problem, and vice versa. We also show that bounds on the sample
complexity of the two problems are similar, by showing that their relevant
"dimensions’ (VC dimension for the binary problem, Natarajan dimen-
sion for the multiclass problem) bound each other. Finally, we show the
feasibility of solving multiclass learning efficiently by using a solution of
the equivalent binary classification problem. In this way advanced tech-
niques developed for binary classification, such as SVM and boosting,
can be used directly to enhance multiclass learning.

1 Introduction

Multiclass learning is about learning a concept over some input space, which
takes a discrete set of values {0,1,...,M —1}. A tightly related problem is data
partitioning, which is about learning a partitioning of data to M discrete sets.
The latter problem is equivalent to unlabelled multiclass learning, namely, all
the multiclass concepts which produce the same partitioning but with a different
permutation of labels are considered the same concept.

Most of the work on multiclass partitioning of data has focused on the first
variant, namely, the learning of an explicit mapping from datapoints to M
discrete labels. It is assumed that the training data is obtained in the same
form, namely, it is a set of datapoints with attached labels taken from the set
{0,1,...,M — 1}. On the other hand, unlabeled data partitioning requires as
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training data only equivalence relations between pairs of datapoints; namely, for
each pair of datapoints a label is assigned to indicate whether the pair originates
from the same class or not. While it is straightforward to generate such binary
labels on pairs of points from multiclass labels on individual points, the other
direction is not as simple.

It is therefore interesting to note that equivalence constraints between pairs
of datapoints may be easier to obtain in many real-life applications. More specifi-
cally, in data with natural Markovian dependency between successive datapoints
(e.g., a video clip), there are automatic means to determine whether two suc-
cessive datapoints (e.g., frames) come from the same class or not. In other ap-
plications, such as distributed learning where labels are obtained from many
uncoordinated teachers, the subjective labels are meaningless, and the major in-
formation lies in the equivalence constraints which the subjective labels impose
on the data. More details are given in [12].

Multiclass classification appears like a straightforward generalization of the
binary classification problem, where the concept takes only two values {0,1}. But
while there is a lot of work on binary classification, both theoretical and algorith-
mic, the problem of multiclass learning is less understood. The VC dimension,
for example, can only be used to characterize the learnability and sample com-
plexity of binary functions. Generalizing this notion to multiclass classification
has not been straightforward; see [4] for the details regarding a number of such
generalizations and the relations between them.

On a more practical level, most of the algorithms available are best suitable
(or only work for) the learning of binary functions. Support vector machines
(SVM) [14] and boosting techniques [13] are two important examples. A possible
solution is to reduce the problem to the learning of a number of binary classifiers
(O(M) or O(M?)), and then combine the classifiers using for example a winner-
takes-all strategy [7]. The use of error correcting code to combine the binary
classifiers was first suggested in [5]. Such codes were used in several successful
generalizations to existing techniques, such as multiclass SVM and multiclass
boosting [6, 1]. These solutions are hard to analyze, however, and only recently
have we started to understand the properties of these algorithms, such as their
sample complexity [7]. Another possible solution is to assume that the data
distribution is known and construct a generative model, e.g., a Gaussian mixture
model. The main drawback of this approach is the strong dependence on the
assuption that the distribution is known.

In this paper we propose a different approach to multiclass learning. For each
multiclass learning problem, define an equivalent binary classification problem.
Specifically, if the original problem is to learn a multiclass classifier over data
space X, define a binary classification problem over the product space X x
X, which includes all pairs of datapoints. In the binary classification problem,
each pair is assigned the value 1 if the two datapoints come from the same
class, and 0 otherwise. Hence the problem is reduced to the learning of a single
binary classifier, and any existing tool can be used. Note that we have eliminated
the problem of combining M binary classifiers. We need to address, however,
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the problems of how to generate the training sample for the equivalent binary
problem, and how to obtain a partition of X from the learned concept in the
product space.

A related idea was explored algorithmically in [11], where multiclass learning
was translated to a binary classification problem over the same space X, using
the difference between datapoints as input. This embedding in rather problem-
atic, however, since the binary classification problem is ill-defined; it is quite
likely that the same value would correspond to the difference between two vec-
tors from the same class, and the difference between two other vectors from two
different classes.

In the rest of this paper we study the properties of the binary classification
problem in the product space, and their relation to the properties of the equiva-
lent multiclass problem. Specifically, in Section 2.1 we define, given a multiclass
problem, the equivalent binary classification problem, and state its sample com-
plexity using the usual PAC framework. In Section 2.2 we show that for any
solution of the product space problem with error e, there is a solution of the
multiclass problem with error e,, such that

e
% < e, < \/2Me,,

However, under mild assumptions, a stronger version for the right inequality
exists, showing that the errors in the original and the product space are lineary
related:

< (%)

where K is the frequency of the smallest class. Finally, in Section 2.3 we show
that the sample complexity of the two problems is similar in the following sense:
for Sy the Natarajan dimension of the the multiclass problem, Sy ¢ the VC-
dimension of the equivalent binary problem, and M the number of classes, the
following relation holds

fls&) —1< Sye < fo(M)Sn

where f1(M) is O(M?) and fo(M) is O(logM).

In order to solve a multiclass learning problem by solving the equivalent
binary classification problem in the product space, we need to address two prob-
lems. First, a sample of independent points in X does not generate an indepen-
dent sample in the product space. We note, however, that every n independent
points in X trivially give 5 independent pairs in the product space, and there-
fore the bounds above still apply up to a factor of % We believe that the bounds
are actually better, since a sample of n independent labels gives an order of
Mn non-trivial labels on pairs. By non-trivial we mean that given less than Mn
labels on pairs of points from M classes of the same size, we cannot determin-
istically derive the labels of the remaining pairs. This problem is more acute in
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the other direction, namely, it is actually not possible to generate a set of labels
on individual points from a set of equivalence constraints on pairs of points.

Second, and more importantly, the approximation we learn in the product
space may not represent any partition. A binary product space function f rep-
resents a partition only if it is an indicator of an equivalence relation, i.e. the
relation f(z1,22) = 1 is reflexive, symetric and transitive. It can be readily
shown that f represents a partition, i.e., 3¢, s.t.f = U(g)) iff the function 1 — f
is a binary metric. While this condition holds for our target concept, it doesn’t
hold for its approximation in the general case, and so an approximation will not
induce any obvious partition on the original space.

To address this problem, we show in section 3 how an e-good hypothesis
f in the product space can be used to build an original space classifier with
error linear in e. First we show how f enables us, under certain conditions, to
partition data in the original space with error linear in €. Given the partitioning,
we claim that a classifier can be built by using f to compare new presented data
points to the partitioned sample. A similar problem was studied in [2], using
the same kind of approximation. However, different criteria are optimized in the
two papers: in [2] e, (g, f) is minimized (i.e., the product space error), while in
our work a partition g is sought which minimizes e,(g,¢) (i.e., the error in the
original space of g w.r.t. the original concept).

2 From M-partitions to binary classifiers

In this section we show that multiclass classification can be translated to binary
classification, and that the two problems are equivalent in many ways. First,
in section 2.1 we formulate the binary classification problem whose solution is
equivalent to a given multiclass problem. In section 2.2 we show that the solutions
of the two problems are closely related: a good hypothesis for the multiclass
problem provides a good hypothesis for the equivalent binary problem, and vice
versa. Finally, in section 2.3 we show that the sample complexity of the two
problems is similar.

2.1 PAC framework in the product space

Let us introduce the following notations:

X: the input space.

— M: the number of classes.

D: the sampling distribution (measure) over X.

c: a target concept over X; it is a labeled partition of X, c: X — {0,...,M—
1}. For each such concept, ¢c71(j) € X denotes the cluster of points labeled
j by c.

‘H: a family of hypotheses; each hypothesis is a function h : X — {0,...,M—

1.
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— e(h,c): the error in X of a hypothesis h € H with respect to ¢, defined as
e(h, ) = D(c(x) # h(x))

Given an unknown target concept ¢, the learning task is to find a hypothesis
h € H with low error e(h, ¢). Usually it is assumed that a set of labeled datapoints
is given during training. In this paper we do not assume to have access to such
training data, but instead have access to a set of labeled equivalence constraints
on pairs of datapoints. The label tells us whether the two points come from the
same (unknown) class, or not. Therefore the learning problem is transformed as
follows:

For any hypothesis h (or ¢), define a functor U which takes the hypothesis
as an argument and outputs a function h,h: X x X — {0,1}. Specifically:

h(z,y) = Lh(z)=h(y)

Thus h expresses the implicit equivalence relations induced by the concept h on
pairs of datapoints.

The functor U is not injective: two different hypotheses h; and ho may result
in the same h. This, however, happens only when h; and hy differ only by a
permutation of their corresponding labels, while representing the same partition;
h therefore represents an unlabeled partition.

We can now define a second notion of error between unlabeled partitions over
the product space X x X:

e(h,¢) = D x D(h(z,y) # &(x,y))

where ¢ is obtained from ¢ by the functor U. This error measures the probability
of disagreement between h and ¢ with regard to equivalence queries. It is a rather
intuitive measure for the comparison of unlabeled partitions. The problem of
learning a partition can now be cast as a regular PAC learning problem, since h
and ¢ are binary hypotheses. Specifically:

Let X x X denote the input space, D x D denote the sampling probability
over the input space, and ¢ denote the target concept. Let the hypotheses
family be the family H = {h : h € H}.!

Now we can use the VC dimension and PAC-learning theory on sample com-
plexity, in order to characterize the sample complexity of learning the binary
hypothesis h. More interestingly, we can then compare our results with results
on sample complexity obtained directly for the multiclass problem.

2.2 The Connection between solution quality of the two problems

In this section we show that a good (binary) hypothesis in the product space
can be used to find a good hypothesis (partition) in the original space, and

! Note that H is of the same size as H only when H does not contain hypotheses which
are identical with respect to the partition of X.
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vice versa. Note that the functor U, which connects hypotheses in the original
space to hypotheses in the product space, is not injective, and therefore it has no
inverse. Therefore, in order to asses the difference between two hypotheses h and
¢, we must choose h and ¢ such that h = U(h) and & = U(c), and subsequently
compute e(h, ¢).

We proceed by showing three results: Thm. 1 shows that in general, if we
have a hypothesis in product space with some error ¢, there is a hypothesis in
the original space with error O(\/ﬁs) However, if ¢ is small with respect to the
smallest class probability K, Thm. 2 shows that the bound is linear, namely,
there is a hypothesis in the original space with error O(4). In most cases, this
is the range of interest. Finally, Thm. 3 shows the other direction: if we have a
hypothesis in the original space with some error ¢, its product space hypothesis
U(h) = h has an error smaller than 2¢.

Before proceeding we need to introduce some more notations: Let ¢ and h
denote two partitions of X into M classes. Define the joint distribution matrix
P ={p;; }iv;;(l) as follows:

pij 2 D(c(x) =i, h(z) = j)

Using this matrix we can express the probability of error in the original space
and the product space.

1. The error in X is
e(h,c) = D(c(z) # h(z)) = _ Dij

2. The error in the product space is

e(h,e) = D x D([e(x,y) = 1 A h(z,y) = 0]V [e(x,y) = 0 A h(z,y) = 1))
M-1M-1

=Y > Dle(w) =i h(z) = j) - (D({yle(y) = i, h(y) # j})

i=0 ;=0

+D({ylely) # i, h(y) = j}))
—1M-1
= Z Dij Zpkj+zpik

i=0 j=0 ki k#j

Theorem 1. For any two product space hypotheses h, ¢, there are h,c such that
h=U(h),c=U(c) and

e(h,c) < \/2Me(h, c)

where M is the number of equivalence classes of h, .
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The proof appears in the technical report [3], appendix A. We note that the
bound is tight as a function of € since there are indeed cases where e(c,h) =
O(+/(e(h,©))). A simple example of such 3-class problem occurs when the matrix
of joint distribution is the following:

1—-3¢00
P= 0 gqgq
0 Og¢q

Here e(c,h) = q and e(¢, h) = 4¢%. The next theorem shows, however, that this
situation cannot occur if e(¢, h) is small compared to the smallest class frequency.

Theorem 2. Let ¢ denote a target partition and h a hypothesis, and let €, h
denote the corresponding hypotheses in the product space. Denote the size of the

minimal class of ¢ by K = min D(c71(i)), and the product space error
B i€{0,....M—1}
e=e(ch).
K2
< = e(foh,c)<% (1)

where f:{0,...,M —1} — {0,...,M — 1} is a bijection matching the labels of
h and c.
Proof. We start by showing that if the theorem’s condition holds, then there is
a natural correspondence between the classes of ¢ and h:
Lemma 1. If the condition in (1) holds, then there exists a bijection J : {0, ..., M—
1} = {0,...,M — 1} such that
— Piaw) > V3
— pig < /5 for all 1 # J(i)
= PLie) < \/g foralll #1i
Proof. Denote the class probabilities as p¢ = D(c™1(i)); clearly

M-—1
= E Dij
Jj=0

We further define for each class ¢ of ¢ its internal error ¢; = Z;VIO Di; (DS — pij)-
The rationale for this definition follows from the following inequality:

M-1M-1 M-1M-1 M-1
=2 2 my Z P + Z pie) 2 D D pulbf—pa) = D &
=0 75=0 k;éz' k;éj =0 5=0 1=0

We first observe that each row in matrix P contains at least one element
bigger than \/g . Assume to the contrary that no such element exists in class i;
then

EZel—ZPU - pij) >1\J/§pm\ﬁ\/> \[pr_f V2e=¢
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in contradiction.

Second, we observe that the row element bigger than \/g is unique. This
follows from the following argument: for any two elements p;;, , pij, in the same
TOW:

M-1  M-1 M-1 M-1 M-1

> Z Z Prj + Z pik) > Dij Pik 2 2Piji Dijs
=0 k=0 k=0 =0 k=0
k#i k#j k#j

Hence it is not possible that both the elements p;;, and p;;, are bigger than
\/g . The uniqueness of an element bigger than \/g in a column follows from an
analogous argument with regard to the columns, which completes the proof of
the lemma.

Denote f = J~!, and let us show that Z?ﬁglpi’f@) > 1 — 5. We start by
showing that p; ;) cannot be 'too small’:

M-1
Z p’b] ng pi,f(i)(ng _pi,f() + Z pzy pz’j)
20

M-1
> pi,y)(PF — Piyaiy) + Z PijPi, (i) = 2Pi, () (P§ — Pi,f(i))
T2

This gives a quadratic inequality
2 c &
Difi) — PiPi,f(i) T D) >0

which holds for p; 7y > M \/(1,1—

261 261 261‘ c 261‘
\ (05)? = 285 = [ (p5)? )Q)Zpi_F

it must hold that either p; r;) > p§— ;7 or P (i) < ;— But the second possiblity

or for p; re) <? . Since

that p; ¢y < ;— leads to contradiction with condition (1) since

€ € €
S <i<t = K<\2
\[2 <Pige < e S Ve

Z

Therefore p; ;i) > p§ — 1%
Summing the inequalities over 7, we get

M-
szf>>2pz —z Z

N\
v
T

=l o
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This completes the proof of the theorem since

h(z) # c(x)) =1 = p(J o h(x) = c(z))

[e]
M-1

e(Joh,c)=p(J

_q1_ p({c(z) = i,h(x) = J 1) =1 - Z Dif(i) < % - e(i}h)
=0

=0

Corollary 1. If the classes are equiprobable, namely % = M, we get a bound
of Me on the error in the original space.

Corollary 2. As K — +/2¢, the lowest allowed value according to the theorem
condition, we get an error bound approaching \ﬁ f Hence the linear behav-

ior of the bound on the original space error is lost near this limit, in accordance
with Thm. 1.

A bound in the other direction is much simpler to achieve:

Theorem 3. For every two labeled partitions h,c: if e(h,c) < € then e(h,¢) <
2¢e.

Proof.
M-1M-1
6 Dij Zpkj + szk

=0 j5=0 k#i k#j
M-1 -1

= pild_pri+ Y ikl + > 0> vk + > pir]
=0 k#i k#i =0 j#i k#i k#j
M-1 M-1

< Pii'€+22pij§6+5:25
i=0 i=0 j#i

2.3 The connection between sample size complexity

Several dimension-like measures of the sample complexity exist for multiclass
probelms. However, these measures can be shown to be closely related [4]. We
use here the Natarajan dimension, denoted as Sy (H), to characterize the sample
size complexity of the hypotheses family H [10,4]. Since H is binary, its sample
size is characterized by its VC dimension Sy ¢ (H) [14]. We will now show that
each of these dimensions bounds the other up to a scaling factor which depends
on M. Specifically, we will prove the following double inequality:

Sn(H)
f1(M)

where f1(M) = O(M?) and f2(M) = O(logM).

1< Sve(H) < fo(M)Sn(H) (2)
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Theorem 4. Let S§(H) denote the uniform Natarajan dimension of H as de-
fined by Ben-David et al. [4]; then

SY(H) —1 < Syc(H)

Proof. Let d denote the uniform Natarajan dimension, d = S (H). It follows
that there are k,1 € {0, .. — 1} and {xz} _, points in X such that

{0, 1} C {(v,i 0 h(@1), - .., w1 0 h(za))|h € H}

where 'l/)k,l : {0, ey M- 1} - {0, ]., *}, T,Z)k,l(k) = ]., 1/}&[(1) = O, and @bk’l(u) = %
for every u # k,I.

Next we show that the set of product space points {Z; = (z;, z;11)}{=; is VC-
shattered by H. Assume an arbitrary b € {0,1}4~1. Since by definition {z;}L,
is 1, ;-shattered by H, we can find h € H which assigns h(z1) = [ and gives the
following assignments over the points {z;}%_,:

kif h(zi—1)=1andb(i—1) = 0
() — Lif h(zi1)=1andb(i—1)=
@) =\ 1 if h(wi 1) = k and i —1) = 0

kif h(zi_1) =kandb(i—1) =

By construction (h(Z1),...,h(Z4_1)) = b. Since b is arbitrary, {7;}¢= is
shattered by H, and hence Sq,C(H) >d—1.

The relation between the uniform Natarajan dimension and the Natarajan di-
mension is given by theorem 7 in [4]. In our case it is

MOT=D g

Hence the proof of theorem 4 gives us the left bound of inequality 2.

Sn(H) <

Theorem 5. Let d,, = Sn(H) denote the Natarajan dimension of H, and d, =
Svc(H) denote the VC dimension of H. Then

Syc(H) < 4.87Sy(H)log(M + 1)

Proof. Let X, = {z; = (le,xf)} denote a set of p01nts in the product
space which are shattered by H. Let X = {z}, 23,2}, .. xdpr mdm} denote the
corresponding set of points in the original space.

There is a set Y, = {h; }2 "l of 2% hypotheses in H, which are different
from each other on X,,. For each hypothesis Bj € Y, there is a hypothesis
h € H such that h = U(h). If hy # hy € Y, then the corresponding hy,ho
are different on X,. To see this, note that h; # hy implies the existence of
z; = (z}, Z) € X, on which hl(xv) # hz( ;). It is not possible in this case that
both hy(x}) = he(z}) and hy(2?) = hy(2?). Hence there are 2% hypotheses in
‘H which are different on X,, from which it follows that

{(h(z)), h(z?),.. .,h(x}im),h(xﬁw))m € HY| > 20 3)
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The existence of an exponential number of assignments of H on the set X, is
not possible if | X,| is much larger than the Natarajan dimension of H. We use
Thm. 9 in [4] (proved in [8]) to argue that if the Natarajan dimension of H is
d,, then

2d,e(M + 1)?

)@

{(h(@1), (=), ... Mlxa,, ), h(z3, )|k € M} < (

where M is the number of classes. Combining (3) and (4) we get

2d,e(M + 1)?

20 < (T -

Here the term on left side is exponential in d,,, and the term on the right side
is polynomial. Hence the inequality cannot be true asymptotically and d,, is
bounded.

We can find a convenient bound by following the proof of Thm. 10 in [4].
The algebraic details completing the proof are left for the technical report [3],
appendix B.

Corollary 3. H is learnable iff H is learnable.

3 From product space approximations to original space
classifiers

In section 3.1 we present an algorithm to partition a data set Y using a product
space function which is e-good over Y x Y. f should only satisfy e(f,¢) < ¢, but
it doesn’t have to be an equivalence relation indicator, and so in general there
is no h such that f = U(h). The partition generated is shown to have an error
linear in €. Then in section 3.2 we briefly discuss (without proof) how an e-good
product space hypothesis can be used to build a classifier with error O(e).

3.1 Partitioning using a product space hypothesis

Assume we are given a data set Y = {z;}{_, of points drawn independently from
the distribution over X. Let f denote a learned hypothesis from H, and denote
the error of f over the product space Y x Y by

1 N N
e=e(c f)= N2 Z Z 15(1i,yj)¢f($i,yj)

i=1 j=1

classsize

Denote by K the frequency “*57%¢ of the smallest class in Y.

Note that since no explicit labels are given, we can only hope to find an
approximation to ¢ over Y up to a permutation of the labels. The following
theorem shows that if € is small enough compared to K and given f, there
is a simple algorithm which is guaranteed to achieve an approximation to the
partition represented by concept ¢ with error linear in €.
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Theorem 6. Using the notation defined above, if the following condition hold

K2
e< —, )
- )
then we can find a partition g of Y with a simple procedure, such that e(c, Jog) <
%6. J here denotes a permutation J : {0,... M —1} — {0,...,M —1} matching
the labels of ¢ and g.

In order to present the algorithm and prove the error bound as stated above, we
first define several simple concepts.

Define the ’fiber’ of a point € Y under a function A : X x X — {0,1} as
the following restriction of h:

fiberh(x) ;Y —{0,1}, [fiberh(m)](y) = h(z,y)

fiber"(z) is an indicator function of the points in Y which are in the same class
with x according to h.

Let us now define the distance between two fibers. For two indicator functions
I, I, : Y — {0, 1} let us measure the distance between them using the L1 metric
over Y:

N N
1 1
d(Iy, I2) = Prob(l1(z) # I2(z)) = + Y lnostne) = N D (@) — Ia(a)]
1=1

i=1

Given two fibers fiber”(x), fiber"(z) of a product space hypothesis, the Ly dis-
tance between them has the form of

#(Neih(z) ANeit(2))

d(fiber"(x), fiber"(z)) = ¢

where Nei"(x) = {y|h(x,y) = 1}. This gives us an intuitive meaning to the inter-
fiber distance, namely, it is the frequency of sample points which are neighbors
of x and not of z or vice versa.

The operator taking a point € Y to fiber(x) is therefore an embedding of
Y in the metric space L1(Y). In the next lemma we see that if the conditions of
Thm. 6 hold, most of the data set is well separated under this embedding, in the
sense that points from the same class are near while points from different classes
are far. This allows us to define a simple algorithm which uses this separability
to find a good partitioning of Y, and prove that its error is bounded as required.

Lemma 2. There is a set of ‘good’ points G € Y such that [Y\G| < 3N (i.e.,
the set is large), and for every two points x,y € G:

co(z) =cly) = d(fiberf(z)7 fiberf(y)) <

e~ [N}
wo| 5 e| R

c(x) #cly) = d(fiber! (x), fiber! (y)) >
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Proof. Define the ’good’ set G as

G = {z|d(fiber! (z), fiber(z)) < g}

We start by noting that the complement of G, the set of 'bad’ points B =
{z|d(fiber!, fiberS) > &£}, is small as the lemma requires. The argument is the
following

1 N N
e=e(cf)= WZZ z3,y;)=f(Ti,yy) = N2 Z Zlc (zi,y;)=F(zi,yy)

z;€EB j=1

al K
Ze g c :”z y] muyy) N2 Z 37N|B|

z;, €EB

Next, assume that ¢(x) = ¢(y) holds for two points x,y € G. Since fiberc(z) =
fiberc(y) we get

d(fiber? (z), fiber! (y)) < d(fiber! (x), fiber®(x)) + d(fiber®(z), fiberc(y))
K K 2K
+ d(fiber<(y), fiber! (y)) < 3 +0+ 3= 3
Finally, if ¢(x) # ¢(y) then fiberc(x) and fiberc(y) are indicators of disjoint
sets, each bigger or equal to K. Hence d(fiber¢(x), fiber¢(y)) > 2K and we get

2K < d(fiberc(z), fiberc(y))

d(fiber¢(z), fiber? (z)) + d( fiber! (z), fiber! (y)) + d(fiber! (y), fiber(y))

IN A

< g +d(fiber? (z), fiber! (y)) + g
= d(fiber! (x), fiber! (y)) > %

It follows from the lemma that over the ’good’ set G, which contains more
than (1 — —)N points, the classes are very well separated Each class is con-
centrated in a g—ball and the different balls are 3 distant from each other.
Intuitively, under such conditions almost any reasonable clustering algorithm
can find the correct partitioning over this set; since the size of the remaining set
of 'bad’ points B is linear in ¢, the total error is expected to be linear in € too.

However, in order to prove a worst case bound we still face a certain problem.
Since we do not know how to tell G from B, the bad’ points might obscure
the partition. We therefore suggest the following greedy procedure to define a
partition g over Y:

— Compute the fibers fiber!(z) for all reyY.
— Let i =0, Sp = Y; while |S;| > £X do:



43

e for each point x € 5;, compute the set of all points lying inside a sphere

of radius % around z:

B% (z) = {y € S; : d(fiber? (), fiber! (y)) < %}

e find z = argmax |B% ()| and define g(y) = i for every y € Box (2);
z€S; ’
e remove the points of B% (2) from S;: let S; 1 = Si\B% (z),and i = i+1.
— Let M, denote the number of rounds completed. Denote the domain on
which g has been defined so far as G. Define g for the remaining points in
Y'\Gy as follows:
g(x) = argmin d(fiberf(x),l{gfl(i)})
i€{0,....My—1}

where I;,-1(;)y is the indicator function of cluster i of g. Note, however, that
the way ¢ is defined over this set is not really important since, as we shall
see, the set is small.

The proof for the error bound of ¢ starts with two lemmas:

1. The first lemma uses lemma 2 to show that each cluster defined by g inter-
sects only a single set of the form ¢~ (i) N G.

2. The second lemma shows that due to the greedy nature of the algorithm,
the sets g~1(i) chosen at each step are big enough so that each intersects at
least one of the sets {¢~1(j) N G} 7",

It immediately follows that each set g~ (i) intersects a single set {c¢~1(5)NG},
and a match between the clusters of g and the classes of ¢ can be established,
while Y\ Gy can be shown to be O(e) small.

3. Finally, the error of g is bounded by showing that if + € Gy NG then z is
classified correctly by g.

Details of the lemmas and proofs are given in the technical report [3], appendix
C, which completes the proof of Thm. 6.

3.2 Classifing using a product space hypothesis

Given an € good product space hypothesis f, we can build a multiclass classifier
as follows: Sample N unlabeled data points Y = {z;}}¥; from X and partition
them using the algorithm presented in the previous subsection. A new point Z
is classified as a member of the class [ where

l= argmin d(fiber!(z),I,-1;)
i€{0,..,M—1}

The following theorem bounds the error of such a classifier

Theorem 7. Assume the error probability of f over X x X ise(f,¢) =¢ < %2.
For each 6 > 0,1 > 4: if N >

proposed is lower than % +90

#ﬁl)zlog(%), then the error of the classifier

The proof is omitted.
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4 Concluding remarks

We showed in this paper that learning in the product space produces good multi-
class classifiers of the original space, and that the sample complexity of learning
in the product space is comparable to the complexity of learning in the original
space. We see the significance of these results in two aspects: First, since learning
in the product space always involves only binary functions, we can use the full
power of binary classification theory and its many efficient algorithms to solve
multiclass classification problems. In contrast, the learning toolbox for multi-
class problems in the original space is relatively limited. Second, the automatic
acquisition of product space labels is plausible in many domains in which the
data is produced by some Markovian process. In such domains the learning of
interesting concepts without any human supervision may be possible.
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Abstract

Many learning algorithms use a metric defined over the inpate as a principal tool, and
their performance critically depends on the quality of thistric. We address the problem of
learning metrics using side-information in the form of a@lénce constraints. Unlike labels, we
demonstrate that this type of side-information can somegiime automatically obtained without
the need of human intervention. We show how such side-irdition can be used to modify the
representation of the data, leading to improved clustadjclassification.

Specifically, we present the Relevant Component AnalystRalgorithm, which is a simple
and efficient algorithm for learning a Mahalanobis metrice ¥thow that RCA is the solution of
an interesting optimization problem, founded on an infdioratheoretic basis. If dimensionality
reduction is allowed within RCA, we show that it is optimadigcomplished by a version of Fisher’s
linear discriminant that uses constraints. Moreover, updgain Gaussian assumptions, RCA can
be viewed as a Maximum Likelihood estimation of the withiasd covariance matrix. We conclude
with extensive empirical evaluations of RCA, showing itvattage over alternative methods.

Keywords: clustering, metric learning, dimensionality reductiogu&alence constraints, side
information.

1. Introduction

A number of learning problems, such as clustering and neaegghbor classification, rely on some
a priori defined distance function over the input space. tifien the case that selecting a “good”
metric critically affects the algorithms’ performance.this paper, motivated by the wish to boost
the performance of these algorithms, we study ways to leggo@d” metric using side information.

One difficulty in finding a “good” metric is that its quality mabe context dependent. For
example, consider an image-retrieval application whiatiudes many facial images. Given a
query image, the application retrieves the most similaedain the database according to some
pre-determined metric. However, when presenting the queage we may be interested in retriev-
ing other images of the same person, or we may want to retather faces with the same facial
expression. It seems difficult for a pre-determined metriod suitable for two such different tasks.

In order to learn a context dependent metric, the data setlmumugmented by some additional
information, or side-information, relevant to the task ahth. For example we may have access
to the labels ofart of the data set. In this paper we focus on another type ofisfdemation,

©2005 Aharon Bar Hillel, Tomer Hertz, Noam Shental and Dapieinshall.
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in which equivalence constraintsetween a few of the data points are provided. More spedifical
we assume knowledge about small groups of data points thdnawn to originate from the same
class, although their label is unknown. We term these smailgs of points’chunklets”.

A key observation is that in contrast to explicit labels the¢ usually provided by a human
instructor, in many unsupervised learning tasks equiea@onstraints may be extracted with min-
imal effort or even automatically. One example is when tha iéainherently sequential and can be
modelled by a Markovian process. Consider for example memgenentation, where the objective is
to find all the frames in which the same actor appears. Duestodhtinuous nature of most movies,
faces extracted from successive frames in roughly the saca¢idn can be assumed to come from
the same person. This is true as long as there is no scenee;hainigh can be robustly detected
(Boreczky and Rowe, 1996). Another analogous example akgpesegmentation and recognition,
in which the conversation between several speakers nedassiegmented and clustered according
to speaker identity. Here, it may be possible to automdgidgdentify small segments of speech
which are likely to contain data points from a single yaknownspeaker.

A different scenario, in which equivalence constraints taeenatural source of training data,
occurs when we wish to learn from several teachers who dommw lkeach other and who are not
able to coordinate among themselves the use of common ladelsall this scenario ‘distributed
learning’! For example, assume that you are given a large databaseabifa@ges of many people,
which cannot be labelled by a small number of teachers due vast size. The database is therefore
divided (arbitrarily) intoP parts (whereP is very large), which are then given # teachers to
annotate. The labels provided by the different teachershmragconsistent: as images of the same
person appear in more than one part of the database, theikelsetd be given different names.
Coordinating the labels of the different teachers is almgssiaunting as labelling the original data
set. However, equivalence constraints can be easily ¢xttasince points which were given the
same tag by a certain teacher are known to originate fromatme lass.

In this paper we study how to use equivalence constraintsdardo learn an optimal Maha-
lanobis metric between data points. Equivalently, the lgrolcan also be posed as learning a good
representation function, transforming the data represient by the square root of the Mahalanobis
weight matrix. Therefore we shall discuss the two problemtarchangeably.

In Section 2 we describe the proposed method-the Relevanp@uent Analysis (RCA) algo-
rithm. Although some of the interesting results can only lmv@n using explicit Gaussian assump-
tions, the optimality of RCA can be shown with some relatiwekeak assumptions, restricting the
discussion to linear transformations and the Euclideamn@&@pecifically, in Section 3 we describe a
novel information theoretic criterion and show that RCA$sdptimal solution. If Gaussian assump-
tions are added the result can be extended to the case whagasibnality reduction is permitted,
and the optimal solution now includes Fisher’s linear dimarant (Fukunaga, 1990) as an inter-
mediate step. In Section 4 we show that RCA is also the optaolakion to another optimization
problem, seeking to minimize within class distances. Vigttgs way, RCA is directly compared to
another recent algorithm for learning Mahalanobis distdnem equivalence constraints, proposed
by Xing et al. (2003). In Section 5 we show that under Gausagsumptions RCA can be inter-
preted as the maximum-likelihood (ML) estimator of the witklass covariance matrix. We also
provide a bound over the variance of this estimator, showhiagit is at most twice the variance of
the ML estimator obtained using the fully labelled data.

1. A related scenario (which we call ‘generalized relevaiesglback’), where users of a retrieval engine are asked to
annotate the retrieved set of data points, has similar ptiepe
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The successful application of RCA in high dimensional spaeguires dimensionality reduc-
tion, whose details are discussed in Section 6. An onlingimenf the RCA algorithm is presented
in Section 7. In Section 8 we describe extensive empiricaluations of the RCA algorithm. We
focus on two tasks—data retrieval and clustering, and use tipes of data: (a) A data set of frontal
faces (Belhumeur et al., 1997); this example shows that R@A partial equivalence constraints
typically yields comparable results to supervised alpanig which use fully labelled training data.
(b) A large data set of images collected by a real-time sliavgie application, where the equiva-
lence constraints are gathered automatically. (c) Sedatal sets from the UCI repository, which
are used to compare between RCA and other competing methatdsse equivalence constraints.

Related work

There has been much work on learning representations atahcksfunctions in the supervised
learning settings, and we can only briefly mention a few eXxampHastie and Tibshirani (1996) and
Jaakkola and Haussler (1998) use labelled data to learnmetiits for classification. Thrun (1996)
learns a distance function (or a representation functionglassification using a “leaning-to-learn”
paradigm. In this setting several related classificatieskgare learned using several labelled data
sets, and algorithms are proposed which learn represemtadind distance functions in a way that
allows for the transfer of knowledge between the tasks. énatbrk of Tishby et al. (1999) the joint
distribution of two random variableX and Z is assumed to be known, and one seeks a compact
representation o which bears high relevance 6. This work, which is further developed in
Chechik and Tishby (2003), can be viewed as supervisedseptation learning.

As mentioned, RCA can be justified using information thedoretiteria on the one hand, and
as an ML estimator under Gaussian assumptions on the othfaxmiation theoretic criteria for
unsupervised learning in neural networks were studied bgkedr (1989), and have been used since
in several tasks in the neural network literature. Impdriexamples are self organizing neural
networks (Becker and Hinton, 1992) and Independent Commohealysis (Bell and Sejnowski,
1995)). Viewed as a Gaussian technique, RCA is related toge family of feature extraction
techniques that rely on second order statistics. This famdludes, among others, the techniques
of Partial Least-Squares (PLS) (Geladi and Kowalski, 198@nonical Correlation Analysis (CCA)
(Thompson, 1984) and Fisher’s Linear Discriminant (FLDJK&naga, 1990). All these techniques
extract linear projections of a random varialie which are relevant to the prediction of another
variableZ in various settings. However, PLS and CCA are designed fpession tasks, in which
Z is a continuous variable, while FLD is used for classifioatiasks in whichZ is discrete. Thus,
RCA is more closely related to FLD, as theoretically esthidd in Section 3.3. An empirical
investigation is offered in Section 8.1.3, in which we shtwttRCA can be used to enhance the
performance of FLD in the fully supervised scenario.

In recent years some work has been done on using equivalens&ants as side information.
Both positive (‘a is similar to b’) and negative (‘a is disglian from b’) equivalence constraints were
considered. Several authors considered the problem ofsgmervised clustering using equivalence
constraints. More specifically, positive and negative traigts were introduced into the complete
linkage algorithm (Klein et al., 2002), the K-means aldumit (Wagstaff et al., 2001) and the EM
of a Gaussian mixture model (Shental et al., 2003). A secimaddf research, to which this work
belongs, focuses on learning a ‘good’ metric using equiaeonstraints. Learning a Mahalanobis
metric from both positive and negative constraints wasestdrd in the work of Xing et al. (2003),
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presenting an algorithm which uses gradient ascent aratiiterprojections to solve a convex non
linear optimization problem. We compare this optimizatmoblem to the one solved by RCA in
Section 4, and empirically compare the performance of tleealgorithms in Section 8. The initial
description of RCA was given in the context of image retrid@&hnental et al., 2002), followed by
the work of Bar-Hillel et al. (2003). Recently Bilenko et ¢2004) suggested a K-means based clus-
tering algorithm that also combines metric learning. Thyeathm uses both positive and negative
constraints and learns a single or multiple Mahalanobigioset

2. Relevant Component Analysis: the algorithm

Relevant Component Analysis (RCA) is a method that seeksdntify and down-scale global
unwanted variability within the data. The method changesf#ature space used for data repre-
sentation, by a global linear transformation which assignge weights to “relevant dimensions”
and low weights to “irrelevant dimensions” (see TenenbandhEreeman, 2000). These “relevant
dimensions” are estimated usiogunkletsthat is, small subsets of points that are known to belong
to the same althouginknownclass. The algorithm is presented below as Algorithm 1 (Matiode
can be downloaded from the authors’ sites).

Algorithm 1 The RCA algorithm
Given a data seX = {z;}¥, andn chunkletsC; = {z;;};?, j=1...n, do

1. Compute the within chunklet covariance matrix (Figurg 1d

n nj

C= %ZZ(W —mj)(wji — m;)" (1)

j=11i=1
wherem; denotes the mean of the j'th chunklet.

2. If needed, apply dimensionality reduction to the datagi§i as described in Algorithm 2
(see Section 6).

3. Compute the whitening transformation associated With’ = C > (Figure 1e), and apply
it to the data pointsX,.,, = WX (Figure 1f), whereX refers to the data points after dimen-
sionality reduction when applicable. Alternatively, uke fnverse of” in the Mahalanobis
distanced(x1, zo) = (z1 — z2)'C Yy — zy).

More specifically, pointa; andzs are said to be related by a positive constraint if it is known
that both points share the same (unknown) label. If paintand z» are related by a positive
constraint, andc, and z3 are also related by a positive constraint, then a chunldetzs, z3}
is formed. Generally, chunklets are formed by applying ditire closure over the whole set of
positive equivalence constraints.

The RCA transformation is intended to reduce clutter, sd ithahe new feature space, the
inherent structure of the data can be more easily unravédled illustrations in Figure la-f). To
this end, the algorithm estimates the within class covagasf the dataov(X|Z) whereX andZ
describe the data points and their labels respectively. eBtienation is based on positive equiva-
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lence constraints only, and does not use any explicit latfefrnation. In high dimensional data,
the estimated matrix can be used for semi-supervised dioraliy reduction. Afterwards, the
data set is whitened with respect to the estimated withiasctavariance matrix. The whitening
transformatiord¥ (in Step 3 of Algorithm 1) assigns lower weights to directiafi large variability,
since this variability is mainly due to within class changesl is therefore “irrelevant” for the task
of classification.

. P S
& G
(d) (e) ®

Figure 1: An illustrative example of the RCA algorithm agpglito synthetic Gaussian data. (a)
The fully labelled data set with 3 classes. (b) Same datebetitad; clearly the classes’
structure is less evident. (c) The set of chunklets that eveigied to the RCA algorithm
(points that share the same color and marker type form a ¢¢tdinkd) The centered
chunklets, and their empirical covariance. (e) The whitgrtransformation applied to
the chunklets. (f) The original data after applying the R@aasformation.

The theoretical justifications for the RCA algorithm areagivin Sections 3-5. In the following
discussion, the term ‘RCA refers to the algorithm eithethadr without dimensionality reduction
(optional Step 2). Usually the exact meaning can be readiljetstood in context. When we
specifically discuss issues regarding the use of dimenigipmaduction, we may use the explicit
terms ‘RCA with (or without) dimensionality reduction’.

RCA does not use negative equivalence constraints. Whiative constraints clearly contain
useful information, they are less informative than positbonstraints (see counting argument be-
low). They are also much harder to use computationally, dutypto the fact that unlike positive
constraints, negative constraints are not transitive.uincase, the naive incorporation of negative
constraints leads to a matrix solution which is the diffeesnf two positive definite matrices, and
as a results does not necessarily produce a legitimate ktablgic metric. An alternative approach,
which modifies the optimization function to incorporate atd¢ge constraints, as used for example by
Xing et al. (2003), leads to a non-linear optimization pesblwith the usual associated drawbacks

49



BAR HILLEL, HERTZ, SHENTAL AND WEINSHALL

of increased computational load and some uncertainty a@heutptimality of the final solutiod.In
contrast, RCA is the closed form solution of several intimgsoptimization problem, whose com-
putation is no more complex than a single matrix inversiohudl, in the tradeoff between runtime
efficiency and asymptotic performance, RCA chooses thedoand ignores the information given
by negative equivalence constraints.

There is some evidence supporting the view that positivetcaimts are more informative than
negative constraints. Firstly, a simple counting argunsdaws that positive constraints exclude
more labelling possibilities than negative constraintord example there aré/ classes in the data,
two data points havé/? possible label combinations. A positive constraint betwtee points
reduces this number td/ combinations, while a negative constraint gives a much muderate
reduction toM (M — 1) combinations. (This argument can be made formal in infolonaheoretic
terms.) Secondly, empirical evidence from clustering @lgms which use both types of constraints
shows that in most cases positive constraints give a mudtehjgerformance gain (Shental et al.,
2003; Wagstaff et al., 2001). Finally, in most cases in whaghivalence constraints are gathered
automatically, only positive constraints can be gathered.

Step 2 of the RCA algorithm applies dimensionality reduttio the data if needed. In high
dimensional spaces dimensionality reduction is almosagdvwessential for the success of the algo-
rithm, because the whitening transformation essentialigaales the variability in all directions so
as to equalize them. Consequently, dimensions with small variability cause instability and, in
the zero limit, singularity.

As discussed in Section 6, the optimal dimensionality rédn®ften starts with Principal Com-
ponent Analysis (PCA). PCA may appear contradictory to R€IGe it eliminates principal dimen-
sions with small variability, while RCA emphasizes prirgiglimensions with small variability.
One should note, however, that the principal dimensionscameputed in different spaces. The
dimensions eliminated by PCA have small variability in thigimal data space (corresponding to
Cov(X)), while the dimensions emphasized by RCA have low varighiti a space where each
point is translated according to the centroid of its own d¢etn(corresponding t6'ov(X|Z)). As
a result, the method ideally emphasizes those dimensidhdaxgje total variance, but small within
class variance.

3. Information maximization with chunklet constraints

How can we use chunklets to find a transformation of the datiatwimproves its representation?
In Section 3.1 we state the problem for general familiesarigformations and distances, present-
ing an information theoretic formulation. In Section 3.2 kestrict the family of transformation to
non-singular linear maps, and use the Euclidean metric tmsare distances. The optimal solution
is then given by RCA. In Section 3.3 we widen the family of pited transformations to include
non-invertible linear transformations. We show that formally distributed data RCA is the opti-
mal transformation when its dimensionality reduction isaited with a constraints based Fisher’s
Linear Discriminant (FLD).

2. Despite the problem’s convexity, the proposed gradiesed algorithm needs tuning of several parameters, and is
not guaranteed to find the optimum without such tuning. Seti@e8.1.5 for relevant empirical results.
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3.1 Aninformation theoretic per spective

Following Linsker (1989), an information theoretic critar states that an optimal transformation of
the inputX into its new representatioi, should seek to maximize the mutual informati&iX, V')
betweenX andY under suitable constraints. In the general case &set {z;} of data points in
RP is transformed into the s&f = {f(x;)} of points iINRX. We seek a deterministic function
f € F that maximizes/(X,Y), whereF is the family of permitted transformation functions (a
“hypotheses family”).

First, note that sincg is deterministic, maximizind (X,Y") is achieved by maximizing the
entropyH (Y') alone. To see this, recall that by definition

I(X,Y)=H(Y) - HY|X)

where H(X) and H(Y'|X) are differential entropies, a& andY are continuous random vari-
ables. Sincef is deterministic, the uncertainty concerniligwhen X is known is minimal, thus
H(Y|X) achieves its lowest possible value-ato.> However, as noted by Bell and Sejnowski
(1995), H(Y|X) does not depend ofi and is constant for every finite quantization scale. Hence
maximizing(X,Y") with respect tof can be done by considering only the first tefhfY").

Second, note also th&f(Y") can be increased by simply ‘stretching’ the data space. ¥ane
ple, if Y = f(X) for an invertible continuous function, we can increds€”) simply by choosing
Y = Af(X) forany A > 1. In order to avoid the trivial solution. — oo, we can limit the dis-
tances between points contained in a single chunklet . Em$e done by constraining the average
distance between a point in a chunklet and the chunklet'sangance the optimization problem is:

1 s
max H(Yy) st —> Y |lyi—m!|| <k 2)
feF N &~ &
j=11=1
Where{yji}?:’lsil denote the set of points imchunklets after the transformatiom denotes the

mean of chunklej after the transformation, andis a constant.

3.2 RCA: theoptimal linear transformation for the Euclidean norm

Consider the general problem (2) for the famiyof invertible linear transformations, and using
the squared Euclidean norm to measure distances. $iisc@vertible, the connection between the
densities ot” = f(X) and X is expressed by, (y) = f’f(%)|, where|J(z)| is the Jacobian of the
transformation. From, (y)dy = p.(z)dz, it follows that H(Y') and H(X) are related as follows:

H(Y)= —/p(y) log p(y)dy = — /p(:v) log ‘i((i)ﬂdw = H(X) + (log |J(z)|)

Yy T

For the linear mapy’ = AX the Jacobian is constant and eqyal§ and it is the only term in
H(Y) that depends on the transformatidn Hence Problem (2) is reduced to

. _ mY|?
mgxlog|A\ s.t. N E 1 E 1 llyji —millz <k
J=1 1=

3. This non-intuitive divergence is a result of the genesdion of information theory to continuous variables, fisat
the result of ignoring the discretization constant in théniion of differential entropy.
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Multiplying a solution matrixA by A > 1 increases both thkg|A| argument and the con-
strained sum of within chunklet distances. Hence the maxinsiachieved at the boundary of
the feasible region, and the constraint becomes an equdlitg constank only determines the
scale of the solution matrix, and is not important in mosstdting and classification tasks, which
essentially rely on relative distances. Hence we car setl and solve

1 &
maxlog|A|  s.t. N_legllyji—mi’H%:l ©)
j=li=

Let B = A'A; sinceB is positive definite antbg |A| =  log | B|, Problem (3) can be rewritten
as
n nj

1 2
maxlog|B| .. N;;IIM —mjl|lp =1 4)

where||.|| p denotes the Mahalanobis distance with weight ma#ixThe equivalence between the
problems is valid since for an - 0 there is and such thatB = A'A, and so a solution to (4)
gives us a solution to (3) (and vice versa).

The optimization problem (4) can be solved easily, sincectastraint is linear inB. The
solution isB = %C’*l, whereC is the average chunklet covariance matrix (1) @&his the dimen-
sionality of the data space. This solution is identical t® khahalanobis matrix compute by RCA
up to a global scale factor, or in other words, RCA is a scatdation of (4).

3.3 Dimensionality reduction

We now solve the optimization problem (4) for the family ohgeal linear transformations, that is,
Y = AX whereA € Mg«p andK < D. In order to obtain workable analytic expressions, we
assume that the distribution &f is a multivariate Gaussian, from which it follows tHgtis also
Gaussian with the following entropy

D 1 D 1
HY) = B log 2me + 3 log |3,| = B log 2me + 2 log |AX, AY|

Following the same reasoning as in Section 3.2 we replacéntgality with equality and let
k = 1. Hence the optimization problem becomes

1 Gn &
max log |AS, A s.t. N Z Z zji —mj|[5eq =1 (5)
j=1::=1
For a given target dimensionaliti(, the solution of the problem is Fisher linear discriminant
(FLD),*followed by the whitening of the within chunklet covariaringhe reduced space. A sketch
of the proof is given in Appendix A. The optimal RCA procedtinerefore includes dimensionality
reduction. Since the FLD transformation is computed basethe estimated within chunklet co-
variance matrix, it is essentially a semi-supervised tipghe) as described in Section 6. Note that
after the FLD step, the within class covariance matrix inréguced space is always diagonal, and
Step 3 of RCA amounts to the scaling of each dimension segbarat

4. Fisher Linear Discriminant is a linear projectidrfrom R” to R¥ with K < D, which maximizes the determinant

. t . c . .
ratio  max 454 whereS; andS,, denote the total covariance and the within class covarisgsgectively.
EMKxD v
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4. RCA and the minimization of within class distances

In order to gain some intuition about the solution providgdhe information maximization crite-
rion (2), let us look at the optimization problem obtained&yersing the roles of the maximization
term and the constraint term in problem (4):

n
mln—ZZHxﬂ m;||% st |Bl>1 (6)

j=11=1

We interpret problem (6) as follows: a Mahalanobis distaBces sought, which minimizes
the sum of all within chunklet squared distances, whi¥¢¢ > 1 prevents the solution from being
achieved by “shrinking” the entire space. Using the Kuhiekas theorem, we can reduce (6) to

n 7nj

mBinZZ \|lzji —mj||% — Aog |B| s.t. A>0, Mog|B| =0 7)
j=11i=1

Differentiating this Lagrangian shows that the minimumiiseg by B = |CA’|%CA'*1, whereC is the
average chunklet covariance matrix. Once again, the saligiidentical to the Mahalanobis matrix
in RCA up to a scale factor.

It is interesting, in this respect, to compare RCA with thethod proposed recently by Xing
et al. (2003). They consider the related problem of lear@irigdahalanobis distance using side
information in the form of pairwise constraints (Chunklefssize > 2 are not considered). It is
assumed that in addition to the set of positive constrajits one is also given access to a set of
negative constraint§) y—a set of pairs of points known to be dissimilar. Given thexte, shey pose
the following optimization problem.

min S e - xll3 st. Y lz;i—=llz>1, B=0 (8)
(w1,22)EQP (x1,22)EQN

This problem is then solved using gradient ascent andiiterptojection methods.
In order to allow a clear comparison of RCA with (8), we refoitate the argument of (6) using
only within chunklet pairwise distances. For each paintin chunkletj we have:

nj
Tj; —Mj = Tj; — — E Tjk = _'Z(xji_wjk)
" =1 " =1

Problem (6) can now be rewritten as

mln_z Z”Z Tji — Ljk HB s.t. ‘B| >1 (9)
J i=1

When only chunklets of size 2 are given, as in the case stuieting et al. (2003), (9) reduces to

mén—ZHz]l zjol|% st |B|>1 (10)
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Clearly the minimization terms in problems (10) and (8) atentical up to a constan%).
The difference between the two problems lies in the comdttarm: the constraint proposed by
Xing et al. (2003) uses pairs of dissimilar points, wherdesdonstraint in the RCA formulation
affects global scaling so that the ‘volume’ of the Mahaldaaateighborhood is not allowed to shrink
indefinitely. As a result Xing et al. (2003) are faced with aamunarder optimization problem,
resulting in a slower and less stable algorithm.

5. RCA and Maximum Likelihood: the effect of chunklet size

We now consider the case where the data consists of severably distributed classes sharing
the same covariance matrix. Under the assumption that tiiektgis are sampled i.i.d. and that
points within each chunklet are also sampled i.i.d., theliliood of the chunklets’ distribution can
be written as:

1
—5 1 €XP (=3 (zji—m;)' =~ (zj;—m;))
2

IS
|

Writing the log-likelihood while neglecting constant tesrand denoting? = X!, we obtain:

n Nj
>3 e — myl[f — Nlog| Bl (1)

j=1i=1

whereN is the total number of points in chunklets. Maximizing thg-likelihood is equivalent
to minimizing (11), whose minimum is obtained wh8nequals the RCA Mahalanobis matrix (1).
Note, moreover, that (11) is rather similar to the Lagrangia(7), where the Lagrange multiplier
is replaced by the consta™. Hence, under Gaussian assumptions, the solution of Pnofdleis
probabilistically justified by a maximum likelihood formaition.

Under Gaussian assumptions, we can further definesnarasedversion of the RCA estimator.
Assume for simplicity that there at¥ constrained data points divided intochunklets of size;
each. ThainbiasedRCA estimator can be written as:

n k
A 1 1
C(n,k) = - E = E (@5 — mg) (i — my)'
i=1

=1

whereC(n, k) denotes the empirical mean of the covariance estimatodsipenl by each chunklet.
It is shown in Appendix B that the variance of the elemefitsof the estimating matrix is bounded

by

Var(Cij(n, k) < (1+ ﬁ)V&T(C‘ij(l,nk)) (12)
whereC‘ij(l,nk:) is the estimator when all th& = nk points are known to belong to the same
class, thus forming the best estimate possible fférpoints. This bound shows that the variance
of the RCA estimator rapidly converges to the variance ot estimator, even for chunklets of
small size. For the smallest possible chunklets, of sizé&@yariance is only twice as high as the
best possible.
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6. Dimensionality reduction

As noted in Section 2, RCA may include dimensionality reduct We now turn to address this
issue in detail. Step 3 of the RCA algorithm decreases thghwaeif principal directions along
which the within class covariance matrix is relatively higimd increases the weight of directions
along which it is low. This intuition can be made precise ia thllowing sense:

Denote by{\‘}2, the eigenvalues of the within class covariance matrix, aomsider the
squared distance between two points from the same flass- z5||>. We can diagonalize the
within class covariance matrix using an orthonormal tramsftion which does not change the
distance. Therefore, let us assume without loss of gehethht the covariance matrix is diagonal.

Before whitening, the average squared distandgfjisc; — 2||?] = 2 Zle M and the average
squared distance in directiaris E[(z% — z%)?] = 2X%. After whitening these values becor2®
and2, respectively. Let us define the weight of dimensipW (i) € [0, 1], as

L E[(] — 2})’]
W) = =——=—-
D= Bl 2l
Now the ratio between the weight of each dimension beforeaftied whitening is given by

Wbefore (Z) _ N

N = ; 13
Wafte'r (Z) % Zle A ( )

In Equation (13) we observe that the weight of each prinaifi@ension increases if its initial
within class variance was lower than the average, and viceaveWhen there is high irrelevant
noise along several dimensions, the algorithm will indezmadesdown noise dimensions. However,
when the irrelevant noise is scattered among many dimessiith low amplitude in each of them,
whitening will amplify these noisy dimensions, which is @atially harmful. Therefore, when the
data is initially embedded in a high dimensional space, fht@oal dimensionality reduction in
RCA (Step 2) becomes mandatory.

We have seen in Section 3.3 that FLD is the dimensionalityeton techniqgue which maxi-
mizes the mutual information under Gaussian assumptionaditionally FLD is computed from
fully labelled training data, and the method thereforesfalithin supervised learning. We now ex-
tend FLD, using the same information theoretic criterianthte case of partial supervision in the
form of equivalence constraints. Specifically, denoteShynd S,, the estimators of the total co-
variance and the within class covariance respectively. Ridximizes the following determinant
ratio

AS A

Aemre.p AS, At (14)
by solving a generalized eigenvector problem. The row weatbthe optimal matrix4 are the first
K eigenvectors 0f,,1S;. In our case the optimization problem is of the same form #&4#, with
the within chunklet covariance matrix from (1) playing tleder of S,,. We compute the projection
matrix using SVD in the usual way, and term this FLD variantBRconstraints based FLD).

To understand the intuition behind cFLD, note that both P@A aFLD remove dimensions
with small total variance, and hence reduce the risk of RCAldying irrelevant dimensions with
small variance. However, unsupervised PCA may remove difoes that are important for the
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discrimination between classes, if their total variapiig low. Intuitively, better dimensionality
reduction can be obtained by comparing the total covariamatix (used by PCA) to the within
class covariance matrix (used by RCA), and this is exactlgtvithe partially supervised cFLD is
trying to accomplish in (14).

The cFLD dimensionality reduction can only be used if thekrahthe within chunklet covari-
ance matrix is higher than the dimensionality of the inidiata space. If this condition does not hold,
we use PCA to reduce the original data dimensionality asewedhe procedure is summarized
below in Algorithm 2.

Algorithm 2 Dimensionality reduction: Step 2 of RCA
Denote byD the original data dimensionality. Given a set of chunkfgf$}”_; do

1. Compute the rank of the estimated within chunklet covagamatrixR = »°7_, (|C;| — 1),
where|C;| denotes the size of the j'th chunklet.

2. If (D > R), apply PCA to reduce the data dimensionalityy®, where) < a < 1 (to ensure
that cFLD provides stable results).

3. Compute the total covariance matrix estim&je and estimate the within class covariance
matrix usingS,, = C from (1). Solve (14), and use the resultidgo achieve the target data
dimensionality.

7. Onlineimplementation of RCA

The standard RCA algorithm presented in Section 2 is a bdggridam which assumes that all
the equivalence constraints are available at once, analihthe data is sampled from a stationary
source. Such conditions are usually not met in the case @idiaal learning systems, or artificial
sensor systems that interact with a gradually changing@mvient. Consider for example a system
that tries to cluster images of different people collected Burveillance camera in gradually chang-
ing illumination conditions, such as those caused by niglt@day changes. In this case different
distance functions should be used during night and day tiaveswe would like the distance used
by the system to gradually adapt to the current illuminationditions. An online algorithm for
distance function learning is required to achieve such dugiladaptation.

Here we briefly present an online implementation of RCA,ahlé for a neural-network-like
architecture. In this implementation a weight mafiixe M py p, initiated randomly, is gradually
developed to become the RCA transformation matrix. In Atbar 3 we present the procedure for
the simple case of chunklets of size 2. The extension of thaithm to general chunklets is briefly
described in Appendix C.

Assuming local stationarity, the steady state of this sistib process can be found by equating
the mean update 0, where the expectation is taken over the next example (pdit ', z3 ™).
Using the notations of Algorithm 3, the resulting equatisn i

En(W —yy'W)]=0 = E[I-yyt|=1-WERMW!=0 = W =PE[Rh] :

whereP is an orthonormal matri®® P* = I. The steady staté is the whitening transformation of
the correlation matrix ok. Sinceh = 2(z; — W), it is equivalent (up to the constant 2) to the
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Algorithm 3 Online RCA for point pairs

Input: a stream of pairs of pointa?, 21'), wherezT 21 are known to belong to the same class.
Initialize W to a symmetric random matrix withi || << 1.

At time step T do:

e receive paiz?, z1;

o leth =27 — 27

e applyW to h, to gety = Wh;

o updateW =W + n(W — yy'W).

wheren > 0 determines the step size.

distance of a point from the center of its chunklet. The dati@en matrix ofh is therefore equivalent
to the within chunklet covariance matrix. ThiB converges to the RCA transformation of the
input population up to an orthonormal transformation. Tdwmuiting transformation is geometrically
equivalent to RCA, since the orthonormal transformatfdpreserves vector norms and angles.

In order to evaluate the stability of the online algorithm eaducted simulations which con-
firmed that the algorithm converges to the RCA estimator dubé transformatio®), if the gradi-
ent steps decrease with timg-€ 1y /7). However, the adaptation of the RCA estimator for such a
step size policy can be very slow. Keepipgonstant avoids this problem, at the cost of producing
a noisy RCA estimator, where the noise is proportionaj.tddiencen can be used to balance this
tradeoff between adaptation, speed and accuracy.

8. Experimental Results

The success of the RCA algorithm can be measured directlydasuoring neighborhood statistics,
or indirectly by measuring whether it improves clusterieguits. In the following we tested RCA
on three different applications using both direct and iectievaluations.

The RCA algorithm uses only partial information about théadabels. In this respect it is
interesting to compare its performance to unsupervisedsapdrvised methods for data represen-
tation. Section 8.1 compares RCA to the unsupervised PCAttendully supervised FLD on a
facial recognition task, using the YaleB data set (Belhuretual., 1997). In this application of
face recognition, RCA appears very efficient in eliminatimglevant variability caused by varying
illumination. We also used this data set to test the effedimiensionality reduction using cFLD,
and the sensitivity of RCA to average chunklet size and tte gonount of points in chunklets.

Section 8.2 presents a more realistic surveillance apfjgitén which equivalence constraints
are gathered automatically from a Markovian process. Ini@e8.3 we conclude our experimental
validation by comparing RCA with other methods which make atequivalence constraints in a
clustering task, using a few benchmark data sets from therejiisitory (Blake and Merz, 1998).
The evaluation of different metrics below is presented gisinmulative neighbor puritgraphs,
which display the average (over all data points) percentdg®rrect neighbors among the first
neighbors, as a function &f
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Figure 2: A subset of the YaleB database which conta@2¢ frontal face images df0 individuals
taken under different lighting conditions.

8.1 Applying RCA to facial recognition

The task here is to classify facial images with respect tqp#irson photographed. In these exper-
iments we consider a retrieval paradigm reminiscent ofesareighbor classification, in which a
guery image leads to the retrieval of its nearest neighbdts df-nearest neighbors in the data set.
Using a facial image database, we begin by evaluating neaeggbor classification with the RCA
distance, and compare its performance to supervised anghemssed learning methods. We then
move on to address more specific issues: In 8.1.4 we look nmaselg at the two steps of RCA,
Step 2 (cFLD dimensionality reduction) and Step 3 (whitgninr.t. ), and study their contribu-
tion to performance in isolation. In 8.1.5 the retrievalfpanance of RCA is compared with the
algorithm presented by Xing et al. (2003). Finally in 8.1.6 @valuate the effect of chunklets sizes
on retrieval performance, and compare it to the predictietebdf chunklet size on the variance of
the RCA estimator.

8.1.1 THE DATA SET

We used a subset of the yaleB data set (Belhumeur et al., 18Bich contains facial images of 30
subjects under varying lighting conditions. The data setaios a total of 1920 images, including
64 frontal pose images of each subject. The variability betmimages of the same person is mainly
due to different lighting conditions. These factors caubedvariability among images belonging to
the same subject to be greater than the variability amongésaf different subjects (Adini et al.,
1997). As preprocessing, we first automatically centerkthalimages using optical flow. Images
were then converted to vectors, and each image was repedsesing its firs60 PCA coefficients.
Figure 2 shows a few images of four subjects.

8.1.2 BTAINING EQUIVALENCE CONSTRAINTS

We simulated thédistributed learning’ scenario presented in Section 1 in order to obtain equiva-
lence constraints. In this scenario, we obtain equival@atestraints using the help @f teachers.
Each teacher is given a random selectionLadata points from the data set, and is asked to give
his own labels to all the points, effectively partitioningetdata set into equivalence classes. Each
teacher therefore provides both positive and negativetaints. Note however that RCA only uses
the positive constraints thus gathered. The total numbppiits in chunklets grows linearly with
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T L, the number of data points seen by all teachers. We confissathount, which provides a loose
bound on the number of points in chunklets, by varying the lmemof teacherd” and keepingL
constant. We tested a range of valueg'dbr whichT'L is 10%, 30%, or 75% of the points in the
data se®.

The parameted. controls the distribution of chunklet sizes. More specificave show in
Appendix D that this distribution is controlled by the ratio= % where M is the number of
classes in the data. In all our experiments we have tse@. For this value the expected chunklet
size is roughly2.9 and we typically obtain many small chunklets. Figure 3 shawsstogram of
typical chunklet sizes, as obtained in our experiménts.

30% of points in chunkelts
120 ——

1001
801
601
40¢

201

2 3 4 5 6 7 8 9 10

Figure 3: Sample chunklet size distribution obtained ushegdistributed learning scenario on a
subset of the yaleB data set with20 images fromM = 30 classes. L is chosen such
thatr = % = 2. The histogram is plotted for distributed learning wat% of the data
points in chunklets.

8.1.3 RCAON THE CONTINUUM BETWEEN SUPERVISED AND UNSUPERVISED LEARING

The goal of our main experiment in this section was to as$essalative performance of RCA as
a semi-supervised method in a face recognition task. Toetktisnt we compared the following
methods:

e Eigenfaces (Turk and Pentland, 1991): this unsupervisdtiodeeduces the dimensionality
of the data using PCA, and compares the images using thedeanlimetric in the reduced
space. Images were normalized to have zero mean and uiheari

e Fisherfaces (Belhumeur et al., 1997): this supervised odesharts by applying PCA dimen-
sionality reduction as in the Eigenfaces method. It theis afiehe data labels to compute the
FLD transformation (Fukunaga, 1990), and transforms th& decordingly.

5. In this scenario one usually obtains mostly ‘negativaliegjence constraints, which are pairs of points that are
known to originate from different classes. RCA does use these ‘negative’ equivalence constraints.
6. We used a different sampling scheme in the experimentshndddress the effect of chunklet size, see Section 8.1.6.
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¢ RCA: the RCA algorithm with dimensionality reduction as ciésed in Section 6, that is,
PCA followed by cFLD. We varied the amount of data in constiaprovided to RCA, using
thedistributed learningparadigm described above.
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Figure 4: Left: Cumulative purity graphs for the followintgarithms and experimental conditions:
Eigenface (PCA), RCA0%, RCA30%, RCA75%, and Fisherface (FLD). The percent-
ages stated for RCA are the fractions of data points predd¢atie ‘distributed learning’
oracle, as discussed in Section 8.1.2. The data was redoc@ehénsion 60 using PCA
for all the methods. It was then further reduced to dimen8i@wising cFLD in the three
RCA variants, and using FLD for the Fisherface method. Resutre averaged ovéf
constraints realizations. The error bars give the StanBarors of the Mean (SEMs).
Right: Cumulative purity graphs for the fully supervisedxLwith and without fully
labelled RCA. Here RCA dramatically enhances the perfooaarf FLD.

The left panel in Figure 4 shows the results of the differesthads. The graph presents the
performance of RCA for low, moderate and high amounts of wamed points. As can be seen,
even with low amounts of equivalence constraints the perdmce of RCA is much closer to the
performance of the supervised FLD than to the performandbeofinsupervised PCA. With Mod-
erate and high amounts of equivalence constraints RCA \ahieeighbor purity rates which are
higher than those achieved by the fully supervised Fishesfanethod, while relying only on frag-
mentary chunklets with unknown class labels. This somewstgdrising result stems from the fact
that the fully supervised FLD in these experiments was ntivied by whitening.

In order to clarify this last point, note that RCA can also Isediwhen given a fully labelled
training set. In this case, chunklets correspond uniquadyfally to classes, and the cFLD algorithm
for dimensionality reduction is equivalent to the standakdD. In this setting RCA can be viewed
as an augmentation of the standard, fully supervised FLDgwivhitens the output of FLD w.r.t
the within class covariance. The right panel in Figure 4 shoamparative results of FLD with and
without whitening in the fully labelled case.

In order to visualize the effect of RCA in this task we alscateel some “RCAfaces”, following
Belhumeur et al. (1997): We ran RCA on the images after apglpiCA, and then reconstructed the
images. Figure 5 shows a few images and their reconstrucitearly RCA dramatically reduces
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the effect of varying lighting conditions, and the reconsted images of the same individual look
very similar to each other. The Eigenfaces (Turk and Pedtla891) method did not produce
similar results.

Figure 5: Top: Several facial images of two subjects undiéergint lighting conditions. Bottom:
the same images from the top row after applying PCA and RCAtlaenl reconstructing
the images. Clearly RCA dramatically reduces the effectftérént lighting conditions,
and the reconstructed images of each person look very sitaikach other.

8.1.4 FEPARATING THE CONTRIBUTION OF THE DIMENSIONALITY REDUCTION AND
WHITENING STEPS INRCA

Figure 4 presents the results of RCA including the semi+stigexd dimensionality reduction of
cFLD. While this procedure yields the best results, it mittess separate contributions of the two
main steps of the RCA algorithm, that is, dimensionalityue@n via cFLD (Step 2) and whitening
of the inner chunklet covariance matrix (Step 3). In thepeftel of Figure 6 these contributions are
isolated.

It can be seen that when cFLD and whitening are used sepatatey both provide considerable
improvement in performance. These improvements are ontyapp dependent, since the perfor-
mance gain when combining both procedures is larger thaereitne alone. In the right panel of
Figure 6 we present learning curves which show the perfocmah RCA with and without dimen-
sionality reduction, as a function of the amount of supémigrovided to the algorithm. For small
amounts of constraints, both curves are almost identicalwdy¥er, as the number of constraints
increases, the performance of RCA dramatically improvesnising cFLD.

8.1.5 GOMPARISON WITH THE METHOD OFXING ET AL.

In another experiment we compared the algorithm of Xing et28103) to RCA on the YaleB data
set using code obtained from the author’s web site. The @rpatal setup was the one described in
Section 8.1.2, witt80% of the data points presented to the distributed learningl@raVhile RCA
uses only the positive constraints obtained, the algoritfiding et al. (2003) was given both the
positive and negative constraints, as it can make use of Rathults are shown in Figure 7, showing
that this algorithm failed to converge when given high disienal data, and was outperformed by
RCA in lower dimensions.
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Figure 6: Left: Cumulative purity graphs fdrexperimental conditions: original space, RCA with-
out cFLD, cFLD only, and RCA with cFLD (using the Euclideanrmoin all cases).
The data was reduced 69 dimensions using unsupervised PCA. The semi supervised
techniques used constraints obtained by distributedileg@mith 30% of the data points.
RCA without cFLD was performed in the space of 60 PCA coeffitsewhile in the last
2 conditions dimensionality was further reduce@@ausing the constraints. Results were
averaged oveb0 constraints realizations. Right: Learning curves—neighturity per-
formance for 64 neighbors as a function of the amount of caims. The performance is
measured by averaging (over all data points) the percemthgerrect neighbors among
the first 64 neighbors. The amount of constraints is measused) the percentage of
points given to the distributed learning oracle. Resulesaeraged over 15 constraints
realizations. Error bars in both graphs give the standaaisof the mean.

8.1.6 THE EFFECT OF DIFFERENT CHUNKLET SIZES

In Section 5 we showed that RCA typically provides an estimé&ir the within class covariance
matrix, which is not very sensitive to the size of the chutkleThis was done by providing a
bound on the variance of the elements in the RCA estimatorixm@i(n, k). We can expect that
lower variance of the estimator will go hand in hand with gpurity performance. In order to
empirically test the effect of chunklets’ size, we fixed thanber of equivalence constraints, and
varied the size of the chunklesin the range{2 — 10}. The chunklets were obtained by randomly
selecting30% of the data (total of? = 1920 points) and dividing it into chunklets of siz&’

The results can be seen in Figure 8. As expected the perfommdiRCA improves as the size of
the chunklets increases. Qualitatively, this improvenagmees with the predicted improvement in
the RCA estimator’s variance, as most of the gain in perfoceas already obtained with chunklets
of size § = 3. Although the bound presented is not tight, other reasong awaount for the
difference between the graphs, including the weaknesseoGtssian assumption used to derive
the bound (see Section 9), and the lack of linear connecttwden the estimator’s variance and
purity performance.

7. When necessary, the remainimgd(0.3P, S) points were gathered into an additional smaller chunklet.
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Figure 7: The method of Xing et al. (2003) and RCA on the YalaBidl image data set. Left:
Neighbor purity results obtained using 60 PCA coefficiemtse algorithm of Xing et al.
(2003) failed to converge and returned a metric with chaegellperformance. Right:
Results obtained using 3 dimensional representation, obtained by applying cFLD to
the 60 PCA coefficients. Results are averaged difeconstraints realizations. The error
bars give the standard errors of the mean.
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Figure 8: Left: Mean error rate on all 64 neighbors on theBalata set when usirt)% of the data
in chunklets. In this experiment we varied the chunkletsizhile fixing the total amount
of points in chunklets. Right: the theoretical bound overrttio between the variance of
the RCA matrix elements and the variance of the best poss#timator using the same
number of points (see inequality 12). The qualitative bavasf the graphs is similar,
seemingly because a lower estimator variance tends to ibgtter purity performance.

8.2 Using RCA in asurveillance application

In this application, a stationary indoor surveillance cearprovided short video clips whose begin-
ning and end were automatically detected based on the apmeaand disappearance of moving
targets. The database therefore included many clips, d@aplaging only one person of unknown
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Figure 9: Left: several images from a video clip of one ingudRight: cumulative neighbor purity
results before and after RCA.

identity. Effectively each clip provided a chunklet. Thekan this case was to cluster together all
clips in which a certain person appeared.

Thetask and our approach: The video clips were highly complex and diversified, for sale
reasons. First, they were entirely unconstrained: a pecsofd walk everywhere in the scene,
coming closer to the camera or walking away from it. Thereftire size and resolution of each
image varied dramatically. In addition, since the envirentrwas not constrained, images included
varying occlusions, reflections and (most importantly froor perspective) highly variable illu-
mination. In fact, the illumination changed dramaticallyr@ss the scene both in intensity (from
brighter to darker regions), and in spectrum (from neontlighmatural lighting). Figure 9 shows
several images from one input clip.

We sought to devise a representation that would enable fihetigé clustering of clips, focusing
on color as the only low-level attribute that could be rdijalised in this application. Therefore our
task was to accomplish some sort of color constancy, thab isyercome the general problem of
irrelevant variability due to the varying illumination. iBhs accomplished by the RCA algorithm.

Image representation and RCA Each image in a clip was represented by its color histogram
in L*a*b* space (we used 5 bins for each dimension). We used the clipsuaklets in order to
compute the RCA transformation. We then computed the distéetween pairs of images using
two methodsi 1 and RCA (Mahalanobis). We used over 6000 images from 138 @dipunklets) of
20 different people. Figure 9 shows the cumulative neigloity over all 6000 images. One can
see that RCA makes a significant contribution by bringingrect’ neighbors closer to each other
(relative to other images). However, the effect of RCA omiegal performance here is lower than
the effect gained with the YaleB data base. While there masebseral reasons for this, an important
factor is the difference between the way chunklets weremddan the two data sets. The automatic
gathering of chunklets from a Markovian process tends teigeochunklets with dependent data
points, which supply less information regarding the witbliss covariance matrix.

64



MAHALANOBIS METRIC FROMEQUIVALENCE CONSTRAINTS

8.3 RCA and clustering

In this section we evaluate RCA's contribution to clustgriand compare it to alternative algorithms
that use equivalence constraints. We used six data setstfi@itdCI repository. For each data set
we randomly selected a @t of pairwise positive equivalence constraints (or chursktdtsize 2).
We compared the following clustering algorithms:

a. K-means using the default Euclidean metric and no sideqimétion (Fukunaga, 1990).

b. Constrained K-means + Euclidean metric: the K-means versiggested by Wagstaff et al.
(2001), in which a pair of pointér;, z;) € Qp is always assigned to the same cluster.

¢. Constrained K-means + the metric proposed by Xing et al. 30The metric is learnt from
constraints inQp. For fairness we replicated the experimental design enapldyy Xing
et al. (2003), and allowed the algorithm to treat all unc@ised pairs of points as negative
constraints (the se&py).

d. Constrained K-means + RCA: Constrained K-means using th& R&halanobis metric learned
from Qp.

e. EM: Expectation Maximization of a Gaussian Mixture modeifig no side-information).

f. Constrained EM: EM using side-information in the form of ®glence constraints (Shental
et al., 2003), when using the RCA distance metric as thelmitietric.

Clustering algorithmsg ande are unsupervised and provide respective lower bounds fopadson
with our algorithmsd and f. Clustering algorithm$ andc compete fairly with our algorithnd,
using the same kind of side information.

Experimental setup To ensure fair comparison with Xing et al. (2003), we usedtyahe same
experimental setup as it affects the gathering of equiealaronstraints and the evaluation score
used. We tested all methods using two conditions, with: Ififi¢” side-information@p, and (ii)
“much” side-information. The set of pairwise similarityrigiraints@) p was generated by choosing
a random subset of all pairs of points sharing the same ots¥ity ¢;. Initially, there areN
‘connected components’ of unconstrained points, wiélie the number of data points. Randomly
choosing a pairwise constraint decreases the number okcteth components bl at most. In
the case of “little” (“much”) side-information, pairwiseonstraints are randomly added until the
number of different connected componeiifs is roughly0.9N (0.7N). As in the work of Xing
et al. (2003), no negative constraints were sampled.

Following Xing et al. (2003) we used a normalized accuraeyescthe "Rand index” (Rand,
1971), to evaluate the partitions obtained by the diffeduastering algorithms. More formally,
with binary labels (or two clusters), the accuracy measarele written as:

3 H{ei = ¢} = 1{é = ¢}}

= 0.5m(m — 1)

where1{} denotes the indicator functiofl {True} = 1),1{False} = 0), {¢;}*, denotes the
cluster to which pointz; is assigned by the clustering algorithm, apdlenotes the “correct” (or
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desirable) assignment. The score above is the probaltiitythe algorithm’s decision regarding the
label equivalence of two points agrees with the decisiomeftrue” assignment. &
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Figure 10: Clustering accuracy on 6 UCI data sets. In eacélptne six bars on the left correspond

to an experiment with "little” side-information, and thexdiars on the right correspond
to "much” side-information. From left to right the six barsreespond respectively to
the algorithms described in the text, as follows: (a) K-ngeawer the original feature
space (without using any side-information). (b) Conseédii-means over the original
feature space. (c) Constrained K-means over the featuoe spggested by Xing et al.
(2003). (d) Constrained K-means over the feature spaceeckéy RCA. (e) EM over
the original feature space (without using any side-infdiom. (f) Constrained EM
(Shental et al., 2003) over the feature space created by RGA. shown areP—the
number of pointspM—the number of classef—the dimensionality of the feature space,
and K.—the mean number of connected components. The results weragad over
20 realizations of side-information. The error bars give ttendard deviations. In all
experiments we used K-means with multiple restarts as i dgrXing et al. (2003).

Figure 10 shows comparative results using six different d&h sets. Clearly the RCA met-
ric significantly improved the results over the original Keams algorithms (both the constrained
and unconstrained versions). Generally in the context ofidéans, we observe that using equiva-
lence constraints to find a better metric improves resultshnmore than using this information to
constrain the algorithm. RCA achieves comparable resniltsdse reported by Xing et al. (2003),
despite the big difference in computational cost betweertwo algorithms (see Section 9.1).

8. As noted by Xing et al. (2003), this score should be noredliwhen the number of clusters is larger than 2. Nor-
malization is achieved by sampling the pai#s, =;) such that; andz; are from the same cluster with probability
0.5 and from different clusters with probability 0.5, sotttraatches” and “mismatches” are given the same weight.

66



MAHALANOBIS METRIC FROMEQUIVALENCE CONSTRAINTS

The last two algorithms in our comparisons use the EM algorito compute a generative
Gaussian Mixture Model, and are therefore much more cortipodly intensive. We have added
these comparisons because EM implicitly changes the distmction over the input space in a
locally linear way (that is, like a Mahalanobis distance)mhby therefore appear that EM can do
everything that RCA does and more, without any modificatibhe histogram bins marked by (e)
in Figure 10 clearly show that this is not the case. Only whenagd constraints to the EM, and
preprocess the data with RCA, do we get improved results@grsby the histogram bins marked
by (f) in Figure 10.

9. Discussion

We briefly discuss running times in Section 9.1. The appilitplof RCA in general conditions is
then discussed in 9.2.
9.1 Runtime performance

Computationally RCA relies on a few relatively simple matperations (inversion and square root)
applied to a positive-definite square matrix, whose siz@éeasreéduced dimensionality of the data.
This can be done fast and efficiently and is a clear advantbiie @algorithm over its competitors.

9.2 Using RCA when the assumptions underlying the method are violated

Figure 11: Extracting the shared component of the covagianatrix using RCA: In this exam-
ple the data originates from 2 Gaussian sources with theviolg diagonal covariance
matrices:diag(C1) = (e, 1,2) anddiag(C2) = (1,€,2). (a) The original data points
(b) The transformed data points when using RCA. In this exame used all of the
points from each class as a single chunklet and thereforehtingklet covariance matrix
is the average within-class covariance matrix. As can be B&A clearly down-scales
the irrelevant variability in the Z axis, which is the shammponent of the 2 classes
covariance matrices. Specifically, the eigenvalues of theiance matrices for the
two classes are as follows (fer= 0.1): class 143.947,1.045,0.009) before RCA,
and (1.979,1.001,0.017) after RCA; class 2(3.953,1.045,0.010) before RCA, and
(1.984,1.001, 0.022) after RCA. In this example, the condition numbers incredsed
factor of3.78 and4.24 respectively for both classes.
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In order to obtain a strict probabilistic justification foCR, we listed in Section 5 the following
assumptions:

1. The classes have multi-variate normal distributions.

2. All the classes share the same covariance matrix.

3. The points in each chunklet are an i.i.d sample from thescla

What happens when these assumptions do not hold?

The first assumption gives RCA its probabilistic justifioati Without it, in a distribution-free
model, RCA is the best linear transformation optimizing thiéeria presented in Sections 3-4:
maximal mutual information, and minimal within-chunklesnce. These criteria are reasonable
as long as the classes are approximately convex (as asswtbd bse of the distance between
chunklet’s points and chunklet's means). In order to irge$e¢ this point empirically, we used
Mardia’s statistical tests for multi-variate normality &lia, 1970). These tests (which are based on
skewness and kurtosis) showed that all of the data setssed éxperiments are significantly non-
Gaussian (except for the Iris UCI data set). Our experinheataults therefore clearly demonstrate
that RCA performs well when the distribution of the classethe data is not multi-variate normal.

The second assumption justifies RCA's main computatiomgl, sthich uses the empirical aver-
age of all the chunklets covariance matrices in order tanedé the global within class covariance
matrix. When this assumption fails, RCA effectively extsaihe shared component of all the classes
covariance matrices, if such component exists. Figure é&gmts an illustrative example of the use
of RCA on data from two classes with different covariancerioes. A quantitative measure of
RCA's partial success in such cases can be obtained fromhtrge in thecondition numbethe
ratio between the largest and smallest eigenvalues) of ititwnvelass covariance matrices of each
of the classes, before and after applying RCA. Since RCArgite to whiten the within-class co-
variance, we expect the condition number of the withinglemvariance matrices to decrease. This
is indeed the case for the various classes in all of the dégaised in our experimental results.

The third assumption may break down in many practical apptios, when chunklets are auto-
matically collected and the points within a chunklet areomger independent of one another. As a
result chunklets may be composed of points which are ratbse ¢to each other, and whose distribu-
tion does not reflect all the typical variance of the truerdistion. In this case RCA's performance
is not guaranteed to be optimal (see Section 8.2).

10. Conclusion

We have presented an algorithm which uses side-informatitre form of equivalence constraints,
in order to learn a Mahalanobis metric. We have shown thahmthod is optimal under several
criteria. Our empirical results show that RCA reduces éveht variability in the data and thus
leads to considerable improvements in clustering andrdisthased retrieval.
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Appendix A. Information Maximization with non-invertible linear transfor mations

Here we sketch the proof of the claim made in Section 3.3. Asrbewe denote by the average
covariance matrix of the chunklets. We can rewrite the caimstd expression from Equation 5 as:

1 & . .
~ S (mji — my) AP Az — my) = tr(A'AC) = tr(A'CA)
j=1i=1
Hence the Lagrangian can be written as:
log |AS, AY| — A(tr(ACAY) — 1)
Differentiating the Lagrangian w.r.t A gives
Y ANAS AN = MCA!

Multiplying by A and rearranging terms, we gét:: ACAt. Hence as in RCA4 must whiten

the data with respect to the chunklet covaria6tim a yet to be determined subspace. We can now
use the equality in (5) to find.

tr(A(:*At):tr(é) :%:1:> A=K
N 1

ACA = —T

= AC I

whereK is the dimension of the projection subspace.
Next, since in our solution spackC' A* = X1, it follows thatlog | AC A?| = K log = holds for
all points. Hence we can modify the maximization argumerfobews

AX AY 1
log |AX Al = lo |A7w+Klo —
g |AZ, A’ 8 AC AT 8%

Now the optimization argument has a familiar form. Itis kmoffukunaga, 1990) that maximiz-
ing the determinant ratio can be done by projecting the spagke span of the firdk eigenvectors
of C~13,. Denote byG the solution matrix for this unconstrained problem. Thignixaorthogo-
nally diagonalizes botly' andX,, soGCG* = A; andGX, G = A, for A, A, diagonal matrices.
In order to enforce the constraints we define the matrix /+A7%°G and claim thatd is the
solution of the constrained problem. Notice that the valihe® maximization argument does not
change when we switch from to G since A is a product ofG and another full ranked matrix. It
can also be shown that satisfies the constraints and is thus the solution of thel&rolb).

Appendix B. Variance bound on the RCA covariance estimator

In this appendix we prove Inequality 12 from Section 5. Asswme haveV = nk data pointsX =
{xji}?:’kl,j:l in n chunklets of sizé each. We assume that all chunklets are drawn independently
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from Gaussian sources with the same covariance matrix. tibgnby m; the mean of chunklet i,
the unbiased RCA estimator of this covariance matrix is

) 13 1 &
C(’I’L, k) = 5 Z m Z(fﬂgz - mz)(xgz - mi)T
j=1 1

1=

It is more convenient to estimate the convergence of ther@nee estimate for data with a
diagonal covariance matrix. We hence consider a diagathiizrsion of the covariance, and return
to the original covariance matrix toward the end of the prooét U denote the diagonalization
transformation of the covariance matiix of the Gaussian sources, that 8CU? = A where
A is a diagonal matrix with{\;}2, on the diagonal. LeZ = UX = {zji}?jl,j:l denote the
transformed data. Denote the transformed within classrizvge matrix estimation bg™(n, k) =
UC(n,k)U*, and denote the chunklet meansrayf = Um,;. We can analyze the variance@f as
follows:

n k
var(é’”(n, k) = var[% Z ﬁ Z(ij‘ —m;') (i — mg)T]
=1 =1
1 1 i u u\T'
= var[z— D (#i —m)(z; —m})"] (15)
i=1

The last equality holds since the summands of the extermalsse sample covariance matrices of
independent chunklets drawn from sources with the sameiaoeca matrix.

The variance of the sample covariance, assessedArpaints, for diagonalized Gaussian data
is known to be (Fukunaga, 1990)

A 2)2 A A\ A oa
var(Ci;) = Z _11; var(Cj;) = Zk]; cov(Cij,Cy) =0
hence (15) is simply:
2)7 -

var(é’{é) = var( A“) = /\72 J. cov(Cy C’;‘l) =0

n(k—l);

ReplacingN = nk, we can write

A 2)\? A A ry A
var(Cj) = ]\/.(17_1%); var(Cjj) = ;V-J; cov(C;, Cpp) =0
and for the diagonal ternG:
oy N 222k 2X ko 2x2 k

'uar(C”(Z, k)i;) = var(C*(1, N);;)

TNI-1) E-IN “k-IN-1 k-1

This inequality trivially holds for the off-diagonal covance elements.
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Getting back to the original data covariance, we note thahatrix elements notatioﬁ?’ij =

Zf’r:l C‘}I‘TUiqu,« whereD is the data dimension. Therefore

varCij(n, k)] Lgret var[C®(n, k)gUigUjs) - Y oret B7var[C(1L,nk) o UiUy ] k

var[éij(l,nk)] Z(frzl var[Cu(1,nk) g UigUsr] ~ EZTZI var[Cu(1,nk) e UsqUjr] k-1

~

where the first equality holds because (C%, C%) = 0

YR

Appendix C. Online RCA with chunklets of general size

The online RCA algorithm can be extended to handle a streaohwiklets of varying size. The
procedure is presented in Algorithm 4.

Algorithm 4 Online RCA for chunklets of variable size

Input: a stream of chunklets where the points in a chunkkekaown to belong to the same class.
Initialize W to a symmetric random matrix witiV || << 1.

At time step T do:

o receive a chunklefz? ..., zZ'} and compute its mean” = 1 3" | 27T,
o computen difference vectorg! = z7 — mT;

e transformh! usingW, to gety! = Wh!;

o updateW = W + 137 (W — yf (4] )'W).

wheren > 0 determines the step size.

The steady state of the weight matiiX can be analyzed in a way similar to the analysis in
Section 3. The result & = PE[L Y (a7 — mT) (2] — mT)*~2 whereP is an orthonormal
matrix, and sd¥ is equivalent to the RCA transformation of the current disition.

Appendix D. The expected chunklet sizein the distributed learning paradigm

We estimate the expected chunklet size obtained when usindistributed learning paradigm in-
troduced in Section 8. In this scenario, we use the help tdachers, each of which is provided
with a random selection of. data points. Let us assume that the data contadnequiprobable
classes, and that the size of the data set is large relatie ©efine the random variables as
the number of points from clagsobserved by teachgr Due to the symmetry among classes and
among teachers, the distribution of is independent of andj, thus defined as. It can be well
approximated by a Bernoulli distributioB (L, ﬁ), while considering onlyz > 2 (sincez = 0,1

do not form chunklets). Specifically,

plz = ils #0,1) = — ! 5 ( L ) (%)1(1_%%1 i=23,.
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We can approximatg(z = 0) andp(z = 1) as
1 L

Ple=0)=(1--) ~e ¥ , pla=1)=1-01-2) m~ e n

Using these approximations, we can derive an approximdgiothe expected chunklet size as
a function of the ratio- = &

b —plo=1 =)
(z

E(x|m7é0,a:7é1)=1_ :0)_p($:1):1—(r+1)e"“
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Abstract

We consider the problem of learning a similarity function from a set of positive
equivalence constraints, i.e. 'similar’ point pairs. We define the similarity in infor-
mation theoretic terms, as the gain in coding length when shifting from indepen-
dent encoding of the pair to joint encoding. Under simple Gaussian assumptions,
this formulation leads to a non-Mahalanobis similarity function which is efficient
and simple to learn. This function can be viewed as a likelihood ratio test, and
we show that the optimal similarity preserving projection of the data is a variant
of Fisher Linear Discriminant. We also show that under some naturally occur-
ring sampling conditions of equivalence constraints, this function converges to
a known Mahalanobis distance (RCA). The suggested similarity function exhibits
superior performance over alternative Mahalanobis distances learnt from the same
data. Its superiority is demonstrated in the context of image retrieval and graph
based clustering, using a large number of data sets - a facial image database, ani-
mal images, digits (MNist) and data sets from the UCI repository.

1 Introduction

Similarity functions play a key role in several learning and information processing tasks. One ex-
ample is data retrieval, where similarity is used to rank items in the data base according to their
similarity to some query item. In unsupervised graph based clustering, items are only known to
the algorithm via the similarities between them, and the quality of the similarity function directly
determines the quality of the clustering results. Finally, similarity functions are employed in several
prominent techniques of supervised learning, from nearest neighbor classification to kernel ma-
chines. In the latter the similarity takes the form of a kernel function, and its choice is known to be
a major design decision.

Good similarity functions can be designed by hand [13, 9] or learnt from data [6, 1, 15, 10, 11]. As
in other contexts, learning can help; so far, the utility of distance function learning has been demon-
strated in the context of image retrieval (e.g., [16]) and clustering (e.g., [15]). Since a similarity
function operates on pairs of points, the natural input to a distance learning algorithm consists of
equivalence constraints, which are pairs of points labeled as 'similar’ or 'not-similar’ (henceforth
called positive and negative equivalence constraints respectively). Several scenarios have been dis-
cussed in which constraints, which offer a relatively weak form of supervision, are readily available,
while labels are much harder to achieve [17]. For example, given temporal data such as video or
surveillance data, constraints may be automatically obtained based on temporal coherence.

In this paper we derive a similarity measure from general principles, and propose a simple and prac-
tical similarity learning algorithm. In general the notion of similarity is somewhat vague, involving
possibly conflicting intuitions. One intuition is that similarity should be related to commonalities,
i.e., two objects are similar when they share many features. This direction was studied by [4], and
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is most applicable to items described using discrete features, where the notion of common features
is natural. Another intuition, suggested by [2], measures similarity by the plausibility of a common
generative process. This notion draws attention to models of the hidden sources and the processes
generating the visible items, which has two drawbacks: First, these models and processes are rel-
atively complex and hard to estimate from data, specifically from equivalence constraints (indeed,
learning is not discussed in [2]). Second, if such models are already known, the tasks of clustering
and classification can be readily done using the models directly, and so similarity judgments are not
required.

Our approach focuses on the purposes of similarity judgment, which is usually to decide whether two
items belong to the same class. Hence, like [2], we relate similarity to the probability of two items
belonging to the same cluster. However, unlike [2], we model the joint distribution of 'pairs from the
same cluster’ directly, and estimate it from positive equivalence constraints. Given this distribution,
the notion of similarity is related to the shared information between two points, or equivalently, to
the information one conveys about the other. This notion is formally presented in Section 2.1.

One of the main contributions of this paper is the specific application of this abstract similarity no-
tion to continuous variables. Specifically, in Section 2.2 we develop this notion under Gaussian as-
sumptions, deriving a simple similarity formula which is nevertheless different from a Mahalanobis
metric. Intuitively, in the Gaussian setting the similarity between two peiahdz’ is computed

by usingz’ to predictz via linear regression. The similarity is then relateddg p(z|z"), which
encodes the error of the prediction. Now learning the similarity requires only the estimation of two
correlation matrices, which can be readily estimated from equivalence constraints.

The suggested similarity is strongly related to Fisher Linear Discriminant (FLD). The matrices em-
ployed in its computation are those involved in FLD, i.e., the within-class and between-class scatter
matrices [5]. In Section 3 we show that FLD can be derived from our similarity as the optimal linear
projection. Specifically, when coding similarity is regarded as a likelihood ratio test, FLD is the pro-
jection maximizing the expected margin of the test. In addition, we explore the connection between
coding similarity and the Mahalanobis metric. We show that in a certain large sample limit, coding
similarity converges to the Mahalanobis metric estimated by the RCA algorithm [1].

To evaluate our method, in Section 4 we experimentally explore two tasks: semi-supervised graph
based clustering, and retrieval from a facial image database. Graph based clustering is evaluated
using data sets from the UCI repository [3], as well as two harder data sets: the MNist data set
of hand-written digits [18], and a data set of animal images [16]. We used the YaleB data set of
facial images [8] for face retrieval experiments. In both tasks Gaussian Coding Similarity (GCS)
significantly outperforms the Mahalanobis metric, learnt by two readily available algorithms [6, 1].
Note that the method of [6] employs both positive and negative equivalence constraints and is based
on non-linear optimization (thus its computation is rather complex), while [1] offers a closed-form
solution based on positive constraints alone. The computational cost of coding similarity is low,
similar to RCA [1] and much smaller than in the method of [6].

2 Similarity based on Coding Length

We introduce the general notion of similarity based on coding gain in Section 2.1, and consider the
implementation of this notion under Gaussian assumptions in Section 2.2.

2.1 General definition

Intuitively, two items are similar if they share common aspects, whereby one can be used to predict
some details of the the other. Learning similarity is learning what aspects tend to be shared more then
others, hence it is naturally related to the joint distribuidm, «'| H, ), whereH, is the hypothesis
stating that the two points originate from the same source. We estjrfate’| H, ), and define the
similarity between two items, 2’ to be the information one conveys about the other. We measure
this information using the coding length, i.e. the negative logarithm of an event [14]. The similarity

is therefore defined by the gain in coding length obtained by encadinigenz’ is known.

codsim(z,z') = cl(x) — cl(z|x’, Hy) = log p(z|z’, H) — log p(x) 1)
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As stated in [2], this measurement can be also viewed as a log-likelihood ratio statistic:
plz,a'|Hy) o p(z, @'|Hy)
p(z)p(a’) p(z,2'|Ho)

whereH, denotes the hypothesis stating independence between the points. The coding similarity is
therefore the optimal statistic for determining whether two points are drawn from the same class or
independently. We can also see from this last equation that it is a symmetric function.

log p(z|z’, Hy) — log p(z) = log 2

Consider data sampled from several sourceRini.e. p(x) = ZkM:1 agp(x|h;), wherep(x|h;)
denotes the distribution of theth source. A simple form fop(z, ’| H;) is obtained when the two
points are conditionally independent given the hidden source:

M
ple,'[Hy) = axp(a|hy)p(a'|hr) ®)
k=1

This distribution, defined over pairs, corresponds to sampling pairs by first choosing the hidden
source, followed by the independent choice of two points from this source. In Section 3.2 we
discuss a common case in which the conditional independence between the points is violated.

2.2 Gaussian coding similarity
We now develop the coding similarity notion under some simplifying Gaussian assumptions:

e p(z,2'|H,) is Gaussian (imk>?)
o p(z) = [p(w,a'|H) = [ p(z,2'|H)

The second assumption is the reasonable (though not always trivially satisfied) demaw(d: that
should be the marginal distribution ofz, 2’| H;) w.r.t both arguments. It is clearly satisfied for
distribution (3). It follows from the first assumption that:) is also Gaussian (if®?). The first as-
sumption is clearly a simplification of the true data density in all but the most trivial cases. However,
its value lies in its simplicity, which leads to a coding scheme that is efficient and easy to estimate.
While clearly inaccurate, we propose here that this model can be very useful.

We assume w.l.0.g that the data’s mea# {stherwise, we can subtract it from the data), and so we
can parameterize the two distributions using two matrices. Denoting the Gaussian distribution by
G(-|p, ¥) we have

p(z) = G(2]0, %) (4)

p($,$/|H> — G(.Z‘,.’L‘/|07221) 221 — ( sz/ Zgg;, )

whereY, = Elzz'], ¥,,» = E[z(2')!]. The conditional density(z|z’, H) is also Gaussian
G(x|Mz', ¥y),0) [12], with M, ¥,/ given by

M=%w3" S = Te — Tew Ty Tear (5)
Plugging this into Eqg. (1), we get the following expression for Gaussian coding similarity:
log p(z|a’, Hy) —logp(z) = logG(z|Ma’,5y,r) —log G(]0, X,) (6)
! [log 1% | +aty e — (- Mx’)tzgli, (x — Mz")]

The Gaussian coding similarity can be easily and almost instantaneously learnt from a set of positive
equivalence constraints, as summarized in Algorithm 1. Learning includes the estimation of several
statistics, mainly the matrices,,>,,, from which the matriced/, ¥, |, are computed. Notice

that each constraint is considered twice, onceras’) and once ag:’, =), to ensure symmetry and

to satisfy the marginalization demand. Given those statistics, similarity is computed using Eq. (8),
which is based on Eq. (6) but with the multiplicative and additive constants removed.
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Algorithm 1 Gaussian coding similarity
Learning procedure:
Input: a set of equivalence constraifts, z; }._ 1, and optionally a dimension parameter

1. Compute the meaff = Zf\il[%‘ + z}] and subtract it from the training data
2. Estimate:,, >,/

N
1

3. If dimensionality reduction is required, find thesigenvectors with the highest eigenvalues
of ¥, 1%, and put them intod € M ;..

Lety, = A'Y, A S, = AP A, Z=7A
4. ComputeM andX,,. according to Eq. (5).

Returnz, M, %71, 27 1 , and A (if computed).

Similarity computation for a paifz, «’):
If Aisdefined,lett =2A -2 ,2' =2’A—- 7 elseletr—x—Z,x’:a:’—Z.
Return codsim(z,2') = 2'S,; 'z — (x — Ma')'S \»c' (x — Mx") (8)

3 Relation to other methods

In this section we provide some analysis connecting Gaussian coding similarity as defined above to
other known learning techniques. In Section 3.1 we discuss the underlying connection between GCS
and FLD dimensionality reduction. In Section 3.2 we show that under certain estimation conditions,
the dominant term in GCS behaves like a Mahalanobis metric, and specifically that it converges to
the RCA metric [1].

3.1 Dimensionality reduction and the optimality of FLD

As defined in Egs. (5)-(8), the coding similarity depends on two matrices only - the data covariance
matrix 33, and the covariance between pairs from the same salyge To establish the connection
to FLD, let us first consider the expected valueXlf,, under distribution (3):

//Zakp x|hg)p(’ |hy )2 (2")" 9)

T,k:l

Ep(w,x’lHl)[x(x/)t}

T

M
= Z apE (th Ep(w’\hk) [(I/)t} = Z O‘k’mkmz
k=1

The expected value above, wh|ch gives the convergence lindit,of as estimated in Eq. (7), is
essentially the between-class scatter matsixused in FLD [5]. The main difference between the
estimation ofx,.., in Eq. (7) and the traditional estimation §f is the training data, equivalence
constraints vs. labels respectively. Also, whilg is always of rankk — 1 and so is its estimator
based on labeled data, our estimator from Eq. (7) is usually of full rank.

When the data distributiongz, z’'| H,) andp(z) lie in high dimensional space, in many cases the
projection into a lower dimensional space may increase learning accuracy (by dropping irrelevant
dimensions) and computational efficiency. We now characterize the notiptinfal dimensionality
reductionbased on the ’natural margin’ of the likelihood ratio test. This test gives the optimal
rule [14] for deciding between two hypothesHg and H,, where the data comes from a mixture
p(z) = ap(z[Ho) + (1 — a)p(x|Hy):

p(X|Hy) -«
p(X[Hy) ~ % s (10)

decide Hy = log
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Hypothesis margin: Let the label of point: be1 if hypothesisH, is true, and-1 if Hy is true. The

natural margin of a point can be defined ag (log % —log 1=2).

Given this definition, the expected margin of the test is
p(x[h) l-a

Erly(a) log 1ot - ) ()
- a/p(gj|h1)[log ig:;;; —log 1?Ta}dx —(1-a) /p(:c|ho)[log zgz;; —log 1 ;a]dx

aDy[p(x|hy)||p(lho)] + (1 = @) Dralp(z|ho)lp(x[h1)] + (1 — 2a) log

Optimal dimensionality reduction: A € M, is the optimal linear projection from dimensian
to k if it maximizes the expected margin defined above.

Theorem 1. Assume Gaussian distributiopéz, /| H,) in R?*? andp(z) in R¢, and a linear pro-
jection A € Mgy, wherez = Alz. Forall 0 < « < 1, the optimalA4
At = irgj\;naanm[p(z, Z|H)llp(z,2'|Ho)] + (1 — a) Dui[p(z, 2’| Ho) |p(2, 2’| H1)]  (12)
EMaxk
is the FLD transformation. Thud is composed of the eigenvectors of; 13, with the highest
eigenvalues.

The proof of this theorem is relatively complex and we only describe here a very general sketch.
Since the distributions involved in Eq. (12) are Gaussian,g:||-] can be written in closed-

form for which we can write an upper bound, where we AéEx|x/A to approximater. ., . The
approximate bound, for fixed, can be shown to obtain its maximal value at theigenvectors of
E;‘;,Zx with the highest eigenvalues. These vectors, in turn, are identical to the highest eigenvectors

of ¥, 13,.. Finally, itis shown that the optimum of the upper bound is also obtained by the original
expression, using the same matAx

3.2 The Mahalanobis limit

Above we have considered specifically coding similarity with pairs distribution of the form (3).
However, in practice the source of equivalence constraints may not produce an unbiased sample
from distribution (3). Specifically, equivalence constraints which are obtained automatically, e.g.
from a surveillance camera, are often biased and tend to include only very similar (close in the
Euclidean sense) points in each pair. This happens since constraints are extracted based on temporal
proximity, and hence include highly dependent points. When the points in all pairs are very close to
each other, the best regression from one to the other is close to the identity matrix. The following
theorem states that under these conditions, coding similarity converges to a Mahalanobis metric.
Theorem 2. Assume that equivalence constraints are generated by sampling the first:foim
p(z) and thenz’ from a small neighborhood of. DenoteA = (z — 2’)/2. Assume that the
covariance matrix>n < €X,, wheree > 0 and A < B stands for "B — A is a p.s.d matrix”. Then
codsim(z, ") S (x —2")(43A) Nz — 7)) (13)

e—

where the limitis in the sense thatr) — f(x) iff g(z)/f(z) — 1.

Proof. We concentrate on approximating the second term in Eg. (8), which involveslaottz’.
Denotez = (z +2')/2,s0x =T+ A, 2’ = & — A. We get the following estimates faf, , X,,:

1 1
Y, = 5E(g’c —A)(zZ - A+ §E(§3 + AT +A) =%+ %A
Yor = E(Z+A)(Z —A) =%z — XA
We therefore see that,,, = ¥, — 2¥4, and obtain the following approximations fof,3,,,:

M=%,w3 = (2, —28A)8, ' =T —28A8 ' > T —2¢
o = Sa — (I = 2848, ) (Z — 284) =454 — 48, 'S8 > 4841 —¢)
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Figure 1: Cumulative neighbor purity curves férdata sets from the UCI repository. The Y axis shows the
percentage of correct neighbors vs the number of neighbors considered (the X axis). In each graph we compare
3 methods: Gaussian coding similarity, RCA and the Euclidean metric, with and without constraint-based LDA.
Results were averaged oV realizations.

Since the bounded matrix above{X ') is p.s.d, we get that/ = I +O(e) and®,,» = 45 (I +
O(e)).

Returning to Eq. (8), we note that the first tefm< z'S, 12 < extzglx is negligible w.r.t the
second in the limit ot — 0. Therefore the first term can be rigorously ommitted, and we get:

codsim(z,2') ~ —(x—[[+0()]2) 4Za(I+0(e)] ™" (z — [+ O(e)]z)
—  —(z—2)(4ZA) Nz —2)

e—0
Note thatcodsim(z, ') is negative as appropriate, since it measures similarity rather than distance.
O

The Mahalanobis matriXa = E, ;. m,) [ — (z+2')/2] is actually the inner chunklet covariance
matrix, as defined in [1]. It is therefore the RCA transformation, estimated from the population of
'near’ point pairs.

4 Experimental validation

Following [17], we obtained equivalence constraints by simulatidgsaibuted learningscenario,

in which small subsets of labels are provided by a number of uncoordinated teachers. Accordingly,
we randomly chose small subsets of data points from the dataset and partitioned each subset into
equivalence classes. The constraints obtained from all the subsets are gathered and used by the
coding similarity and competing methods. In all the experiments we chose the size of each subset to
bes = 2M, whereM is the number of classes in the data. In each experiment welsiéﬂcbsets,
whereN is the total number of points in the data. Notice that the number of equivalence constraints
thus provided typically includes only a small fraction of all possible pairs of data points, which is
O(N?). Whenever tested, the method of [6] is given both the positive and the negative constraints,
while coding similarity and RCA use only the positive constraints.

We first examine experimentally the relation between coding similarity, FLD and RCA, and report
comparative results in Section 4.1. We then present experiments in semi-supervised clustering in
Section 4.2, where the data is augmented by equivalence constraints. Finally, in Section 4.3 we test
Gaussian coding similarity in a face retrieval task.

4.1 Coding similarity and FLD

Given the fundamental relation between GCS and constraints-based FLD, we first verify that GCS
indeed offers independent contribution to similarity judgment. We are also interested in the com-
parison to the RCA algorithm, for which constraints-based FLD is also known to be the optimal
dimensionality reduction [1]. Thus we have compared the Euclidean, RCA and GCS distances with
and without constraints-based FLD o®edata sets from the UCI repository. Figure 1 shows cumu-
lative neighbor purity plots foB representative data sets, where the purity is averaged over all the
points in the data, used as queries.

Several effects can be seen in this experiment: First, the Gaussian coding similarity has a significant
advantage over RCA and the Euclidean metric before FLD is applied (in afle&#te9 data sets).
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Figure 2:Clustering performance with the average linkage clustering algorithm using several similarity func-
tions, with 5 data sets: 3 from the UCI repository [3], one collection of animal images, and digits from the
MNist database. Performance is measured usingﬁt;ne: % score, whereP denotes precision rate and

R denotes recall rate. The results are averaged @yeonstraint realizations. (Similar results were obtained

using other agglomerative clustering algorithms.)

Second, the constraints-based FLD usually enhances purity for all three methods. Finally, in most
cases, coding similarity offers additional contribution to neighbor purity beyond the improvement
obtain by FLD, or by FLD+RCA.

4.2 Clustering with equivalence constraints

Graph based clustering includes a rich family of algorithms, among them are the relatively simple
agglomerative linkage algorithms used here [5]. In graph based clustering, pairwise similarity is
the sole source of information regarding the clustered data. Given equivalence constraints, one can
adapt the similarity function to the specific problem, and improve clustering results considerably.
In our experiments, we have evaluated clustering results using the following distance functions: a)
the Euclidean metric, b) the 'whitening’ Mahalanobis metdit; '), c) a Mahalanobis metric learnt

by non-linear optimization [6] d) the RCA metric [1] (inverse inner class covariance, as estimated
from the constraints), and e) Gaussian coding similarity. The distance functions were evaluated by
applying the agglomerative average linkage algorithm to the similarity graphs produced. Clustering
performance was assessed by computing the match between clustering results and the real data labels
(known for all the data sets).

We have experimented with the UCI data sets and added two harder data sets, with 10 classes each:
A subset of the MNist digits data set [18], and a data set of animals images [16]. For MNist, we ran-
domly chose 50 instances from each digit, and represented the dat&0$@A dimensions. The
animals data set includes 565 images taken from a commercial CD. As in [16] we represent the im-
ages using Color Coherence Histograms (CCV) [7], containing information about color distribution
and color continuity in the image. The vectors were then reducédt®CA dimensions.

We tested the different similarities in the original space first, and after reducing the data dimension to
the number of classes using constrained-based FLD. The results after FLD , which are usually better,
are summarized in Figure 2 for 3 representative UCI datasets, and the two image datasets. Overall,
coding similarity (rightmost bar, in brown) has an advantage over all the Mahalanobis meffics in

of the11 data sets. The results in the original space show a similar trend.

4.3 Facial image retrieval

We tested the retrieval performance of coding similarity using the YaleB data set [8]. This data set
contains4 images per person 8 people, where the variability is mainly due to change of illumi-
nation. The images were aligned using optical flow, and then redugdRE&A dimensions. From

each class, we randomly chot®images to be part of the 'data base’, and used the remaliag

gueries presented to the data base. We learned two Mahalanobis distances [6, 1] and coding simi-
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larity using constraints obtained fro2 of the 30 classes, and then evaluated retrieval performance

for images from both constrained and unconstrained classes. Notice that for unconstrained classes
the task is much harder, and any success shows inter-class generalization, since images from these
classes were not used during training.

The performance of the three learning methods, as well as the Euclidean and whitened distances
which provide the baseline, are shown in Figure 3. We can see that coding similarity is clearly
superior to other methods in the retrieval of faces from known classes. In contrast to other methods,
it operates well even in the origindD dimensional space. It also has a small advantage in the
'learning-to-learn’ scenario, i.e., in the retrieval of faces from unconstrained classes.

5 Summary

We described a new measure of similarity between two datapoints, based on the gain in coding
length of one point when the other is known. This similarity measure can be efficiently computed
from positive equivalence constraints. We showed the relation of this measure to Fisher Linear Dis-
criminant, and to a known Mahalanobis distance that can also be learnt efficiently. We demonstrated
overall superior performance in clustering and retrieval, using a battery of experiments on a large
number of datasets.
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Chapter 3

Learning object class recognition

This chapter is based on the following pulications:

[C] A. Bar-Hillel, T. Hertz and D. Weinshall: “Object class recognition by boosting a part based model”, in

Conference on Computer Vision and Pattern Recognition (CVRIR)me |, 702-709, 2005.

[D] A. Bar-Hillel, T. Hertz and D. Weinshall: “Efficient learning of relational object class modelsihiarna-

tional Conference of Computer Vision (ICGWVplume I, 1762-1769, 2005.

[E] A. Bar-Hillel and D. Weinshall: “Subordinate class recognition using relational object models”, accepted

for publication inAdvances in Neural Information Processing Systems (N IER)G.

Section 3.1 is a unified report summarizing publications [C] and [D], and adds to them some formal analysis

and empirical results. Section 3.2 contains publication [E] in the format in which it was accepted for publication.
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Abstract

We present an efficient method for learning part-based object class models. The models include part
appearance, as well as location and scale relations between parts. The object class is generatively modeled
using a simple Bayesian network with a central hidden node containing location and scale information,
and nodes describing object parts. The model’s parameters, however, are optimized to reduce a loss
function of the training error, as in discriminative methods. We show how boosting techniques can
be extended to optimize the relational model proposed, with complexity linear in the number of parts
and the number of features per image. This efficiency allows our method to learn relational models with
many parts and features. The method has an advantage over purely generative and purely discriminative
approaches, since the former are limited to a small number of parts and features, while the latter neglect
geometrical relations between parts. Experimental results are described, using some bench-mark data
sets and three sets of newly collected data, showing the relative merits of our method in recognition and
localization tasks.

1 Introduction

One of the important organization principles of object recognition is the categorization of objects into object
classes. Categorization is a hard learning problem due to the large inner-class variability of object classes,
in addition to the “common” object recognition problems of varying pose and illumination. Recently, there
has been a growing interest in the task of object class recognition [21, 20, 23, 2, 10, 6, 18] which can be
defined as follows: given an image, determine whether the object of interest appears in the image. In many
cases the localization of the object in the image is also sought.

Following previous work [20, 17], we represent an object using a part-based model (see illustration in
Figure 1). Such models can capture the essence of most object classes, since they represent both parts’
appearance and invariant relations of location and scale between the parts. Part-based models are somewhat
resistant to various sources of variability such as within-class variance, partial occlusion and articulation,
and they are potentially convenient for indexing in a more complex system [8, 6].

Figure 1: Dog image with our learnt part-based model drawn on top. Each circle represents a part in the model. The parts
relative location and scale are related to one another through a hidden center (better viewed in color).
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Part-based approaches to object class recognition can be crudely divided into two types: (1) ’generative-
model-based’ methods [20, 6, 18, 16, 21] and (2) ’discriminative-model-free’ methods [2, 1, 10, 27, 19]. In
the 'Generative-model based’ approach, a probabilistic model of the object class is learnt by likelihood
maximization. The likelihood ratio test is used to classify new images. The main advantage of this approach
is the ability to model relations between object parts. In addition, domain knowledge can be incorporated
into the model’s structure and priors. ’Discriminative-model-free’ methods seek a classification rule which
discriminates object images from background images. The main advantage of discriminative methods is the
direct minimization of a classification-based error function, which typically leads to superior classification
results [5]. Additionally since these methods are model-free, they are usually computationally efficient.

In our current work, we suggest to combine the two approaches in order to enjoy the benefits of both
worlds: the modeling power of the generative approach, with the accuracy and efficiency of discriminative
optimization. We motivate this idea in Section 2 using general considerations, and as a solution to some
problems encountered in related work. Our argument relies on two basic claims. The first is that feature
relations are powerful cues for recognition, and perhaps indispensable cues for semantical recognition-related
tasks like object localization or part identification. Proper representation of such relations requires a gen-
erative approach. On the other hand, we argue that generative learning procedures are inadequate in the
specific context of learning from unsegmented images, due to essential computational and functional rea-
sons. We therefore propose to replace maximum-likelihood optimization in the generative learning, by the
discriminative optimization of the classifiers’ parameters.

Specifically, we suggest a novel learning method for classifiers based on a simple part based model. The
model, described in Section 3, is a simple ’star’-like Bayesian network, with a central hidden node describing
the objects location and scale. The location and scale of the different parts depend only on the central
hidden variable, and so the parts are conditionally independent given this variable. Such a model allows
us to represent part relations with low inference computational complexity. Models of similar topology are
implicitly or explicitly considered in [8, 6, 21]. While using a generative object model, we optimize its
parameters by minimizing a loss over the training error, as done in discriminative learning. We show how a
standard boosting approach can be naturally extended to learn such a model with conditionally independent
parts. Learning time is linear in the number of parts and the number of feature extracted per image. Beyond
this extension, we consider a wider family of gradient descent optimization algorithms, of which the extended
boosting is a special case. Optimal performance is empirically achieved using algorithms from this family
that are close to the extended boosting, but not identical to it. The discriminative optimization methods
are discussed in Section 4.

Our experimental results are described in Section 5. We compare the recognition performance of our
algorithm to several state-of-the-art generative and discriminative methods, using the benchmark data sets
of [20]. When similar features are used by all methods, our method usually outperforms purely generative
and discriminative competitors. When compared with generative methods [20, 21], our model is learned
more efficiently and includes more selective features, which allows for the construction of models with many
discriminative parts. When compared to a purely discriminative approach [2], our model’s main advantage
is the inclusion of informative part relations. This information improves recognition performance, and allows
localization and identification of multiple instances in an image.

In order to challenge our method, we collected three more difficult data sets containing images of chairs,
dogs and humans, with matching backgrounds (we have made this data publicly available online). We used
these data sets to test the algorithm’s performance under harder conditions, with high visual similarity be-
tween object and background, and large pose and scale variability. We investigated the relative contribution
of the appearance, location and scale components of our model, and showed the importance of incorpo-
rating location relations between object parts. In another experiment we investigated the contribution of
using large numbers of parts and features, and demonstrated their relative merits. We experimented with a
generic interest point detector [26], as well as with a discriminative interest point detector [11]; our results
show a small advantage for the latter. In addition, we showed that the classifiers learnt perform well against
new, unseen backgrounds. Finally, we demonstrate the utility of the model in a localization task, using the
UIUC cars side benchmark dataset [24]. In this task we efficiently scan the image to find the exact location
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of one or more object instances. The localization performance achieved is comparable to the best available
methods.

2 Why mix discriminative learning with generative modeling:
motivation and related work

In this section we describe the main arguments for combining generative and discriminative methods in
the context of learning from unsegmented images. In Section 2.1 we review the distinction between the
generative and discriminative paradigms, and assess the relative merits of each approach in general. We
next discuss the specific problem of learning from unsegmented images in Section 2.2, and characterize it as
learning from unordered feature sets, rather than data vectors. In Section 2.3 we claim that relations between
features, best represented in a generative framework, are useful in the context of learning from unordered
sets, and are specifically important for semantical recognition-related tasks. In Section 2.4 we argue that
generative maximum-likelihood learning is highly problematic in the context of learning from unsegmented
images. Specifically, we argue that such learning suffers from inherent computational problems, and that
it is likely to exhibit deficient feature pruning characteristics. To solve these problems while keeping the
important information of feature relations, we propose to combine the generative treatment of relations with
discriminative learning techniques. In Section 2.5 we briefly review how feature relations are handled in
related discriminative methods.

2.1 Discriminative and generative learning

Generative classifiers learn a model of the probability p(x|y) of input x given label y. They then predict
the input labels by using Bayes rule to compute p(y|z) and choosing the most likely label. With 2 classes
y € {—1, 1}, the optimal decision rule is the log likelihood ratio test, based on the statistic:

=1
log PEy=1) (1)
plaly = -1)
where v is a constant threshold. The models p(z|y = 1) and p(z|y = —1) are learnt in a maximum likelihood

framework (or maximum-a-posteriori when a useful prior is available).

Discriminative classifiers do not learn probabilistic class models. Instead, they learn a direct map from
the input space X to the labels. The map’s parameters are chosen in a way that minimizes the training
error, or a smooth loss function of it. With two labels, the classifier often takes the form sign(f(z)), with
the interpretation that f(z) models the log likelihood ratio statistic.

There are several compelling arguments in the learning literature which indicate that discriminative
learning is preferable to generative learning in terms of classification performance. Specifically, learning a
direct map is considered an easier task than the reliable estimation of p(z|y) [28]. When classifiers with
the same functional form are learned in both ways, it is known that the asymptotic error of a reasonable
discriminative classifier is lower or equal to the error achievable by a generative classifier [5].

However, when we wish to design (or choose) the functional form of our classifier, generative models can be
very helpful. When building a model of p(z]y) we can use our prior knowledge about the problem’s domain to
guide our modeling decisions. We can make our assumptions more explicit and gain semantic understanding
of the model’s components. Specifically, the generative framework readily allows for the modeling of parts
relations, while providing us with a rich toolbox of theory and algorithms for inference and relations learning.
It is plausible to expect that a carefully designed classifier, whose functional form is determined by generative
modeling, will give better performance than a classifier from an arbitrary parametric family.

These considerations suggest that a hybrid path may be beneficial. More specifically, choose the func-
tional form of the classifier using a generative model of the data, then learn the model’s parameters in a
discriminative setting. While the arguments in favor of this idea as presented so far are very general, we
next claim that when learning from images in particular, this idea can overcome several problems in current
generative and discriminative approaches.
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2.2 Learning from features sets

Our primary problem is object class recognition from unaligned and unsegmented images, which are binary
labeled as to whether or not they contain an object from the class. It is therefore a binary classification
problem, where the input is a set of features rather than an ordered vector of features, as in standard learning
problems. This is a very important difference: vector representation implicitly assumes that measurements
of the 'same’ quantities are made for all data instances and stored in corresponding indexes of the data
vectors. The ’same’ features in different data vectors are assumed to have the same fixed, simple relation
with the class label (the same 'role’). Such implicit correspondence is often hard to find in bottom up image
representation, in particular when feature maps or local descriptors sets are detected with interest point
detectors.

Thus we adopt the view of image representation as a set of features. Each feature has a location index, but
unlike an element in a vector, its location does not imply a pre-determined fixed ’role’ in the representation.
Instead, only relations between locations are meaningful. Such representations present a challenge to current
learning theory and algorithms, which are well developed primarily for vectorial input.

A second inherent problem arises because the relevant feature set representations usually contain a large
number of spurious features. The images are unsegmented, and therefore many features may not represent
the object of interest at all (but background information), while many other features may duplicate each
other. Thus feature pruning is an important part of the learning problem.

2.3 Semantics and part relations

The lack of feature correspondence between images can be handled in two basic ways: either try to establish
correspondence, or give it up to begin with. Without correspondence, images are typically represented by
some statistical properties of the feature set, without assigning roles to specific image features. A notable
example is the feature histogram, used for example in [10, 4, 13] and most of the methods in [7]. These
approaches are relatively simple and in some cases give excellent recognition results. In addition they tend
to have good invariance properties, as the use of invariant features directly gives invariant classifiers. Most of
these approaches do not consider feature relations, mainly because of their added complexity (an exception is
[13]). The main drawback of this framework is the complete lack of image semantics. While good recognition
rates can be achieved, further recognition related tasks like localization or part identification cannot be done
in this framework, as they require identifying the role of specific features.

The alternative research choice, which we adopt in the current paper, seeks to identify and correspond
features with the same ’role’ in different images. This is done explicitly in generative modeling approaches
[20, 21, 18], using the notion of a probabilistically modeled ’part’. The ’part’ is an entity with a fixed role
(probabilistically modeled), and its instantiation in each image should be chosen from the set of available
image features. Discriminative part based methods [2, 1, 23, 17] use a more implicit 'part’ notion, and their
degree of commitment to finding semantically similar features in images varies. The important advantage of
identifying parts with fixed roles over the images is the ability to perform image understanding tasks beyond
mere recognition.

When looking in images for parts with fixed roles, feature relations (mainly location and scale relations)
provide a powerful, perhaps indispensable cue. Basing part identity on appearance criteria alone is possible,
and in [1, 27] it leads to very good recognition results. However, as reported in [1], the stability of correct
part identification is low, and localization results are mediocre. Specifically, it was found that typically less
than 50% of the instantiating features were actually located on the object. Instead, many feature rely on
the difference in background context between object and non-object images. Conversely, good localization
results are reported for methods based on generative models [20, 21]. In [23] a detection task is considered
in a discriminative framework. In order to achieve good localization, gross part relations are introduced as
additional features into the discriminative classifier.
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2.4 Learning in Generative models

We now consider generative model learning when the input is a set of unsegmented images. In this scenario,
the model is learnt from a set of object images alone, and its parameters are chosen to maximize the likelihood
of the image set (sometimes under a certain prior over models). We describe two inherent problems of this
maximum likelihood approach. In Section 2.4.1 we claim that such learning involves an essential tradeoff,
where computational efficiency is traded for weaker modeling which allows repetitive parts. In Section 2.4.2
we review how this problem is handled in some current generative models. In Section 2.4.3 we maintain
that generative learning is not well adjusted to feature pruning, and becomes problematic when rich image
representations are used.

2.4.1 The computational problem

Assume that the image is represented as a set of features, with spatial relations between features as described
in Sections 2.2-2.3. Computing a generative model from such a set of features is hard. Denote the feature
set of image I by F'(I), and the number of features in F'(I) by N. While the input is a feature set, the
generative model typically specifies the likelihood P(V|M) for an ordered part vector V = (fi,.., fp) of P
parts. The problem of learning from unordered sets is tackled by considering all the possible vectors V' that
can be formed using the feature set. Legitimate part vectors should have no repeated features, and there
are O(NT) such vectors. Thus, the image likelihood P(I|M) requires marginalization® over all such vectors.
Assuming uniform prior over these vectors, we have

P(I|M) = > P(V|M) (2)
V=(z1,..,xp)eF(I)T
wita;ifit]
Efficient likelihood computation in relational models is only possible via the decomposition of the joint
probability using conditional independence assumptions, as done in graphical models. Such decomposition
specifies the probability as a product of local terms, each depending on a small subset of parts. For a part

vector V = (f1,.., fp)

P(VIM) = H\p (Vls,) (3)

where S. C {1, .., P} are index subsets and V|g = {f; : 4 € S}. Using dynamic programming, inference and
marginalization are exponential in the ’induced width’ g of the related graphical model, which is usually
relatively low (note that for trees, g = 2 only).

The summation in Eq. (2) does not lend itself easily to such simplifications, however. We therefore make
the following approximation, in which part vectors with repetitive features are allowed

P(I|M) = > H\II (Vlg,) ~ > [Tw.(v

(@1,..,0p)EF(I) (z1,..,xp)EF(F ¢
wi#x; for 175]

(4)

This approximation is essential to make efficient marginalization possible. If feature repetition is not allowed,
global dependence emerges between the features assigned to the different parts (as they cannot overlap). As
a result we get global constraints, and efficient enumeration becomes impossible.

The approximation in (4) may appear minor, which is indeed the case when a fixed, 'reasonable’ part
based model is applied to an image. In this case, typically, parts are characterized by different appearance
and location models, and part vectors with repetitive parts have low insignificant probability. But during
learning, approximation (4) brings about a serious problem: when vectors with feature repetitions are

1 Alternatively, one may approximate the sum in Eq. (2) by a max operator, looking for the best model interpretation in the
image. This does not affect the computation considerations discussed here.
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allowed, learning may result in models with many repetitive parts. In fact, standard maximum likelihood
has a strong tendency to choose such models. This is because it can easily increase the likelihood by choosing
the same parts with high likelihood, over and over again.

NP
-— —

/ \

Figure 2: A “star” graphical model. peripheral nodes, shown in blue, are related only via a hidden central node. Such a
model is used in our work, as well as in [21]. If (i) feature repetition is allowed (as in Eq. (4)), and (ii) model parameters are
chosen to maximize the likelihood of the best object occurrence, then all the peripheral nodes are optimized to represent the
same part.

The intuition above can be made precise in the simple case in which a ’star’ model is used (see Figure 2)
and the sum over all hypotheses is approximated by the single best features vector. In this extreme case, the
maximal likelihood is achieved when all the peripheral parts models are identical. We specifically consider
this model in Section 3 and prove the last statement in Appendix A. The proof doesn’t directly apply when
a sum over all the feature vectors is used, but as this sum is usually dominated by only a few vectors, part
repetition is likely to occur in this case too.

Thus, in conclusion, we see that in a pure generative framework, one needs to choose between computa-
tional efficiency and the risk of part duplication.

2.4.2 How is this computational problem handled?

Several recent approaches use generative modeling for object class recognition [20, 16, 21, 18]. In [20, 16] a
full relational model is used. The probability P((f1,.., fp)|M) in this model cannot be decomposed into the
product of local terms, due to the complex probabilistic dependencies between all of the model’s parts (in
graphical models terminology the model is a single large clique). As a result, both learning and recognition
are exponential in the number of model parts, which limits the number of parts that can be used (up to 7
in [20] and 4 in [16]), and the number of features per image (N = 30, 20 respectively).

In [21] a decomposable model is proposed with a ’star’-like topology. This reduces the complexity of
recognition significantly. However, learning remains essentially exponential, in order to avoid part repetition
in the learnt model.

The computational problem (as well as the feature pruning problem, discussed in the next section) is
completely avoided in the case of learning from segmented images, as done in [18]. Here the input is a set
of object images, with manually segmented parts and manual part correspondence between images. In this
case learning is reduced to standard maximum likelihood estimation of vectorial data.

2.4.3 Feature pruning

We argued in Section 2.2 that feature pruning is necessary when learning from images. P, the number of
parts in the model, is often much smaller than the number of features per image N. This is usually not the
case in classical applications of generative modeling, in which data is typically described as a relatively small
feature vector.

When P << N, maximum likelihood chooses to model only parts with high likelihood - often parts
which are highly repetitive in images, with repetitive relations. This optimization policy has a number of
drawbacks. On the one hand, it introduces a preference for simple parts, as these tend to have low variability
through images, which gives rise to high likelihood scores. It also introduces preference for features which are
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frequent in natural images, whether they belong to the object or not. On the other hand, there is no explicit
preference for discriminative parts, nor any preference for feature diversity. As a result, certain aspects
of the object may be extensively described, while others are neglected. The problem may be intuitively
summarized by stating that generative methods can describe the data, but they cannot choose what to
describe. Additional task related signal, external to the data, is needed, and is most readily provided by
labels.

In [20, 16], initial feature pruning is obtained by using the Kadir and Bradey detector [26], which finds
relatively diverse, high entropy regions in the image. Explicit preference is given for features with large scale,
which tend to be more discriminative. In addition, they limit the number of features per image (N = 20, 30).
To some extent, the burden of feature pruning is placed on the pre-learning feature detection mechanisms.
However, with such a small number of features per image, objects do not always get sufficient coverage. In
fact, learning is very sensitive to the fine tuning of the feature pruning mechanism.

In [21], where a ’star’-like decomposable model is used, more parts and features are used in the generative
learning experiments. Surprisingly, the results do not show obvious improvement. Increasing the number
of parts P and features N; does not typically reduce the error rates, since many of the additional features
turn out to be irrelevant, which makes feature pruning harder. In Section 5 we investigate the impact P
and Ny have on performance for models similar to those used by [21], but optimized discriminatively. In
our experiments extra information (increased Ny) and modeling power (increased P) clearly lead to better
performance.

2.5 Relations in discriminative methods

Many part based object class recognition methods are mostly discriminative [2, 1, 17, 25, 23]. In most
of these methods, spatial relations between parts are not considered at all. While some of these systems
exhibit state-of-the-art recognition performance, they are usually lacking in further, more semantical tasks
as localization and part identification, as described in Section 2.3. In the ’fragment based’ approach of
[17, 25] relations are not used, but when the same approach is applied to segmentation, which requires richer
semantics, fragment relations are incorporated [9].

One way to incorporate part relations into a discriminative setting is used by the object detection system
of [23]. The task is localization, and it requires the exact correspondence and the identification of parts. To
achieve this, qualitative location relations between fragment features are also considered as features, creating
a very large and sparse feature vector. Discriminative learning in this very high dimensional space is then
done using a specific feature-efficient learning algorithm. The relational features in this scheme are highly
qualitative (for example, fragment a in to the left and bottom of fragment b’). Another problem with this
approach is that supervised learning from high dimensional sparse vectors is a hard problem, often requiring
dimensionality reduction to enable efficient learning.

In this context, our main contribution may be the design of a relatively simple and efficient technique for
the introduction of relational information into the discriminative framework of boosting. As such, our work
is related to the purely discriminative techniques used in [2, 1]. In spirit, our work has some resemblance to
the work of [3], in which relational context information is incorporated into a boosting process. However,
the techniques we use and the task we consider are quite different.

3 The generative model

We represent an input image using a set of local descriptors obtained using an interest point detector. Some
details regarding this process are given in Section 3.1. We then define a classifier over such sets of features
using a generative object model. The model and the resulting classifier are described in Sections 3.2 and 3.3
respectively.
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Figure 3: a) Output of the KB interest point (or feature) detector, marked with green circles. b) A Bayesian network
specifying the dependencies between the hidden variables C;, Cs and the parts scales and locations X%, Xf for k=1,..,P. The

part appearance variables X (’f are independent, and so they do not appear in this network.

3.1 Feature extraction and representation

Our feature extraction and representation scheme mostly follows the scheme used in [20]. Initially, images
were rescaled to have a uniform horizontal length of 200 pixels. We experimented with two feature detectors:
(1) Kadir & Brady (KB) [26], and (2) Gao & Vasconcellos (GV) [11]2. The KB detector is a generic detector.
It searches for circular regions of various scales, that correspond to the maxima of an entropy based score in
scale space. The GV detector is a discriminative saliency detector, which searches for features that permit
optimal discrimination between the object class and the background class. Given a set of labeled images from
two classes, the algorithm finds a set of discriminative filters based on the principle of Maximal Marginal
Diversity (MMD). It then identifies circular salient regions at various scales by pooling together the responses
of the discriminative filters.

Both detectors produce an initial set of thousands of salient candidates for a typical image (see example
in Figure 3a). As in [20], we multiply the saliency score of each candidate patch by its scale, thus creating
a preference for large image patches, which are usually more informative. A set of Ny high scoring features
with limited overlap is then chosen using an iterative greedy procedure. By varying the amount of overlap
allowed between selected features we can vary the number of patches chosen: in our experiments we varied
Ny between 13 and 513. After their initial detection, selected regions are cropped from the image and scaled
down to 11 x 11 pixel patches. The patches are then normalized to have zero mean and variance of 1. Finally
the patches are represented using their first 15 DCT coefficients (not including the DC).

To complete the representation, we concatenate 3 additional dimensions to each feature, corresponding to
the x and y image coordinates of the patch, and its scale respectively. Therefore each image I is represented
using an unordered set F'(I) of 18 dimensional vectors. Since our suggested algorithm’s runtime is only linear
in the number of image features, we can represent each image using a large number of features, typically in
the order of several hundred features per image.

3.2 Model structure

We consider a part-based model, where each part in a specific image I; corresponds to a patch feature from
F(I;). Denote the appearance, location and scale components of each vector x € F(I) by x,,2; and x,
respectively (with dimensions 15,2,1), where & = [z,, 21, z5]. We can assume that the appearance of different
parts is independent, but this is obviously not the case with the parts’ scale and location. However, once

2We thank Dashan Gao for making his code available to us, and providing useful feedback.
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we align the object instances with respect to location and scale, the assumption of part location and scale
independence becomes reasonable. Thus we introduce a 3-dimensional hidden variable C = (C;, C;), which
fixes the location of the object and its scale. Our assumption is that the location and scale of different parts
is conditionally independent given the hidden variable C, and so the joint distribution decomposes according
to the graph in Figure 3b.

It follows that for a model with P parts, the joint probability of {X* }izl and C takes the form

P P
p({X"}1_,,Cl®) = p(C|O) H (X*|C,0%) = p(C10) [ p(X5105)p(XF|C1, Cs, 0F)p(XE|Cs, 0F) (5)

k=1

We assume uniform probability for C' and Gaussian conditional distribution for X,, X;, X, as follows:

P(XJ105) = G(X}lug,55) (6)
XF-cC
P(XFICLCatf) = G(Hg—|ut =)
P(X!Cs,0Y) = Glog(X¥) —log(Co)lpt, of)

where G(-|u, %) denotes the Gaussian density with mean p and covariance matrix ¥. We index the model
components a,l,s as 1,2, 3 respectively, and denote the log of these probabilities by LG(x;|C, u;,3;) for
j=1,2,3.

3.3 A model based classifier

As discussed in Section 2.4.1, the likelihood P(I|M) is given by averaging over all the possible part vectors
that can be assembled from the feature set F'(I) (see Eq. (2)). In our case, we should also average over all
the possible values for the hidden variable C. Thus

P(I|M) = KOZ > HP z*|C, 6%) (7)

(z',. LaP)eF(D)P k=1
i H#2d forij

for some constant Kj.
In order to allow efficient likelihood assessment we make the following approximations

Koy > I[ P@*ic.6%) (8)

PUI|M) ~
C (z1,. ,a:P)EF(I)P k=1
~ K P(z*|C, 0% 9
0 o L H 1C,6%) (9)
_ k
= Ky max 1__[ a:renl*%()% P(z|C,0%) (10)

Approximation (8) above was discussed earlier in a more general context (see Eq. (4)), and it is necessary
in order to eliminate the global dependency between parts. In approximation (9), averages are replaced
by the likelihood of the best feature vector and best hidden C. This approximation is compelling since
natural images rarely have two different likely object interpretations. In addition, working with the best
single vector uniquely identifies the object’s location and scale, as well as the object’s parts. Such unique
identification is required for most semantical tasks beyond mere recognition. Finally, the approximated
likelihood is decomposed into separate maxima over C' and the different parts in Eq. (10).
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The decomposition of the maximum achieved in Eq. (10) is the key to the efficient likelihood computation.
We discretize the hidden variable C' and consider only a finite grid of locations and scales, with a total of
N, possible values. Using this decomposition the maximum over the N, - N J{D arguments can be computed
in O(N.N¢P) operations. However, we cannot optimizing the parameters of such a model by likelihood
maximization. Since feature repetition is allowed, the ML solution will choose the same (best) part p times,
as shown in Appendix A.

The natural generative classifier is based on the comparison of the LRT statistic to a constant threshold,
and it therefore requires a model of the background in addition to the object model. Modeling general
backgrounds is clearly difficult, due to the diversity of objects and scenes that do not share simple common
features. We therefore approximate the background likelihood by a constant. Our LRT based classifier thus
becomes

P

_ _ ) ky _
f(I) =log P(I|M) —log(I|BG) — v mgx;wrenlgé)log p(z|C,0%) —v (11)

for some constant v.

4 Discriminative optimization

Given a set of labeled images {Ii7yi}i1\;1, we wish to find a classifier f(I) of the functional form given in
Eq. (11), which minimizes the exponential loss

N
L(f) = ZGXP(—Z/if(Ii)) (12)

This is the same loss minimized by the the Adaboost algorithm [22]. Its main advantage in our context
is that it allows for the determination of the classifier threshold using a closed form formula, as will be
described in Section 4.1.

We have considered two possible techniques for the optimization of the loss in Eq. (12): Boosting and
gradient descent. In the boosting context, we view the log probability of a part

1 c, ok
Jnax log p(z|C,6%)

as a weak hypothesis of a specific functional form. However, the classifier form we use in (Eq. (11)) is
rather different from the traditional classifiers built by boosting, which typically have the form f(I) =
ZkP:1 a®h¥(I). Specifically, the classifier (11) does not include part weights o*, it has an extra threshold
parameter v, and it involves a maximization over C, which depends on all the 'weak’ hypotheses. The third
point is the most problematic, as it requires optimizing over parts with internal dependencies, which is much
harder than optimization over independent parts as in standard boosting.

In order to simplify the presentation, we assume in Section 4.1 a simplified model with no spatial relations
between the parts, and show how the problems of parts weights and threshold parameters are coped with, with
minor changes to the standard boosting framework. In Section 4.2 we consider the problem of dependent
parts, and show how boosting can be naturally extended to handle classifiers as in Eq. (11), despite the
dependencies between parts due to the hidden variable C'. Finally we consider the optimization from a more
general viewpoint of gradient descent in Section 4.3. This allows us to introduce several enhancements to
the pure boosting technique.

4.1 Boosting of a probabilistic model

Let us consider a simplified model with parts appearance only (see Eq. (6)). We show how such a classifier
can be represented as a sum of weighted 'weak’ hypotheses in Section 4.1.1. We then derive the boosting
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algorithm as an approximate gradient descent in Section 4.1.2. This derivation is slightly simpler than
similar derivations in the literature, and provides the basis for our treatment of related parts, introduced in
Section 4.2. In Section 4.1.3 we show how the threshold parameter in our classifier can be readily optimized.

4.1.1 Functional form of the classifier

When there are no relations between parts, the classifier (11) takes the following form

log p(za|0" 13
erél% og p(wal0h) — v (13)

hE(I) where

M=

This classifier is easily represented as a sum of weak hypotheses f(I) =
k

1

hE(I) = log G(x,|0% k 14
(1) nax log (zalby) — v (14)

and v = Z p—1 V*. Weak hypotheses in this form can be viewed as soft classifiers.
We next represent the classifier in an equivalent functional form in which the covariance scale is trans-

P
formed to part weight. Now f(I) = > o*h¥*(I) where h¥(I) takes the form
k=1

h’“(I):mg(X)logG(xa\m,Ek) vE, sk =1 (15)
xE

The equivalence of these forms is shown in Appendix B.

4.1.2 Boosting as approximate gradient descent

Boosting is a common method which learns a classifier of the form f(z) = Y.¥_, &*h¥(z) in a greedy

fashion. Several papers [12, 15] have presented boosting as a greedy gradient descent of some loss function.
In particular, the work of [15] has shown that the Adaboost algorithm [29, 22] can be viewed as a greedy
gradient descent of the exp loss in Eq. (12), in L? function space. In [12] Adaboost is derived using a second
order Taylor approximation of the exp loss, which leads to repetitive least square regression problems. We
suggest here another variation of the derivation, similar to [12] but slightly simpler. All three approaches
lead to an identical algorithm (the discrete Adaboost [29]) when the weak learners are binary with the range
{+1, —1}. For weak learners with a continuous output, our approach and the approach of [15] culminates in
the same algorithm, e.g. Adaboost with confidence intervals [22]. However, our approach is simpler, and is
later used to derive a boosting version for a model with dependent parts.

Specifically, we derive Adaboost by considering the first order Taylor expansion of the exp loss function.
In what follows and throughout this paper, we use superscripts to indicate the boosting round in which a
quantity is measured. At the p’th boosting round, we wish to extend the classifier f by fP(x) = fP=1(x) +
aPhP(x). We first assume that oP is infinitesimally small, and look for an appropriate weak hypothesis
h?(X). Since of is small, we can approximate Eq. (12) using the first order Taylor expansion.

To begin with, we differentiate L(f) w.r.t. of

dL(f) _

daP

N
- Z exp(—yif(x:))yih? (z;) (16)

We denote w; = exp(—y; f(z;)), and derive the following Taylor expansion

N
L(f7) m L(f"7) — o Y wl ™ yhP () (17)

i=1
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Assuming of > 0, the steepest descent of L(f) is obtained for some weak hypothesis h? which maximizes
the weighted correlation score

N

S(hP(x)) =Y wf ™ yih? (x;) (18)

=1

This maximization is done by a weak learner, getting as input the weights {w? -t N | and the labeled data
points. After the determination of h”(z), the coefficient a® is determined by the direct optimization of the
loss in Eq. (12). This can be done in closed form only for binary weak hypotheses with output in the range
of {1, —1}. In the general case numeric methods are employed, such as line search [22].

4.1.3 Threshold optimization

Maximizing the linear approximation (17) can be problematic when unbounded weak hypotheses are used.
In particular, optimizing this criterion w.r.t to the threshold parameter in hypotheses of the form (14) is
ill-posed. Substituting (14) into criterion (17), we get the following expression to optimize:

N
S(h) = Zwiyi(wren%)logG(xilumEa)—V) (19)
=1
= C+( Z w; — Z w; )V

Y =— 1y, =1
where C is independent of v. If > w; — > w; # 0, S(h) can be increased indefinitely by sending v to
iy =—1 1y, =1
+00 or —oo. Such a choice of v clearly doesn’t improve the original (exact) loss (12).
The optimization of the threshold should therefore be done by considering (12) directly. It is based on
the following lemma:

Lemma 1. Consider a function f : I — R. We wish to minimize the loss (12) of the function f=f-v
where v s a constant. Assume that there are both labels +1 and —1 in the data set.

1. An optimal v* exists and is given by

N
. { 2 }exp(f(f'))
* 7 7;:71
v = log - (20)
>, exp(=f(li))
{i:y;=1}
2. The optimal f* = f — v* satisfies
N . N .
Y e/ U)= Y ep(f (L) (21)
{iyi=1} {iyi=—1}
3. The optimal loss L(f — v*) is
N N B
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The lemma is proved by direct differentiation of the loss w.r.t v, as sketched in Appendix C.

We use this lemma to determine the threshold after each round of boosting, when fP(I) = fP=1(I) +
aPhP?(I). Eq. (20) gives a closed form solution for v once h”(I) and a? have been chosen. Eq. (22) gives the
optimal score obtained, and it is useful when efficient numeric search for o is required. Finally, property
(21) implies that after threshold update, the coefficient of v in Eq. (19) is nullified (the slope of the linear
approximation is 0 at the optimum). Hence optimizing the threshold before round p assures that the score
S(hP) does not depend on v?. We optimize the threshold in our algorithm during initialization, and after
every boosting round (see Algorithm 1). The weak learner can therefore effectively ignore this parameter
when choosing a candidate hypothesis.

4.2 Relational model Boosting

We now extend the boosting framework to handle dependent parts in a relational model of the form (11).
We introduce part weights into the classifier by applying the transformation described in Eq. (15) to the
three model ingredient described in Eq. (6), i.e. appearance, location and scale. The three new weights are
summed into a single part weight, leading to the following classifier form

P
_ kpk _

f(I) _mcaxza R*(I,0) —v (23)

k=1

where for k=1,.., P
rE(I,C) = kar,c 24
(1,C) Jnax g (1,C) (24)
j=1 Zj:l J
ISE= 1, Ar>o0 j=1,2,3

In this parametrization of is the sum of component weights and \;/ Z?Zl A; measures the relative

weights of the appearance, location and scale. Thus, given an image I, the computation of f requires the
computation of the accumulated log-likelihood and its hidden center optimizer, denoted as follows

p
WI,C) = Y o*nM(I,0) (25)
k=1
C* = argmaxll(I,C)
C

In order to allow tractable maximization over C, we discretize it and consider only a finite grid of locations
and scales with N, possible values. Under these conditions, the computation of Il and C* amounts to
standard MAP message passing, requiring O(PNyN,) operations.

Our suggested boosting method is presented in Algorithm 1. We derive it by replicating the derivation
of standard boosting in Eq. (16)-(18). For f of the form (23), the derivative of L(f) w.r.t. «, is now

N
dLly) _ _ Zwiyihp(lia cr) (26)

and using the Taylor expansion (17) we get

N
L(f*) = L(f*7") — a? Y wl ™ tyhP (1,077 (27)

i=1
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Algorithm 1 Relational model boosting
Given {(Ii,yi)}ﬁvzl , yi € {—1,1} , initialize:

l(i,c)=0 i=1,..,N, cin a predefined grid

_ #{yi=—1}
v = glogBE==h

wi=exp(y;-v) i=1,.,N

wi =w;/ Y wi
Fork=1,..,P

1. Use a weak learner to find a part hypothesis h*(I, C') which maximizes

N
S(h) =Y wiyih(I;, CF)
i=1

(see text for special treatment of round 1).

2. Find optimal o by minimizing

N N
Y. exp(=fn) Y exp(fO(L)
{i:yi=1} {iyi=—1}

where fO(I) = mgxll(L C) + ah®(1,0)).
Update Il and the optimal center C*
1(i,c) = U(i,c) + a*h(i,c)

[f°(L;), C;] = max, arg max l1(i, c)

3. Update f(I;) and the weights {w;}Y,

N
S en(OU)
V:%log {“y]@:*l}

> exp(—f0(14))

{i:y;=1}
(L) = L) —v
w; = exp(—yi f(L;))

N
wi =w;/ Y g Wi

Output the final hypothesis f(I) = max Z,I::l aphi(I,C) —v

1 wp 1N
In analogy with the criterion (18), the weak learner should now get as input {w?~',C;?~"}._, and try
to maximize the score

N
S(h?) =Y wi™lyh (L, O (28)

i=1
This task is not essentially harder than the weak learner’s task in standard boosting, since the weak learner
‘assumes’ that the value of the hidden variable C is known and set to its optimal value according to the
previous hypotheses. In the first boosting round, when C*?~! is not yet defined, we only train the appearance
component of the hypothesis. The relational components of this part are set to have low weights and default
values.
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Choosing o? after the hypothesis h? (I, C') has been chosen is more demanding than in standard boosting.
Specifically, a? should be chosen to minimize

Limax [P~H(1,C) + aPh"(1,C)] = v*) (29)

Since the optimal value of C' depends on o?, its inference should be repeated whenever a different value is
considered for o (although the messages h?(I,C) can be computed only once). After finding the maximum
over C, the loss with the optimal threshold can be computed using Eq. (22). The search for the optimal
P can be done using any line search algorithm, and we implement it using gradient descent as described in
Section 4.3.

4.3 Gradient descent

In this section we combine the relational boosting from Section 4.2 with elements from a more general
gradient descent perspective. In Section 4.3.1 we describe our implementation of Algorithm 1, in which the
weak learner and the part weight optimization are gradient based. In Section 4.3.2 we suggest to supplement
Algorithm 1 with feedback elements in the spirit of more traditional gradient descent algorithms. Algorithm 2
presents the resulting algorithm for part optimization.

4.3.1 Gradient-based implementation

Current boosting-based object recognition approaches use a version of what we call “selection-based” weak
learners [2, 19, 14]. The weak hypotheses family is finite, and hypotheses are based on a predefined feature
set [19] or on the set of features extracted from the training images [2, 14]. The weak learner computes the
weighted correlation for all the possible hypotheses and returns the best scoring one. Weak learners of this
type, considered in the current paper, sample features from object images (exhaustive search is too expensive
computationally); they build part hypotheses based on the feature and the current estimate of the hidden
center C* in the feature’s image. However, as a single feature cannot reliably determine the relative weights
of the different part components (the covariance scale of appearance, location and scale), several values of
these parameters are considered for each feature.

As an alternative, we have considered a second type of weak learners, which we call “gradient-based”. A
“gradient-based” weak learner uses a hypothesis supplied by the selection learner as its starting point, and
tries to improve its score using gradient ascent. Unlike the selection based weak learner, the gradient-based
weak learner is not limited to parts based on natural image features, as it searches in the continuum of all
possible part models. The relevant gradient is the derivative of the score S(hP) w.r.t the part parameters,
given by the weighted sum

4 (h?) pr1 B OI) i p1,, 4971 O 2T
dow : vi — daor

where x; is the best part candidate in image i

*

zPP = argmax g? (I;, C7 P~ 1)
cEF(I;)

Since the gradient depends on the best part candidates according to the current model, the gradient dynamics
iterates between gradient steps in the parameters §P and the re-computation of the best part candidates
{a7P}N |, Pseudo code is given in Step 1 of Algorithm 2.

We also use gradient descent dynamics to implement the line search for the optimal part weight o”. This
search method is based on slow, gradual changes in the value of o, and hence it allows us to experiment with
a feedback mechanism (see Section 4.3.2). The gradient of the loss w.r.t a? is given in Eq. (26). Notice that
the gradient depends on {C;}¥; and {w;}Y,, and both are functions of a”. Hence the gradient dynamics
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in this case iterates between gradient steps of P, inference of {C}¥ |, and updates of {w;}¥,. This loop
is instantiated in Step 3 of Algorithm 2. The loop must be preceded by the computation of the messages
h(i,c) in Step 2.

4.3.2 Gradient-based extension

When the determination of both 6P and of are gradient based, the boosting optimization at round p es-
sentially makes a specific control choice for a unified gradient descent algorithm which optimizes of and
0P together. A more traditional gradient descent algorithm can be constructed by 1) differentiating L(f)
directly instead of using its Taylor approximation, and 2) iterating small gradient steps on both of and 6P
in a single loop, instead of two separate loops as suggested by boosting. In boosting, the optimization of
0? is done before setting af and there is no feedback between them. Such feedback is plausible in our case,
since any change in of may induce changes in C* for some images, and can therefore change the optimal
part model of hP(I,C).

We considered the update steps required for gradient descent of the exact loss (12), without the Taylor
approximation implied by the boosting strategy. The gradient of o (Eq. (26)) and its treatment remain the
same, as af was optimized w.r.t the exact loss in the boosting strategy as well. The gradient w.r.t 67 is

IZ,C' P
) Zw y G (1)

While this expression is very similar to (30), there is a subtle difference between them. In Eq. (31) w; and
C} are no longer constant as they were in (30), but depend on 6” and oF. Exact gradient descent therefore
requires the re-computation of w;, C; at each gradient iteration, which is computationally expensive.

We have experimented in the continuum between the ’boosting’ and the ’gradient descent’ flavors using
Algorithm 2, which encloses the optimization loops of h? and o in a third ’feedback’ loop. Setting the
outer loop counter K to 1 we get the boosting flavor, i.e., Algorithm 2 implements an inner loop step in
Algorithm 1. Setting K3 to some large value and Ky = 1,K3 = 1, we get exact gradient descent flavor.
We found that a good trade-off between complexity and performance is achieved with a version which is
rather close to boosting, but still repeats the optimization of a? and h? several times to allow mutual cross-
talk during the estimation of these parameters. Thus, our final optimization algorithm involves repeated,
sequential calls of Algorithm 2.

5 Experimental results

We tested our algorithm in recognition tasks using the Caltech datasets [20], which are publicly available®, as
well as three more challenging data sets we have collected specifically for this evaluation. The former are used
as a common benchmark, while the latter are designed to measure the performance limits of the algorithm
by challenging it with fairly hard conditions. Localization performance was evaluated using a common
benchmark for this task [23]%. The Datasets are described in Section 5.1. In Section 5.2 we discuss the
various algorithm parameters. Recognition results are presented in Section 5.3. In Section 5.4 we report the
results of additional experiments, studying the contribution to recognition performance of several modeling
factors in isolation. Finally, we report localization results in Section 5.5.

5.1 Datasets

We compare our recognition results with other methods using the Caltech datasets. Four datasets are used:
Motorcycles (800 images), Cars rear (800), Airplanes (800) and Faces (435). These datasets contain relatively
small variance in scale and location, and the background images do not contain objects similar to the class

Shttp://www.robots.ox.ac.uk/~vgg/data
4http://www.pascal-network.org/challenges/VOC/#UIUC
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Algorithm 2 Optimization of part p
Input : F(L;), yi , w;, C; i=1,.,N

(i,e) i=1,.,N,c=1,..,N,
initialize weak hypothesis using a selection learner :
Choose 0 = A\j,p5,%; j=1,.,3 , a=0
Set [h(i,CF), x*(i)] = max, arg max g(z, C)
z€F(I;)

3
A
where g(z,c) = '21 ﬁLG(mﬂc’ i, 25)
Jj= 7=
Loop over 1,2,3 K; iterations

1. Loop over a,b K iterations (6 optimization)

(a) Update weak hypothesis parameters

d *cx
6= 0+n30, wiy, L)

(b) Update best part candidates for all images
[h(i,CF), xf] = max, arg max g(z, C)
TzEF(I;)

2. Compute for all i,¢ h(i,¢) = max g(x,c)
z€F(I;)

3. Loop over a,b,c K3 iterations (« optimization)

(a) Update «: a=a+ 7721-]\;1 wiyh(i, CF)
(b) Update hidden center for all images
[f°(1;), C}] = max, arg max (i, ¢) + ah(i, c)

(¢) Update f(I;) and the weights
S exp(f(1)

ity =—1}
N
> exp(—=f9(IL))

{i:y;=1}
F(L) = fo(I;) —v
w; = exp(—yif(Li)) , wi=w;/ Zilil w;

u:%log

Set 1P (i, c¢) = l(i,c) + ah(i,c)
Return 0, w;, CFlP(i,¢) i=1,.N ¢=1,..,N,

objects. In order to test recognition performance under harder conditions, we compiled 3 new datasets with
matching backgrounds.® These datasets contain images of Chairs (800 images), Dogs (500) and Humans
(593), and are briefly described below. Our localization experiments were carried using the UTUC cars side
data set[23]. The training set here is composed of 550 cars images and 500 background images. The test set
includes 170 images, containing altogether 200 cars, with ground truth bounding boxes.

In the Chairs and Dogs datasets, the objects are seen roughly from the same pose, but include large
inner class variability, as well as some variability in location and scale. For the Chairs dataset we compiled a
background dataset of Furniture which contained images of tables, beds and bookcases (200,200,100 images
respectively). When possible (for tables and beds), images were aligned to a viewpoint isomorphic to the
viewpoint of the chairs. As background for the Dogs dataset, we compiled two animal datasets: ’'Easy

5The datasets are available at http://www.cs.huji.ac.il/~aharonbh/.
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Figure 4: Images from the Chairs, Dogs and Humans datasets and their corresponding backgrounds. Object images appear
on the left, background images on the right. In the second row, the two leftmost background images are of ’easy animals’ and
next are two ’'hard animals’ images. In the third row, the two leftmost object images belong to the easier image subset. The
next two images are hard due to the person’s scale and pose.

Animals’ contains 500 images of animals not similar to Dogs; '"Hard Animals’ contains 250 images from the
"Easy Animals’ dataset, and an additional set of 250 images of four-legged animals (such as horses and goats)
in a pose isomorphic to the Dogs.

The Humans dataset was designed to include large variability in location, scale and pose. The data
contains images of 25 different people. Each person was photographed in 4 different scales (each 1.5 times
larger than its predecessor), at various locations and with several articulated poses of the hands and legs.
For each person there are several images in which s/he is partially occluded. For this dataset we created
a background dataset of 593 images, showing the sites in which the Humans images were taken. Figure 4
shows several images from our datasets.

5.2 Algorithm parameters

We have run a series of preliminary experiments, in order to tune the weak learners’ parameters and compare
the results when using selection-based vs. gradient-based weak learners. The parameters of the selection
based weak learner include the number of image patches it samples, and the number of location/scale models
used for each sampled patch. The parameters of the gradient based learner include the step size and stop
condition. The gradient based learner is not limited to hypotheses based on object images, and in many
cases it chooses exaggerated appearance and location models for the part in order to enhance discriminative
power. In the exaggerated appearance models, the brightness contrast is enhanced and the mean patch looks
almost like a Black&White mask (see examples in Figure 5b). This tendency for exaggerated appearance
model is enhanced when the weight of the location model is relatively weak.

In exaggerated location models, parts are modeled as being much farther from the center than they are
in real objects. An example is given in Figure 7, showing a chair model where the tip of the chair’s leg is
located below its mean location in most images. Still, in most cases gradient based learners give lower error
rates than their purely selection-based competitors. Some examples are given in Table 5a. We hence used
gradient based learners in the rest of the recognition experiments.

We have also experimented with the learning of covariance matrices for the appearance and location
models. To guarantee positive definiteness, we have implemented gradient dynamics for the square root
of the covariance matrix. However, we have still observed too much over-fitting in the estimation of the
covariance matrices in our experiments. These additional degrees of freedom tended not to improve the
test results, while achieving lower training error. The problem was ever more serious with the appearance
covariance matrix, where we have sometimes observed reduced performance, and the emergence of unstable
models with covariance matrices close to singular. As a result, in the following experiments we fix the
covariance matrices to oI. We only learn the covariance scale, which in our model determines the part and
component weight parameters.

In the recognition experiments reported in Section 5.3, we constructed models with up to 60 parts using
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Data Name | Selection Gradient
Learner Learner
Motorbikes 7.2 6.9
Cars Rear 6.8 2.3
Airplanes 14.2 10.3
Faces 7.9 8.35
a) b)

Figure 5: a) Comparison of error rates obtained by selection-based and gradient based weak learners on the Caltech data
sets. The results presented were obtained for object models without a location component, i.e. the models are not relational and
classification is based on part appearance alone. b) Examples of parts from motorcycle models learnt using the selection-based
learner (top) and the gradient-based learner (bottom). The images present reconstructions from the 15 DCT coefficients of the
mean appearance vector. The parts presented correspond to motorcycles seat (left) and wheel (right). Clearly, the parts learnt
by the gradient learner have much sharper contrasts.

Algorithm 2, with control parameters of K; = 60, Ko = 100, K5 = 4. Each image was represented using
at most Ny = 200 features (KB detector) or Ny = 240 features (GV detector). The hidden center location
values were an equally spaced grid of 6 x 6 positions over the image. The hidden scale center had a single
value, or 3 different values with a ratio of 0.63 between successive scales, resulting in a total of N, = 36, 108
values respectively. We randomly selected half of the images from each dataset for training and used the
remaining half for testing.

For the localization experiments reported in Section 5.5 we changed several important parameters of the
learning process. Model accuracy is more important for this task, and we therefore learn smaller models with
P = 40 parts, but using a finer location grid of 10 x 10 possible locations (N¢ = 100) and Ny = 400 features
extracted per image. As noted above, the dynamics of the gradient-based location model tends to produce
‘exaggerated’ models, in which parts are located too far from the objects center. This tendency dramatically
reduces the utility of the model for localization. We therefore eliminated the gradient location dynamics in
this context, and modified only the part appearance using gradient descent. We found experimentally that
increasing the weight of the location component uniformly for all the parts improves the localization results
considerably. In the experiments reported below, we multiply the location component weights AY k =1,.., P
(see Eq. (?? for their definition) by a constant factor of 10. Probabilistically, this amounts to smaller
location covariance and hence to stricter demands on the accuracy of parts relative locations. Finally, parts
without location component (when the location component weight is 0) are ignore; these parts do not convey
localization information, and therefore add irrelevant 'noise’ to the MAP score.

5.3 Recognition results

As a general remark, we note that our algorithm tends to learn models in which most features have clear
semantics in terms of object’s parts. Examples of learnt models can be seen in Figures 6-7. In the dog
example we can clearly identify parts that correspond to the head, back, legs (both front and back), and the
hip. Typically 40 — 50 out of the 60 parts are similar in quality to the ones shown. The location models are
gross, and sometimes exaggerated, but clearly useful. Analysis of the part models shows that in many cases,
a distinguished object part (e.g a wheel in the motorcycle model, or an eye in the face model) is modeled
using a number of model parts (12 for the wheel, 10 for the eye) with certain internal variation. In this sense
our model seems to describe each object part using a mixture model.

In Table 1 we compare our results to those obtained by a purely generative approach [20]% and a purely
discriminative one [2]” using the Caltech dataset. Both methods learn from an unordered set of local
descriptors, obtained using an interest point detector. Following [20], the motorbikes, airplanes and faces

6Note that the results reported in [20] (except for the cars data base) were achieved using manually scale-normalized images,
while our method did not rely on any such rescaling.

7In [1], this approach was reported to give better results using segmentation based features. We did not include these results
since we wanted to compare the different learning algorithms using similar features. see also discussion in Section 6
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Figure 6: 5 parts from a dog model with 60 parts. The top left drawing shows the modeled locations of the 5 parts. Each
part’s mean location is surrounded by the 1 std line. The cyan cross indicates the location of the hidden ’center’. The top
right pictures show dog test images with the model implementation found. All these dogs were successfully identified except
for the one on the right-bottom corner. Below the location model, the parts’ mean appearance patches are shown. The last
three rows present parts implementations in the 3 test images that got the highest part likelihood. Each column presents the
implementations of the part shown above the column. The parts have clear semantic meaning and repetitive locations on the
dogs back, hind leg, joint of the hind leg, front leg and head. Most other parts behave similarly to the ones shown.

datasets were tested against office background images, and the Cars rear dataset was tested against road
background images. To allow for a clear comparison with [20], we used their exact train and test indexes
and the same feature detector (KB).

Our results are given in Table 1. They were obtained without modeling scale, since it did not improve
classification results when using the KB detector. This may be partially explained by noting that the
Caltech datasets contain relatively small variance in scale. Error rates for our method were computed using
the threshold learnt by our boosting algorithm. Results are presented for models with 7 parts (the number
of parts used in [20]) and 50 parts. When 7 parts are used, our results are comparable to those of [20].
However, when 50 parts are used our algorithm outperforms both competitors in most cases.

We used the Chairs and Dogs datasets to test the sensitivity of the algorithm to visual similarity be-
tween object and background images. We trained the Chairs dataset against the Caltech office background

102



Figure 7: 5 parts from a chair model. The model is presented in the same format as Figure 6. Model parts represent the

tip of the chairs leg(first part), edges of the back (second and forth parts), the seat corner(third) and the seat edge(fifth). The
location model is exaggerated: The tip of the chairs leg is modeled as being far below its real mean position in object images.

Data Name | Our model | Our model | Fergus | Opelt
7 parts 50 parts et. al et. al
Motorbikes 7.8 4.9 7.5 7.8
Cars Rear 1.2 0.6 9.7 8.9
Airplanes 8.6 6.7 9.8 11.1
Faces 9.5 6.3 3.6 6.5

Table 1: Test error rates over the Caltech dataset, showing the results of our method in 2 conditions - using 7 or 50 parts,
as well as two other methods - a generative model approach [20] and a discriminative model-free boosting approach [2]. The
algorithm’s parameters were held constant across all experiments.

dataset, and against the furniture dataset described above. The Dogs dataset was trained against 3 different
backgrounds datasets: Caltechs ’office’ background, 'Easy Animals’ and 'Hard Animals’. The results are
summarized in Table 2. As can be seen, our algorithm works well when there are large differences between
the object and background images. However, it fails to discriminate, for example, dogs from horses.

Data Background | Test Error
Chairs Office 2.23
Chairs Furniture 15.53
Dogs Office 8.61
Dogs Easy Animals 19.0
Dogs Hard Animals 34.4
Humans Sites 34.3
Humans (resticted) | Sites 25.9

Table 2: Error rates with the new datasets of Chairs, Dogs and Humans. Results were obtained using the KB detector (see
text for more details).

We used the Humans dataset to test the algorithm’s sensitivity to variations in scale and object articula-
tions. In order to obtain reasonable results on this hard dataset, we had to reduce scale variability to 2 scales
and restrict the variability in pose to hand gestures only - we denote this dataset by 'Humans restricted’
(355 images). The results are shown in Table 2.

The parameters in our model are optimized to minimize training error with respect to a certain back-
ground. One may worry that the learnt models describe the background just as well as they describe the
object, in which case performance in classification tasks against different backgrounds is expected to be poor.
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Data | Original BG Motorcycles BG | Airplanes BG | Sites BG
Cars Road (0.6) 3.0 2.2 6.8
Cars Office (1.6) 1.0 0.8 6.4
Chairs | Office (2.2) 8.0 14 6.2
Chairs | Furniture (15.5) 17.4 4.2 8.4
Dogs | Office (8.6) 10.3 4.0 12.3
Dogs | Easy animals (19.0) 15.7 5.7 7.7

Table 3: Generalization results of some learnt models to new backgrounds. Each row describes results of a single class model
trained against a specific background and tested against other backgrounds. Test errors were computed using a sample of
100 images from each test background. The classifiers based on learnt models perform well in most of the new classification
tasks. There is no apparent connection between the difficulty of the training background and successful generalization to new
backgrounds.

Indeed, from a purely discriminative point of view, there is no reason to believe that the learnt classifier will
be useful when one of the classes (the background) changes. To investigate this issue, we used the learnt
models to classify object images against various background images not seen by the learning algorithm. We
found that the learnt models tend to generalize well to the new classification problem, as seen in Table 3.
These results show that the models have ’generative’ qualities: they seem to capture the ’essence’ of the
object in a way that does not really depend on the background used.

5.4 Recognition performance analysis

In this section we analyze the contribution to performance of several important modeling factors. Specifically,
we consider the contribution of modeling part location and scale, and of increasing the number of model
parts and features extracted per image.

5.4.1 Location and scale models

The relational components of the model, i.e. the location and scale of the parts, clearly complicate learning
considerably, and it is important to understand if they give any performance gain. Table 4 shows compar-
ative results varying the model complexity. Specifically we present results when using only an appearance
model, and when adding location and scale models, using the GV detector [11].® We can see that although
the appearance model produces very reasonable results, adding a location model significantly improves per-
formance. The additional contribution of the scale model is relatively minor. Additionally, by comparing the
results of our full blown model (A+L+S) to those presented in Tables 1-2, we can see that the discriminative
GV detector usually provides somewhat better results than those obtained using the generic KB detector.

Data Name A A+L A+L+S
Motorbikes 8.1 3.2 3.5
Cars Rear 4.0 1.4 0.6
Airplanes 15.1 15.1 12.1
Faces 6.1 5.2 3.8
Chairs 16.3 10.8 10.9

Table 4: Errors rates using models of varying complexity. (A) Appearance model alone. (A+L) Appearance and location
models. (A+L+S) Appearance, location and scale models. The algorithm’s parameters were held constant across all experi-
ments.

8Similar experiments with the KB detector yielded similar results, but showed no significant improvement with scale mod-
eling.
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Performance as a function of parts number Performance as a function of features number
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Figure 8: a) Error rate as a function of the number of parts P in the model on the Caltech datasets for Ny =200. b) Error
rate as a function of the number of image features Ny on the Cars rear (easy) and Airplanes (Relatively hard) Caltech datasets,
with P = 30. In b), the X axis varies between 13 and 228 features in log scale, base 2. All the results were obtained using the
KB detector.

5.4.2 Large numbers of parts and features

When hundreds of features are used per image, many features lie in the background of the image, and learning
good parts implicitly requires feature pruning. Figure 8 gives error rates as a function of the number of parts
and features. Significant performance gains are obtained by scaling up these quantities, indicating that the
algorithm is able to find good part models even in the presence of many clutter features. This behavior
should be contrasted with the generative learning of a similar model in [21], where increasing the number of
parts and features does not usually lead to improved performance. Intuitively, maximum likelihood learning
chooses to model features which are frequent in object images, even if these are simple clutter features from
the background, while discriminative learning naturally tends to selects more discriminative parts.

5.5 Localization results

Locating an object in a large image is much harder than the binary present/absent detection task. The
latter problem is tackled in this paper using a limited set of image features, and a crude grid of possible
object locations. For localization we use a similar framework in learning, but turn to a more exhaustive
search at the test phase. While searching we do not select representative features, but consider instead as
part candidates all the possible image patches at every location and several scales. Object center candidates
are taken from a dense grid of possible image locations. To search efficiently, we use the methods proposed
in [21, 18], which allow such an exhaustive search in a relatively low computational cost.
The model is applied to an image following a three stage protocol:

1. Convolve the image with the first 15 filters of the DCT base at N; scales, yielding Ny x 15 coefficient
’activity maps’. We use Ny = 5, spanning patch sizes between 5 and 30 pixels.

2. Compute P x N, appearance maps by applying the parts appearance models to the vector of DCT co-
efficients at every image location. The coordinate values (z,y) in map (k, j) contain the log probability
of part k with scale j in location (z,y).

3. Apply the relational model to the set of appearance maps, yielding a single log probability map for the
"hidden center’ node. To this end, the N appearance maps of each part are merged into a single map
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Figure 9: 5 parts from the car side model used in the localization task. The parts shown correspond to the two wheels, front
and rear ends, and the top-rear corner. The complete model includes 38 parts, most of them with clear semantics. While the
model is not symmetric w.r.t to the x axis, it is not far from being so. It hence happens that a car is successfully detected, but
its direction is not properly identified.

by choosing at each coordinate the most likely part scale. We then compute P part message maps,
corresponding to the messages h*(I,C) defined in Eq. (24), by applying the distance transform [18] to
the merged appearance maps. Finally the "hidden center’ map is formed as a weighted sum of parts
message maps.

The data includes cars facing both directions (i.e. left-to-right and right-to-left). We therefore flip the
training images prior to training, such that all cars face the same direction. At the test phase we run
the exhaustive search for the learnt model and its mirror image. We detect local maxima in the hidden
center map, sort them according to likelihood, and prune neighboring maxima in a way similar to the
neighborhood suppression technique suggested in [23]. Figure 10 presents some probability maps and detected
cars, illustrating typical successful and problematic detections. Each detection is labeled as hit or miss using
the criterion used in [24] (which is slightly different from the one used in [23]), to allow for a fair comparison
with other methods. Figure 11 presents a precision-recall curve and a comparison of the achieved localization
performance to several recently suggested methods. Our results are comparable to those obtained by the
best methods, and are inferior only to a method which uses ’strong’ supervision, in the form of images with
parts segmentations. In this method part identities are not learnt but chosen manually, and so the learning
task is simpler.

6 Discussion

We have presented a method for object class recognition and localization, based on discriminative optimiza-
tion of a relational generative model. The method combines the natural treatment of spatial part relations,
typical to generative classifiers, with the efficiency and pruning ability of discriminative methods. Efficient,
scalable learning is achieved by extending boosting techniques to a simple relational model with conditionally
dependent parts. In a recognition task, our method compares favorably with several purely generative or
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SIS

Figure 10: Hidden center probability maps and car detections. In each image pair, the left image shows the probability map
for the location of reference point C. The right image shows the 5 parts from Figure 9 superimposed on the detected cars.
Top Successful detections. Notice that the middle of a gap between two cars tends to emerge as a probable car candidate, as
it gains support from both cars. Bottom Problematic detections. The third example includes a spurious detection and a car
detected using the model of the 'wrong’ direction. The bottom example includes a spurious ’'middle car’ between two real cars.
Values in the probability maps were thresholded and linearly transformed for visualization.
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Recall-Precision curve
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08 Method Reference | Equal error rate
08 Roth et al. [24] 0.21
g, Fergus et al. 2003 [20] 0.115
Fergus et al. 2005 [21] 0.078
02 Our method - 0.076
0 Leibe et. al.* [6] 0.09 (0.025)
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Figure 11: a) Recall-Precision curve for cars side detection, using the model shown in Figure 9. b) Error error rates
(recall=1-precision) obtained on the cars side data by several recent methods.Our performance is comparable to the state-of-
the-art methods. images with manually segmented parts. It obtains error rate of 0.09, which is improved to 0.025 using an
MDL verification step.

purely discriminative systems recently proposed. In a localization task its performance is comparable to the
best available method.

While our recognition results are fair, [1, 27] report better results obtained using discriminative methods
which ignore geometric relations and focus instead on feature representation. Specifically, in [1] segmentation
based features are used, while in [27] features are based on flexible exhaustive search of 'code book’ patches.
The recognition performance of these approaches relies on better feature extraction and representation,
compared with our simple combination of interest point detection and DCT-based representation. We regard
the advances offered by these methods as orthogonal to our main contribution, i.e. the efficient incorporation
of geometrical relations. The advantages can be combined by combining better part appearance models and
better feature extraction techniques with the relational boosting technique suggested here. We intend to
continue our research along these lines.

The complexity of our suggested learning technique is linear in the number of parts and features per
image, but it may still be quite expensive. Specifically, the inference complexity of the hidden center C'
is O(N.N;P) where N, is the number of considered center locations, and this inference is carried for each
image many times during learning. This limits us to a relatively crude grid of possible center locations in
the learning process, and hence limits the accuracy of the location model learnt. A possible remedy is to
consider less exhaustive methods for inferring the optimal hidden center, based on part voting or mean shift
mode estimation, as done in [6]. Such ’heuristic’ inference solutions may offer enhanced scalability and a
more biologically plausible recognition mechanism.

Finally, leaving technical details aside, we regard this work as a contribution to an important debate
in learning from unprocessed images, regarding the choice of generative vs. discriminative modeling. We
demonstrated that combining generative relational modeling with discriminative optimization can be fruitful
and lead to more scalable learning. However, this combination is not free of problems. Our technical problems
with covariance matrix learning and the tendency of our technique to produce ’exaggerated’ models are two
examples. The method proposed here is a step towards the required balance between the descriptive power
of generative models and the task relatedness enforced by discriminative optimization.
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A Feature repetition and ML optimization in a star model

Allowing feature repetitions, we derived the likelihood approximation (10) for our star model. For a set of

object images {I; }}’:1, This approximation entails the following total data likelihood

P

» log P(I;|0) = nlogK0+§ log[max n%)P( z|C, 0] (32)
S
j=1 j=1 K=1

= nlog[%—&-ZmaxZ n}wax log P(z|C, 6%)
— a:G

The maximum likelihood parameters © = (61,..,0p) are chosen to maximize this likelihood. In this
maximization, we can ignore the constant term nlog Ky. To simplify further notation let us denote parts’
conditional log likelihood terms by g;(C,0;) = H}:EE)I()P(QC‘C’ 0r). Also denote the vector of the hidden

xe j

center variables in all images by C' = (C1,..,Cp).

n P P n
mgx[g max E g;(C,0%)] = max max E g g;(C;,0%)] = max E Hé%X[g g;(C;,0M)] (33)
. & Sl
j=1 K=1 K=1 j=1

j=1 K=1

For any fixed centers vector C_", and any 1 < k < P, the optimal % is determined as 6% = argmax, G(9, C_")
where G (0, é) = 2;21 9;(Cj,8). Hence, for any C, the optimal part parameters 6% are identical, as maxima
of the same function. Clearly the maximum over C also posses this property.

The proof can be repeated in a similar way for the star model presented in [21], in which the center node
is an additional ’landmark’ part, as long as the sum over all model interpretations in an image is replaced
by the single maximal likelihood interpretation.

B Part weights introduction

Here we establish the functional equivalence between classifiers with and without part weights for weak
learners of the form (14). We use the identity

log G(z|u, X) — v = o [log Ga|p', X') — V] (34)

where

1 ~1)d 1 1
W=p, ¥ =a%, 9/:a[af%logzwfaafﬁ)loym

to introduce part weights into the classifier. This identity is true for all « > 0. We apply this identity to
each part k in the classifier (14), with o* = |2¥|=1/4, to obtain

[ max log Gelug, =) — v (35)
xre

I
WE

P
= log G(xz|p, 2k —
;Jél%) og G(z|pg, 2f) a

S
Il

1

where ¥ = o*%F is has a fixed determinant of 1 for all parts. The weights a* therefore (inversely) reflect
covariance scale.
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C

Proof of lemma 1

We differentiate the loss w.r.t. v

d N N N
0= exp(-ulf(Il) —v) == Y exp(=f(L)+v)+ > exp(f(L;) —v) (36)
i=1 {i:y;i=1} {iy;i=—1}

For f = f — v, (36) gives property (21). Solving for v gives

N N
exp(v) Y exp(—f(L) =exp(—v) D> exp(f(L)) (37)
{iryi=1} {ityi=—1}

from which (20) follows. Finally, we can compute the loss using the optimal v*

. [ = et
S exp(-ylf(l) —v]) = | S exp(—f(1)
= S exp(—f(L)| G
L {i:yi=1} J
- N -1
) 2_: ) eXp(f(Ii)) N
+ | > ewp(f(1)
2RI | =y

from which (22) follows.
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Abstract

We address the problem of sub-ordinate class recognition, like the distinction be-
tween different types of motorcycles. Our approach is motivated by observations
from cognitive psychology, which identify parts as the defining component of
basic level categories (like motorcycles), while sub-ordinate categories are more
often defined by part properties (like 'jagged wheels’). Accordingly, we suggest
a two-stage algorithm: First, a relational part based object model is learnt using
unsegmented object images from the inclusive class (e.g., motorcycles in general).
The model is then used to build a class-specific vector representation for images,
where each entry corresponds to a model's part. In the second stage we train a
standard discriminative classifier to classify subclass instances (e.g., cross motor-
cycles) based on the class-specific vector representation. We describe extensive
experimental results with several subclasses. The proposed algorithm typically
gives better results than a competing one-step algorithm, or a two stage algorithm
where classification is based on a model of the sub-ordinate class.

1 Introduction

Human categorization is fundamentally hierarchical, where categories are organized in tree-like
hierarchies. In this organization, higher nodes close to the root describe inclusive classes (like
vehicles), intermediate nodes describe more specific categories (like motorcycles), and lower nodes
close to the leaves capture fine distinctions between objects (e.g., cross vs. sport motorcycles).
Intuitively one could expect such hierarchy to be learnt either bottom-up or top-down (or both), but
surprisingly, this isnotthe case. In fact, there is a well defined intermediate level in the hierarchy,
calledbasic level which is learnt first [11]. In addition to learning, this level is more primary than
both more specific and more inclusive levels, in terms of many other psychological, anthropological
and linguistic measures.

The primary role of basic level categories seems related to the structure of objects in the world. In
[13], Tversky & Hemenway promote the hypothesis that the explanation lies in the notion of parts.
Their experiments show that basic level categories (like cars and flowers) are often described as a
combination of distinctive parts (e.g., stem and petals), which are mostly unique. Higher (super-
ordinate and more inclusive) levels are more often described by their function (e.g., 'used for trans-
portation’), while lower (sub-ordinate and more specific) levels are often described by part properties
(e.g., red petals) and other fine details. These points are illustrated in Fig. 1.

This computational characterization of human categorization finds parallels in computer vision and
machine learning. Specifically, traditional work in pattern recognition focused on discriminating
vectors of features, where the features are shared by all objects, with different values. If we make the
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Figure 1:Left Examples of sub-ordinate and basic level classificaflap. row: Two motorcycle subordinate
classes, sport (right) and cross (left). As members of the same basic level category, they share the same part
structure.Bottom row: Objects from different basic level categories, like a chair and a face, lack such natural
part correspondenceRight. Several parts from a learnt motorcycle model as detected in cross and sport
motorcycle images. Based on the part correspondence we can build ordered vectors of part descriptions, and
conduct the classification in this shared feature space. (Better seen in color)

analogy between features and parts, this level of analysis is appropriate for sub-ordinate categories.
In this level different objects share parts but differ in the parts’ values (e.g., red petals vs. yellow
petals); this is called 'modified parts’ in [13].

This discrimination paradigm cannot easily generalize to the classification of basic level objects,
mostly because these objects do not share common informative parts, and therefore cannot be ef-
ficiently compared using an ordered vector of fixed parts. This problem is partially addressed in a
more recent line of work (e.g., [5, 6, 2, 7, 9]), where part-based generative models of objects are
learned directly from images. In this paradigm objects are modeled as a set of parts with spatial
relations between them. The models are learnt and applied to images, which are represented as un-
ordered feature sets (usually image patches). Learning algorithms developed within this paradigm
are typically more complex and less efficient than traditional classifiers learnt in some fixed vector
space. However, given the characteristics of human categorization discussed above, this seems to be
the correct paradigm to address the classification of basic level categories.

These considerations suggest that sub-ordinate classification should be solved using a two stage
method: First we should learn a generative model for the basic category. Using such a model, the
object parts should be identified in each image, and their descriptions can be concatenated into an
ordered vector. In a second stage, the distinction between subordinate classes can be done by apply-
ing standard machine learning tools, like SVM, to the resulting ordered vectors. In this framework,
the model learnt in stage 1 is used to solve the correspondence problem: features in the same entry
in two different image vectors correspond since they implement the same part. Using this relatively
high level representation, the distinction between subordinate categories may be expected to get
easier.

Similar notions, of constructing discriminative classifiers on top of generative models, have been
recently proposed in the context of object localization [10] and class recognition [7]. The main
motivation in these papers was to provide discriminative power to a generative model, optimized
by maximum likelihood. Thus the discriminative classifier for a class in [7, 10] uses a generative
model of the same class as a representation scheimecontrast, in this work we use a recent
learning algorithm, which already learns a generative relational model of basic categories using a
discriminative boosting technique [2]. The new element in our approach is in the learning of a model
of one class (the more general basic level category) to allow the efficient discrimination of another
class (the more specific sub-ordinates).

Thus our main contribution lies the use of objcet hierarchy, where we represent sub-ordinate classes
using models of the more general, basic level class. The approach relies on a specific form of

knowledge transfer between classes, and as such it is an instance of the 'learning-to-learn’ paradigm.
There are several potential benefits to this approach. First and most important is improved accuracy,
especially when training data is scarce. For an under-sampled sub-ordinate class, the basic level

1An exception to this rule is the Caltech 101 experiment of [7], but there the discriminative classifiers for
all 101 classes relies on the same two arbitrary class models.
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model can be learnt from a larger sample, leading to a more stable representation for the second stage
SVM and lower error rate. A second advantage becomes apparent when scalability is considered: A
system which needs to discriminate between many subordinate classes will have to learn and keep
considerably less models (only one for each basic level class) if built according to our proposed
approach. Such a system can better cope with new subordinate classes, since learning to identify a
new class may rely on existing basic class models.

Typically the learning of generative models from unsegmented images is exponential in the number
of parts and features [5, 6]. This significantly limits the richness of the generative model, to a point
where it may not contain enough detail to distinguish between subclass instances. Alternatively,
rich models can be learnt from images with part segmentations [4, 9], but obtaining such training
data requires a lot of human labor. The algorithm we use in this work, presented in [2], learns from
unsegmented images, and its complexity is linear in the number of model parts and image features.
We can hence learn models with many parts, providing a rich object description. In section 3 we
discuss the importance of this property.

We briefly describe the model learning algorithm in Section 2.1. The details of the two-stage method
are then described in Section 2.2. In Section 3 we describe experiments with sub-classes from six
basic level categories. We compare our proposed approach, called BLP (Basic Level Primacy), to
a one-stage approach. We also compare to another two-stage approach, called SLP (Subordinate
Level Primacy), in which discrimination is done based on a model of the subordinate class. In most
cases, the results support our claim and demonstrate the superiority of the BLP method.

2 Algorithms

To learn class models, we use an efficient learning method briefly reviewed in Section 2.1. Sec-
tion 2.2 describes the techniques we use for subclass recognition.

2.1 Efficient learning of object class models

The learning method from [2] learns a generative relational object model, but the model parameters
are discriminatively optimized using an extended boosting process. The class model is learnt from
a set of object images and a set of background images. lthageepresented using an unordered
feature sef’(I) with N, features extracted by the Kadir & Brady feature detector [8]. The feature

set usually contains several hundred features in various scales, with considerable overlap. Features
are normalized to uniform size, zero mean and unit variance. They are then represented using their
first 15 DCT coefficients, augmented by the image location of the feature and its scale.

The object model is a generative part-based model Witharts (see example in Fig. 2b), where

each part is implemented by a single image feature. For each part, its appearance, location and scale
are modeled. The appearance of parts is assumed to be independent, while their location and scale
are relative to the unknown object location and scale. This dependence is captured by a Bayesian
network model, shown in Fig. 2a. It is a star-like model, where the center node is a 3-dimensional
hidden node” = (C‘l, Cs), with the vectorC‘l denoting the unknown object location and the scalar

C; denoting its unknown scale. All the components of the part model, including appearance, relative
location and relative log-scale, are modeled using Gaussian distributions with a (scaled) identity
covariance matrix.

Based on this model and some simplifying assumptions, the likelihood ratio test classifier is approx-
imated by

P
I = 1 C,0F) — 1
F(I) mgxgmggg) og p(z|C,0%) — v 1)

This classifier compares the first term, which represents the approximated image likelihood, to a
thresholdv. The likelihood term approximates the image likelihood using the MAP interpretation
of the model in the image, i.e., it is determined by the single best implementation of model parts
by image features. This MAP solution can be efficiently found using standard message passing in
time linear in the number of part8 and the number of image featurds. However, Maximum
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Figure 2:Left A Bayesian network specifying the dependencies between the hidden vatiabigsand the
parts scale and locatioi}, X* for k = 1, .., P. The part appearance variabl&% are independent, and so
they do not appear in this networldiddle The spatial relations between 5 parts from a learnt chair model.
The cyan cross indicates the position of the hidden object centdRight The implementations of theparts

in a chair image. (Better seen in color)

Likelihood (ML) parameter optimization cannot be used, since the approximation permits part rep-
etition, and as a result the ML solution is vulnerable to repetitive choices of the same part. Instead,
the model is optimized to minimize a discriminative loss function.

Specifically, labeling object images byl and background images byl, the learning algorithm
tries to minimize the exp loss of the margih(f) = Zf\il exp(—y; f(1;)), which is the loss min-

imized by the Adaboost algorithm [12]. The optimization is done using an extended 'relational’
boosting scheme, which generalizes the boosting technique to classifiers of the form (1).

In the relational boosting algorithm, the weak hypotheses (summands in Eg. (1)) are not merely
functions of the imagd, but depend also on the hidden variablewhich captures the unknown
location and scale of the object. In order to find good part hypotheses, the weak learner is given
the best current estimate 6f, and uses it to guide the search for a discriminative part hypothesis.
After the new part hypothesis is added to the modgis re-inferred and the new estimate is used

in the next boosting round. Additional tweaks are added to improve class recognition results, in-
cluding a gradient descent weak learner and a feedback loop between the optimization of the a weak
hypothesis and its weight.

2.2 Subclass recognition

As stated in the introduction, we approach subclass recognition using a two-stage algorithm. In the
first stage a model of the basic level class is applied to the image, and descriptors of the identified
parts are concatenated into an ordered vector. In the second stage the subclass label is determined
by feeding this vector into a classifier trained to identify the subclass. We next present the imple-
mentation details of these two stages.

Class model learning Subclass recognition in the proposed framework depends on part consis-
tency across images, and it is more sensitive to part identification failures than the original class
recognition task. Producing an informative feature vector is only possible using a rich model with
many stable parts. We therefore use a large number of fegtivies= 400) per image, and a rel-
atively fine grid ofC values, with10 x 10 locations over the entire image afidcales (a total of

N. = 300 possible values for the hidden variakil§. We also learn large models with = 60

parts? Note that such large values fof; and P are not possible in a purely generative framework
such as [5, 6] due to the prohibitive computational learning complexify(dff).

In [2], model parts are learnt using a gradient based weak learner, which tends to produce exag-
gerated part location models to enhance its discriminative power. In such cases parts are modeled
as being unrealistically far from the object center. Here we restrict the dynamics of the location
model in order to produce more realistic and stable parts. In addition, we found out experimen-
tally that when the data contains object images with rich backgrounds, performance of subclass
recognition and localization is improved when using models with increased relative location weight.
Specifically, a part hypothesis in the model includes appearance, location and scale components with

2In comparison, class recognition in [2] was done with = 200, N, = 108 and P = 50.
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relative weights\; /(A1 + Ao + A3), @ = 1,2, 3, learnt automatically by the algorithm. We multiply
Ao of all the parts in the learnt model by a constant factot @fvhen learning from images with
rich background. Probabilistically, such increase.@famounts to smaller location covariance, and
hence to stricter demands on the accuracy of the relative locations of parts.

Subclass discrimination Given a learnt object model and a new image, we match for each model
part the corresponding image feature which implements it in the MAP solution. We then build
the feature vector, which represents the new image, by concatenating all the feature descriptors
implementing partg, .. P. Each feature is described usingladimensional descriptor including:

e Thel5 DCT coefficients describing the feature.

e The relative (x,y) location and log-scale of the feature (relative to the computed MAP value
of C).

e A normalized mean of the featufe: — 1) /std(m) wherem is the feature’s mean (over
feature pixels), aneh, std(m) are the empirical mean and stdrafover theP parts in the
image.

e A normalized logarithm of feature varian¢e — ©)/std(v) with v the logarithm of the
feature’s variance (over feature pixels) andtd(v) the empirical mean and std ofover
image parts.

e The log-likelihood of the feature (according to the part's model).

Inthe end, each image is represented by a vector of |eXigthP. The training set is then normalized

to have unit variance in all the dimensions, and the standard deviations are stored in order to allow
for identical scaling of the test data. Vector representations are prepared in this manner for a training
sample including objects from the sub-ordinate class, objects from other sub-ordinate classes of the
same basic category, and background images. Finally, a linear SVM [3] is trained to discriminate
the target subordinate class images from all other images.

3 Experimental results

Methods: In our experiments, we regard subclass recognition as a binary classification problem

in a retrieval scenario. Specifically, The learning algorithm is given a sample of background images,
and a sample of unsegmented class images. Images are labeled by the subclass they represent, or as
background if they do not contain any object from the inclusive class. The algorithm is trained to
identify a specific subclass. In the test phase, the algorithm is given another sample from the same
distribution of images, and is asked to identify images from the specific subclass.

Several methodological problems arise in this scenario. First, subclasses are often not mutually
exclusive [13], and in many cases there are borderline instances which are inherently ambiguous.
This may lead to an ill-defined classification problem. We avoid this problem in the current study by
filtering the data sets, leaving only instances with clear-cut subclass affiliation. The second problem
concerns performance measurements. The common measure used in related work is the equal error
rate of the ROC curve (denoted here EER), i.e., the error obtained when the rate of false positives
and the rate of false negatives are equal. However, as discussed in [1], this measure is not well suited
for a detection scenario, where the number of positive examples is much smaller than the number of
negative examples. A better measure appears to be the equal error rate of the recall-precision curve
(denoted here RPC). Subclass recognition has the same characteristics, and we therefore prefer the
RPC measure; for completeness, and since the measures do not give qualitatively different results,
the EER score is also provided.

The algorithms compared: We compare the performance of the following three algorithms:

e Basic Level Primacy (BLP) The two-stage method for subclass recognition described
above, in which a model of the basic level category is used to form the vector representation.

e Subordinate level primacy (SLPA two-stage method for subclass recognition, in which
a model of the sub-ordinate level category is used to form the vector representation.
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Motorcycles Faces Guitars
Cross (106) por:[ (156) Male (272) Female (173) Classical (60) Electric (60)

Tables Chairs Pianos
Dining (60) Coffee (60)

Grand (60) Upright (60)

Figure 3: Object images from the subclasses learnt in our experiments. We used 12 subclasses of 6 basic
classes. The number of images in each subclass is indicated in the parenthesis next to the subclass name.
Individual faces were also considered as subclasses, and the males and females subclasses above include a
single example from 4 such individuals.

e One stage methodThe classification is based on the likelihood obtained by a model of the
sub-ordinate class.

The three algorithms use the same training sample in all the experiments. The class models in all
the methods were implemented using the algorithm described in Section 2.1, with exactly the same
parameters (reported in section 2.2). This algorithm is competitive with current state-of-the-art
methods in object class recognition [2].

The third and the second method learn a different model for each subordinate category, and use
images from the other sub-ordinate classes as part of the background class during model learning.
The difference is that in the third method, classification is done based on the model score (as in [2]),
and in the second the model is only used to build a representation, while classification is done with an
SVM (as in [7]). The first and second method both employ the distinction between a representation
and classification, but the first uses a model of the basic category, and so tries to take advantage of
the structural similarity between different subordinate classes of the same basic category.

Datasets We have considered 12 subordinate classes from 6 basic categories. The images were
obtained from several sources. Specifically, we have re-labeled subsets of the Caltech Motorcycle
and Faces databaséo obtain the subordinates of sport and cross motorcycles, and male and female
faces. For these data sets we have increased the weight of the location model, as mentioned in
section 2.2. We took the subordinate classes of grand piano and electric guitar from the Caltech 101
dataset and supplemented them with classes of upright piano and classical guitar collected using
google images. Finally, we used subsets of the chairs and furniture background usethinl¢tine

classes of dining and living room chairs, dining and coffee tables. Example images from the data
sets can be seen in Fig. 3. In all the experiments, the Caltech office background data was used as the
background class. In each experiment half of the data was used for training and the other half for
test.

3Available at http://www.robots.ox.ac.uk/ vgg/data.html.
4Available at http://www.vision.caltech.edu/feifeili/Datasets.htm
SAvailable at http://www.cs.huji.ac.il/ aharonbh/#Data.
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Figure 4:Left: RPC error rates as a function of the number of model paris the two-stage BLP method,
for5 < P < 60. The curves are presented frepresentative subclasses, one from each basic level cate-
gory presented in Fig. Right: classification error of the first stage classifier as a functio® ofThis graph
reports errors for thé basic level models used in the experiments reported on the left graph. In general, while
adding only a minor improvement to inclusive class recognition, adding parts b&8gaignificantly improves
subclass recognition performance.

In addition, we have experimented with individual faces from the Caltech faces data set. In this
experiment each individual is treated as a sub-ordinate class of the Faces basic class. We filtered the
faces data to include only people which have at I@@stages. There wer#9d such individuals,

and we report the results of these experiments using the mean error.

Classification results Table 1 summarizes the classification results. We can see that both two-
stage methods perform better than the one-stage method. This shows the advantage of the distinc-
tion between representation and classification, which allows the two-stage methods to use the more
powerful SVM classifier. When comparing the two two-stage methods, BLP is a clear wirihef in

the 13 experiments, while SLP has a clear advantage only in a single case. The representation based
on the basic level model is hence usually preferable for the fine discriminations required. Overall,
the BLP method is clearly superior to the other two methods in most of the experiments, achieving
results comparable or superior to the otherdlirof the 13 problems. It is interesting to note that

the SLP and BLP show comparable performance when given the individual face subclasses. Notice
however, that in this case BLP is far more economical, learning and storing a single face model
instead of thd 9 individual models used by SLP.

Subclass One stage method| Subordinate level primacy | Basic level primacy
Cross motor. 145 (12.7) 9.9 (3.5) 55 (1.7)
Sport motor. 10.5 (5.7) 6.6 (5.0) 4.6 (2.6)
Males 20.6 (12.4) 24.7 (19.4) 219 (16.7)
Females 106 (7.1) 10.6 (7.9) 8.2 (5.9)
Dining chair 6.7 (3.6) 0 ©) 0 0)
Living room chair | 6.7 (6.7) 0 0) 0 0)
Coffee table 13.3 (6.2) 8.4 (6.7) 3.3 (3.6)
Dining table 6.7 (3.6) 49 (3.6) 0 0)
Classic guitar 4.9 (3.1) 3.3 (0.5) 6.7 (3.1)
Electric guitar 6.7 (3.6) 3.3 (3.6) 3.3 (2.6)
Grand piano 10.0 (3.6) 10.0 (3.6) 6.7 (4.0)
Upright piano 3.3 (3.6) 10.0 (6.7) 3.3 (0.5)
Individuals 275 (24.8) 17.9° (7.3) 19.27 (6.5)

Table 1:Error rates (in percents), when separating subclass images from non-subclass and background images.
The main numbers indicate equal error rate of the recall precision curve (RPC). Equal error rate of the ROC
(EER) are reported in parentheses. The best result in each row is shown in bold. For the individuals subclasses,
the mean ovet9 people is reported (marked BY. Overall, the BLP method shows a clear advantage.

Performance as a function of number of parts Fig. 4 presents errors as a function Bf the

number of class model parts. The graph on the left plots RPC errors of the two stage BLP method
on6 representative data sets. The graph on the right describes the errors of the first stage class models
in the task of discriminating the basic level classes background images. While the performance of
inclusive class recognition stabilizes aftei30 parts, the error rates in subclass recognition continue

to drop significantly for most subclasses well bey@fdparts. It seems that while later boosting
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rounds have minor contribution to class recognition in the first stage of the algorithm, the added
parts enrich the class representation and allow better subclass recognition in the second stage.

4 Summary and Discussion

We have addressed in this paper the challenging problem of distinguishing between subordinate

classes of the same basic level category. We showed that two augmentations contribute to per-
formance when solving such problems: First, using a two-stage method where representation and

classification are solved separately. Second, using a larger sample from the more general basic level
category to build a richer representation. We described a specific two stage method, and experimen-
tally showed its advantage over two alternative variants.

The idea of separating representation from classification in such a way was already discussed in
[7]. However, our method is different both in motivation and in some important technical details.
Technically speaking, we use an efficient algorithm to learn the generative model, and are therefore
able to use a rich representation with dozens of parts (in [7] the representation typically irkludes
parts). Our experiments show that the large number of model parts i a critical for the success of the
two stage method.

The more important difference is that we use the hierarchy of natural objects, and learn the repre-
sentation model for a more general class of objects - the basic level class (BLP). We show experi-
mentally that this is preferable to using a model of the target subordinate (SLP). This distinction and
its experimental support is our main contribution. Compared with the more traditional SLP method,
the BLP method suggested here enjoys two significant advantages. First and most importantly, its
accuracy is usually superior, as demonstrated by our experiments. Second, the computational effi-
ciency of learning is much lower, as multiple SVM training sessions are typically much shorter than
multiple applications of relational model learning. In our experiments, learning a generative rela-
tional model per class (or subclass) required 12-24 hours, while SVM training was typically done
in a few seconds. This advantage is more pronounced as the number of subclasses of the same class
increases. As scalability becomes an issue, this advantage becomes more important.
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Chapter 4
Epilogue

This thesis, and my Ph.D research in general, includes contributions to two research domains: theory and praxis

of distance function learning, and visual object class recognition.

¢ Distance function learning:

— Theory :We have shown that multi class classification problems are equivalent in learnability terms to
binary distance functions over the product space by showing the connections between the errors and
the sample sizes required for the two problems. We showed how a learnt distance functioemeth

can be used to find a solution for the corresponding multi-classification problem with error lirear in

— Algorithms : We have suggested several algorithms for distance function learning: RCA, Gaussian
Coding similarity, Distboost, and Kernelboost, although only the first two are included in this thesis.
Specifically, RCA is a simple and efficient algorithm for Mahalanobis metric learning, which has been
highly influential in the learning distance community. The Gaussian coding similarity combines a
general definition of similarity in information-theoretic terms with a practical, efficient algorithm and

good empirical results.
¢ Learning object class recognition:

— Object class recognition : We have studied learning algorithms for part based object recognition
based on discriminative optimization of generative models. We considered and compared bag-of-
features and relational models. Our method overcomes an inherent problem in maximum likelihood
learning of relational models from unsegmented images, and allows efficient learning, which is linear

in the number of model parts and image features.
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— Subordinate class recognition :We suggested a two stage method for the discrimination between
similar sub-classes of an object class, based on insights from human cognitive psychology. By taking
advantage of a natural object hierarchy, our method allows more accurate learning with fewer object
models. To the best of our knowledge, this is the first method yielding such results over a wide range

of object classes.
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Appendix A

Proof completion for article A

A.1 Proof of Theorem 1

In order to prove this theorem, we first describe a procedure for findiagd & such that their labels are

matched. We then look for a lower bound on the ratio

—1M-1

- Z > i (X0 prj + 2 pik)
e(h,e) _ j=0 k#z = (A1)

(1- Z Pii)?
=0

for thec, h described, where the expressions for the errors are those presented earlier. Finally, we use the properties
of the suggested match betweeandh to bound the ratio.

Let ¢, h denote any two original space hypotheses suchathat/(c), h = U(h). We wish to match the labels
of h with the labels of;, using a permutation of the labels/af If we look at the matrixP, such a permutation is a
permutation of the columns, but since the order of the labels in the rows is arbitrary, we may permute the rows as
well. Note that the product space error is invariant to permutations of the rows and columns, but the original space
error is not: it only depends on the mass of the diagonal, and so we seek permutations which maximize this mass.
We suggest alvI-step greedy procedure to construct the permuted matrix.

Specifically, denote by, : {0,...M — 1} — {0,..,M — 1} andf.: {0,..., M —1} — {0,...,M — 1} the
permutations of the rows and the columns respectively. InGtept < M — 1 we extend the definition of both
permutations by finding the row and column to be mapped to row and cotuinrthe first step we find the largest
elementp;; of the matrixP, and definefr(z') =0, fe( ') = 0. In thek-th step we find the Iargest element of the
sub matrix ofP with rows {0, . . — 11\ £, — 1) and columng0, . . — 1\ - 1)

(rows and columns not already ‘used’). Denoting this elememjasve then deflnqr(i) =k andfc(j) =
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Without loss of generality, IeP denote the joint distribution matrix after applying the permutations thus defined

to the originalP’s rows and columns. By constructioR,now has the property:
VO<i<M-—1, Vj,k>14, pi>pjk (A.2)

In order to bound the ratio (A.1), we bound the nominator from below as follows

M—1M-1 M-1M-1
e(he) = > D Py Zmﬁ > 2y me
7j=0 =0 =0 j=0
k?fl k#ﬂ
M-1 M-1  M-1 M-1 M-1 M-1
2> Z Dij Z prjl+ [Z Dij Z Pik]
7=0 >3 k>j =0 52> k>i
ksﬁ% k#j
M-1 M—1 M-1 M 1
= Z Dij Z Pkj — p’L] Dij Z Dik — pz]
=0 i>j k>j =0 ]>z k>1
and then use constraint (A.2) to improve the bound
M-1 M-1  M-1 M-1 M-1 -
> 1D il e — il Y D il szk_pm
j=0 i>j k>j =0 j>1i k>1

The denominator in (A.1) is the squareddt, 1), which can be written as

M-1 M-1
e(h,c)=1-— Z Pii = Z [szk +Zpkj]
k=0

k=0 >k J>k

To simplify the notations, denote

Mj=> pir 0<k<M-1

j>k

Mk—zpkz 0<k<M-1

Changing variables fI’OF{Ip”}” oo {MU,MZ,pkk}k o . ratio (A.1) becomes

M-—1
e(h,2) kZO (M2 + prr) ME2+(MP + pps, ) ME
e(h,c)? - M-1
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a;)? (for positive arguments) twice to get the required bound:

-

N
Now we use the inequality" a? > 3 (
i=1

=1

M-1 M-1 M-1

S (MY + pre) MY+(MF + pjog) M} SO(MP)2+MP)? Y S(My+M))?
k=0 > k=0 > k=0
M-1 - M-1 — M-1
(> My +Mp)? (> MZ+Mp2 (3 My +Mp)?
k=0 k=0 k=0
1 M-t hy\2
ol > Mi+My) )
> k=0 _
- M-1 21\/[

A.2 Completion of the proof of Theorem 5

We have observed that

2d,,re(M + 1)2

2 < ( 5d
(o}

)%
Following the proof of Thm. 10 in [4], let us write
dim" 2
dpr In2 < d,[In o +In(e(M + 1)7)]

o

Using the inequalityn(z) < zy — In(ey) which is true for allkz, y > 0, we get

dpr
dprIn2 < do[diy —Iney +Ine(M +1)?]
M + 1)2
< dpry +doln g
do ., (M+ 1)*  2doin(M + 1) — dolny
In(2) —y y In(2) —y
_ 2In2d,loga(M + 1) — dylny
B In(2) —y

If we limit ourselves tq; < 1then(—d,Iny) > 0, and therefore we can multiply this expressioridyy,(M+1) >

1 and keep the inequality. Hence

(2In2 —Iny)

dpr <
Pr=""1n2—y

dologs(M + 1)
Finally we choose = 0.34 to get the bound

dpr < 4.87d,logy(M + 1)
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A.3 Completion of the proof of Theorem 6

Lemma 1. Each clustey (i) i =0,..., M, intersects at most one of the s¢ts* (j) N g}jl‘igl.

Proof. According to Lemma 2 ¢~ !(j1) N G andc=1(j2) N G for j; # jo are tWO%-baIIs that are separated by
a distance43£ in the L1 metric space. By constructigyr (i) is an open ball with diametéﬁ—(. Hence it cannot

intersect more than one of the séts(j) N g}jl‘igl. O
Lemma 2. The labeling functiory as defined above has the following properties:
1. g defines arM-class partition, i.e.M, = M.

2. Thereis abijectiod : {0,...,M~1} — {0,..., M~—1} matching the setgy~!(¢)} M, ' and{c~' (i) N g}?ﬁo_l

such that
g @O N(THI@)NG) # ¢
g )N (NG =¢ for 1 # J(i)
3. [Y\Go| < 2.
Proof. Assume without loss of generality that the classes are ordered according to their size, i.e.
') NG > e G+1)NG|, 5=0,...,M—2
We claim that
g7 (@) > | (@) NG|, i=0,..., M—1

To see this, note that since each of the gets' (j)}j;z intersects at most one of the séts ! (j) N g};ﬂzo,
there is at least one € {1,...,i} such thatc=1(I) N G has not yet been touched in ti¢h step. This set is
contained in %—ball, and hence it is contained B:x (x) for each of its members. Therefore, at this step our

3

greedy procedure must choose a set of the fBrm (x) such that
3

|Baxc (2)| = max |Bax (y)| = [ () NG| = |7 (i) NG| (A.3)
3 YyeSi—1 3
Using condition (5) in the theorem, we can see that the set is bigger than the algorithm’s stopping condition:

N KN KN
@) NG| > | (i) — |8 zKN—?’E7 >KN——==—~ (A.4)
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and therefore the algorithm cannot stop just yet. Furthermore, it follows from the same conditiég'that®X,
and thus the chosen set is bigger tinThis implies that it has non empty intersection with' () for some
j€40,...,M — 1}. We have already shown that thiss unique, and so we can define the matchifg) = j.

After M steps we are left with the sét; with size

M-1 M-1
Sl = N=D) g @I<N=Y " lc'(@)Ng
=0 1=0

35N)_ 3eN _ KN
K’ K 2

= N-|gl<N-(N-

where the last inequality once again follows from condition (5) . The algorithm therefore stops at this step, which
completes the proof of claims (1) and (3) of the lemma.

To prove claim (2) note that sing8y| < 22X, it is too small to contain a whole set of the form! (i) N G.

We know from Eq. (A.4) that for all [c~1(i) N G| > &Y > 32X Hence, for eachi € 0,...,M — 1 there is an

1€0,...,M — 1such that

(' HNG)Ng™H (i) # ¢

ThereforeJ : {0,...,M — 1} — {0,...,M — 1} which was defined above is a surjection, and since both its

domain and range are of sidd, it is also a bijection. O
We can now complete the proof of Thm. 6 :

Proof. Let § denote the compositiosi o g. We will show that forz € Gy, fiber/ (x) of a pointz on whichg(x)
makes an error is far from the ‘true’ fibgfiber¢(x) and hence x is if8. This will prove thate(c, §) < 35 over
Gy. Since the remaining domaln\ Gy is known from Lemma 2 to be smaller thé@N, this concludes the proof.
Assumec(r) = i, §(x) = j andi # j hold for a certain point € Go. = is in §~1(j) N Gy which is the set
chosen by the algorithm at stép= .J~!(j). This set is known to contain a poiatc ¢ 1(5) N G. On the one
hand,z is in §~1(j), which is a ball of radiugZ*. Thusd( fiber/(z), fiber/(z)) < 4. On the other hand; is

in c71(5) N G and hencel( fiber/ (), fiber¢(z)) < % We can use the triangle inequality to get
d(fiber! (z), fiber®(z)) < d(fiber! (z), fiber!(2)) + d(fiber!(z), fiberc(z))

4K+K_5K
3 3 3
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This inequality implies thafiber/ (z) is far from the ‘true’ fiberfiber(x):

2K

IN

d(fiber®(x), fiber®(z))
d(fiber¢(z), fiber! (z)) + d(fiber! (), fiber®(z))

IN

< d(fiber®(x), fiber! (z) + %
- d(fiberc($),fib67“f($) > %

and hence: € B.
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Appendix B
Coding similarity: FLD as a margin optimizer

In this appendix we prove theorem 1 from section 1.3, stating that FLD projection maximizes the expected margin

of the Gaussian Coding similarity. We will need several lemmas before we prove the main theorem.

A 0 A B
Lemma 3. For two matrices of the form/; = ( ) , My = ( ) whereA, B € My.qand A is
0 A B A

an invertible matrix,

1 1M _ |A-BA~lp
M| lA|

2. tr(MyM; ') = 2tr(A(A - BA™'B)™)

\M2|:|M1,1M2|:| A0 A B _| I A'B |
| M| 0 Al B A AT'B T

1 0
we multiply this matrix from the left with to get
A7'B —I

o I A'B I 0 I A'B
(=17 =1 | =
AT'B I A7'B -1 )\ A'B T

I A'B o
| ) = (A7 B> 1]
0 (A'B)?2—1T

Hence We got on the one ha% = (-1)P|(A7'B)? — I| = |I — (A~'B)?|. On the other hand

Proof. 1.

|A— BA™'B|

A = AT A= BATB) = T (7B
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2. The proof stems from the following fact:
_ A B . C D ,
For a matrix of the form\/, = , Myt = with C = (A - BA™'B)™1, D =
B A D C
—~A"'B(A-BA"'B)~!
This fact can be verified by multiplying the matrices.
C D A 0 CA DA

tr(My My ) = tr(My* My) = tr( ) = tr(
D C 0 A DA CA

= 2tr(CA) = 2tr(AC) = 2tr(A(A— BA™'B)™!)

O
The following lemma is a known result in P.S.D. matrix theory:
Lemma 4. (Lemma on the Schur complement)
B C! _ o
LetA = be a symmetric matrix with x k£ B and! x [ block D. Assume thaB? > 0. ThenA > 0
C D

iff D—CB~1Ct > 0.
The matrixD — CB~'C is called the Schur complement Bfin A.

Lemmas. Lety,,» = ¥, — Y X5 1Y, be the conditional covariance matrix of a multi dimensional Gaussian
distribution p(x,x’) in R¢ (the notationsY, , ¥,,/ are as defined in section 1.3). For any projection matrix

A € Maxk
S = Vaw A(A S, A) A > g (B.1)
Proof. Rearranging terms, we have to prove that
Sow Xy Laar — Taw A(A'T, A) AT, > 0

We apply the Schur lemma to the following matrix
Aty A At
A 2t
The Schur complement &f; ! in M is A'¥, A — A, A = 0 > 0. Hence , by Schur's lemm& > 0.
Now A!Y, A > 0sinceA’S, A = (AY(X02)))x%5A = B!B. Using Schur's lemma again we get that the Schur
complement ofd’Y, A in M is PSD, i.eX,; ! — A(A'Y,A)~ 1At > 0. SinceX,,. is symmetric, we can multiply
the inequality from the left and the right to g8,/ 3, 1Y, — X, A(AS,A) LAY, 0 > 0 asrequired. [
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Lemma 6. Let>, ., = X, — Y X, 12 be the conditional covariance matrix of a Gaussian distribution
p(x,x’) in R%, and letA € My, be any projection matrix. Denote the covariance matrices after projection by
. =AY A 8. =AY,y Aandy,, = X, — $.5; 'S, In addition denotel,,,, = A'S,,, A. For all

0<a<l1

1 -2« ’Zz|z"
log

1 1-— 2« ) | X appl
2 |2

+ (1 -ao)tr(2.2) < 5 log N + (1 —a)tr(2.5,))

app

z|2!

Proof. We have to show that

2a0 —1 log |Ez\z’|
2 Xappl

+(1- oz)tr(Ez(Z;plp - Zz_é,)) >0

First we show it for > 1: In this case?-1, 1 —« are both positive, and so it is enough to show thgﬁmZ—‘;:,

tr(Zz(Egplp — E;‘;)) are positive. Both of the inequalities result from lemma 5. Multiplying inequality B.1 by

At, A from right and left respectively we get
S = A'SeA — AT A(AS AN AN A > AP, A — APS 0 S S0 A = Sy

The determinant is monotone in its argument andsq. | > |¥,,[, which proves the claim for the determinant

ratio. Regarding the trace:

Saper = Sapp — 5L < S

z|z! app
= S~ Sy 20— (2, —511) 20
— tr(2(Sqp — T72)) 20

Where multiplying by, keeps the inequality since it is symmetric.

. S .
Now the case off < a < 3: Inthis rangezl(%g‘l) < 1 andlog I‘Ez‘;“ > 0, so it's enough to prove

.
. 1 | z|z
tr(Ex(Zap — EZ|Z’)) 2 lo m

Simplifying notation, denotel = EZE;L, B = EzEg;p. In terms of these matrices, we have to shogB —
B
A) > log %

and thusd = 2,271, < 3.%-1 — B. Also, we can see that > T

; -1 -1
SmceEz‘Z/ > Yapp, We gett <X o app

z|z! app
AT =%, 8 = (8, - S8 )S =T — (8.8 < T

We can use this fact as follows:
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(N —1)

Mz

tr(B—A) >tr(A"Y(B—A))=tr(A™'B-1) =
i=1

where{);} ¥, are the eigenvalues of ! B. Using the inequality: > log(1 + x) we can proceed to

N N
tr(B—A) > (Ai—1)> log(\:) =log|A™"B| = log E:

as required. O

Lemma 7. Let A € Mgy, be any projection matrix an&, = A'S, A, 3., = AtEm,A as was defined in
lemma 6. Then for ald < o < 1 the maximum

1—2a |Zapp]
1 pp
A | 2 8 A

+ (1 —a)tr(2,2 (B.2)

arp) ]
is obtained by placing im the k eigenvectors oE;li,Zm with the highest eigenvalues.

Proof. Differentiating the argument of Eq. B.2 w.r.t A we get

(1 = 20)(Syw A8, — B2 AN 4 2(1 — ) (=S, A, .5,

Ly AY,

app app )

= S Al(1 = 20)8 0, — 2(1 — )2, 2.8 ] + SeA[—(1 — 20) 5, +2(1 — )5,

app — app app app

Multiplying by X, from the right,x" ‘ , from the left, and equating to 0 we get

S S A= Al(1-20) —2(1 — ), 5] - [(1 - 20) 2 Sy — 2(1 — )] !

The left side can be simplified by extractin@gl}pxz from the first matrix:

app

S LN A =AY 5 (1—20)8]  Sapp — 2(1 — )] - [(1 = 20) 8] ' Sapp — 2(1 — )] 7! = A8, 5,

We now use the simultaneous diagonalizatiortof3l,,,. There exists an invertible matri&® € M}, such
that B'S,,,B = I, B'S,B = A whereA is a diagonal matrix. Simple algebra shows tﬁg;lpzz = BAB™Y,

i.e. B contains the eigenvectorsf)g;pzz. Rewriting the last equation, we get

Y wSeAB = ABA

The matrix AB contains eigenvectors df;li,zx. On the other hand, the argument of B.2 is invariant to the
replacement oA by AB, as both the trace and the determinant terms are invariant with respect to this transfor-

mation. Hence there is an optimal solutidrwhich contains eigenvectors &f 1,3,.. Moreover, we see that the

x|z’
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eigenvalues oEappZ at this solution are also elgenvaluesEC)T| ,Y.. We will use this fact now to determine
which eigenvalues (and corresponding eigenvectors) @f/zx should be chosen fot.

Denote the eigenvalues Et;ppE by {Mz *_,. The maximization argument in B.2 can be expressed using these
eigenvalues:

k

200 — 2a —
5 log |Eapp2 |+ (1 — a)tr(ZappZ Z Inp; + (1 — «) Z; Li

k

1 A
2 (1 —a)ui + a_z)lnﬂi]—;f(,ui)

ng

Exploring f(u), we can see that it isn’t monotonic. However, we are only interested in the behavion of
in the range of the eigenvaluesﬁm,ﬁgg and these are all bigger than 1. To see this note that they are given by
expressions of the form

iy vy

Utlex/'l} B Ut(zx - Exm’zglzmm’)v

wherev is the corresponding eigenvector. Sincg > 0 andX;! > 0, clearly¥,,/>;!¥,,» > 0 and so
Yo — Yow By 10 < By Hencev! (X, — X X718, )v < 013, for anyw.
Foru > 0, f(p)’s monotonic increase zone is:

df .
Y1
du ot I - 11—«

The denominator ofi is always positive. Fot > 1 the nominator is negative and hengg:) is increasing

forall 4 > 0. For0 < o < § we haveyy = %2=2 < 32 — 1, and sof (u) is increasing for all > 1. Hence the

matrix A maximizing B.3 is the choice of thB elgenvectors oE;WEI with the highest eigenvalues. O
We can now prove our main theorem.

Theorem 8. Assume Gaussian distributiopér, /| H1) in R2? andp(z) in R?, and a linear projectiom € My,

wherez = Alz. Forall 0 < o < 1, the optimalA

A" = argmaxaDylp(z, 2/|H) [p(z, /| Ho)] + (1 = &) Dialp(z, 2| Ho) (=, 2 | )]
EMaxk

is the FLD transformation. Thud is composed of thk eigenvectors of '3, with the highest eigenvalues.

Proof. Without loss of generality, we can assume that N (0, X,). We therefore hav®(z, 2’| H1) = N (0, X2,),

Ex Yo . . .
whereX,, = . Y. is the covariance matrixov(z1, z2) wherez;, zo come from the same

Za}az’ E$
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class. We have seen in equation 9 in section 1.3 that this covariance matrix is symmetric, and that$,ggquals
. 0

in Fisher’s terminology. In addition?(z, 2'|Hy) = P(x)P(2’) = N(0, X x2) whereX,» = . The
0 X,
Dy, [-||-] distance between two Gaussidns, 31 ), (u2, X2) is given by
o 1 |22‘ -1 -1 t
Dya[N(p1, Z1)[|N (2, E2)] = 5 [log A tr(355 " + 2y (2 — p1) (2 — m)") — d]

Using this formula, we obtain the following expression for the expected margin from Eq. 11 in section 3.1:

by 1-— ) 1-
g[log 2] + tr(Sy, X3 ) — 2N] + J[log s +tr(2,.%50) — 2N] + (1 — 2a) log a
2 ‘22;,;‘ 2 |E:c2’ *
Sincetr($2,5 ) = tr(3,'%,,) and
—1 L
¥z 0 Se Baw I DD
Z;;ng _ T T T _ x xxT
0 X Yo Y DIED I 1
We gettr(E%E;}) = N. The expected margin is therefore reduced to
1 -2« Yoz 11—« 1 -«
5 log \E;] + 5 tr(X,235,) — N + (1 — 2a) log -
. : : : : A0
Applying a linear transformatiodl € M. to x1, 22 is the same as applying§ = to the con-
0 A
catenated vectdr, o). The resulting distributions ii®?* are also Gaussians and the expected margin is
1-2 b)) 1- 1-—
a log 2| + atr(EngQ_ZI) — N+ (1-2a)log a

2 |22 2
whereX .2, ¥, are defined in terms of, = A'¥, A andX,,, = A'>,, A in an analogous manner to the
definitions of%,2, ¥9,. In order to maximize this expression watit is easier to move td x d matrices instead
of the 2d x 2d matricesX 2, ¥5,. Using lemma 3 we can rewrite the expected margin after transformation as

follows:

_ 1- 2« og |Ez|z’|
2 |2

-«
+(1- a)tr(ZZZ;'i,) — N+ (1 —2a)log -

f(4)

wherey, |, = ¥, — ../ %; 3. can be identified as the covariance matrix of the conditional GausXiaiiz).
Computing derivatives for this expression is intricate, so we replace it with the upper bound suggested by lemma 6,
inwhich¥,,, = A'S, |,/ A replaces>, |.:

1-2 Ya _
g(A) = 5 alog’mm‘?’ + (1 —a)tr(Z.3, )+ C

app
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whereC = —N + (1 — 2a) log 1=2 is constant w.r.tA. According to lemma 7 the maximum 9fA) is obtained
by thek highest eigenvectors &t '3,,/, and we denote this matrix by*. Sincef(A) < g(A) < g(A*) for
all A, it is enough to show thaf(A*) = g(A*). Since the only difference betwegitA) andg(A) is in the
substitution of: ., (A) with X, (A), itis enough to show that, ./ (A*) = Xgpp(A*).

Denote byB be the mutual diagonalization matrix B, >/, i.e.
B'S,B =1, B'S,,B=A=diag({\;}), ¥,'%,. = BAB™!
B diagonalize,,
B'S,wB = B2, — L4035, 'S0w)B=1— B'S;yBB 'S 'S, 0B =1—A°

As we have seen in lemma A; can be expressed using the fikstolumns of B (A* = BJ:, 1 : k] in Matlab
notation). Since3'Y,,|,» B = I—A?, we getthabl,,, (4*) = (A*)'S, A* = I — A}, whereA,; is the restriction
of A to the firstk rows and columns/Aj, = A[1 : &, 1 : k]). On the other hand

S (A) = (A1 Se A" — (A)' Spu A*[(A*) 8o AT HAY) Sow A* = I — Apd Ay = I — A,

henceX,|./(A*) = Xapp(A*) and the optimal™ is composed of the firgt eigenvectors oE;é,Ew.
Finally, we claim that these vectors are identical with the fir6h descending order of the eigenvalues) eigen-
vectors of ¥, '¥,,,. Since B defined above diagonalizes bath, and ¥.12» it contains the eigenvectors of

2—1

x|z’

Y
B—lzg‘;sz = B—lz:;é,(Bf)—lBtsz = (B'SywB) 1= (I—-A*)"!

So every eigenvector of!%,,, with an eigenvalue\ is also an eigenvector cﬁ];‘i,zx with eigenvalue
17—&2. Assuming the matrix is in general position (iE; 'Y/, Z;&,Ex each hagl eigenvectors with distinct
eigenvalues), the opposite also holds, i.e. every eigenvecﬁ)gpﬁx is an eigenvector of ;!%,,,. Moreover,
Sinceﬁ monotonically increases ik, the order of the eigenvalues is the same for both matrices. We hence get
that the optimald* holds the first eigenvectors &f, '3, ., = E;;talzgemm in Fisher’s terminology, which are

the FLD projection. O
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