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Abstract
Non-stationary data clustering is a hard, ill-posed problem, which is nev-
ertheless unavoidable in several scientific fields. A representative exam-
ple is the problem of Spike Sorting, which involves clustering spike trains
recorded from the brain by a micro-electrode, according to source neuron.
It is a complicated problem which requires a lot of human labor, partly due
to the non-stationary nature of the data. We propose an automatic clustering
process using a Bayesian framework, with the relevant clusters modeled as a
non-stationary mixture of Gaussians. At a first search stage, data is divided
into short time frames and candidate descriptions of the data as a mixture of
Gaussians are computed for each frame separately. At a second stage transi-
tion probabilities between candidate mixtures are computed, and a globally
optimal clustering is found as the MAP solution of the resulting probabilis-
tic model. Transition probabilities are computed using local stationarity
assumptions and are based on a Gaussian version of the Jensen-Shannon
divergence. The method was tested on 46 recordings including movement,
merges and splits of clusters, and exhibited clustering behavior similar to
a human expert. In another experiment the agreement between automated
clustering and 3 human experts was shown to be comparable to the agree-
ment among the experts. If needed, the method can adapt to the preferences
of a specific human expert with minimal human supervision. In addition to
the Spike Sorting application the algorithm was also tested on the problem
of tracking storm cells of hurricane in satellite images. In this domain we
successfully identify and track the main storm cell in several hard sequences
and capture the essential clusters and their dynamic aspects.
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1 Introduction

Clustering can be seen as one of the most important unsupervised learning
problems. It is essentially an ill-posed problem, yet unavoidable in many
domains, and is used as a main tool in data mining and analysis of unla-
beled data. The clusters found can be useful for domain understanding and
hypothesis generation, and the assignments of individual items into clusters
can provide valuable predictions. See [6, 12] for background on traditional
clustering methods and concepts.

In the clustering literature problems of non-stationary data are rarely ad-
dressed. However, this problem arises in several distinct scientific contexts,
and has prompted extensive task-specific research. One prominent example
is the problem of clustering extra-cellular spike recordings [20, 7]. In this
case neuronal spikes from several neurons are recorded using a single elec-
trode, and clustering is required to identify the source of each spike. Small
drifts of the electrode cause changes in the recorded spike shapes, creating
the problem of non-stationarity. Since existing algorithms are not satisfac-
tory, clustering is typically done manually by human experts and requires
many days of human labor. Another example is the problem of identify-
ing and tracking storm cells in satellite imagery [13, 15], where the image
is dynamic, noisy, and often ambiguous. This problem is far from being
solved as well. Similar problems appear in other scenarios which involve
tracking of multiple objects in cluttered scenes [16] or online non-stationary
clustering [10].

The examples above have several difficulties in common. Clusters in these
examples can move or perform splits and merges. The number of clusters
is unknown a priori and often changes over time. These features highlight
the fuzziness and ambiguity of the partition, leading to a problem that is
even more ill-posed than traditional clustering. Despite this ill-posedness,
clustering of non-stationary data is still useful. Humans achieve fairly high
consistency, and useful predictions can be made. An important factor in the
success of human clustering is the ability to use information from past and
future time frames to disambiguate data partition at a specific frame.

Basic similarities exist between non-stationary clustering and multi-
hypothesis tracking [2]. However, the added ‘clustering’ element of the first
makes it harder. Our goal is not only to track an object, but also to assign
each data point to a cluster. In addition, we usually do not have a simple mo-
tion model for the clusters, as is commonplace in multi-hypothesis tracking.
In the examples above, cluster movement is mostly unpredictable and hard
to model, especially when it comes to splits and merges. Furthermore, when
clustering is done as an exploratory tool, it is preferable not to enforce an a
priori motion model of any kind.

In this paper we suggest a new fully automated technique to solve the clus-
tering problem for non-stationary sources in a Bayesian framework. We
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divide the data into short time frames in which stationarity is a reasonable
assumption. We then look for good mixture of Gaussians descriptions of
the data in each time frame independently. Transition probabilities between
local mixture solutions are introduced, and a globally optimal clustering so-
lution is computed by finding the Maximum-A-Posteriori (MAP) solution
of the resulting probabilistic model. The global optimization allows the al-
gorithm to successfully disambiguate problematic time frames.

The main obstacle in this approach is the need for a probabilistic account of
transitions between mixture models. In Section 4 we suggest basing transi-
tion probabilities on the differences between ‘types’ of samples in the two
consecutive time frames. To this end, we extend concepts from the ‘method
of types’ [4] to mixtures models with components from the exponential fam-
ily. We derive a large sample approximation of the transition probability and
pose its computation as a relatively small, discrete optimization problem for
which we suggest an algorithmic solution. Although we use Gaussian mix-
tures in our experiments, all our theoretical work applies to general mixture
models with components in the exponential family.

Our main effort and the original reason for which this research began con-
cerns the Spike Sorting problem. We thus bring in Section 2 an overview of
that problem and current methods for handling it.

In Section 3 we describe the general framework of the algorithm. Through-
out this section we will concentrate on the Spike Sorting application and
deal with domain specific issues and problems, especially when it comes to
pre- and post-processing.

Section 4 describes the mathematical derivation of the transition probabili-
ties between mixtures of consecutive time frames.

In Section 5 we bring the experimental results. Since our initial goal was
to design an automatic Spike Sorting tool and mimic human experts, we
conducted extensive experiments for comparing our clustering results to the
human experts. In Section 5.1 we show that the partitions suggested by
the algorithm have a high agreement with manual partitions conducted by
human experts. This agreement was comparable to the average agreement
between experts, so in this sense our method passes a local ‘Turing test’.
In Section 5.2 we present experiments regarding Storm Tracking which is
an additional non-stationary phenomenon. In this domain we show that our
method can successfully identify and track the main storm cell in several
hard sequences. In both cases, the algorithm captures the essential clusters
and their dynamic aspects.
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Figure 1: The figures present several time frames from a single electrode recording. 5
time frames from a sequence of 68 are presented with their frame numbers, and the bottom
right figure shows all the data in a single frame. Spikes are extracted and projected on the
first two eigenvectors. In this recording one cluster moves constantly and another splits into
distinguished clusters, which turn partially indistinguishable again toward the end. While
single time frames may have several plausible clustering interpretations, the sequence as a
whole is usually less ambiguous. Clearly the ’right’ clustering cannot be seen when all the
data is grouped in a single frame.

2 The Spike Sorting Problem

In extracellular recording of brain activity the micro electrode normally
picks up the activity of multiple neurons. Spike Sorting is the task of finding
a clustering of the spike data such that each cluster contains the spikes gen-
erated by a different neuron. Currently, this task is mostly done manually.
It is a tedious mission, requiring many hours of human work for a single
recording session. Many algorithms were proposed in order to help auto-
mate this process (see [20] for a review), and some were implemented to
provide a helping tool for manual sorting ([19],[11]). However, the ability
of suggested algorithms to replace the human worker has been quite limited.

One of the main obstacles for a successful application is the non-stationary
nature of the data [20]. The primary source of this non-stationarity is slight
movements of the recording electrode. Slight drifts of the electrode’s lo-
cation, which are almost inevitable, cause changes in the typical shapes of
recorded spikes over time. Other sources of non-stationarity are variable
background noise and changes in the characterization of the spike gener-
ated by a neuron. The increasing usage of multiple electrode recordings
turns non-stationarity into an acute problem, since electrodes are placed in
a single location for long durations.
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Manual sorting usually uses the first two Principal Components (PC) coef-
ficients to represent spike data. Such a representation preserves up to 93%
of the variance of the recorded spikes [1]. A human typically clusters the
spikes by visual inspection of the projected spikes in small time frames,
in which non stationary effects are not significant. Problematic scenarios
which can appear due to non-stationarity are exemplified in Figure 1 and in-
clude: (1) Movements and considerable shape changes of the clusters over
time. Such movements cause the cluster to be smeared when observed at a
large time window. (2) Two clusters which are initially well-separated may
move until they converge and become indistinguishable. A split of a single
cluster is possible in the same manner. We would like to distinguish between
different clusters whenever possible, and state that a cluster is a ’multi-unit’
cluster when separation is not possible anymore.

Most Spike Sorting algorithms do not address the presented difficulties at
all, as they assume full stationarity of the data. Fee et al. [8] assumes a
single frame containing some noisy data and uses a hierarchical clustering
scheme. Initially the data is sorted into an overly large number of clus-
ters by recursive bisection and then progressively aggregated into a mini-
mal set of putative single units. Two criteria are used to unite two clusters:
(1) the pair should have many points on the shared borderline of the clus-
ters, and (2) the unified cluster should have an inter-spike interval (ISI - the
minimal amount of time interval of which a neuron can fire again) distrib-
ution similar to the two constituent clusters, without short ISI’s prohibited
by the refractory period. Snider et al. [24] point out that the ISI criterion
assumes independence of spike times for different neurons, and is thus in-
valid when neurons are correlated. Instead, they unite clusters if the density
of points falling between them changes linearly. Shoham et al. [23] suggest
to handle non-stationary clusters by modeling clusters using a t-distribution.
This distribution can partially describe a-symmetric, smeared clusters. All
these methods do not partition the data into time frames and hence cannot
cope with complicated cases that require the information found within these
frames. For example, clusters with similar shape, existing at distant time
frames are always unified by such methods, while precise tracking of the
clusters reveals that they are separated.

Emondi et al. [7] suggested a semi-automated method in which the data
is divided into small time frames. Each time frame is clustered manually,
and then the correspondence between clusters in consecutive time frames is
established automatically. In order to establish the correspondence, match
scores between clusters are computed using a heuristic metric, and a greedy
procedure is then used to choose matching pairs. No splits or merges of
clusters are considered in this framework.

In the next sections we solve the clustering problem in a Bayesian frame-
work. Trying to mimic the human experts, we focus on the two dimensional
spike representation, although our main algorithm can be extended to higher
dimensions.
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We tested the method performance using 46 electrode recordings from the
pre-motor area of Macaque monkeys. The automatic clustering was evalu-
ated by computing its agreement with manual clustering done by a human
expert. In most cases, high agreement rates where found. In a second ex-
periment we compared the agreement between the automatic and human
clustering to the agreement among 3 human experts. The algorithm was
comparable to the human experts in this test, passing a local ’Turing test’.
Finally we tested the algorithm in a semi-supervised scenario, in which the
human expert clusters one out of 5 or 10 time frames, and the algorithm fills
in the rest. In this mode the clustering results highly agree with the human
expert intentions, while the human labor required is reduced significantly.

In Section 5.1 we bring the full details of the experimental results regarding
the Spike Sorting application.

3 A Chain of Gaussian Mixtures

A typical recording contains from tens to hundreds of thousands of spikes
recorded in several hours. While spike clusters are not necessarily stationary
over such periods, it is reasonable to assume stationarity for shorter periods
of several minutes. In short periods it is known [20] that the cluster density
can be well approximated by a Gaussian with a general covariance matrix.
We therefore approach the problem by a two stage process. First, the data
is divided into time frames with fixed length ∆T or fixed spike count N
(in the presented experiments we used N = 1000). We look for a set of
likely mixture of Gaussians solutions for each time frame independently.
This search stage is heuristic in nature, and its purpose is to find good local
solution candidates which constrain the search space in the second, global
stage. In the second stage we choose the best combination of local solutions
by finding the MAP solution in a global generative model of the complete
data. These two algorithmic stages which are the core of the algorithm are
described in Sections 3.1 and 3.2 respectively. In Section 3.3 we describe
how repetition of local and global optimization stages in a feedback loop
can be used to refine the solution. Another performance improvement is
gained by introducing a rule-based post processing as described in Section
3.4. The algorithm’s flow is described in Algorithm 1.

3.1 Local Solutions

Denote the observable spike data by D = {d}, where each spike d ∈ R2 is
described by the vector of its first two PCA coefficients. We break the data
into T disjoint groups {Dt = {dt

i}Nt

i=1}
T

t=1
. We assume that at each frame,

the data can be well approximated by a mixture of Gaussians, where each
Gaussian corresponds to a single neuron. Each Gaussian in the mixture
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Algorithm 1 Spike Sorting

1: Divide the data into T time frames.

2: Search for Local Solutions
For each t ∈ {1...T} search for M t candidate mixtures using EM.

Loop step 3,4,5 for i=1,2

3: Remixing of Solutions
For each t ∈ {1...T} import and adapt selected solutions from
neighboring frames [t− k,...,t + k].

4: Calculate Transition Scores
For each t ∈ {1, T − 1} calculate scores between all candidates at
time frame t and candidates of frame t + 1.

5: Find MAP Solution
Calculate the MAP path using the Viterbi algorithm.
if i < 2 use the found path to re-initialize local candidates pool.

6: Post Processing stage
Identify special clusters.

may have a different covariance matrix. The number of components in the
mixture is not known a priori, but is assumed to be within a certain range.
Specifically we used 1 - 6 in our experiments.

In the search stage, we use a standard Expectation-Maximization (EM) al-
gorithm [5] to find a set of M t mixture of Gaussians candidates for each
time frame t. We run the EM algorithm with different values for the ’num-
ber of clusters’ parameter and different initial conditions. This creates the
basic pool of solutions in each time frame. Then, we import to each time
frame t the best mixture solutions found in the neighboring time frames
[t − k, .., t + k] (we used k = 2). These solutions are then adapted by
using them as the initial conditions for the EM and running a low number
of EM rounds. This mixing of solutions between time frames is repeated
several times (2 in our experiments), so that good solutions are propagated
forward and backward in time. Finally, the solution list at each time frame
is pruned to remove similar solutions. Solutions which do not comply with
the assumption of well shaped Gaussians are also removed. This is done by
observing the actual labeling of the data induced by a certain Gaussian and
checking how ”far” the empirical distribution of the labeled points is from
the Gaussian distribution. By using a threshold on the Kullback − Leibler
(Dkl) [3] distance between the two distributions we decide whether the spec-
ified solution should be pruned.

In order to handle outliers, which are usually background spikes or non-
spike events, each mixture candidate contains an additional ’background
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model’ Gaussian. This model’s parameters are set to 0, K · Σt where Σt

is the covariance matrix of the data at frame t and K > 1 is a constant.
The weight is the only parameter of the background model that can change
during the EM process.

When working in a semi-supervised mode, human guidance can be natu-
rally incorporated at this stage. The human supervisor can provide local
solutions to a subset S ⊂ {1..T} of the T time frames. For each frame
s ∈ S, the manual clustering is translated into a mixture of Gaussians and
considered as the only candidate solution of time frame s. This constraints
the algorithm to choose the manual clustering in the appropriate frames and
enables the spreading of these solutions into the neighboring frames through
the ’Remixing of Solutions’ stage (stage 3 in Algorithm 1).

3.2 A Global Model

After the search stage, each time frame t has a candidate list of M t

models {Θt
i}T,Mt

t=1,i=1. Each mixture model is described by a triplet Θt
i =

{αt
i,l, µ

t
i,l, Σ

t
i,l}Ki,t

l=1
, denoting the Gaussian mixture’s weights, means, and

covariances respectively. Given these candidate models we define a discrete
random vector Z = {Zt}T

t=1 in which each component Zt has a value range
of {1, 2, .., M t}. ”Zt = j” has the semantics of ”at time frame t the data
is distributed according to the candidate mixture Θt

j”. In addition we define
for each spike dt

i a hidden discrete ’label’ random variable lti . This label in-
dicates which Gaussian in the local mixture hypothesis is the source of the
spike. Denote by Lt = {lti}Nt

i=1 the vector of labels at time frame t, and by L
the vector of all the labels.

O z 1 

O 
O 

D1 

L1 

O z 2

O D 2

O L2

O z T

O DT

O LT

O z 3

Figure 2: A Bayesian network model of the data generation process. The network has an
HMM structure, but unlike HMM it does not have fixed states and transition probabilities
over time. The variables and the CPDs are explained in the text.

We describe the probabilistic relations between D, L, and Z using a
Bayesian network with the structure described in Figure 2. Using the net-
work structure and assuming i.i.d samples the joint probability decomposes
into
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P (Z,L, D) = P (Z)P (L|Z)P (D|Z,L)

= P (Z1)
T∏

t=2

P (Zt|Zt−1)
T∏

t=1

P (Lt|Zt)P (Dt|Lt, Zt)

= P (Z1)
T∏

t=2

P (Zt|Zt−1)
T∏

t=1

Nt∏
i=1

P (lti|Zt)P (dt
i|lti, Zt)

(1)

The complete log-likelihood is therefore given by

log P (Z1) +
T∑

t=2

logP (Zt|Zt−1)

+
T∑

t=1

Nt∑
i=1

[log P (lti|Zt) + log P (dt
i|lti, Zt)]

(2)

and we wish to maximize this log-likelihood over all possible choices of the
hidden variables L,Z. Notice that by maximizing the probability of both
data and labels we avoid the tendency to prefer mixtures with many Gaus-
sians, which appear when maximizing the probability for the data alone.
The conditional probability distributions (CPDs) of the points’ labels and
the points themselves, given an assignment to Z, are given by

log P (ltk = j|Zt = i) = log αt
i,j

log P (dt
k|lti = j, Zt = i) = −1

2
[n log 2π + log |Σt

i,j|
+(dt

k − µt
i,j)

t
Σt

i,j
−1

(dt
k − µt

i,j)]

(3)

The transition probabilities P (Zt = i|Zt−1 = j) are computed based on the
assumption that the visible mixtures Θt

i , Θt−1
j arise from a single mixture

model with unknown parameters. The transition probability computation
process includes the establishment of a correspondence mapping between
clusters in the two frames. This idea is formalized and described in Section
4, and is generalized for the case of mixtures of a distribution from the
exponential family. For the first frame’s prior we use a uniform CPD.

The MAP solution for the model is found using the Viterbi algorithm. La-
bels can then be unified using the correspondences established between the
chosen mixtures in consecutive time frames. When the correspondence is
not one-to-one, as in the cases of merges and splits, labels are not unified.
Instead, the merged cluster is identified as a multi-unit and receives a new
label.

3.3 A Feedback Loop

The initial pool of solution computed at the local search stage is very di-
verse, but important local solutions may still be missing. This, in turn, dam-
ages the quality of the optimal chain found in the global stage. Once we
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have found a good global chain candidate using the Viterbi algorithm, we
can use it to guide the search for better local candidates. It is hence rea-
sonable to create another, more ’focused’ pool of solutions and repeat the
global optimization.

In order to create such a focused candidate pool we set the initial pool of
each time frame to contain a single solution - the one chosen by the global
optimization. Then we repeat the solutions mixing stage several times. In
addition, solutions with clusters that appear in the good global chain for
only a small fraction of the time frames (1/10 in our implementation) are
dropped from the candidate list. The new candidate pool at time frame
t contains only solutions that appeared in neighboring time frames in the
global path, and adaptations of these solutions.

The new ’search space’ for the global optimization is now smaller, yet con-
tains a rich collection of variations over the best path found so far. This
enables a delicate refinement of the path and improves the final solution.
A single repetition of the feedback loop is usually sufficient to obtain the
desired result.

3.4 Post Processing

Using only the stages described so far, the algorithm gives reasonable re-
sults. However, in order to better mimic the human expert, additional
processing is required. It seems that although the basic algorithm catches
the main trends of the expert’s behavior, the expert supplements this basic
logic with many rules-of-thumb, that specifically address exceptional cases.
These ’rules’ are most useful when basic assumptions of the algorithm fail.
To cope with this issue, we added a post processing stage in which several
exceptional phenomena are handled. Two main problems, ”Large scale”
clusters and ”Mirror” clusters are exemplified in Figure 3.

"Large Scale"
     cluster 

"Mirror" 
 cluster The line

   x=0

(a1) (a2) (b)

Figure 3: Two special cluster types are identified in the post processing stage. (a1) View
of the entire data in which the ”Large scale” cluster can be observed. (a2) A single time
frame from the same data. Due to its sparseness, the ”Large scale” cluster seen in (a1) can
not be detected in small time windows. (b) A ”Mirror” cluster which is normally identified
as a regular cluster, but has a mirror cluster symmetric to the line x=0.

”Large scale” clusters represent neurons with very low firing rate. Such
neurons can not be detected within a small time frame, since such a frame

9



only contains a few spikes normally labeled as background. In order to
detect them we look at all the data in a single time frame, and re-sample the
data to reduce the weight of dense areas. We compute several descriptions
of the sampled data as a mixture of Gaussians, using a various number of
clusters. For each cluster in each description we compute the distance to
other clusters in the mixture using the JS divergence (See Section 4). A
candidate for a ”Large scale” cluster is the cluster for which the distance to
the nearest cluster in the mixture is maximal. The candidate is declared a
”Large scale” cluster if most of its points (more than 75%) were classified
as background in the main algorithm. This process enables us to locate most
of the ”Large scale” clusters (about 90%) found by humans with almost no
spurious detections.

”Mirror” clusters are spurious clusters created due to a problem in the spike
alignment. As described in Section 5.1.1, spikes are aligned by looking
for the maximal fit of the waveform with 2 library PCs. The first, more
influential PC is almost symmetric, including a large positive peak followed
by a large negative one. Sometimes the best alignment is achieved when
the positive peak of the first PC correlates with the negative peak of the
waveform. In such cases the projection on the first PC is negated. This
effect creates two clusters, symmetrical to the Y axis x = 0 which actually
represent only one neuron. The ”Mirror” cluster is usually much smaller and
it should be either identified as background or labeled with the same label
as the mirrored cluster. ”Mirror” clusters are usually identified as regular
clusters. Therefore, after having clustered the entire data, we check whether
there is any cluster that has a mirror cluster symmetrical to the x = 0 line.

Abrupt large movements of the recording electrode or other extreme con-
ditions produce spike recordings that are extremely non stationary. In such
cases even our modest local stationarity assumptions do not hold, and the
correspondence established between clusters in consecutive time frames is
not reliable. Such data is usually dropped by the human sorter. We identify
these cases by setting thresholds on the transition probabilities computed by
the algorithm. We use 2 such thresholds. Transitions with probability lower
than the first threshold are identified as ’not continuous’. For each data we
compute the length of the longest sequence of continuous transitions. If this
length is below a second threshold, the data is marked as extremely non
stationary. About 10% of the recordings can be classified as extremely non
stationary, and indeed the above classification method manages to correctly
identify them in the test data. The results reported in Section 5.1.2 do not
include the extremely non stationary data.

The post processing also includes detection of very small clusters with large
covariance. Imitating human behavior, such clusters are merged with the
background.
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4 The Method of Types and Transition Proba-
bilities

We suggest to derive transition probabilities P (Zt = i|Zt−1 = j) between
two mixtures assuming a joint hidden mixture model underlying the two.
The main concepts in this derivation are the ‘Type’ and ‘Type class’ of a
sample. These are concepts from Information Theory, usually applied to
discrete variables [4], that we extend to continuous variables from the ex-
ponential family. In Section 4.1 we briefly overview important properties
of the exponential family, and extend the notions of ‘Type’ and ’Type class’
based on these properties. These definitions are then extended to mixture
models and labeled samples. In Section 4.2 we formalize the notion of a
‘hidden mixture model’. Section 4.3 includes a main lemma and Section
4.4 uses the lemma to derive an expression of the transition probability.
This latter expression involves a discrete optimization over the possible cor-
respondence relations between the components of the two mixtures. Section
4.5 includes the derivation of that expression in the special case of a mixture
of Gaussians, and in Section 4.6 we suggest algorithmic solutions for two
interesting cases of this optimization problem.

4.1 Types and the Exponential Family

For a sample of i.i.d discrete variables, the concept of ‘type’ is defined in
[4] as the multinomial distribution in which for every symbol a, P (a) is
the relative frequency of a in the sample. One of the important properties
of a type is that it completely characterizes the sample and determines its
likelihood under any other distribution from the multinomial family. How-
ever, such complete characterization exists for all the exponential families
in the form of ‘sufficient statistics’. A sufficient statistic is a vector of finite
length which summarizes the sample completely with regard to likelihood
assessment [18]. In this section we extend the ‘type’ concept by identifying
it with the ‘sufficient statistic’ of a sample. In later sections we show that
using such identification we can extend basic results of the method of types
to continuous variables from the exponential families.

A distribution family F = {f(x|θ)}θ is from the exponential family [18] if
f(x|θ) can be written as

f(x|θ) = exp(θ · T (x)− A(θ)) (4)

where θ is a parameter vector (in the ‘natural form’ [18]) and T (x) is a
vector containing functions of the data. We use Dom(F) to denote the
domain of x. For an i.i.d sample X = {xi}N

i=1 ∈ Dom(F)N , we denote the
empirical average of a function g(x) by 〈g(x)〉X = 1

N

∑N
i=1 g(xi). Below

are a few properties of the exponential family:
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1. A(θ) is convex and dA/dθ = Ep(x|θ)T (x) (see [18] for a proof).

2. Eq. (4) clearly implies that for a sample X , the likelihood is deter-
mined by

logf(X|θ) = N [ θ · 〈T (x)〉X − A(θ) ] (5)

The likelihood is determined by the single vector of averages. We
thus define

Definition 4.1. The F-type of a sample X is the average vector
T (X) = 〈T (x)〉X

3. Differentiating Eq. (5) w.r.t θ, we can see that the ML parameters
for a sample X with U = T (X) are found by solving dA/dθ = U .
Since A(θ) is convex, there is a unique solution, and so we have an
invertible function Θ(U) which gives the ML parameters for any input
vector U . The inverse function U(Θ) gives (according to property 1)
the expectation Ep(x|θ)T (x).

4. The expectation of logf(x|θ) w.r.t any distribution q(x) can be com-
puted as θ · Eq(x)[T (x)] − A(θ). Using this fact and property 1 we
get

Dkl[f(x|θ1)||f(x|θ2)] =
dA(θ1)

dθ1
· (θ1 − θ2) + A(θ2)− A(θ1) (6)

Let us now consider labeled samples from mixture models. A mixture
model over the family F is a model for a discrete label l and x ∈ Dom(F)
with the density p(x, l) = p(l)f(x|θl), where l has a multinomial dis-
tribution. The parameters of this model are Θ = {~α, θ1, .., θK}, where
~α = (α1, .., αK) are the weights and {θj}K

j=1 are the parameters of the K
components of the mixture. A labeled sample is a fully observable sample
of i.i.d data points with their labels S = (X,L) = {xi, li}N

i=1. Since the
multinomial family is exponential, the density p(x, l) is exponential too, as
a product of two exponential densities. We can hence extend the definitions
of sample type T (X) and the ML function Θ(U) to mixtures and labeled
samples. For a sample S = (X,L) and mixture density Θ, we get the fol-
lowing expression for log p(S|Θ)

log p(S|Θ) =
K∑

j=1

∑
{i:li=j}

log αj + θj · T (xi)− A(θj)

= N
K∑

j=1

〈1l=j〉s[log αj + θj · 〈T (x)〉sj
− A(θj)]

(7)

where Sj = {xi|li = j}. The likelihood again depends on a vector of data
averages. We define
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Definition 4.2. The sample type of a labeled sample S is T (S) =
(~αs, U1, .., UK) with αs

j =< 1l=j >s , Uj = T ({xi|li = j}).
Clearly the ML parameters of the sample are a function of V = T (S). More
specifically, the ML function is Θ(V ) = (~αs, Θ(U1), .., Θ(UK)).

A second central concept in the method of types is the type class, defined
as the set of all N point samples with the same type. These are the basic
events used in the theory. In our generalization, when x is continuous such
events are of measure 0. We hence resort to the following concept

Definition 4.3. The (ε,N)-type class of a type U is the set of samples

TCN,ε(U) = {X ∈ Dom(F)N : ||T (X)− U ||∞ < ε} (8)

And the definition extends trivially to (ε,N)-types of labeled samples.

The following lemma tells us that the type of large samples from a mixture
Θ converges to the expected type U(Θ).

Lemma 1. Let S be a labeled sample of size N from a mixture model Θ =
(~α, θ1, .., θK). For 0 < ε < 1/2 min

m
αm we have

P (S ∈ TCN,ε(U(Θ)) | Θ) > 1−O(
1

Nε2
) (9)

We omit the proof, which is a relatively simple use of the law of large num-
bers (Chebyshev’s ineq.) to the averages of the statistics T (x). As N grows,
we are guaranteed to have these averages close to their expectation U(Θ).

4.2 A Hidden Mixture Model

Assume that in two consecutive time frames we saw two N point labeled
samples. The joint sample S = S1 ∪ S2 is a labeled sample with K1 + K2

possible labels. If we assume the data is approximately stationary in the
two frames, then K1 ≈ K2 and the data is actually generated from a hidden
mixture with K ≈ K1 components (see Figure 4a). The visible labels in this
case contain irrelevant ‘noise’, since points from the same hidden source are
labeled with different visible labels in S1 and in S2. We capture this notion
in the following definition

Definition 4.4. A hidden mixture model MH is a generative model for la-
beled data (x, l) where x ∈ Dom(F) and l ∈ {1, .., K}. It is parameterized
by a triplet MH = (ΘH , R, Ψ) where

• ΘH = {αH
m, θH

m}KH

m=1 is a mixture model with KH ≤ K components.
The data x are generated from this mixture, as well as a hidden label
h indicating the source of x in the hidden mixture.
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Figure 4: (a) A diagram of the correspondence R between components of the Hidden
and visible mixtures. The image represents a ‘merge’ event of the left bottom clusters.
(b) A Bayesian network representation of the relations between the data and the hidden
labels. The visible labels L and the sampled data points X are independent given the
hidden labels H . The visible labels are deterministic given the hidden labels, and so we
have p(x, l) = p(h)p(l|h)p(x|h).

• R is a function R : {1, .., K} → {1, .., KH} which matches each
visible label to its hidden source component in ΘH (see Figure 4a). It
thus induces a partition of the set of visible mixture components.

• Ψ = {ψj}K
j=1. The visible labels l are sampled multinomially given

the hidden labels h. Given a hidden label h, only visible labels {j :
R(j) = h} are possible. ψj is the parameter P (l = j|h = R(j)). For
h 6= R(j) , P (l = j|h) = 0.

Our probabilistic dependence assumptions between a data point, its visible
label and its hidden label are captured by the Bayesian network model in
Figure 4b. We assume a data point is sampled by choosing a hidden label,
then sampling in an independent manner the point and the visible label from
the relevant hidden component. In our main result (Theorem 3) we assess
the probability of obtaining two different labeled samples S1, S2 from the
same hidden model MH with unknown parameters. Note that if the hidden
model is to be non-trivial, we need KH < K1 + K2 where K1, K2 are the
number of labels in S1, S2. This way several different visible components
will have to be explained by a single hidden component.

4.3 Main Lemma

In this section we consider type class probabilities under our suggested
hidden model. A basic result in the method of types says that the prob-
ability QN(TN(P )) of a type class TN(P ) under a source Q approaches
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exp(−NDkl(P ||Q)) for large N . We show a similar result for our case.
Interestingly, Dkl(P ||Q) in our result is computed as though P and Q were
from the family F , even though we do not make such a demand on the
density of P .

Lemma 2. Let S be a labeled sample of N points from some arbitrary
density, with V = (~αs, U1, .., UK) = T (S). Let MH be a hidden mixture
model parameterized by ({αH

m}KH

m=1, {ψj}K
j=1, {θH

m}KH

m=1). Then

lim
N→∞,ε→0
Nε2→∞

1
N

log P (TCN,ε(V )|MH)

= −Dkl[~α
s||αHψ]−

K∑
j=1

αs
jDkl[f(x|Θ(Uj))||f(x|θH

R(j))]
(10)

Where αHψ is a probability vector of length K with αH
R(j)ψj in coordinate

j.

Proof. See Appendix.

4.4 Transition Probability

Before we prove our main theorem, we need to introduce the notion of the
Jensen-Shannon divergence (JS-divergence) restricted to a specific expo-
nential family. In general, the JS-divergence [9] is defined as the difference
between the entropy of a mixture and the average entropy of the compo-
nents. It is a positive quantity that naturally arises as the relevant statistic
for the ‘two sample problem’ [9], in which we wish to decide whether two
samples could have been generated by a single source. However, for gen-
eral continuous densities the JS-divergence is intractable and can only be
numerically approximated. Given an exponential distribution F , we now
define a specialized F-JS-divergence.

Definition 4.5. Let {pj(x)}K
j=1 be a set of general densities, and {πj}K

j=1 be
a set of mixture coefficients summing to 1. We define the F-type of a density
to be U(p) = Ep(x)T (x) and the most likelyF-parameters of p to be Θ(p) =
Θ(U(p)). The F-Entropy of p(x) is defined as HF (p) = H(f(x|Θ(p))).
Based on these definitions, we can define the F-Jensen-Shannon divergence
to be

JSF
π1,..,πK

({pj(x)}K
j=1) = HF (

K∑
j=1

πjpj(x))−
K∑

j=1

πjH
F (pj(x))

=
K∑

j=1

πjDkl[f(x|Θ(pj))||f(x|Θ(
K∑

i=1

πipi))]

(11)

We defined the JSF -divergence above as a function of a set of densities, to
be consistent with traditional definitions. However, in this definition, JSF

is actually a function of the F-types of the densities alone. We will hence
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extend the usage of JSF to JSFπ1,..,πK
(U1, .., UK) where Uj are F-types. For

a specificF family the JSF expression has a closed-form formula, since the
entropy and Dkl (see Eq. (6)) have such formulas. We now state our main
theorem

Theorem 3. Let V 1 = ((αs
1, .., α

s
K1), U1, .., UK1), V 2 =

((αs
K1+1, .., α

s
K1+K2), UK1+1, .., UK1+K2) be two mixture types with a

total of K = K1 + K2 components. Let S1, S2 be two N point samples
from a hidden mixture model MH with unknown parameters. Then

log P (S1 ∈ TCN,ε(V
1)|S2 ∈ TCN,ε(V

2),MH)

→ max
R
−2N

KH∑
m=1

αH
mJSF{ψj :R(j)=m}({Uj : R(j) = m}) (12)

Where the limit is of N → ∞, ε → 0, Nε2 → ∞ and the parameters
{αH

m}KH

m=1,{ψj}K
j=1 are given by

αH
m =

1

2

∑

{j:R(j)=m}
αs

j , ψj =
αs

j

αH
R(j)

(13)

The conditional probability therefore is a weighted sum of F-Jensen-
Shannon divergences over the equivalence classes introduced by R.

Proof. We decompose the conditional probability using P (a|b) =
P (a, b)/P (b) and estimate the two resulting terms using ML approxima-
tions.

log P (S1 ∈ TCN,ε(V
1)|S2 ∈ TCN,ε(V

2),MH)

≈ max
R,ΘH ,Ψ

log P (S1 ∈ TCN,ε(V
1), S2 ∈ TCN,ε(V

2)|MH)

− max
R,ΘH ,Ψ

log P (S2 ∈ TCN,ε(V
2)|MH)

(14)

The second optimization problem above deals with finding the hidden model
from which samples of TCN,ε(V

2) are most likely. Since any reasonable
restriction of the hidden mixture model still allows hidden mixtures with
KH ≈ K2 components, this problem can be trivially solved by choos-
ing ΘH = Θ(V 2) and trivial R and Ψ (i.e. R(j) = j, ψj = 1 for
all j = 1, .., K2). In this case we know from Lemma 1 that P (S2 ∈
TCN,ε(Θ(V 2))|R, ΘH , Ψ) > 1 − O( 1

Nε2
), and so the second summand is

negligible.

The probability in the first optimization can be assessed using Lemma
2. Consider the joint sample S = S1 ∪ S2 and the joint type V =
((αs

1, .., α
s
K)/2, U1, .., UK). Clearly, if Si ∈ TCN,ε(V

i) for i=1,2, then S ∈
TC2N,ε(V ). On the other hand S ∈ TC2N,ε(V ) implies Si ∈ TCN,2ε(V

i)
for i=1,2. Hence in the limit ε → 0 the events are interchangeable, and we
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can optimize logP (S ∈ TC2N,ε(V )|MH). Using Lemma 2 this expression
is written as

max
R,ΘH ,Ψ

−2N(Dkl[
~αs

2
||αHψ] +

K∑
j=1

αs
j

2
Dkl[f(x|Θ(Uj))||f(x|θH

R(j))]) (15)

Fixing R, we can find the optimal parameters for ΘH , Ψ. The parameters
αH , ψ only appear in the first Dkl and they should be chosen to minimize it.
This is achieved using the values in Eq. (13), and the minimum achieved is
0. As for the hidden components parameters θH

m , writing the Dkl expressions
in (15) using (6) and differentiating we get

dA(θH
m)

dθH
m

=
∑

{j:R(j)=m}
ψj

dA(Θ(Uj))

dΘ(Uj)
(16)

According to property 3 in Section 4.1 we have θH
m = Θ(

∑
j:R(j)=m ψjUj).

Plugging the optimal expressions found in (15) we have to maximize over
R the expression

−2N
KH∑
m=1

αH
m

∑

{j:R(j)=m}
ψjDkl[f(x|Θ(Uj))||f(x|θH

m)] (17)

which is identical to (12) by Definition 4.5 of the JSF quantity.

4.5 The Case of a Gaussian Source

It is very common to model probabilistic sources as Gaussian mixtures
(specifically, in our experiments we used such a model to describe spike
trains, as well as sequences of satellite imagery). We thus derive the special
case for the Gaussian case.

The entropy of a Gaussian is given by HG(p(x)) = (1/2)log2πe|Σ|, and so
the Gaussian-JS divergence is:

JSG
π1,..,πK

({pj(x)}) =
1

2
(log |Σ∗| −

K∑
j=1

πj log |Σj|) (18)

Where Σ∗ =
∑K

j=1 πj(Σj + (µj − µ∗)(µj − µ∗)t), µ∗ =
∑K

j=1 πjµj .

4.6 Algorithms

The JS-based score (12) can be trivially optimized if we do not restrict the
family of allowed hidden mixture models. Without such restriction, we can
choose ΘH as the concatenation of the empirical distributions Θ1, Θ2 and
trivial values for R and Ψ (R(q) = q, ψq = 1 for q = 1, .., K1 + K2).
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For this choice we get the maximal value of 0. In general a ’richer’ hidden
model, which does not merge many Gaussians, gets a higher score. We have
to impose restrictions on the hidden model to get a useful score. This is done
by posing constraints over the allowed R mappings.

Consider first the case in which a one-to-one correspondence is assumed be-
tween clusters in two consecutive frames, and hence the number of Gaussian
components K is constant over all time frames. In this case, a mapping R
is allowed iff it maps to each hidden source i a single Gaussian from mix-
ture Θ1 and a single Gaussian from Θ2. Denoting the Gaussians matched
to hidden i by R−1

1 (i), R−1
2 (i), the transition score (12) takes the form of

−N ·max
R

K∑
i=1

S(R−1
1 (i), R−1

2 (i)). Such an optimization of a pairwise match-

ing score can be seen as a search for a maximal perfect matching in a
weighted bipartite graph. The nodes of the graph are the Gaussian com-
ponents of Θ1, Θ2 and the edges’ weights are given by the scores S(a, b).
The global optimum of this problem can be efficiently found using the Hun-
garian algorithm [14] in O(n3), which is feasible in our case.

The one-to-one correspondence assumption is too strong for many data sets,
specifically, in the Spike Sorting application, as it ignores the phenomena of
either splits or merges of clusters. We wish to allow such phenomena, but
nevertheless enforce strong (though not perfect) demands of correspondence
between the Gaussians in two consecutive frames. In order to achieve such
balance, we place the following constraints on the allowed partitions R:

1. Each cluster of R should contain exactly one Gaussian from Θ1 or
exactly one Gaussian from Θ2. Hence assignment of different Gaus-
sians from the same mixture to the same hidden source is limited only
for cases of a split or a merge.

2. The label entropy of the mixture induced by R should satisfy

H(αH
1 , .., αH

KH ) ≤ 1
2
(H(α1

1, .., α
1
K1) + H(α2

1, .., α
2
K2)) (19)

Intuitively, the second constraint limits the allowed hidden mixtures to ones
which are not richer than the average visible mixtures, i.e., do not have
much more clusters. Note that the most detailed hidden model (the ’con-
catenation’ model) has a label entropy given by the r.h.s of inequality (19)
plus 1 bit. The extra bit can be intuitively understood as the cost of using
twice the number of required labels. We look for mixtures which do not pay
this extra price in label information.

The optimization for this family of R does not seem to have an efficient
global optimization technique, and thus we resort to a greedy procedure.
Specifically, we use a bottom up agglomerative procedure to find the parti-
tion induced by R. We start from the concatenated mixture model. This is
the most detailed partition, as R is a 1 − 1 map and each visible Gaussian
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is a singleton. At each iteration of the algorithm we merge two clusters of
the partition. Only merges that comply with the first constraint are consid-
ered. We look for a merge which incurs a minimal loss to the accumulated
Jensen-Shannon score (12) and a maximal loss to the mixture label entropy.
For two Gaussian clusters (α1, µ1, Σ1), (α2, µ2, Σ2) these two quantities are
given by

∆JS = −N(α1 + α2)JSG
π1,π2

(G(x|µ1, Σ1), G(x|µ2, Σ2))

∆H = −N(α1 + α2)H(π1, π2)
(20)

where π1, π2 are α1

α1+α2
, α2

α1+α2
. We choose at each round the merge which

minimizes the ratio between these two quantities. The algorithm terminates
when the accumulated label entropy reduction is bigger than 1 bit or when
no allowed merges remain. In the second case, it may happen that the map-
ping R found by the algorithm violates the constraint (19). We nevertheless
compute the score based on the R found, since this partition obeys the first
constraint and usually is not far from satisfying the second.

5 Experimental Results

Our main effort was to achieve an automatic Spike Sorting comparable
to human experts. We thus relate to the human expert’s clustering as the
ground truth and measure our performance based on this assumption. In
Section 5.1 we bring a full description of the various experiments.

In Section 5.2 we describe the experiments conducted on the Storm Track-
ing application, a problem with similar non-stationary properties.

In each problem domain, the algorithm was supplemented with some spe-
cific pre- and post-processing based on specific domain knowledge. Clus-
tering examples for both applications can be seen on the author’s web site1.

5.1 Spike Sorting

We describe the experimental design and the data acquisition in 5.1.1. In
Section 5.1.2 we assess the algorithms performance in terms of agreement
with human sorters. The algorithms agreement with human sorters is shown
to be similar to the agreement among humans. In Section 5.1.3 we present
experiments with semi supervised clustering, where only 1/10 of the time
frames are manually sorted and the algorithm performs the rest of the clus-
tering.

1http://www.cs.huji.ac.il/˜adams
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Figure 5: Manual and automatic clustering solutions for the non stationary recording pre-
sented in Figure 1. Each frame contains 1000 spikes, plotted here (with random number
assignments) according to their first two PCs. The left and right columns show manual and
automatic clustering solutions respectively. Notice that during the split process of the bot-
tom left area some ambiguous time frames exist in which 1,2, or 3 cluster descriptions are
reasonable. This ambiguity can be resolved using global considerations of past and future
time frames. By finding the MAP solution over all time frames, the algorithm manages
such considerations. The numbers between the images show the f1/2 score of the local
match (per frame) between the manual and the automatic clustering solutions (see text).
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5.1.1 Experimental design and data acquisition

Neural data were acquired from the dorsal and ventral pre-motor (PMd,
PMv) cortices of two Macaque monkeys performing a prehension (reaching
and grasping) task. At the beginning of each trial, an object was presented
in one of six locations. Following a delay period, a Go signal prompted
the monkey to reach for, grasp, and hold the target object. A recording
session typically lasted 2 hours during which monkeys completed 600 tri-
als. During each session 16 independently-movable glass-plated tungsten
micro-electrodes were inserted through the dura, 8 into each area. Signals
from these electrodes were amplified (10K), bandpass filtered (5-6000Hz),
sampled (25 kHz), stored on disk (Alpha-Map 5.4, Alpha-Omega Eng.),
and subjected to 3-stage preprocessing. (1) Line influences were cleaned by
pulse-triggered averaging: the signal following a pulse was averaged over
many pulses and subtracted from the original in an adaptive manner. (2)
Spikes were detected by a modified second derivative algorithm (7 sam-
ples backwards and 11 forward), accentuating spiky features; segments that
crossed an adaptive threshold were identified. Within each segment, a po-
tential spike’s peak was defined as the time of the maximal derivative. If
a sharper spike was not encountered within 1.2ms, 64 samples (10 before
peak and 53 after) were registered. (3) Waveforms were re-aligned s.t. each
started at the point of maximal fit with 2 library PCs (accounting, on av-
erage, for 82% and 11% of the variance, [1]). Aligned waveforms were
projected onto the PCA basis to arrive at two coefficients.

5.1.2 Results of the fully automated algorithm

We tuned the algorithm’s parameters using a training data set of 42 elec-
trodes containing a total of 1383 time frames. The algorithms was then
tested on another set of 46 electrode recordings containing a total of 4544
time frames. Spike trains were manually clustered by a skilled user in
the environment of Alpha-Sort 4.0 (Alpha-Omega Eng.). Our performance
measure in this section is the agreement rate between automatic and hu-
man clustering. We computed the agreement between automatic and human
clustering solutions using a combined measure of precision P and recall R
scores f 1

2
= 2PR

R+P
. This criterion establishes mappings between clusters in

the two partitions, and roughly measures the percentage of points assigned
to a cluster and its chosen correspondent. It ranges in [0, 1] where 1 signi-
fies a perfect agreement. Similar results were obtained when we measured
solutions agreement using another criterion - the ‘Variation of Information’
suggested in [21]. Figure 5 demonstrates the performance of the algorithm
using a particularly non-stationary data set.

We measure the algorithm agreement with human clustering using two sta-
tistics: (1) label agreement for each time frame independently, and (2) label
agreement of entire electrodes (sequences of time frames). The first gives
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Figure 6: Performance histograms of the automatic algorithm (in blue) and several con-
trol conditions. The control conditions are explained in the text. Performance measure-
ments are f1/2 agreement scores between suggested clustering solutions and human clus-
tering. Results for complete electrodes are shown on the top and for single time frames on
the bottom.
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an indication of how well the local solution matches that of the human.
However, notice that it is possible to obtain high local frame’s agreement
together with low agreement scores for the entire electrode. This happens
when the clusters correspondence between consecutive frames is not estab-
lished correctly. A single correspondence failure in the middle of a sequence
may completely mix two labels, or split a single label into two. Thus high
agreement on the entire electrode requires almost perfect correspondence
along all the sequence.

We first compare the algorithm’s performance to several control conditions:

• Local maximum likelihood (ML) clustering. This clustering solution
is obtained by choosing the mixture description with the highest local
likelihood at each time frame. Cluster correspondence between con-
secutive time frames is established using our standard algorithm for
computation of the transition probability. The difference between this
approach and ours is that in the ML clustering no global optimization
is obtained.

• Unified clusters in the human clustering. An observation of the human
and automatic clusterings shows that the automatic solution occasion-
ally unites 2 clusters which were considered separated in the human’s
solution. This phenomenon usually occurs in cases in which descrip-
tions using one or two clusters are both plausible. We hence compute
the highest agreement that can be achieved by unifying two clusters
in the human labeling.

• Trivial clustering. All spikes are assigned to the same cluster.

• Random clustering. Labels are randomly assigned to spikes, accord-
ing to the label distribution in the manual clustering.

Figure 6 summarizes the comparison of our algorithm with these control
conditions. Several effects can be seen. The average agreement score of
the algorithm was 0.80 for complete electrodes and 0.91 for single frames.
These results are much higher than the baseline performance of random and
trivial clustering. The ML solution performance for independent frames is
comparable to the algorithm performance, but it gets very low scores for
entire electrodes. This happens since mixtures are chosen independently for
each time frame, and often no natural correspondences between adjacent
time frames can be made. This emphasises the importance of the global
optimization in our method. Last, we can see that when the human solution
is modified using a single cluster unification the agreement score increases
dramatically. This means that most of the discrepancy between human and
algorithm is usually caused by a single cluster unification decision.

The algorithm gives reasonable, continuously evolving clustering even
when it has low agreement with the manual clustering. It often seems that

23



0.71

0.73

0.7 0.710.76 

H1 H2 
H3 

A 

0.75 0.78

0.81

0.76 0.760.85 

H1 H2 
H3 

A 

0.81

(a) (b)

Figure 7: The agreement scores between the automatic clustering and clustering solutions
of three human sorters. (a) Agreement over complete electrodes. (b) Agreement over single
time frames.

both human and algorithm provide reasonable interpretations of an inher-
ently ambiguous data. This ’inherent ambiguity’ component can be quanti-
fied by measuring the disagreement between human experts clustering the
same data. To this end we obtained manual clustering of 3 human experts
(our original expert and two additional skilled sorters) for 6 highly non-
stationary electrodes. The average agreement between the 3 humans and
the algorithm can be seen in Figure 7. The average agreement of the al-
gorithm with the human sorters (0.723 and 0.79 for electrodes and single
frames respectively) is almost identical to the average agreement among
humans (0.73 and 0.80). In fact, for electrodes the average agreement of
the algorithm with humans is higher than the average agreement of sorter 2
with other humans. The algorithm clearly prefers the clustering solutions of
sorter 1 over the other two humans. This is not surprising, as sorter 1 is our
original expert, and the algorithm’s parameters were tuned according to his
preferences.

5.1.3 Results of the semi-supervised version

As mentioned in Section 3.1, human supervision can be easily incorporated
into the automatic clustering by letting the human cluster a small fraction
of the time frames. We tested this mode on our 46 test electrodes. Two lev-
els of human intervention were checked, one in which the human supplies
clustering solution for every fifth time frame, the other for every tenth time
frame. Result histograms are given in Figure 8. Human guidance has in-
creased average electrode agreement of the algorithm from 0.80 to 0.84 and
0.837 using 1/5 and 1/10 of time frames respectively. Clearly most of the
improvement is already gained with 1/10 of the frames manually clustered.

The main intended use of the semi-supervised clustering mode is to facili-
tate adaptation of the automatic algorithm to the clustering preferences of a
specific user. We checked whether this mode can adapt to the preferences
of different users using the 6 data sets for which we have 3 different manual

24



Entire Electrode Data

0%

10%

20%

30%

40%

50%

60%

0.9-1.00.8-0.90.7-0.80.6-0.7<0.6

Score

%
 o

f 
el

ec
tr

o
d

es

Unified

Semi-5

Semi-10

Algorithm

Per Frame

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.9-1.00.8-0.90.7-0.80.6-0.7<0.6

Score

%
 o

f 
fr

am
esUnified

Semi-5

Semi-10

Algorithm

Figure 8: Performance histograms of fully automated and semi supervised clustering.
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for 1/5 and 1/10 of the time frames. f1/2 scores for complete electrodes are shown on the
top and for single time frames on the bottom.
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supervisor H1 match H2 match H3 match
H1 0.86 0.70 0.71
H2 0.754 0.785 0.630
H3 0.778 0.664 0.780

None 0.76 0.71 0.70

Table 1: Agreement scores between 3 human sorters and the algorithm in a semi super-
vised mode. Rows in the table present results obtained with different human supervisors.
1/10 of the frames were manually clustered. The three columns present the f1/2 agreement
of the clustering found with the three human sorters. Results are given for complete elec-
trodes and averaged over 6 data sets. The highest match in each row is shown in bold. The
diagonal position of the high matches indicates successful adaptation of the algorithm to
the preferences of different sorters.

clusterings. The results with manual clustering of 1/10 of the data are given
in Table 1. Supervision increased the agreement of the algorithm with the
supervisor by 0.06 − 0.08 for the three sorters. It allowed sorter 2 and 3
to override the initial tendency of the algorithm toward sorter 1 (the sorter
whose labels were used in tuning the algorithms parameters).

5.2 Hurricane Tracking

We tested the algorithm on hurricane identification and tracking using satel-
lite imagery sequences obtained from the GOES project of NASA2. The
data includes visible light and infra-red imagery taken from a fixed point
satellite at intervals of 15 minutes. Since cold areas tend to be brighter in
these images, we obtained a sample from the storm areas by sampling in
proportion to image intensity. Because the data is sometimes very ambigu-
ous, and contains many split and merge events, we adopted another policy
in label unification across merges and splits. In each such event, the unified
cluster kept the label, and thus the ‘identity’, of the largest component uni-
fied (in the Spike Sorting application it received a new label). Adaptations
were also made to the local solution pruning process, to remove small or
very elongated clusters which do not have a meteorological meaning.

We tested the algorithm on two storm sequences, describing hurricanes
‘Alex’ and ‘Dennis’. In both cases, the algorithm yielded reasonable cluster-
ing that captures the main dynamic trends. Specifically, the main hurricane
cell was identified and well tracked. Figure 9 shows a few frames from the
clustering suggestion of the ‘Alex’ sequence.

2http://rsd.gsfc.nasa.gov/goes/text/hotstuff.html
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Figure 9: Frames 18, 82, 240, 300, and 344 from a movie of 375-frames. The left column
presents the original satellite images. The right column preserves the original intensity of
the clouds, but is colored according to the clustering found. Alex’s main storm cell is
identified and tracked in blue (the figure is best viewed in color).

27



6 Discussion

We presented an algorithm for clustering non-stationary data that copes
well with movement, merges, and splits of clusters. The algorithm can be
adapted to specific domains by using various constraints. Two of these do-
mains, Spike Sorting and Storm Tracking, were presented here.

Applying the algorithm in the Spike Sorting domain almost reaches human
performance level, as can be judged using measurements of agreement be-
tween clustering solutions. There are several main factors which explain the
algorithm’s success. First is the reasonable statistical model of a chain of
Gaussian mixtures, which closely follows the human intuition. The global
optimization, which introduces past and future information into the cluster-
ing decision at each specific frame, is the second factor. Last, a module of
rule based, classic AI system mimics the human treatment of exceptional
cases.

Since our main motivation in the development of the method is to save hu-
man labor, we have basically tried to mimic the human experts behavior.
However, we do not use all the information available for the Spike Sorting
problem, and hence it is clearly not optimal. Specifically, the decision to
work with 2 dimensional spike representation implies that important infor-
mation in the original wave form is untapped (approximately 7% of the spike
variance [1]). Moreover, when using the low dimensional representation we
cannot adequately account for the problem of overlapping spikes [19, 27].
The method we suggest can be naturally augmented to handle spike repre-
sentations in higher dimensions. Specifically using 3 PC’s instead of 2 can
account for additional 3% of the spike variance with minor changes to the
existing system. We did not follow this path because our main evaluation
method is the agreement with human experts, who heavily rely on the vi-
sual representations in 2 dimensions. Another source of information we did
not attend is the inter spike intervals (ISI). Using refractory period consid-
erations we can extract constraints of the form ’spike 1 cannot be from the
same cluster as spike 2’. Such constraints were used by [8] to guide cluster-
ing decisions. In our framework, such constraints can be incorporated into
the EM algorithm [22] to guide the search for good local solutions. We did
not make use of this information since sharp constraints were very rare in
our data.

The agreement among human experts clusterings of complicated electrodes
was found to be rather low in our experiments (Section 5.1.2). These mea-
surements are consistent with other studies measuring the accuracy of hu-
man clustering when ’ground truth’ is known. In [11] spikes are recorded
simultaneously using intracellular and extracellular electrodes, and intracel-
lular measurements serve as ground truth. When using tetrode recordings
human errors were as high as 30%. In [25] similar human error rates are
reported for carefully designed synthetic data. In view of these findings,

28



one may question whether mimicking the human expert should be the goal
of automatic Spike Sorting.

Human sorters use high level considerations, and deal very well with excep-
tional cases. It is unlikely that an automated system can outperform them in
these respects. However, there is some evidence indicating that the overall
performance of a well designed automated system may be higher than hu-
man performance. First, while human clustering is subjective, and may vary
with time and person, the automated clustering clearly does not have such
internal variance. Second, it is pointed in [11] that a major factor in the hu-
man errors is caused by humans inability to efficiently visualize and make
decisions regarding high dimensional data. A semi-supervised approach in
which part of the clustering is done automatically in high dimension is pre-
sented and shown to have error rates lower than fully manual sorting. A
third point is that automatic sorting can be done in a Bayesian framework
using statistically sound models. This leads to accurate determination of
clusters borders, which may be better than the intuitive human choice. In
addition, such a framework supports natural confidence measures for the
spike labels, as the probability of label confusion can be inferred from the
model. In [26] a Gaussian mixture approach to Spike Sorting is used and
evaluated in the prediction of hand kinematics. The prediction performance
of the algorithm is shown to be better than the predictions obtained using
manually sorted data. The algorithm we suggest can be seen as a natural
extension of their simple statistical model to long, non-stationary chains.

Based on the considerations above it is reasonable to believe that the ex-
tension of the method proposed here in various aspects, including spike
representation in higher dimensions and ISI information, can yield better
performance than manual human clustering.
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7 Appendix

Proof of Lemma 2 from Section 4.3

Lemma 2. Let S be a labeled sample of N points from arbitrary density,
with V = (~αs, U1, .., UK) = T (S). Let MH be a hidden mixture model
parameterized by ({αH

m}KH

m=1, {ψj}K
j=1, {θH

m}KH

m=1). Then

lim
N→∞,ε→0
Nε2→∞

1
N

log P (TCN,ε(V )|MH)

= −Dkl[~α
s||αHψ]−

K∑
j=1

αs
jDkl[f(x|Θ(Uj))||f(x|θH

R(j))]
(21)

Where αHψ is a probability vector of length K with αH
R(j)ψj in coordinate

j.

Proof.

P (TCN,ε(V )|MH) =

∫

S
′∈TCN,ε(V )

p(S
′|MH) (22)

The proof relies on two steps: First we show that the integrand is roughly
constant in the domain, and we compute its value. Then we compute the
volume and get the integral value by multiplying it with the constant inte-
grand value.

For a sample S
′
= (X

′
, L

′
) with type V

′
= (~αs

′
, U s

′
1 , .., U s

′
K ) the log likeli-

hood can be decomposed in a similar manner to Eq. (7)

log p(S
′|MH) = N

K∑
j=1

αs,

j [log αH
R(j) + log ψj+θH

R(j) · U s,

j − A(θH
R(j))] (23)

For S
′ ∈ TCN,ε(V ) we can approximate S

′ statistics with those of S

log p(S
′|MH)

= N [
K∑

j=1

αs
j [log αH

R(j) + log ψj+θH
R(j) · Uj − A(θH

R(j))] + O(ε)]
(24)

so the integrand is almost constant w.r.t to S
′ . For each component j, ac-

cording to property 3 from Section 4.1, Uj = dA/dΘ(Uj). However, ac-
cording to property 1 dA/dΘ(Uj) = Ef(x|Θ(Uj))[T (x)]. We can thus view
Uj instead of a sample average from an arbitrary density, as an expectation
of T (x) according to f(x|Θ(Uj)). Replacing Uj with this expectation and
using property 4 we get

log p(S
′|MH)

= N [
K∑

j=1

αs
j [log αH

R(j) + log ψj+Ef(x|Θ(Uj)) log f(x|θH
R(j))] + O(ε)]

(25)
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Moving the ‘almost constant’ integrand implied by (25) out of the integral
(22), we now have to compute the type ‘volume’

∫
TCN,ε(V )

1. We will assess

this volume by first considering the mass of TCN,ε(V ) under the mixture
density which makes it most plausible, i.e., p(S

′ |Θ(V )). Lemma 1 tells us
that this mass is almost 1

1 > P (TCN,ε(V )|Θ(V )) =
∫

S
′∈TCN,ε(V )

p(S
′ |Θ(V )) > 1−O( 1

Nε2 ) (26)

On the other hand, we can repeat the steps taken in (23) and (24), this time
with p(S

′|Θ(V )), to see that the integrand in (26) is, again, almost constant

log p(S
′|Θ(V )) = N [

K∑
j=1

αs
j [log αs

j + Θ(Uj) · Uj − A(Θ(Uj))] + O(ε)]

= −N [H(p(x, l|Θ(V ))) + O(ε)]

(27)

Putting the exponent of (27) into (26) and multiplying the inequality by
exp(NH(p(x, l|Θ(V )))) we can get

exp(N [H(p(x, l|Θ(V ))) + O(ε)]) <
∫

TCN,ε(V )

1 <

(1−O( 1
Nε2 )) exp(N [H(p(x, l|Θ(V ))) + O(ε)])

(28)

We can now compute the integral (22) by multiplying the volume (28) with
the integrand (exponent of (25)). Ignoring arbitrary small terms of O(ε) and
O(1/Nε2) we get

P (TCN,ε(V )|MH)

≈ exp(N [
K∑

j=1

αs
j log

αH
R(j)

ψj

αs
j

+ Ef(x|Θ(Uj)) log
f(x|θH

R(j)
)

f(x|Θ(Uj))
])

(29)

From which (21) follows.
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