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Abstract

Many learning algorithms use a metric defined over the input space as a principal tool, and their
performance critically depends on the quality of this metric. We address the problem of learning metrics
using side-information in the form of equivalence constraints. Unlike labels, we demonstrate that this
type of side-information can sometimes be automatically obtained without the need of human interven-
tion. We show how such side-information can be used to modifythe representation of the data, leading
to improved clustering and classification.

Specifically, we present the Relevant Component Analysis (RCA) algorithm, which is a simple and
efficient algorithm for learning a full ranked Mahalanobis metric. We show that RCA is the solution
of an interesting optimization problem, founded on an information theoretic basis. If the Mahalanobis
matrix is allowed to be singular, we show that Fisher’s linear discriminant followed by RCA is the
optimal dimensionality reduction algorithm under the samecriterion. Moreover, under certain Gaussian
assumptions, RCA can be viewed as an ML estimation of the inner class covariance matrix. We conclude
with extensive empirical evaluations of RCA, showing its advantage over alternative methods.

Keywords: clustering, learning from partial knowledge, metric learning, Mahalanobis metric, dimen-
sionality reduction, side information.

1 Introduction

A number of learning problems, such as clustering and nearest neighbor classification, rely on some apriori
defined distance function over the input space. In many of these problems it is often the case that selecting
a “good” metric critically affects the algorithms’ performance. In this paper, motivated by the wish to boost
the performance of these algorithms, we study ways to learn a“good” metric using side information.

One difficulty in finding a “good” metric is that its quality may be context dependent. For example,
consider an image retrieval application which includes many facial images. Given a query image, the appli-
cation retrieves the most similar images in the database according to some pre-determined metric. However,
when presenting the query image we may be interested in retrieving other images of the same person, or
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we may want to retrieve other faces with the same facial expression. It seems difficult for a pre-determined
metric to be suitable for two such different tasks.

In order to learn a context dependent metric, the data set must be augmented by some additional infor-
mation, or side-information, relevant to the task at hand. For example we may have access to the labels
of part of the data set. In this paper we focus on another type of side-information, in whichequivalence
constraintsbetween a few of the data points are provided. More specifically we assume knowledge about
small groups of data points that are known to originate from the same class, although their label is unknown.
We term these small groups of points“chunklets”.

A key observation is that in contrast to explicit labels thatare usually provided by a human instructor,
in many unsupervised learning tasks equivalence constraints may be extracted with minimal effort or even
automatically. One example is when the data is inherently sequential and can be modeled by a Markovian
process. Consider for example movie segmentation, where the objective is to find all the frames in which
the same actor appears. Due to the continuous nature of most movies, faces extracted from successive
frames in roughly the same location can be assumed to come from the same person. This is true as long
as there is no scene change, which can be automatically and robustly detected (Boreczky & Rowe, 1996).
Another analogous example is speaker segmentation and recognition, in which the conversation between
several speakers needs to be segmented and clustered according to speaker identity. Here, it may be possible
to automatically identify small segments of speech which are likely to contain data points from a single yet
unknownspeaker.

A different scenario, in which equivalence constraints arethe natural source of training data, occurs
when we wish to learn from several teachers who do not know each other and who are not able to coordinate
among themselves the use of common labels. We call this scenario ’distributed learning’.1 To illustrate,
assume that you are given a large database of facial images ofmany people, which cannot be labeled by
a small number of people due to its vast size. The database is therefore divided (arbitrarily) intoP parts
(whereP is very large), which are then given toP teachers to annotate. The labels provided by the different
teachers may be inconsistent: as images of the same person appear in more than one part of the database,
they are likely to be given different names. Coordinating the labels of the different teachers is almost as
daunting as labeling the original dataset. However, equivalence constraints can be easily extracted, since
points which were given the same tag by a certain teacher are known to originate from the same class.

In this paper we study how to use equivalence constraints in order to learn an optimal Mahalanobis metric
between data points. Equivalently the problem can also be posed as learning a good representation function,
transforming the data representation by the square root of the Mahalanobis weight matrix. Therefore we
shall discuss the two problems interchangeably.

In Section 2 we describe the proposed method – the Relevant Component Analysis (RCA) algorithm.
In the subsequent three sections we show how RCA can be derived in parallel from three different perspec-
tives: In Section 3 we describe a novel information theoretic criterion and show that RCA is its optimal
solution. Moreover, if dimensionality reduction is permitted, the optimal solution is Fisher’s linear discrim-
inant (Fukunaga, 1990) followed by RCA. In Section 4 we show that RCA is also the optimal solution to
another optimization problem, seeking to minimize inner class distances. Viewed this way, RCA is directly
compared to another recent algorithm for learning Mahalanobis distance from equivalence constraints (pro-
posed in (Xing et al., 2002)). In Section 5 we show that under Gaussian assumptions RCA can be interpreted
as the maximum-likelihood (ML) estimator of the within-class covariance matrix. We also provide a bound
over the variance of this estimator, showing that it is at most twice the variance of the ML estimator obtained
using labeled data.

The successful application of RCA in high dimensional spacerequires dimensionality reduction, whose
1A related scenario (which we call ’generalized relevance feedback’), where users of a retrieval engine are asked to annotate the

retrieved set of data points, has similar properties.
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details are discussed in Section 6. An online version of the RCA algorithm is presented in Section 7. In
Section 8 we describe an extensive empirical evaluation of the RCA method. We focused on two tasks -
data retrieval and clustering. We used three types of data: (a) A data set of frontal faces (Belhumeur et al.,
1997); this example shows that RCA with partial equivalenceconstraints typically yields comparable results
to supervised algorithms which use fully labeled training data. (b) A large data set of images collected by a
real-time surveillance application, where the equivalence constraints are gathered automatically. (c) Several
data sets from the UCI repository, which are used to compare between RCA and other competing methods
that use equivalence constraints.

Related work

There has been much work on learning representations and distance functions in the supervised learning
settings, and we can just briefly mention some examples. (Hastie & Tibshirani, 1996) and (Jaakkola &
Haussler, 1998) use labeled data to learn good metrics for classification. In (Thrun, 1996) a distance func-
tion (or a representation function) is learned for classification using a “leaning-to-learn” paradigm. In this
setting several related classification tasks are learned using several labeled data sets, and algorithms are
proposed which learn representations and distance functions in a way that allows for the transfer of knowl-
edge between the tasks. In (Tishby et al., 1999) the joint distribution of two random variablesX andY is
assumed to be known, and the problem is reduced to the learning of a compact representation ofX which
bears high relevance toY . This work, which is further developed in (Chechik & Tishby,2002), can be
viewed as supervised representation learning. Information theoretic criteria for unsupervised learning in
neural networks were first suggested by (Linsker, 1989), andhas been used since in several tasks in the
neural network literature, e.g., (Bell & Sejnowski, 1995).

In recent years some work has been done on using equivalence constraints as side information. In
(Wagstaff et al., 2001) equivalence relations were introduced into the K-means clustering algorithm. Both
positive (’a is similar to b’) and negative (’a is dissimilarfrom b’) relations were used. An initial description
of RCA using positive equivalence constraints was given in (Shental et al., 2002), in the context of image
retrieval, and expanded in (Bar-Hilel et al., 2003). Learning a Mahalanobis metric from positive and negative
equivalence constraints was addressed in (Xing et al., 2002), in conjunction with the constrained K-means
algorithm. We compare this algorithm to our current work in Section 4, and compare our empirical results
with the results of both algorithms in Section 8. We have alsorecently developed a way to introduce
both positive and negative equivalence constraints into the EM algorithm for the estimation of a mixture of
Gaussian models (Shental et al., 2003).

2 Relevant Component Analysis: the algorithm

Relevant Component Analysis (RCA) is a method that seeks to identify and down-scale global unwanted
variability within the data. The method changes the featurespace used for data representation, by a global
linear transformation which assigns large weights to “relevant dimensions” and low weights to “irrelevant
dimensions” (cf. (Tenenbaum & Freeman, 2000)). These “relevant dimensions” are estimated usingchun-
klets, i.e, small subsets of points that are known to belong to the same althoughunknownclass.

More specifically, pointsx1 andx2 are said to be related by a positive constraint if it is known that both
points share the same (unknown) label. If pointsx1 andx2 are related by a positive constraint, andx2 andx3 are also related by a positive constraint, then a chunkletfx1; x2; x3g is formed. Generally, chunklets are
formed by applying transitive closure over the whole set of positive equivalence constraints.

The algorithm is presented below as Algorithm 1. The RCA transformation is intended to reduce clutter,
so that in the new feature space, the inherent structure of the data can be more easily unraveled (see illus-
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trations in Figs. 1a-f). Thus the whitening transformationW (in step 3 of Alg. 1) assigns lower weights to
directions of large variability, since this variability ismainly due to within class changes and is therefore
“irrelevant” for the task of classification. RCA can be used as a preprocessing step for both unsupervised
clustering of the data and nearest neighbor classification.

Algorithm 1 The RCA algorithm

Given a datasetfxigNi=1 andk chunkletsCj = fxjignji=1 j = 1 : : : k; do

1. For each chunkletCj, subtract the chunklet’s mean from all the points it contains (Fig. 1d).

2. Compute the covariance matrix of all the centered data-points in chunklets (Fig. 1d). Assume a total
of p points ink chunklets, where chunkletCj consists of pointsfxjignji=1 and its mean iŝmj . RCA
computes the following matrix:Ĉ = 1p kXj=1 njXi=1(xji � m̂j)(xji � m̂j)t (1)

3. Compute the whitening transformationW = Ĉ� 12 associated with this covariance matrix (Fig. 1e),
and apply it to the original data points:xnew =Wx (Fig. 1f). Alternatively, use the inverse of̂C as a
Mahalanobis distance.

(a) (b) (c)

(d) (e) (f)
Figure 1: An illustrative example of the RCA algorithm applied to synthetic Gaussian data. (a) The fully labeled data set with
3 classes. (b) Same data unlabeled; clearly the classes’ structure is less evident. (c) The set of chunklets that are provided to the
RCA algorithm (points that share the same color and marker type form a chunklet). (d) The centered chunklets, and their empirical
covariance. (e) The whitening transformation applied to the chunklets. (f) The original data after applying the RCA transformation.

The following sections present theoretical justificationsfor the RCA algorithm.
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3 Information maximization with chunklet constraints

How do we find the optimal transformation of the data which uses chunklets to improve its representation
value? In Section 3.1 we state the problem for general families of transformations, presenting an information
theoretic formulation. In section 3.2 we restrict the family of transformation to non-singular linear maps,
showing that the optimal solution is given by RCA. In section3.3 we widen the family of permitted trans-
formations to include non-invertible linear transformations, showing (for normally distributed data) that the
optimal transformation is given by Fisher’s Linear Discriminant (FLD) followed by RCA.

3.1 An information theoretic perspective

Following (Linsker, 1989), an information theoretic criterion states that an optimal transformation of the
inputX into its new representationY , should seek to maximize the mutual informationI(X;Y ) betweenX andY under suitable constraints. In the general deterministic case a setX = fxlgnl=1 of data points inRN is transformed into the setY = ff(xl)gnl=1 of points inRM . We wish to find a functionf 2 F that
maximizesI(X;Y ), whereF is the family of permitted transformation functions (a “hypotheses family”).

First, note thatI(X;Y ) is the differential mutual information asX andY are continuous variables.
Moreover sincef is deterministic, maximizingI(X;Y ) is achieved by maximizing the entropyH(Y ) alone.
To see this, recall that I(X;Y ) = H(Y )�H(Y jX)
Sincef is deterministic, the uncertainty concerningY whenX is known is minimal, thusH(Y jX) achieves
its lowest possible value at�1.2 However, as noted in (Bell & Sejnowski, 1995),H(Y jX) does not depend
onf and is constant for every finite quantization scale. Hence maximizing with respect tof can be done by
considering only the first termH(Y ).

Second, note also thatH(Y ) can be increased by simply ’stretching’ the data space (for example by
choosingf = �x, where� > 1 ). Therefore, in order to avoid the trivial solution�!1, we constrain the
distance between points contained in a single chunklet, notto exceed a fixed threshold. This gives us the
following optimization problem:maxf2F I(X;Y ) s:t: 1p pXj=1 njXi=1 jjyji � m̂yj jj2 � K (2)

wherefyjigp ; njj=1;i=1 denote the set of points inp chunklets after the transformation,m̂yj denotes the mean of
the points in chunkletj after the transformation, andK denotes some constant (the fixed threshold). From
the discussion above, (2) can be simplified to the following optimization problem, which henceforth we will
try to solve: maxf2F H(Y ) s:t: 1p pXj=1 njXi=1 jjyji � m̂yj jj2 � K (3)

3.2 RCA: the solution to the optimization problem

Consider the problem posed in (3) for the familyF of invertible linear transformations. Sincef is invertible,
the connection between the densities ofY = f(X) andX is expressed bypy(y) = px(x)jJ(x)j , wherejJ(x)j is

2This non-intuitive divergence is a result of the generalization of information theory to continuous variables, i.e., it is the result
of ignoring the discretization constant in the definition ofdifferential entropy.
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the Jacobian of the transformation. Frompy(y)dy = px(x)dx, it follows thatH(Y ) andH(X) are related
as follows:H(Y ) = � Zy p(y) log p(y)dy = � Zx p(x) log p(x)jJ(x)jdx = H(X) + hlog jJ(x)jix

For the linear mapY = AX the Jacobian is constant and equalsjAj, and it is the only term inH(Y )
that depends on the transformationA. Hence problem (3) is reduced tomaxA logjAj s:t: 1p kXj=1 njXi=1 jjyji � m̂yj jj2 � K (4)

LetB = AtA; sinceB is positive definite andlog jAj = 12 log jBj, (4) can be rewritten asmaxB>0 logjBj s:t: 1p kXj=1 njXi=1 jjxji � m̂jjj2B � K (5)

wherejj:jjB denotes the Mahalanobis distance with weight matrixB.
The optimization problem in (5) can be solved easily, since the constraint is linear inB. The solution isB = KN Ĉ�1, whereĈ is the average chunklet covariance matrix (1) andN is the dimensionality of the data

space. This solution is identical to the Mahalanobis matrixin RCA up to a global scale factor,3 and hence
RCA is a scaled solution of (5).

3.3 Dimensionality reduction

We now solve the optimization problem in (5) with the family of general linear transformations, i.e.,Y =AX whereA 2 MM�N andM � N . To simplify the analysis, we assume that the distribution of X is
multivariate Gaussian. SinceX is assumed to be Gaussian,Y is also Gaussian with the following entropyH(Y ) = d2 log 2�e+ 12 log j�yj = d2 log 2�e+ 12 log jA�xAtj
Now (3) becomes maxA log jA�xAtj s:t: 1p kXj=1 njXi=1 jjxji �mjjj2AtA � K (6)

For a given target dimensionalityM , the solution to the problem is Fisher linear discriminant (FLD)
followed by RCA in the reduced space. A sketch of the proof is given in Appendix 10. Notice that after the
FLD the inner covariance matrix in the reduced space is diagonal, and so RCA only scales each dimension
separately. The computation of FLD based on equivalence constraints (cFLD) is described in Section 6.

4 RCA and the minimization of inner class distances

In order to gain some intuition to the solution provided by the information maximization criterion of Eq. (3),
let us look at the optimization problem obtained by reversing the roles of the maximization term and the

3Such a global scale constant is not important in most clustering and classification tasks, which essentially rely on relative
distances.
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constraint term in (5): minB 1p kXj=1 njXi=1 jjxji �mjjj2B s:t: jBj � 1 (7)

We interpret (7) as follows: a Mahalanobis distanceB is sought, which minimizes the sum of all inner
chunklet squared distances, whilejBj � 1 prevents the solution from being achieved by “shrinking” the
entire space. Using the Kuhn-Tucker theorem, we can reduce (7) tominB kXj=1 njXi=1 jjxji �mjjj2B � � log jBj s:t: � � 0; � log jBj = 0 (8)

Differentiating the Lagrangian above shows that the minimum is given byB = jĈj 1d Ĉ�1, whereC is the
average chunklet covariance matrix. Once again, the solution is identical to the Mahalanobis matrix in RCA
up to a scale factor.

It is interesting, in this respect, to compare RCA with the method proposed recently by (Xing et al.,
2002). They also consider the problem of learning a Mahalanobis distance using side information in the
form of pairwise constraints.4 They assume the knowledge of a setS of pairs of points known to be similar,
and a setD of pairs of points known to be dissimilar. Given these sets, they pose the following optimization
problem. minB X(x1;x2)2S jjx1 � x2jj2B s:t: X(x1;x2)2D jjx1 � x2jjB � 1; B � 0 (9)

This problem is solved using gradient ascent and iterative projection methods.
To allow a clearer comparison of RCA with Eq. (9), we reformulate the argument of (7) in terms of inner

chunklet pairwise distances. For each pointxji in chunkletj we have:xji �mj = xji � 1nj njXk=1xjk = 1nj njXk=1k 6=i (xji � xjk)
Problem (7) can now be rewritten asminB kXj=1 1n2j njXi=1 jjXk 6=i (xji � xjk)jj2B s:t: jBj � 1 (10)

When only chunklets of size 2 are given (as in the case studiedin (Xing et al., 2002)), the problem reduces
to minB 12 kXj=1 jjxj1 � xj2jj2B s:t: jBj � 1 (11)

Clearly the minimization terms in problems (11) and (9) are identical up to a constant (12 ). The difference
between the two problems lies in the constraint term: the constraint proposed in (Xing et al., 2002) uses
pairs of dissimilar points, whereas the constraint in the RCA formulation affects global scaling so that the
’volume’ of the Mahalanobis neighborhood is not allowed to shrink indefinitely. This difference has the
immediate effect that the algorithm described in (Xing et al., 2002) to solve (9) is substantially slower and
does not always converge. In contrast, the RCA distance computation is simple and fast (requiring a single
matrix inversion) without the need for costly iterative procedures.

4Chunklets of size> 2 are not considered in (Xing et al., 2002).
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5 RCA and Maximum Likelihood: the effect of chunklet size

We now consider the case where the data consists of several normally distributed classes sharing the same
covariance matrix. Under the assumption that the chunkletsare sampled i.i.d. and that points within each
chunklet are also sampled i.i.d., the likelihood of the chunklets’ distribution can be written as:kYj=1 njYi=1 1(2�) d2 j�j 12 exp (� 12 (xji�mj)t��1(xji�mj)) (12)

Writing the log-likelihood while neglecting constant terms and denotingB = ��1, we obtain:kXj=1 njXi=1 jjxji �mj jj2B � p log jBj (13)

wherep is the total number of points in chunklets. Maximizing the log-likelihood is equivalent to mini-
mizing (13), whose minimum is obtained whenB equals the RCA Mahalanobis matrix from Eq. (1). Note,
moreover, that (13) is rather similar to the Lagrangian in (8), where the Lagrange multiplier is replaced by
the constantp. Hence, under Gaussian assumptions, the solution of problem (8) is probabilistically justified
by a maximum likelihood formulation.

Under Gaussian assumptions, we can define anunbiasedversion of the RCA estimator. Assume for
simplicity that there arep constrained data points divided inton chunklets of sizek each. Theunbiased
RCA estimator can be written as:Ĉ(n; k) = 1n nXi=1 1k � 1 kXj=1(xji � m̂i)(xji � m̂i)t (14)

wherexji denotes the data pointj in chunkleti, andm̂i denotes the empirical mean of chunkleti. Ĉ(n; k)
in (14) is the empirical mean of the covariance estimators produced by each chunklet. It is shown in Ap-
pendix 10 that the variance of the elementsĈij of the estimating matrix is bounded byV ar(Ĉij(n; k)) � (1 + 1k � 1)V ar(Ĉij(1; nk)) (15)

whereĈij(1; nk) is the estimator when all thep = nk points are known to belong to the same class, thus
forming the best estimate possible fromp points. This bound shows that the variance of the RCA estimator
rapidly converges to the variance of the best estimator, even for small chunklets.

6 Dimensionality reduction

As noted in Section 2 the first step in RCA is usually dimensionality reduction. We now turn to address this
issue in detail. The RCA algorithm decreases the weight of principal directions along which the inner class
covariance is relatively high, and increases the weight of directions along which it is low. This intuition can
be made precise in the following sense:

Denote byf�igDi=1 the eigenvalues of the inner covariance matrix, and consider the squared distance
between two points from the same classjjx1 � x2jj2. We can diagonalize the inner covariance matrix using
an orthonormal transformation which does not change the distance. Therefore let us assume without loss of
generality that the inner covariance is diagonal.

8



Before whitening, the average squared distance isE[jjx1� x2jj2℄ = 2PDj=1 �j and the average squared
distance in directioni isE[(x1i � x2i )2℄ = 2�i. After whitening these values are2D and2, respectively. Let
us define the weight of dimensioni, W (i) 2 [0; 1℄, asW (i) = E[(x1i � x2i )2℄E[jjx1 � x2jj2℄
Now the ratio between the weight of each dimension before andafter whitening is given byWbefore(i)Wafter(i) = �i1D PDj=1 �j (16)

In (16) the weight of each principal dimension increases if its initial variance was lower than the average,
and vice versa. When there is high irrelevant noise along several dimensions, the algorithm will indeed scale
down noise dimensions. However, when the irrelevant noise is scattered among many dimensions with low
amplitude in each of them, Whitening will amplify these noisy dimensions, which is potentially harmful.
Therefore, when the data is initially embedded in high dimensional space, dimensionality reduction must
precede RCA to avoid this problem.

We have seen in section 3.3 that FLD is the dimensionality reduction technique which maximizes the
mutual information under Gaussian assumptions. Traditionally FLD is computed from fully labeled training
data, and the method therefore falls within supervised learning. However, it is easy to extend classical FLD
to the case of partial supervision in the form of equivalenceconstraints. Specifically, letSt andSw denote
the total covariance and the inner class covariance respectively. FLD maximizes the following determinant
ratio maxA2Mk�D AtStAAtSwA
by solving the appropriate generalized eigenvector problem. With chunklets, we can use the inner chunklet
covariance matrix from (1) to approximateSw, and compute the projection matrix is the usual way. We term
this FLD variant cFLD (Constraints based FLD).

The cFLD dimensionality reduction can only be used if the rank of the inner chunklet covariance matrix
is higher than the dimensionality of the initial data space.If this condition doesn’t hold, we use PCA to
reduce the original data dimensionality as needed. The detailed procedure is summarized below in Algo-
rithm 2. We compare this dimensionality reduction scheme with simple PCA in Section 8.1.4.

Algorithm 2 RCA’s dimensionality reduction
Denote byd the original data dimensionality.
Given a set of chunkletsfCigKi=1 do

1. Compute the rank of the estimated covariance matrixR =PKi=1 j(ij � 1).
2. If (d > R), apply PCA to reduce the data dimensionality to�R, where0 < � < 1 (to ensure that

cFLD provides stable results).

3. Apply cFLD to achieve the target data dimensionality.
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7 Online implementation of RCA

The standard RCA algorithm presented in Section 2 is a batch algorithm which assumes that all the equiv-
alence constraints are available at once. Here we briefly present an alternative online implementation of
RCA, suitable for a neural-network-like architecture. In this implementation a weight matrixW 2MD�D,
initiated randomly, is gradually developed to become the RCA transformation matrix. The algorithm is
presented below in Algorithm 3.

Algorithm 3 Online RCA
Input: a stream of pairs of points(x1; x2), where the points in a pair are known to belong to the same class.
initialize W to a symmetric random matrix withjjW jj << 1.
For t=1:T do� receive pairxt1; xt2;� take the difference between the points,h = x1 � x2;� transformh usingW , to gety =Wh;� updateW =W + �(W � yytW ).
where� determines the step size.

The steady state of this stochastic process can be found by equating the mean update to0, where the
mean is taken over the next example pair(x1; x2):E[�(W � yytW )℄ = 0) E[I � yyt℄ = I �W tE[hht℄W = 0) W = E[hht℄� 12P
WhereP is an orthogonal marixP tP = 1. The steady stateW is a whitening transformation of the
correlation matrix ofh. Sinceh = 2(x1 � (x1+x2)2 ), it is equivalent (up to the constant 2) to the distance
of a point from the center of its chunklet. The correlation matrix of h is therefore equivalent to the inner
chunklet covariance matrix. ThusW converges to the RCA transformation of the input populationup to
an orthogonal transformation. The resulting transformation is geometrically equivalent to RCA, since the
orthogonal transformationP preserves vector norms and angles.

8 Experimental Results

The success of the RCA algorithm can be measured directly by measuring neighborhood statistics, or indi-
rectly by measuring whether it improves clustering results. In the following we tested RCA on three different
applications using both direct and indirect evaluations.

The RCA algorithm uses only partial information about the data labels. In this respect it is interesting
to compare its performance to unsupervised and supervised methods for data representation. Section 8.1
compares RCA to the unsupervised PCA and the fully supervised FLD on a facial recognition task, using
the YaleB data set (Belhumeur et al., 1997). In this application of face recognition, RCA appears very
efficient in eliminating irrelevant variability caused by varying illumination. We also used this data set to
test the effect of dimensionality reduction using cFLD, andthe sensitivity of RCA to average chunklet size
and the total amount of points in chunklets.
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Figure 2: A subset of the YaleB database which contains 1920 frontal face images of thirty individuals taken under different
lighting conditions.

Section 8.2 presents a more realistic surveillance application in which equivalence constraints are gath-
ered automatically from a Markovian process. We conclude our experimental validation by comparing RCA
with other methods which make use of equivalence constraints in a clustering task, using a few benchmark
data sets from the UCI repository (Blake & Merz, 1998).

8.1 Applying RCA to facial recognition

The task here is to classify facial images with respect to theperson photographed. In these experiments we
consider a retrieval paradigm reminiscent of nearest neighbor classification, in which a query image leads to
the retrieval of its nearest neighbor or its k-nearest neighbors in the dataset. Using a facial image database,
we begin by evaluating nearest neighbor classification withthe RCA distance, and compare its performance
to supervised and unsupervised learning methods. We then move on to address specific issues regarding
RCA: In Section 8.1.4 we test RCA with various dimensionality reduction procedures, and in Section 8.1.5
we evaluate the effect of different chunklets sizes. Finally, in Section 8.1.6 we show that RCA can also be
successfully used to augment (standard) FLD.

8.1.1 The data set

We used a subset of the yaleB data set (Belhumeur et al., 1997), which contains facial images of 30 subjects
under varying lighting conditions. The dataset contains a total of 1920 images, including 64 frontal pose
images of each subject. The variability between images of the same person is mainly due to different
lighting conditions. These factors caused the variabilityamong images belonging to the same subject to be
greater than the variability among images of different subjects (Adini et al., 1997). As preprocessing, we
first automatically centered all the images using optical flow. Images were then converted to vectors, and
each image was represented using its firstd PCA coefficients (we experimented withd = 30; 60; 100; 200).
Fig. 2 shows a few images of four subjects.

8.1.2 Obtaining equivalence constraints

We simulated the’distributed learning’scenario presented in Section 1 in order to obtain equivalence con-
straints. In this scenario, we obtain equivalence constraints using the help ofT teachers. Each teacher is
given a random selection ofK data points from the data set, and is asked to give his own labels to all the
points, effectively partitioning the dataset into equivalence classes. The constraints provided by the teachers
are gathered and used as equivalence constraints. The totalnumber of points in chunklets grows linearly
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with TK, the number of data points seen by a teacher. This amount, which gives a loose bound on the
number of points in chunklets, is controlled by varying the number of teachersT . We tested a range of
values ofT for whichTK is 10%, 30%, or 75% of the points in the data set.5

In appendix 10 we show that the distribution of chunklet sizeis controlled by the ratior = KM whereM
is the number of classes in the data. In all our experiments wehave usedr = 2. For this value the expected
chunklet size is roughly2:9 and we typically obtain many small chunklets. Fig. 3 shows a histogram of
typical chunklet sizes, as obtained in our experiments.6
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Figure 3: Sample chunklet size distribution obtained usingthe distributed learning scenario on a subset of
the yaleB dataset with1920 images fromM = 30 classes, withr = KM = 2. The histogram is plotted for30% of the data in constraints (chunklets).

8.1.3 RCA on the continuum between supervised and unsupervised learning

The goal of our main experiment in this section was to assess the relative performance of RCA as a semi-
supervised method in a face recognition task. To this extentwe compared the following methods:� Eigenfaces (Turk & Pentland, 1991): this unsupervised method reduces the dimensionality of the

data using PCA, and compares the images using a Euclidean metric in the reduced space. Images
were normalized to have zero mean and unit variance, and the number of dimensions was varied until
optimal performance was obtained.� Fisherfaces (Belhumeur et al., 1997): this supervised method starts by applying dimensionality reduc-
tion as in the Eigenfaces method. It then uses all the data labels to compute the FLD transformation
(Fukunaga, 1990), and transforms the data accordingly.� RCA: RCA with the dimensionality reduction procedure described in Section 6. We varied the amount
of data in constraints provided to RCA, using thedistributed learningparadigm described above.

Fig. 4 shows the results of the different methods. The left graph in Fig. 4 shows the relative performance
of the three methods using nearest neighbor classification.As can be seen, RCA sometimes achieves error
rates which are even lower than the error rates of the fully supervised Fisherface method, while relying only

5In this scenario one usually obtains mostly ’negative’ equivalence constraints, which are pairs of points that are known to
originate from different classes. Note that RCA doesnot use these ’negative’ equivalence constraints.

6But we used a different sampling scheme in the experiments which address the effect of chunklet size (Section 8.1.5).
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on fragmentary chunklets with unknown class labels. This somewhat surprising result stems from the fact
that combining RCA with cFLD usually yields better performance than using FLD alone. (In Section 8.1.6
we discuss RCA as an extension to the fully labeled FLD.)
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Figure 4: Classification Error rates for (1) Eigenface (PCA), (2) RCA10%, (3) RCA 30%, (4) RCA 75% and (5) Fisherface
(FLD). RCA was used in 3 conditions, with chunklets obtainedfrom a distribution of a fraction of the total number of points,
from small (10% and30%) to large (75%). The left graph shows results of nearest neighbor classification. The right graph shows
the mean error rate on all neighbors. Results are averaged over 50 chunklet realizations. Note that when using large amounts of
equivalence constraints the performance of RCA is better than the fully labeled Fisherface, which is not followed by RCA.

Another interesting measure of performance is the total number of errors on all neighbors. For each
imagexi, we compute thejCij � 1 nearest neighbors of that image wherejCij is the size of the class to
which xi belongs. We then compute the fraction of neighbors which were retrieved incorrectly. The right
graph in Fig. 4 shows the mean error rate on all neighbors using the three methods. The pattern of results is
similar to the one obtained for the first neighbor error. Evenwith small amounts of equivalence constraints
(10% and30%) RCA achieves error rates which are far better than the unsupervised PCA, and as good as
the fully supervised FLD.

In order to visualize the effect of RCA in this task we also created some RCAfaces (following (Bel-
humeur et al., 1997)): We ran RCA on the images after applyingPCA, and then reconstructed the images.
Fig. 5 shows a few images and their reconstruction. Clearly RCA dramatically reduces the effect of varying
lighting conditions, and the reconstructed images of the same individual look very similar to each other.

In another experiment we compared the performance of (Xing et al., 2002) to RCA on the YaleB dataset
using code obtained from the author’s website. The experimental setup was the one described in Sec-
tion 8.1.2, with30% of the data points distributed into chunklets. Results are shown in Fig. 6.

8.1.4 Dimensionality reduction with cFLD vs. PCA

In this experiment we compare PCA to cFLD as the mechanism to reduce dimensionality prior to RCA.
Results over the YaleB data set are shown in Fig. 7, withcumulative neighbor purityplots of the two
methods.Cumulative neighbor puritymeasures the percentage of correct neighbors up to theK-th neighbor,
averaged over all the datapoints. Not surprisingly, we can see that even with small amounts of constraints,
cFLD gives better performance.

8.1.5 The effect of different chunklet sizes

In Section 5 we showed that RCA typically provides an inner class covariance estimator which is not very
sensitive to the chunklets’ sizes. In order to empirically test the effect of chunklets’ size, we fixed the number
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Figure 5: Top: Several facial images of two subjects under different lighting conditions. Bottom: the same
images from the top row after applying PCA and RCA and then reconstructing the images. Clearly RCA
dramatically reduces the effect of different lighting conditions, and the reconstructed images of each person
look very similar to each other.
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Figure 6: Comparison of Xing’s method (Xing et al., 2002) with RCA on the YaleB facial image dataset.
Results are presented using neighbor purity plots.

of equivalence constraints, and varied the size of the chunkletsS in the rangef2� 10g. The chunklets were
obtained by randomly selecting30% of the data (total ofN = 1920 points) and dividing it into chunklets of
sizeS.7

The results can be seen in Fig. 8. As expected the performanceof RCA improves as the size of the
chunklets increases. However, most of the gain in performance is obtained with chunklets of sizeS = 3, in
agreement with our theoretical analysis.

8.1.6 RCA in a supervised learning scenario

RCA can also be used when given a fully labeled training set. In this case, chunklets correspond uniquely
and fully to classes, and the cFLD algorithm for dimensionality reduction is equivalent to the standard FLD.
In this setting RCA can be viewed as an augmentation of standard FLD. Fig. 9 shows comparative results of
FLD with and without RCA in the fully labeled case.

7When necessary, the remainingmod(N;S) points were gathered into an additional smaller chunklet.
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Figure 7: Neighbor purity plots of RCA after dimensionalityreduction using PCA and cFLD. When using
cFLD each image was first represented using its first 100 and 200 PCA coefficients respectively. We then
used cFLD to reduce the dimensionality toM = 30, the number of classes in the data (as described in
Section 6). When using PCA the dimensionality was reduced to30 PCA coefficients directly. Left:10% of
the data in constraints. Right:75% of the data in constraints. As can be seen, even with a small number of
equivalence constraints, the combination of cFLD+RCA performs better than the combination PCA+RCA.
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Figure 8: Mean error on all neighbors on the yaleB dataset when using30% of the data in chunklets. In this
experiment we varied the chunklet sizes while fixing the total amount of points in chunklets. As expected,
as the size of the chunklet increases performance improves.However, note that most of the performance
gain is obtained using chunklets of size 3.

8.2 Surveillance application

In this application, a stationary indoor surveillance camera provided short video clips whose beginning and
end were automatically determined by the appearance and disappearance of a moving target. The database
therefore included many clips, each displaying only one person of unknown identity. Effectively each clip
provided a chunklet. The task in this case was to cluster together all clips in which a certain person appeared.

The task and our approach: The video clips were highly complex and diversified, for several reasons.
First, they were entirely unconstrained: a person could walk everywhere in the scene, coming closer to the
camera or walking away from it. Therefore the size and resolution of each image varied dramatically. In
addition, since the environment was not constrained, images included varying occlusions, reflections and
(most importantly from our perspective) highly variable illumination. In fact, the illumination changed
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Figure 9: Neighbor purity plots on the yaleB dataset using FLD with and without RCA. Here RCA dramat-
ically enhances the performance obtained by FLD.
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Figure 10:Left: several images from a video clip of one intruder. Right: percent of correct retrievals as a function of the number
of retrieved images.

dramatically across the scene both in intensity (from brighter to darker regions), and in spectrum (from neon
light to natural lighting). Fig. 10 shows several images from one input clip.

We sought to devise a representation that would enable the effective clustering of clips, focusing on
color as the only low-level attribute that could be reliablyused in this application. Therefore our task was
to accomplish some sort of color constancy, i.e., to overcome the irrelevant variability due to the varying
illumination.

Image representation and RCA Each image in a clip was represented by its color histogram inL�a�b�
space (we used 5 bins for each dimension). We used the clips aschunklets in order to compute the RCA
transformation. We then computed the distance between pairs of images using two methods:L1 and RCA
(Mahalanobis), and sorted the neighbors of each image according to both distances. We used over 6000
images from 130 clips (chunklets) of 20 different people. Fig. 10 shows the percentage of ’correct’ neighbors
up to thek’th neighbor over all 6000 images. One can see that RCA makes asignificant contribution by
bringing ’correct’ neighbors closer to each other (relative to other images).
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8.3 RCA and clustering

In this section we evaluate RCA’s contribution to clustering, and compare it to alternative algorithms that
use equivalence constraints. We used six data sets from the UCI repository. For each data set we randomly
selected a setS of pairwise similarity constraints (or chunklets of size 2). We compared the following
clustering algorithms:

1. K-means using the default Euclidean metric (using no side-information) (Fukunaga, 1990).

2. Constrained K-means + Euclidean metric: A K-means version suggested by (Wagstaff et al., 2001),
in which a pair of points(xi; xj) 2 S is always assigned to the same cluster.

3. Constrained K-means + the metric proposed in (Xing et al.,2002): Constrained K-means using the
Mahalanobis metric proposed in (Xing et al., 2002), which islearned from the constraints inS.

4. Constrained K-means + RCA: Constrained K-means using theRCA Mahalanobis metric learned fromS.

5. EM: Expectation Maximization of a Gaussian Mixture model(using no side-information).

6. Constrained EM: EM using side-information in the form of equivalence constraints (Shental et al.,
2003), when using the RCA distance metric as the initial metric.

The clustering algorithms numbered 4 and 6 are our own. Clustering algorithms 1 and 5 are unsupervised
and provide respective lower bounds for comparison with ouralgorithms. Clustering algorithms 2 and 3
compete fairly with our algorithm 4, using the same kind of side information.

Experimental setup To ensure fair comparison with (Xing et al., 2002), we used exactly the same exper-
imental setup as it affects the gathering of equivalence constraints and the evaluation score used. We tested
all methods using two conditions, with: (i) “little” side-informationS, and (ii) “much” side-information.
The set of pairwise similarity constraintsS was generated by choosing a random subset of all pairs of points
sharing the same class identityi. In the case of little side-information, the size of the subset was chosen so
that the total number of different connected componentsK (using transitive closure over pairs) was roughly90% of the size of the original dataset. In case of much side information this was reduced to70% (where
fewer connected components imply that the components are larger, which implies in turn more information).

Following (Xing et al., 2002) we used a normalized accuracy score (the ”Rand index”) to evaluate the
partitions obtained by the different clustering algorithms. More formally, with binary labels (or two clusters),
the accuracy measure can be written as:Xi>j 1f1fi = jg = 1f̂i = ̂jgg0:5m(m� 1)
where1f _g denotes the indicator function(1fTrueg = 1); 1fFalseg = 0), f̂igmi=1 denotes the cluster to
which pointxi is assigned by the clustering algorithm, andi denotes the “correct” (or desirable) assignment.
The score above is equivalent to computing the probability that the algorithm’s assignment̂ of two randomly
drawn pointsxi andxj agrees with the “true” assignment.8

8As noted in (Xing et al., 2002), this score should be normalized when the number of clusters is larger than 2. Normalization is
achieved by sampling the pairsxi andxj from the same cluster (as determined bŷ) with probability 0.5 and from different clusters
with probability 0.5, so that “matches” and “mismatches” are given the same weight.
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Figure 11: Clustering accuracy on 6 UCI datasets. In each panel, the six bars on the left correspond to an ex-
periment with ”little” side-information, and the six bars on the right correspond to ”much” side-information.
From left to right the six bars correspond respectively to the algorithms described in the text, as follows:
(a) K-means over the original feature space (without using any side-information). (b) Constrained K-means
over the original feature space. (c) Constrained K-means over the feature space suggested by (Xing et al.,
2002). (d) Constrained K-means over the feature space created by RCA. (e) EM over the original feature
space (without using any side-information). (f) Constrained EM (Shental et al., 2003) over the feature space
created by RCA. Also shown areN - the number of points,C - the number of classes,d - the dimensionality
of the feature space, andK - the mean number of connected components. The results were averaged over20 realizations of side-information. In all experiments we used K-means with multiple restarts as in (Xing
et al., 2002).

Fig. 11 shows comparative results using six different UCI data sets. Clearly the RCA metric significantly
improved the results over the original K-means algorithms (both the constrained and unconstrained version).
Generally in this context, we see that using equivalence constraints to find a better metric improves results
much more than using this information to constrain the algorithm. RCA achieves better or similar results
to those reported in (Xing et al., 2002). However, while the RCA metric involves a single step efficient
computation, the method presented in (Xing et al., 2002) requires gradient descent and iterative projections
and is also sensitive to the initial conditions used.

The comparisons in Fig. 11 involve six different clusteringalgorithms. The last two algorithms use the
EM algorithm to compute a generative Gaussian Mixture Model, and are therefore much more complex
computationally. We have added these comparisons because EM implicitly changes the distance function
over the input space in a linear way (i.e., like a Mahalanobisdistance). It therefore may appear that EM
can do everything that RCA does and more, without any modification. The histogram bins marked by (e) in
Fig. 11 clearly show that this is not the case. Only when we addconstraints to the EM, and preprocess the
data with RCA, do we get improved results as shown by the histogram bins marked by (f) in Fig. 11.
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9 Discussion

In order to obtain strict probabilistic justification for RCA, we listed in Section 5 the following assumptions:� The classes have multi normal distributions.� All the classes share the same covariance matrix.� The chunklets points are an i.i.d sample from the class.

What happens when these assumptions do not hold?
The first assumption gives RCA its probabilistic justification, but even without it (i.e., a distribution-free

model), RCA is justified as the optimal transformation by twocriteria: mutual information maximization,
and inner chunklet distance minimization. These criteria are reasonable as long as the classes are approxi-
mately convex (as implied by the use of the distance between chunklet’s points and chunklet’s means).

The second assumption justifies RCA’s main computational step, which uses the empirical average of
all the chunklets covariance matrices in order to estimate the global inner class covariance matrix. When
this assumption fails, RCA effectively extracts the sharedcomponent of all the classes covariance matrices,
if such component exists.

The third assumption may break down in many practical applications, when chunklets are automatically
collected and the points within a chunklet are no longer independent of one another. As a result chunklets
may be composed of points which are rather close to each other, and whose distribution does not reflect all
the typical variance of the true distribution. In this case RCA’s performance is not guaranteed to be optimal.

10 Conclusion

We have presented an algorithm which uses side-informationin the form of equivalence constraints, in
order to learn a Mahalanobis metric. We have shown that our method is optimal under several criteria. Our
empirical results show that RCA reduces irrelevant variability in the data and thus leads to considerable
clustering improvements. RCA matlab code can be downloadedfrom the authors’ site.

Appendix A: Information Maximization in the case of non invertible linear
transformation

Here we sketch the proof of the claim made in Section 3.3. As before, we denote byC the average covariance
matrix of the chunklets. We can rewrite the constrained expression as:1p kXj=1 njXi=1(xji �mj)tAtA(xji �mj) = tr(AtAC) = tr(AtCA)
Hence the Lagrangian can be written as:log jA�xAtj � �(tr(ACAt)�K)
Differentiating the Lagrangian w.r.t A gives�xA(At�xA)�1 = �CA (17)
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Multiplying by At and rearranging terms, we get:I� = AtCA. Hence as in RCA,A must whiten the
data with respect to the chunklet covarianceC in a yet to be determined subspace. Using� 6= 0 it then
follows that the inequality constraint in (6) is an equality, which can be used to find�.tr(ACAt) = tr( I�) = M� = K =) � = MK=) ACAt = KM I
whereM is the dimensionality of the projection subspace.

Next, since in our solution spaceACAt = KM I, it follows that log jACAtj = M log KM holds for all
points. Hence we can modify the maximization argument as followslog jA�xAtj = log jA�xAtjjACAtj +M log KM

Now the optimization argument has a familiar form. It is known (Fukunaga, 1990) that maximizing the
determinant ratio can be done by projecting the space on the span of the firstM eigenvectors ofC�1�x.
Denote byB the solution matrix for this unconstrained problem. In order to enforce the constraints we

define the matrixA = qKM��0:51 B and claim thatA is the solution of the constrained problem. Notice that
the value of the maximization argument does not change when we switch fromA toB sinceA is a product
of B and another full ranked matrix. It can also be shown thatA satisfies the constraints and is thus the
solution of the problem presented in Eq. (6).

Appendix B:Variance bound on the RCA covariance estimator

In this appendix we prove the inequality 15 from section 5. Assume we havep = nk data pointsX =fxjign;ki=1;j=1 in n chunklets of sizek each. We assume that all chunklets are drawn independently from
Gaussian sources with the same covariance matrix. Denotingby m̂i the empirical mean of chunklet i, the
unbiased RCA estimator of this covariance matrix isĈ(n; k) = 1n nXi=1 1k � 1 kXj=1(xji � m̂i)(xji � m̂i)T
Let U denote the diagonalization transformation of the covariance matrixC of the Gaussian sources, i.e.,U tCU = � where� is a diagonal matrix withf�igni=1 on the diagonal. LetY = XU denote the trans-
formed data. Denote its covariance matrix byĈu(n; k) = U tĈ(n; k)U , and denote the empirical chunklet
means bym̂ui = Um̂i. We can analyze the variance ofĈu as follows:var(Ĉu(n; k)) = var[ 1n nXi=1 1k � 1 kXj=1(yji � m̂ui )(yji � m̂ui )T ℄= 1nvar[ 1k � 1 kXj=1(yj1 � m̂u1)(yj1 � m̂u1)T ℄
The last equality holds since the summands of the external sum are sample covariances of independent
chunklets drawn from sources with the same covariance matrix.
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The variance of the sample covariance for diagonalized Gaussian data is known to be (Fukunaga, 1990)var(Ĉii) = 2�2ik � 1 ; var(Ĉij) = �i�jk ; ov(Ĉij ; Ĉkl) = 0
and we get the following variance for the RCA estimator:var(Ĉuii) = 2�2in(k � 1) ; var(Ĉuij) = �i�jnk ; ov(Ĉuij ; Ĉukl) = 0
As p = nk, we can writevar(Ĉuii) = 2�2ip(1� 1k ) ; var(Ĉuij) = �i�jp ; ov(Ĉuij ; Ĉukl) = 0
and for the diagonal termŝCuiivar(Ĉu(pk ; k)ii) = 2�2ip(1� 1k ) = kk � 1 2�2ip � kk � 1 2�2ip� 1 = var(Ĉu(1; p)ii)
This inequality trivially holds for the off-diagonal covariance elements.

Getting back to the original data covariance, we note that inmatrix elements notation̂Cij =Pdq;r=1 ĈuqrUiqUjr
while d is the data dimensionality. Thereforevar[Ĉij(n; k)℄var[Ĉij(1; nk)℄ = Pdq;r=1 var[Ĉu(n; k)qrUiqUjr℄Pdq;r=1 var[Ĉu(1; nk)qrUiqUjr℄ � Pdq;r=1 kk�1var[Ĉu(1; nk)qrUiqUjr℄Pdq;r=1 var[Ĉu(1; nk)qrUiqUjr℄ = kk � 1
where the first equality holds becauseov(Ĉuij ; Ĉukl) = 0.

Appendix C:The expected chunklet size in the distributed learning paradigm

Here we estimate the expected chunklet size obtained when using the distributed learning paradigm intro-
duced in Section 8. In this scenario, we use the help ofT teachers, each of which is provided with a random
selection ofK data points. Let us assume that the data containsM equiprobable classes, and that the size of
the data set is large relative toK. We can define random variablesxji as the number of points from classi
seen by teacherj. Due to the symmetry between classes and teachers, the distribution ofxji is the same for
eachi; j. It can be well approximated by a Bernoulli variablex B(K; 1M . This variable may take values of0 or 1, which are not allowed when we wish to describe the distribution of chunklet size. The distribution of
chunklets with sizes bigger than1 is given by the trimmed Bernoulli distributionp(x = ijx 6= 0; 1) = 11� p(x = 0)� p(x = 1)  qi ! ( 1m )i(1� 1m)q�i i = 2; 3; ::

We can approximatep(X = 0) andp(X = 1) asp(X = 0) � e�Km p(X = 1) � KM e�Km
21



Using these approximations, the expected chunklet size is determined by the ratior = KM through the
formula E(xjx 6= 0; x 6= 1) ' r(1� e�r)1� (r + 1)e�r
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