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Abstract

This paper is about learning using partial information
in the form of equivalence constraints. Equivalence con-
straints provide relational information about the labels of
data points, rather than the labels themselves. Our work is
motivated by the observation that in many real life appli-
cations partial information about the data can be obtained
with very little cost. For example, in video indexing we may
want to use the fact that a sequence of faces obtained from
successive frames in roughly the same location is likely to
contain the same unknown individual.

Learning using equivalence constraints is different from
learning using labels and poses new technical challenges.
In this paper we present three novel methods for cluster-
ing and classification which use equivalence constraints.
We provide results of our methods on a distributed im-
age querying system that works on a large facial image
database, and on the clustering and retrieval of surveil-
lance data. Our results show that we can significantly
improve the performance of image retrieval by taking ad-
vantage of such assumptions as temporal continuity in the
data. Significant improvement is also obtained by making
the users of the system take the role of distributed teach-
ers, which reduces the need for expensive labeling by paid
human labor.

Keywords: Learning from partial knowledge, semi-
supervised learning, image retrieval, clustering

1 Introduction

Supervised learning techniques are designed to use
training data where explicit labels are attached to a sam-
ple of data points. Obtaining labels in real life applications,
such as image and video indexing, is a difficult task that re-
quires human intervention. We argue that in many real life
situations training data of different sorts can be extracted

automatically or very cheaply from the data. Specifically,
we focus on two sources of information:

1. There is often inherent temporal continuity in the data
that can be exploited. For example, in video indexing
objects extracted from successive frames in roughly
the same location can be assumed to come from the
same 3D object. Similarly, in surveillance applica-
tions we automatically obtain small sequences of im-
ages that are known to contain the same intruder. Al-
ternatively, when two people simultaneously walk in
front of two distinct cameras, the corresponding im-
ages are known to contain different people.

2. Anonymous users of a retrieval system can be asked to
help annotate the data by providing information about
small portions of the data that they see. For exam-
ple, in what may be viewed as generalized relevance
feedback, we may ask the users of a retrieval engine
to annotate the set of images retrieved as an answer
to their query. Thus, cooperative users will provide a
collection of small sets of images which belong to the
same category. Moreover, different sets provided by
the same user are known to belong to different cate-
gories. We cannot use the explicit labels provided by
the different users because we cannot assume that the
subjective labels are consistent.

The discussion above presents two seemingly unrelated
applications that share the same essential property: the
presence of intrinsic relations between data points that can
be naturally (or cheaply) discovered. This paper addresses
the problem of using such information to enhance cluster-
ing and classification performance.

1.1 Our approach

As described above, our analysis assumes that apart
from having access to a large amount of unlabeled data,
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we are also provided with additional information in rela-
tional form. We focus on equivalence constraints, which
determine whether two data points come from the same
class or not. We denote the former as “is-equivalent” con-
straints, and the latter as “not-equivalent” constraints. We
note that in both cases, the labels themselves are unknown.
We studied three alternative techniques to use equivalence
constraints (see details in Section 2):

1. Constrained Gaussian mixture models (GMM): we
show how to incorporate equivalence constraints in
a GMM formulation using the EM algorithm. As
it turns out, “is-equivalent” constraints can be eas-
ily incorporated into EM, while “not-equivalent” con-
straints require heavy duty inference machinery such
as Markov networks.

2. Relevant Component Analysis (RCA) combined with
nearest neighbor classification: In this algorithm we
use “is-equivalent” constraints to determine the di-
mensions relevant for classification and to implement
a semi-supervised learning process. The algorithm
was first introduced in [9].

3. Clustering with graph-based algorithms: equivalence
constraints are directly incorporated into the Typical-
cut algorithm [4] as weights on edges.

1.2 Related work

There has been numerous work in the field of semi-
supervised learning. Most of these papers consider the
case of partial labeling in which a large unlabeled data set
is augmented by a much smaller labeled data set [7, 10].
There are a few papers which exploit equivalence con-
straints as well. In [12] equivalence constraints are intro-
duced into the K-means clustering algorithm; but since the
algorithm computes hard partitioning of the data, the con-
straints are introduced in a heuristic manner. Another ex-
ample of introducing equivalence constraints into a graph-
based clustering algorithm is given in [13], showing nice
improvement in image segmentation.

Different forms of partial information have also been
explored. The notion of “preference learning” was stud-
ied in [6], where a utility function which corresponds to
the teacher’s preferences is learned. It is interesting to note
that in [6] a set of ordinal labels is assumed to exist, and
relations are extracted from labels rather than obtained di-
rectly.

2 Using equivalence constraints

In this section we describe three alternative (but related)
techniques to use equivalence constraints: Section 2.1

presents a constrained Expectation Maximization (EM)
formulation of a Gaussian mixture model (GMM). Sec-
tion 2.2 describes the RCA algorithm, and Section 2.3 out-
lines a constrained graph based clustering algorithm.

2.1 Constrained EM

A Gaussian mixture model (GMM) is a parametric sta-
tistical model which assumes that the data originates from
a weighted sum of several Gaussian sources. More for-
mally a GMM is given by: p(x|Θ) = ΣM

l=1αlp(x|θl),
where αl denotes the weight of each Gaussian, θl its re-
spective parameters and M denotes the number of Gaus-
sian sources in the GMM. EM is a widely used method for
estimating the parameter set of the model (Θ) using unla-
beled data [3]. The algorithm iterates between two steps:

• ’E’ step: calculate the expectation of the log-
likelihood over all possible assignments of data points
to sources.

• ’M’ step: differentiate the expectation w.r.t current pa-
rameters.

Equivalence constraints modify the ’E’ step in the fol-
lowing way: instead of summing over all possible assign-
ments of data points to sources, we sum only over assign-
ments which comply with the given constraints. For ex-
ample, if points xi and xj form an “is-equivalent” con-
straint, we only consider assignments in which both points
are assigned to the same Gaussian source. If on the other
hand, these points form a “not-equivalent” constraint, we
only consider assignments in which each of the points is
assigned to a different Gaussian source.

There is a basic difference between “is-equivalent”
(positive) and “not-equivalent” (negative) constraints:
While positive constraints are transitive (i.e. a group of
pairwise “is-equivalent” constraints can be merged using
a transitive closure), negative constraints are not transi-
tive. The outcome of this difference is expressed in the
complexity of incorporating each type of constraint into
the EM formulation. Therefore we begin by presenting
a formulation for positive constraints (Section 2.1.1), and
then present a different formulation for negative constraints
(Section 2.1.2). We conclude by presenting a unified for-
mulation for both types of constraints (Section 2.1.3).

2.1.1 Incorporating “is-equivalent” constraints

We begin by defining a chunklet: a small subset of data
points that are known to belong to a single unknown class.
Chunklets can also be obtained by the transitive closure of
the group of “is-equivalent” constraints.
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In this settings we are given a set of unlabeled data
points, and a set of chunklets. In order to write down the
likelihood of a given assignment of points to sources, a
probabilistic model of how chunklets are obtained must be
specified. We consider two such models:

1. Data points are sampled i.i.d, without any knowledge
about their class membership, and only afterwards
chunklets are selected from these points.

2. Chunklets are sampled i.i.d, with respect to the weight
of their corresponding source (points within each
chunklet are also sampled i.i.d).

Although the first model above seems more sound sta-
tistically, it suffers from two major drawbacks: (i) All our
current suggestions for how to automatically obtain chun-
klets do not fit this statistical model. (2) Unlike the stan-
dard EM formulation for a GMM, it does not have a closed
form iterative solution for the sources’ weights. In this case
we must apply generalized EM (GEM) [3] using gradient
ascent. We therefore defer the discussion of this model to
Section 2.1.3.

The second model suggested above often complies with
the way chunklets are “naturally” obtained. For example,
in surveillance applications data is obtained in chunklets.
Therefore the probability of obtaining a chunklet of a spe-
cific person is proportional to the number of events that the
person was tracked by the surveillance cameras.

Fortunately, the EM update rules for the second model
have a closed form solution. More specifically, let {xi}

N
i=1

denote the data points. Let {Xj}
L
j=1, L < N denote the

distinct chunklets, where each Xj is a set of points xi (one
or more) such that

⋃L
j=1 Xj =

⋃N
i=1 xi. Let yi denote the

label assignment of point i, and Yj = {y1
j . . . y

|Xj |
j } denote

the label assignment of the chunklet Xj . The iterative EM
equations for the parameters of the l’th model are:

αnew
l =

1

L

L∑

j=1

p(Yj = l|{Xj}, Θ
old)

µnew
l =

∑L
j=1 X̄jp(Yj = l|{Xj}, Θ

old)|Xj |
∑L

j=1 p(Yj = l|{Xj}, Θold)|Xj |

Σnew
l =

∑L
j=1 Σnew

jl p(Yj = l|{Xj}, Θ
old)|Xj |

∑L
j=1 p(Yj = l|{Xj}, Θold)|Xj |

Σnew
jl =

∑
xi∈Xj

(xi − µnew
l )(xi − µnew

l )T

|Xj |

where X̄j denotes the mean of the points in chunklet j,
|Xj | the number of points in chunklet j, and Σnew

jl the
mean covariance matrix of the jth chunklet. The chunklet

probability is:

p(Yj = l|{Xj}, Θ
old)

= p({y1
j = l . . . y

|Xj |
j = l}|{Xj}, Θ

old)

=
αold

l

∏
xi∈Xj

p(xi|y
j
i = l, Θold)

∑M

m=1 αold
m

∏
xi∈Xj

p(xi|y
j
i = m, Θold)

As can be readily seen, the update rules above effec-
tively treat each chunklet as a single data point weighed
according to the number of elements in it. Note that in our
formulation unconstrained data points appear as chunklets
of size 1.

2.1.2 Incorporating “not-equivalent” constraints

The probabilistic description of a data set using a GMM
attaches to each data point two random variables: an ob-
servable and a hidden. The hidden variable of a point de-
scribes its source label, while the data point itself is an ob-
served example from the source. Each pair of observable
and hidden variables is assumed to be independent of the
other pairs. Note, however, that negative equivalence con-
straints violate this assumption, as dependencies between
the hidden variables are introduced.

Specifically, assume we have a group A =
{(a1

i , a
2
i )}

M
i=1 of pairs of indices corresponding to M pairs

of points that are negatively connected, and define the event
EA = {Y complies with the constraints}.

p(X, Y |Θ, EA) = p(X |Y, Θ, EA)p(Y |Θ, EA)

(1)

=
p(X |Y, Θ)p(EA|Y )p(Y |Θ)

p(EA|Θ)

We denote the constant p(EA|Θ) as Z. Using the indepen-
dence of samples we get

p(X, Y |Θ, EA) =
1

Z
1Y ∈EA

N∏

i=1

p(yi|Θ)p(xi|yi, Θ)

Expanding 1Y ∈EA
gives the following expression

p(X, Y |Θ, EA) = (2)

1

Z

∏

(a1

i
,a2

i
)

(1 − δy
a1

i

,y
a2

i

)

N∏

i=1

p(yi|Θ)p(xi|yi, Θ)

As a by-product of its local components, the distribu-
tion in (2) can be readily described using a Markov net-
work. Each observable data point depends, in a Gaussian
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manner, on a hidden variable corresponding to the label of
its source. Negative constraints are expressed by edges be-
tween hidden variables which prevent them from having
the same value (see Fig. 1).

We derived an EM procedure which maximizes
log(p(X |Θ, EA)) entailed by this distribution. The update
rules for µi and Σi are still

µnew
l =

∑N

i=1 xip(yi = l|X, Θold)
∑N

i=1 p(yi = l|X, Θold)

Σnew
l =

∑N
i=1 Σ̂ip(yi = l|X, Θold)

∑N

i=1 p(yi = l|X, Θold)

where Σ̂i = (xi − µnew
l )(xi − µnew

l )T . Note that now
p(yi = l|X, Θold) are inferred using the net. The update
rule of αl is more intricate, since this parameter appears in
the normalization factor Z = p(EA|Θ)

Z =
∑

Y

p(EA|Y )p(Y |Θ)

=
∑

y1

...
∑

yN

N∏

i=1

αyi

∏

(a1

i
,a2

i
)

(1 − δy
a1

i

,y
a2

i

)

This factor can be calculated using a net which is similar
to the one discussed above but lacks the observable nodes.
We use such a net to calculate Z and differentiate it w.r.t
αl, after which we perform gradient ascent.

Figure 1. Illustration of the Markov network structure required
for incorporating “is-equivalent” and “not-equivalent” constraints.
Data points 2 − 4 are positively constrained, and so are points
5 − 6. Data points 2 − 4 have a negative constraint with point 1

and with point 5 − 6.

2.1.3 Combining “is-equivalent” and “not-
equivalent” constraints

Both kinds of constraints can be combined in a single
Markov network by a rather simple extension of the net-
work described in the previous section. The data distri-
bution can be expressed by a Markov network similar to
the network from the previous section, where every pair of

data points related by a positive constraint share a hidden
father node (see Fig 1).

The complexity of an EM round is dominated by the in-
ference complexity, which is O(M induced width(G)) by us-
ing the Jtree algorithm [8]. Hence the algorithm is limited
to O(N) ”not equivalent” constraints. The general case
of O(N2) is NP-hard, as it may be reduced to the graph
coloring problem. To achieve scalability to large sets of
constraints two approximations are used: the graph is re-
placed by its minimal spanning tree, and the normalization
factor Z is approximated (for details see [1]).

2.2 Relevant Component Analysis

Relevant Component Analysis (RCA) is a method that
seeks to identify and down-scale global unwanted vari-
ability within the data. The method changes the feature
space used for data representation (or equivalently the dis-
tance between data points in feature space), by a linear
transformation which assigns large weights to “relevant di-
mensions” and low weights to “irrelevant dimensions” (cf.
[11]). Hopefully, in the new feature space the inherent
structure of the data could be more easily unraveled. The
method can be used as a preprocessing step both for unsu-
pervised clustering of data, or for using nearest neighbor
classification. Specifically, we do the following:

1. Assume that chunklets are provided as input (Fig. 2a-
c).1 For each chunklet: subtract the chunklet’s mean
from all of the points belonging to it (Fig. 2d).

2. Merge the recentered chunklets into a single data set
and compute the covariance matrix of the merged set
(Fig. 2d).

3. Compute the whitening transformation W associated
with this covariance matrix (Fig. 2e) and apply it to
the data. Apply the transformation W to the original
data points: xnew = Wx (Fig. 2f).

What the whitening transformation W effectively does,
when applied to the original feature space, is give lower
weight to directions in feature space in which the variabil-
ity is mainly due to within class variability, and is therefore
“irrelevant” for the task of classification.

In section 3 we provide results using RCA on both un-
supervised clustering and nearest neighbor classification of
real image data. In [2] we provide the theoretical justifica-
tion of RCA. RCA is analyzed from an an information-
theoretic view and is shown to be the optimal procedure
under several criteria.

1“not-equivalent” constraints are ignored in the current version of
RCA.
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(a) (b)

(c) (d)

(e) (f)

Figure 2. An illustrative example of the RCA algorithm ap-
plied to synthetic Guassian data. (a) The fully labeled data set
with 3 labels. (b) Same data unlabeled; clearly the classes’ struc-
ture is less evident. (c) The set of chunklets that are provided to
the RCA algorithm. (d) The centered chunklets, and their empir-
ical covariance. (e) The whitening transformation applied to the
chunklets. (f) The original data after applying the RCA transfor-
mation to it.

2.3 Constrained graph-based clustering

Graph based clustering methods represent the data
points as a graph in which the nodes correspond to data
points, and the edge values correspond to the similarity be-
tween pairs of data points. In this representation there are
several ways of introducing equivalence constraints, which
depend on the specific clustering algorithm used.

In the examples below we describe results of incorpo-
rating equivalence constraints in the Typical Cut cluster-
ing algorithm [4]. The incorporation of is-equivalent con-
straints is done by assigning 0 weight to all edges connect-
ing chunklet points. However, in order to incorporate not-
equivalent constraints edges should be assigned the value
−∞. Such assignment poses a technical difficulty when
using graph cut methods, and as a result has not been im-
plemented yet.

3 Experimental results

3.1 Image retrieval and clustering of facial im-
ages

To evaluate the performance of our algorithms we used
a subset of the Yale face database B [5] which contains
a total of 1920 images, including 64 frontal pose images
from 30 different subjects (see examples in the top row of
Fig. 3). In this database the variability between the images
of the same person is due mainly to different lighting con-
ditions. We automatically centered all the images using op-
tical flow. Images were then converted to vectors, and each
image was represented using the first 60-100 PCA coeffi-
cients.

(a) (b) (c)

Figure 3. (a) Original images taken from the yaleA image
database. (b) Reconstructed images using RCA. (c) Reconstructed
images using PCA. Notice that although the original images are
taken under very different lighting conditions, their RCA recon-
structions cancel out this effect.

Our experimental setup We constructed an experimen-
tal design using the Yale B face database and a simple dis-
tributed retrieval engine. The retrieval engine used a naive
metric for locating the K-nearest neighbors of a query im-
age. The naive metric was a Mahalanobis distance which
used the total covariance matrix of the dataset as weights.2

The experiment was conducted as follows: each user
selected a facial image (data point) from the database, and
presented it as a query to the system. The retrieval engine
computed its K-nearest neighbors and presented them to
the user. The user was then asked to partition the set of

2This naive metric proved to be empirically superior to the simple
Euclidean metric.
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retrieved images into equivalence classes (i.e., into groups
of pictures containing the same individual). Each user thus
supplied the system with both positive and negative con-
straints, in what may be viewed as generalized relevance
feedback. These equivalence constraints were used to test
the performance of our algorithms.

Using the RCA algorithm and the procedure described
above for obtaining equivalence constraints, we studied the
effect of the number of data queries while K (the number
of neighbors) was set to 10. The beneficial effect of RCA
on nearest neighbor classification is shown in Fig. 4.
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Figure 4. Mean cumulative neighbor purity (percentage of cor-
rect neighbors) before and after applying RCA to the Yale B facial
image database. The graph compares different Mahalanobis dis-
tance matrices: (a) Euclidean distance (b) Euclidean distance after
a global whitening of the data. (c) inner class covariance matrix.
(d,e) RCA estimators of the inner class covariance matrix using
20 and 60 distributed queries respectively. Results were averaged
over 50 chunklet realizations, while the error bars depict standard
deviations. The results are shown for 20, and 60 queries. As can
be seen, performance improves as the number of queries increases,
although a large part of the performance gain is obtained with 20
queries.

It is also interesting to observe the visual effect of ap-
plying RCA to facial images with varying lighting condi-
tions. We computed the RCA transformation using a set of
chunklets, applied it to the data, and then reconstructed the
transformed images. Fig. 3 illustrates the “effect” of RCA
when applied to facial images of a single subject.

We used similarity constraints obtained in the dis-
tributed learning scenario to test our constrained EM al-
gorithms. The task was the clustering of 640 facial images
belonging to 10 subjects. We compared the performance of
the following: (1) Regular EM, (2) Positively constrained
EM and (3) Fully constrained EM (both positive and nega-
tive constraints). The constraints were obtained using dis-
tributed queries of 15 faces each, randomly selected. Fig. 5

shows the results. As may be seen, incorporating the con-
straints improves both purity (precision) and accuracy (re-
call) scores by 20-25%, depending on the number of con-
straints used. Most of the improvement can be achieved
using the positive constraints alone, in which case the al-
gorithm has a closed form fast implementation.

3.2 Visual surveillance

In the surveillance application data was collected by a
stationary indoor surveillance camera, from which short
video clips were extracted. The beginning and end of
each clip were automatically detected by the appearance or
disappearance of a moving target. The database included
many clips, each displaying only one person; however, the
identity of the intruder was unknown. The task was to re-
trieve images from this database, based on individual query
images.

The task and our approach In this experiment the data
was taken in entirely natural conditions, and was therefore
rather challenging. Specifically, in a certain video clip an
intruder may have walked all over the scene, coming closer
to the camera or walking away from it. Thus the size and
resolution of each image varied dramatically. In addition,
since the environment was not controlled, images included
variability due to occlusions, reflections and (most impor-
tantly from our perspective) highly variable illumination.
In fact, the illumination changed dramatically across the
scene both in intensity (from brighter to darker regions),
and in spectrum (from neon light to natural lighting). Fig. 6
displays several images from one input clip.

Our goal was to devise a representation that would en-
able effective retrieval of images. We found that the only
low-level attribute that could be reliably used in this ap-
plication was color. Therefore our task was to accomplish
some sort of color constancy, i.e., to overcome the irrele-
vant variability created by the changing illumination.

Figure 6. Several images from a video clip of one intruder.
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Regular EM EM with EM with
“is equivalent” “is+not equivalent”

# queries Purity Accuracy Purity Accuracy Purity Accuracy

10 59± 6% 64 ± 5% 80± 5% 82± 5% 85 ± 7% 88± 5%
15 59± 6% 64 ± 5% 82± 6% 83± 5% 87 ± 6% 88± 5%

Figure 5. Purity (precision) and accuracy (recall) scores of EM face clustering. The results were averaged over 100 tests.
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Figure 7. Fraction of correct retrievals as a function of the
number of retrieved images. Remark about retrieval in the cluster-
ing cases: Both clustering algorithms produce a hierarchy of clus-
ters, i.e. a dendrogram, which is used in the retrieval procedure.
In order to retrieve the neighbors of a certain point i, one locates
the smallest cluster which includes i, and retrieves its neighbors in
ascending distance from i (ignoring neighbors that belong to the
same chunklet as i). If needed one climbs up the dendrogram, and
repeats this process disregarding points that were part of lower
levels in the dendrogram.

Image representation and the application of our meth-
ods Each image in a clip was represented using its color
histogram in L∗a∗b∗ space (we used 5 bins for each di-
mension). Since a clip forms a chunklet by definition, we
can naturally apply our methods without further prepro-
cessing of the data. We tested the effect of chunklets in two
of our methods, i.e, graph based clustering and RCA. We
used 4600 images from 130 clips (chunklets) of 20 differ-
ent people. We tested the percent of correct retrievals as a
function of the number of retrieved images, over four meth-
ods of k-nearest neighbor classification: (1) Whitened fea-
ture space: First whiten the data, and then sort the neigh-
bors using the L1 distance between images in the trans-
formed feature space. (2) RCA: Perform RCA and then
sort the neighbors using the L1 distance in the new fea-
ture space. (3) Unconstrained Typical-cut algorithm. (4)
Constrained Typical-cut: Cluster the data in the whitened
feature space using a constrained version of the Typical-
cut algorithm. Results are shown in Fig. 7 As may be seen

using constrained Typical-cut significantly outperforms all
other methods. A smaller but still noticeable difference ex-
ists between RCA and the whitened space.

4 Concluding remarks

In this paper, our key observation was that equivalence
constraints between data points can be automatically ob-
tained in some applications. It is also possible to obtain
such partial information in a distributed manner. We pre-
sented a number of novel algorithms which make use of
equivalence constraints and significantly enhance classifi-
cation and clustering performance in image retrieval and in
surveillance applications.
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