Qualitative depth from stereo, with applications*

Daphna Weinshall
CBIP, E25-201, MIT, Cambridge MA 02139

Abstract

Obtaining exact depth from binocular disparities is hard if camera calibration is needed.
We will show that qualitative information can be obtained from stereo disparities with little
computation, and without prior knowledge (or computation) of camera parameters. First, we
derive two expressions that order all matched points in the images by depth in two distinct
ways from image coordinates only. Using one for tilt estimation and point separation (in depth)
demonstrates some anomalies observed in psychophysical experiments, most notably the “in-
duced size effect”. We apply the same approach to detect qualitative changes in the curvature of
a contour on the surface of an object, with either z- or y-coordinate fixed. Second, we develop
an algorithm to compute axes of zero-curvature from disparities alone. The algorithm is shown
to be quite robust against violations of its basic assumptions for synthetic data with relatively
large controlled deviations. It performs almost as well on real images, as demonstrated on an
image of four cans at different orientations.

1 Introduction

Research in early vision regarding stereo seems to be concerned mainly with the correspondence
problem, namely, matching points in the left and the right images. Obtaining exact depth values
from a stereo pair has been considered a simple exercise whose solution is well known, although
it might involve some tedious computations. Thus, it has been implicitly assumed that the final
goal of stereo algorithms is to compute an exact depth map using disparity values. The following
observations suggest, however, that depth computation from disparity values is not necessarily
straightforward or even feasible, and that more qualitative depth information may be more robust
and easier to obtain.

First, the depth computation problem reduces to simple trigonometry when the parameters of
the cameras, or the eyes, are known. When they are not known, a scheme to compute the camera’s
parameters from a number of conjugate points (that is, matched pairs of points from the different
images) has been devised, involving the solution of a set of nonlinear equations (see for instance
[6]). Since the problem has no closed-form solution, and since the data are usually imprecise, a
solution is found using iterative methods that minimize squared error. In practice, however, this
approach is difficult to implement. The parameters of the cameras must be obtained from data
that have errors comparable to the magnitude of the disparity values, which are the raw material
used for depth computation (e.g., error due to pixel quantization). In other words, the registration
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problem (namely, finding parameters for the camera’s calibration) is much more difficult than the
computation of depth from disparity values. Less general methods to perform camera calibration
have also been devised, see [14] and [7].

The other observation originates from biological vision. It seems that human vision does not
necessarily obtain exact depth values from stereo disparity information alone, see, e.g., [5]. Rather,
stereo disparity seems to be used mainly in obtaining qualitative depth information about objects
in the field of view. The estimation of the magnitude of this relative depth is possibly dependent
on an independent estimation of some physical parameters like the angle of convergence of the eyes.

In view of that, we will show that qualitative relative depth information (ordering) of various
kinds can be obtained from only conjugate points in two stereo images easily and reliably, involv-
ing almost no computations and independently of the camera’s parameters. These orderings will
demonstrate some anomalies that are observed in human psychophysics and presently lack other
straightforward explanations, most notably the “induced size effect”. We will further show that
some qualitative shape information can be obtained from image coordinates only. First, one can
detect qualitative changes in the curvature of a contour on the surface of any object in the field
of view, with either z- or y-coordinate fixed. Similarly, we estimate axes of zero-curvature for
objects in the image from disparities alone. This algorithm is tested on synthetic and real data to
check robustness against violations of the basic assumptions of the computation and the existence
of noise. We then analyze the dependence of errors due to quantization on parameters such as
proximity to the axes and the angle of convergence.

2 Basic Geometry

Given two cameras, assume that the principal rays intersect at a fixation point. Also, assume
that the epipolar plane of the fixation point (the plane through the principal rays of the cameras,
henceforth “base plane”) includes the X-axes of both cameras (which are, therefore, epipolar lines
by definition). Thus rotation about the principal rays of the cameras is fixed. We will use the
following coordinate system (see figure 1): let the fixation point be the origin, the base plane
(which passes through this point) be the X — Z plane, and the line perpendicular to this plane
through the origin be the Y-axis. On the X — Z plane, the principal rays of both cameras intersect
at the origin and create an angle 2u between them. Let the Z-axis be the angle-bisector of 2y, and
the X-axis perpendicular to the Z-axis. This system is closely related to the Cyclopean coordinate
system used in the literature in which the angle-bisector is replaced by the median to the baseline
of the cameras and the origin is translated to the midpoint of the baseline. A similar system can be
defined for motion if the fixation point is kept constant, that is, the cameras follow a single object.
This is more typical of human vision than machine vision.

For a given point P let a denote the angle of tilt and § denote the angle of slant (see figure 1).
Thus the Cartesian representation of P is (%=, taznﬁ ,z), where z is its depth relative to the fixation
point in the above coordinate system. Let (z;,y;) and (., y,) be the Cartesian coordinates of the
projection of P on the left and right images respectively (see lower part of figure 1). Using polar
coordinates, the two projections can be written as (R, ¥;) and (R,, 9,) respectively. Let A = %
Then the following can be shown to hold (see appendix A):

A—
tana = talnu . ﬁ (1)
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t 9, —cot ¥
tanf = LUl 2Tsinc;j L (2)

Thus, the two angles a and 3 (of P) depend only on the angle of convergence and the polar angle
of the projection (P’) on each image. It can be shown that the polar angles are preserved under
projection, through any point on the principal ray, onto either a spherical body (like the eye) or a
planar one (a camera). There is no dependence on other parameters of the cameras, their relative
positions or the angle of gaze v.
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Figure 1: Above, the 3D coordinate system defined by two cameras. Below, the image plane of the
right camera.

3 Qualitative Depth

We will use equation (1) of the previous section to obtain an ordering on all matched image points
according to their tilt and separately for the left and right halves of the visual field. This ordering
is independent of the camera’s parameters and demonstrates psychophysical anomalies like the
induced effect and others. We will use equation (2) to obtain an expression for the relative depth
z. However, this expression will depend on the values of the focal length, the distance between the
cameras, and the angle of gaze. An approximate parameter-independent relative depth ordering
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will then be obtained from this expression for small angles of convergence 2. With additional
assumptions and computations, the exact coordinates can be computed (see appendix B).

3.1 Tilt-related Order

From (1) it immediately follows that « is monotonically increasing with A for a fixed configuration
of the cameras. Thus A defines a mathematical ordering of the matched points in each side of the
Y-axis according to their tilt. The ordering defined by A agrees with the relative depth ordering
when comparing points that lie approximately on the same line of sight from the viewer, namely,
about the same image x-coordinate.

Note that

cotd, n z,[x

InA=1In =
cot U Yr/u

=(nz, —Inz;)—(Iny, —Iny) = A(lnz) — A(lny). (3)
In other words, if any matching algorithm is applied to the output images of the transformation

T :(z,y) — (Inz,lny) performed on the original images, and the disparity vector (A;, A,) is
then computed in the usual way, then the difference A, — A, = In A defines a similar ordering as A.

[
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Figure 2: An illustration of the induced-effect. Above - the tilt impression caused by stretching
the X-axis of the right image (correct perception). Below - the tilt impression caused by stretching

LEFT IMAGE RIGHT IMAGE

the Y-axis of the right image (wrong perception). The same perception is obtained if the X-axis
of the left image is stretched by the same amount.

One prediction of using A is the “induced effect”, the psychophysical effect where a distortion
of one image by stretching the Y-axis (the vertical axis) of that image produces a tilt impression
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similar to that produced by stretching the X-axis (the horizontal axis) of the other image by the
same amount (see figure 2). Whereas the tilt impression caused by stretching the X-axis has a
simple geometrical explanation, the reversed tilt impression caused by stretching the Y-axis has
none, and has therefore been called an induced effect. Induced, since it is as if the unrealistically
magnified Y-axis of one image induces the shrinkage of the X- and Y-axis of that image as a
compensation. This effect, first reported by Ogle ([13]), has stimulated extensive research, see [1],
[2], [8], [10], [11], and [16].

Estimating tilt by A gives similar misperception since A involves only terms of the form £. Hence
multiplying the Y -axis by some number has the same effect as multiplying the X-axis by its inverse.
Thus an induced effect is simply a side-effect of using the expression Cccc’)ttg; This explanation does
not depend on any assumptions and approximations, or the complete recovery of all depth-related
parameters of the scene. Other researchers ([10] and [11]) explain the induced effect as a by-product
of a specific approximation scheme and a tedious numerical computation; it does not result from an
exact solution of the disparity equations. Another computational explanation ([2]) suggests that a
distortion occurs in the matching stage, assuming matching is done along horizontal lines only.
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Figure 3: False positive angle of gaze induces the perception of backward motion (point 2), whereas
the true value 0 shows no such motion (point 2), see text.

Motion also shows an illusion similar to the induced effect (see [16]). In this case, observers
reported that a fronto-parallel plane (a plane parallel to the X — Y plane) appeared to be tilting
in depth with the right-hand side apparently closer than the left when the monocular image was
progressively magnified with head movement to the right and vice versa. A can account for this
phenomenon. Moreover, in this case there is an additional effect - a perceived forward/backward
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motion. This could possibly be accounted for by the angle of gaze v. As will be shown later,

1 1=
tanv & . LI
tan g 1—|—Z—;

Thus, a distortion of the y-axis in one image will distort v (a distortion of the z-axis will affect v
much less). The angle of gaze v can give the direction of motion as demonstrated in the following
example (figure 3): in motion from point 1 to point 2 v is 0 (the true angle of gaze). Positive v,
the computed angle of gaze, implies motion from 1 to 2/, that is, backward movement of the head
in addition to its left to right movement. Since the head only rotates, the object is perceived as
moving backwards.

Quantitatively, since computing A involves computing ratios of the images z-coordinates and
y-coordinates, one should expect computational problems near the X- and Y- axes. It is interesting
to note that human performance also deteriorates near the axes, especially near the horizontal one
([1]). This deterioration is accounted for by a smaller probability for the correct detection of the
tilt of an oblique line when either the z- or y-axis is magnified, and when the angle between the
oblique line and the horizontal axis is around either 0° or 90°.

3.2 Depth-related Order

From equation (2) one can obtain an explicit expression for the depth z of a point relative to the
fixation point (the origin). First, note that (2) implies

z = (cot ¥, — cot ;) - 5 v (4)
sin p

Thus, x¥ = (cot 9, — cot ¥;) defines a relative depth ordering on all the points in space with some
constant height y over the base plane. It is shown in appendix A that

y = {Icos(,u—l/)

. Yr
_ L2 5
i T sin + z cos ,u} ( )

h
Substituting (5) in (4) gives
Icos(p —v)/sin2u
(=B 2h 1 tan (e, + Eap)|— cosp}
v

z =

T

For an angle of convergence 2u small enough so that 2k > | tan u(z, + Z—:xlﬂ we obtain a relative
depth ordering on all the points in the visual field by using

Yr
X =2, — —x].
K|

Note that if g is known, the exact depth can be computed up to a scaling factor.

As will be shown in the next section, Z—? =14 0O(u). Likewise, since the field of view is bounded
by some solid angle 26 < 180°, it follows that # < htan&. Thus, a sufficient condition for x to give
a correct relative depth ordering is 1 > tan pu-tan&. If 26 < 90°, which is a generous upper bound
for most cameras, it is sufficient if 1 > tan p, or 2u < 90°.

We have obtained a relative depth ordering by an expression close to the z-disparity (corrected
for convergence and non zero vergence, that is, nonzero angle of gaze). However, for a fixed
convergence angle 2y, this ordering suffers some distortion compared to the true relative depth

ordering, which increases with the horizontal distance from the point of fixation (the z-coordinate).
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3.3 Approximation of Vertical Disparities

From the definition of A and y it follows that the base plane itself is singular in the sense that these
orders are not defined for points on it. One can, however, estimate the orders by substituting Z—?
of a matched point far from the base plane. More specifically, for P = (z,y, z) we have

Yr d; z 2sinptany r 2sin r oz
E — 4, + El—l—tan,utanu + al—}—tanutanlz + O(E’ E)
| _ 1 _ 2tanptany 2 2sinptany ra 2sinp r  z
=1 1+tan ytanv + dr 1+tan ptanv + dr 1+tan ptany + O(dr7 dr) (1)

Thus, if point P7 is used to approximate point P*, the error will be:

(yr)i <y7,)j 2sinp 2 — 2 zt —a’
— ) =\ — ~ tanv +
Y Y 14+ tanptany d, d,

The error is especially small when the approximating point P7 lies exactly “above” P! (differs only

in the y-coordinate).
One can use as an approximation ;gﬁ% (the first two terms), so that some (possibly
independent) estimate of p (half the angle of convergence) and v (the angle of gaze) will suffice to

assign a rough value to Z—? when no other source of information is available. Note that one cannot

take £ =~ 1 when computing z, — Z—?xl, as a first order approximation in p, since x, — x; is of the

order of magnitude of y also.

3.4 Support from Psychophysical Results

The orders A and y as defined above and the dependency of the scaling coefficients on camera
parameters seem to be consistent with the following psychophysical results:

1. Relative depth perception in human vision seems to be more reliable than absolute depth
perception. That is, the distinction between different objects at different depth is much
more accurate than the estimation of their absolute depth (with no additional information of
perspective).

2. The induced effect, as discussed above, is shown to be a side effect of using the tilt-related
order A to estimate the tilt of a plane at the fixation-point. No assumptions on the way
the visual system finds and interprets corresponding points is needed. Moreover, this is a
“local” explanation of the induced effect in the sense that it allows for opposite induced
effects in neighboring spatial regions, in agreement with psychophysical evidence (see [16]).
Likewise, this explanation does not imply a perceived asymmetric convergence of the eyes,
again in agreement with empirical data. It is interesting to note that A might be the discrete
equivalent to the term of the optical flow field used by Rogers and Koenderink ([16]) to explain
the induced effect in motion parallax. Quantitatively, A is more susceptible to errors near the
axes, in agreement with psychophysical experiments ([1]) that show deterioration in human
performance of tilt estimation near the axes. Such an effect for a plane not passing through
the fixation point will be predicted by the qualitative shape analysis in the next section.
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3. Comparison of the depth of features on both sides of the Y-axis is less accurate than if they
are on both sides of the X-axis. This is demonstrated in the following experiment ([15]). The
first stimulus is a surface whose depth (Z) as a function of X is shown in figure 4a. Here 7 is
constant with Y. When comparing the depth of the two edges F; and F)., that are at the same
depth, the observer (wrongly) perceives Fj as closer to her than F,.. In the second stimulus
the same configuration is rotated by 90° so that Z changes with Y as is shown in figure 4b
and is constant with X. Now the observer (rightly) perceives F} and F, as equidistant. This
result is consistent with A, which orders points on each side of the Y-axis separately. y is
also defined differently on each side of the Y-axis, and it has some distortion as a function of
the horizontal distance between the two points.
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Figure 4: Anisotropy between the horizontal (X) and vertical (V) dimensions in human depth
perception (see text).

4. There is psychophysical evidence for the deterioration in depth discrimination when points
are coplanar with the point of fixation (see [12]). Note that A is constant for points coplanar
with the fixation point.

5. There is empirical evidence for the dependence of relative depth perception on external per-
ception of the angle of convergence of the eyes. This is consistent with using the orders A and
x to evaluate depth with no additional computations.
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Moreover, A and x¥ depend only on the polar angles of the conjugate points in both images,
a quantity that is preserved under projection to a spherical body (an eye) or a planar body (a
camera). It is interesting to note, in this respect, that the first visual transformation from the
retina to V1 in primates seems to be in good agreement with the complex-log mapping ([17]),
namely: (z,y) — (logr,?). This mapping explicitly computes the polar angle ¥ of a point.

4 Qualitative Shape and Applications

We will use the basic relations obtained above to compute some qualitative information on the
surface of objects. Robustness against noise and violations of the assumptions of the basic compu-
tations will be tested on synthetic and real data.

4.1 Axes of Zero-Curvature

Given three different points on an object Py, Py and Py, the vector (P — Py) x (Py — P;) is parallel
to the normal to the plane that passes through the three points. It vanishes if (and only if) Py, P
and P, are collinear in space, which is the case for points on a zero-curvature axis (and for only
such points) by definition. Moreover, collinear points are projected onto a straight line in each
image. Thus, an algorithm to find a zero-curvature axis at a point Py on the surface of an object,
when a single one exists, is as follows:

Let Og be the projection of Py on one image plane. For each line in this plane, which passes
through Op at some angle @ (the lines are parameterized by 6), select two points on line # in the
image plane, denoted by O; and Q. These points are the projections of points P, and P, that
lie on the surface of the same object (this is a condition for the selection of O; and O;). For
convenience, select 01 and O3 such that each lies on a different side of Ogy on line . Next, estimate
the expression:

®:|(P1—P0)X(P0—P2)|.

Return the direction 6 that minimizes © (ideally, under infinite resolution and precision, will be
zero).

This is useful when there is one and only one axis of zero-curvature through each point on the
object, e.g. cylinders and cones (see [3] for a different approach to this problem). It is most useful
for cylinders, where the directions of zero-curvature axes are the same at each point on the object.

Had we the exact depth values at each point, we could compute © exactly and find the direction
f that minimizes it. To estimate @ without knowing the exact depth values, recall that

1 1 A+ 1

Po= z( 1) = zi(tan,u/\__l

2sin =, 1)
’ S b —,
x?

7 ?
tan o;° tang; ;

(A= % and x¥ = (cot ¥, — cot ¥;) as defined above). Let

—

@I(Pl—Po)X(Po—PQ):(GI,Gy,GZ).

The following can be readily verified:

0, = 2z129s8in - O,
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0, = —z1zgtan p - Gy,
O, =2zzytanpusinp -0, (2)
and
o) ZO(L_L)_(L_L) 20 L_L)
z 2 \x!  xJ Xy XY +a x5 X
0 _ 20 (M4l Ao+1Y _ A4l Ao41 1z Ao+l Ao41
Y - zZ9 Al—l Ao—l Al—l Ag—l zZ1 Ao—l Ag—l
0) — zo (A4l 01 Aol 1) _ (A41 01 Ap41l 1
z T o290 \ A1 Xg Ao—1 Xf Ar1—1 Xg Ag—1 Xf

Zo (Aol | 1 o4l 1
—I_Zl (Ao—l Xg Ag—l Xg (3)

For each 4,7, \; and x? depend only on the the polar coordinates of the projections of each P;, and
j—; can be approximated by image coordinates to a first order in the angle of convergence p. That
is,

— R xX=x— T

i Xi Y
Thus O,, ©,, and ©, can be estimated from image coordinates only.

As noted above, the estimated axis of zero-curvature at point Op will be the axis that obtains
the minimum of © = (©2 + @;j + @3)% However, since in practice ©® will probably rarely obtain
0, it is possible that an unfortunate choice of Oy and O for some 6’s and the fact that © is not
normalized will lead to a bad estimate. Nevertheless, our algorithm minimizes the approximate
expression O = (20,)2 + (0,)% + (10,)%

We first tested the algorithm on some images of cans at different orientations in space. In
the example of figure 5, the camera was moved manually to obtain a stereo pair. The fixation
point (and hence the origin of each image coordinate system) was taken to be the center of the
right image and the corresponding point in the left image (which in the above “bad” example is
a few pixels to the left of the center of the left image). We still assume that the X — Z plane
approximates the base plane (first section). The two 256x256 images have been matched using a
parallel motion algorithm implemented on the Connection Machine ([9]), and its output has been
smoothed by averaging with a 3x3 window over neighboring pixels. In a fixed region at the center of
each object, the direction of the zero-curvature axis has been estimated using the above algorithm
at each pixel. The direction obtained by the largest number of pixels in the region was selected as
a final estimate. In an image containing four cylindrical objects at various orientations, the true
axis of zero-curvature has been obtained for three (figure 5). A rather good approximation has
been obtained for the fourth, where the “second best” direction has been selected (we have used
a rather coarse quantization of directions). The error in the fourth can may possibly be due to
the fact that this can practically lies on the X -axis, where quantization errors seem to prevail (see
figure 6). Additional errors may occur if the central region is not chosen appropriately, that is, if
it lies too close to the boundary of an object or if it covers area with little texture.

We then used synthetic images of cylinders and cones to test the robustness of the algorithm
against errors and deviations from its basic assumptions. Table 1 summarizes the results for
synthetic cylinders and cones defined by

(z —20)? (2 —20)2 (x — xq)?
> + = =1 and =2

(Z - 20)2 (y - YO)2
+ b2 = 2
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Figure 5: Axes of zero-curvature obtained from “qualitative” shape. Above is the stereo pair.
Below is the left image where white lines on each object mark the axes of zero-curvature found by
the algorithm.
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¢ €16, 6 | Az, Ay. Az Ay | error
0 00 O 0 0 0 0 0
0o 0|1 -1 0 0 0 0 9
0 0|5 5 0 0 0 0 7
0O 00 0] 01 001 -0.01 -01 3
0O o|1 1|01 001 -0.01 -01 3
10 300 O 0 0 0 0 0
10 30| 1 -1 0 0 0 0 1
10 30| 5 5 0 0 0 0 2
10 300 0] 0.1 0.01 -0.01 -0.1 1
10 301 1] 0.1 0.01 -0.01 -0.1 1
50 00 0 0 0 0 0 0
5 01 -1 0 0 0 0 0
50 0 |5 5 0 0 0 0 1
500 0] 01 001 -001 -0.1 6
50 01 1] 0.1 0.01 -0.01 -0.1 1
0 900 0 0 0 0 0 0
0 901 -1 0 0 0 0 8
0 9 |5 5 0 0 0 0 4
0 900 0] 01 0.01 -0.01 -0.1 3
0 91 1] 01 001 -0.01 -0.1 3
0 00 O 0 0 0 0 0
10 300 O 0 0 0 0 0
50 00 0 0 0 0 0 0
0 900 0 0 0 0 0 0

12

Table 1: Axes of zero-curvature for synthetic cylinders (above the separation line) and cones (below
the separation line). See text for the meaning of the different columns. The last column gives the
error in degrees (the difference between the true axis of zero-curvature and the one obtained by the

above algorithm.)
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respectively. In this example we have used ¢« = 4, b = 4, and ¢ = 1. The angle of convergence
is 30°, the distance between the cameras is 13, and the coordinates of the center of the cylinder
or cone (zg, Yo, 20) are (50,50,20) in the 3-D fixation-point coordinate system defined in the first
section. However, the algorithm is not sensitive to the exact value of either of these parameters.
The point of fixation is equidistant to both cameras.

The objects have been rotated relative to an initial orientation where the main axis is parallel to
the y-axis by different values of £ (rotation about the z-axis) and ¢ (rotation about the x-axis), see
table 1. We checked robustness against deviations from the basic assumptions of the computation
by introducing the following errors: (Az;, Ay;), te{r,[} are misalignments of the points of fixation
at the two cameras (in image coordinates, where the focal length of the camera is unity); ¢, and
0; are the angles (in degrees) between the true image X-axis and the X-axis assumed (the line of
intersection between the image plane and the base-plane in the right and left images respectively).
If any of these errors exists, the X-axis of one image does not lie (exactly) in the base plane, and/or
the cameras are not fixated on exactly the same point. Table 1 summarizes the results. The error
column gives the difference in degrees between true and estimated axis of zero-curvature in the
image plane. (Note that in the image plane a zero-curvature axis is defined by a single angle).

80
horizontal meridian

60

error in degrees

40

20

o =
0.02 0.09 0.16 0.23 0.30 0.37 0.44
distance from meridians / distance from fxp

Figure 6: The dependence of quantization errors on proximity to the horizontal and the vertical
axes, scaled by the distance from the cameras to the fixation point.

Finally, we measured the dependence of quantization errors on variables such as proximity to
the axes, resolution, and the angle of convergence of the cameras. One can see (figure 6) that
the performance of the algorithm deteriorates substantially as the reference point on the object
approaches the X-axis. There is much less deterioration near the Y-axis. Figure 7 shows the
dependence of the error on the angle of convergence of the cameras. Far from the axes, the
error is small even for substantial quantization, about a hundred times coarser than human visual
hyperacuity (figure 7, below). The functions plotted in figures (6)-(7) measure the average value
of the error over some fixed patch of the field of view with only one parameter varying. Some
smoothing has been applied to these plots (each point has been averaged with its two nearest
neighbors).

4.2 Ordering of Surface Normals

For any two points P; and P,, where P = 21(mi—, =2i,1) and P, = 2o, =i, 1), let

tanaq ? tanFy ° tanas ’ tan G2’

N = P, x P,. N is perpendicular to (ﬁl - ]32) (It is actually proportional to the normal to the
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Figure 7: The dependence of quantization error on the angle of convergence of the cameras (above)
and the amount of quantization (below).

plane passing through P;, P, and the fixation point.) After some calculations, it can be shown
that

]\7 _ ( cot 31 —cot B2 cot ag —cot aq 1)

- cot ary cot Ba—cot g cot B 7 cot oy cot Bz —cot ap cot By 7

_ 1 1 1 2 2 1 1 1 2 2
—Z(tanuf(rﬂl 7197“ 7191 7197" )7 sinug(ﬁl 7197" 7191 7197" )7 1) (4)

where
f(,ﬂ 1 J 1 9 2 9 2) _ (cot'ﬁlQ—cotﬁll)—(cotﬁrz—cot'ﬁrl)
U Ur s UL, Uy - (cot19r2—Cotﬁrl)—l—(cot1912—cot't911)
2 1_ 2 1

9(1911, 197“17 1912’ 197“2) — cot 9, cot ¥;" —cot ¥;“ cot ¥, (5)

(cot 9,2 —cot 9,1 )+(cot 9,2 —cot 1911)

Thus, as long as f(¢,',9,',9% 9,%) and g(9;',9,",9,%,9,%) remain constant, which can be de-
termined from image coordinates only, the points are coplanar (among themselves and with the
fixation point), or the object at the fixation-point is planar. Note that A is obtained from f when
cot9? = cot 9,2 = 0 (g = 0 then).

For any object it is possible to obtain qualitative information about its surface along any contour,
with either x or y fixed. Take a contour on the surface with some fixed y-coordinate, and let P;
and P, be two points on it. Since the y-coordinate of P — P, is 0, the projection of N on the X — Z

plane, 7 = z(ta}w (9, 9,1, 9% 9,%) ,1), is perpendicular to the projection of P, — P,. Thus,

for fixed y, the one dimensional boundary contour is convex when f(9,',9,', 9% 9,?) increases
with increasing z, concave when f(9,",9,", 9%, 9,%) decreases, and linear when f(9,*,9,',9,%,9,?)
remains constant. Note that y¥ can be obtained from f since the sign of f determines relative depth
between two points with fixed y-coordinate. The same qualitative description can be obtained for
any boundary contour with fixed z from following g(9;',9,',9,%,9,%) with increasing y. This
qualitative description depends only on image coordinates (specifically, on the polar angles of
conjugate points). Thus it predicts an “induced effect” for planes that do not include the point of
fixation. Obtaining this description is not straightforward, though, since such contours in the 3D
coordinate system will be usually mapped to oblique lines in the image plane.
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In the general case we estimate the normal to the plane passing through three points Py, P,
and P5 to a first order in g and the z-disparity

Yr
L
r Ul l
2h sin p

In this case, after substituting K - (z, — Z—?m) as an approximation for z, where K is some constant

that depends on u, v, and h, one gets an expression for the general normal Ng:

A_;GI (ﬁl—ﬁg)X(ﬁQ—ﬁg)
~ W(‘/ 'F(x},:Cll,y},yll,xz,x?,yf,y?,xf,x?,yf,y?),
U- G( 71"7xllvy}vyllv'r72~7x?vygvyfvxgv'r?vy?vy?)v 1) (6)

where W, V, and U are some constants that depend on y, v and k. F() and G() are some functions
of images coordinates only. Once again, one can verify approximate planarity of surfaces anywhere
in the field of view when F() and G() remain constant.

5 Summary

The goal of this work has been to obtain and use qualitative information from a stereo pair, with as
few computations as possible and with a minimal dependence on the camera and scene parameters.
First, we have shown that points in a stereo pair, once matched to each other, can be ordered in two
related ways according to their tilt (A) and their depth (x). These orders are completely determined
by image coordinates of conjugate points, and no camera or scene parameters are needed. A and
some variation of x (x¥) depend only on the polar angles of the conjugate points in both images, a
quantity that is preserved under projection to a spherical body (an eye) or a planar body (a camera).
We discussed some psychophysical (and neurophysiological) results that can be understood by the
use of such orders. Most notably, the use of A for tilt estimation predicts “the induced size effect”,
an unusual behavior of the human visual system that lacks other straightforward explanation.

Some qualitative shape information has then been obtained from stereo disparities. We first
developed an algorithm to detect axes of zero-curvature on objects (where a single such axis ex-
ists). This algorithm performed well on synthetic data even when the basic assumptions of the
computation have been substantially violated. It performed almost as well on real images. In one
example of an image of four cans, the true axes of zero-curvature have been found for three cans,
and the “second best” axis has been found for the fourth. Finally we showed that one can detect
qualitative changes in the curvature of a contour on the surface of any object in the field of view,
with either z- or y-coordinate fixed.

A Derivation of Some Geometrical Relations

Figure 8 illustrates the projection of a point in space (P) onto the image plane. From similarity
of triangles it follows that

BP BO DO  AO— ABcosgp

BP _ BO AO A0
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Ay \

fixation-
point D

image
origin

=Y

Figure 8: The projection of point P on the image plane.

B'P' is the image coordinate y, A’O is the focal length h and AQ is the distance from the fixation
point to the camera d. Thus -
hBP

:d—ABcosqo' (6)

Y

In a similar way -
hAB sin ¢
rT= —
d— ABcosyp

Thus _
T AB .
= —— -sin .
y _ Bp Y
The assumption that the base plane intersects both cameras X-axes implies that the same geometry
holds for both cameras in the sense that the segments BP and AB are identical. We add indices [

and r for the variables of the left and right cameras respectively. Then

XLy AB . Z AB (7)
— = —=-8ImY, , — = —— "SIy,
y,  BP TUT oy T pp T

and finally .
x, x;  sin e,

—/—= (8)

y 'y singg

|
From figure 9 it follows that

wr=a+90°—pu , ¢r=a+90°+ pu.

Thus )
sing, 1+ tanatanp

sing; 1—tanatanpu’
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Figure 9: The 3D coordinate system with both cameras.

From (8) and (9) we get

14+t t A—1
ﬁ ﬂ—w — tallatalluz—7

A=
A+1

y oy 1— tan a tan p
which gives equation (1).
Similarly,

cotd, —cotd; = Z—T — % = %(sin wr — sin¢y)

_ ABo : _ : z
= Gp2sinasinp = 2sinpZ (7)

Since by definition tan g = 5, we immediately obtain equation (2).
Finally, considering the right image with no loss of generality, we have from (6),

B hBP B hy
"~ d,—ABcosyp, d,—xsinp+ zcosp’

Yr

From figure 9 one can see that d, = L% =1) 55 that

sin 2
I — r
y:(%—xsinu—l—zcosu)-%. (5)

B Computation of the Exact Depth

We will compute the exact tilt and depth to a first order in the angle of convergence 2y, following
Mayhew & Longuet-Higgins’ method (in [11]) to compute tilt and slant of a plane through the
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fixation point. The following scheme, however, will be simpler and involve less and more rigorous
assumptions (we shall only assume small 2 as implied above). Since, to a first order in g, tan2u =

ICOTf(V), where R is the distance between the fixation point and the midpoint of the interocular line

(the nose), our computations will be correct to a first order in ().

Let (z,y) and (z',y’) denote the image coordinates of a certain point in space on the two
cameras respectively. Let & and B denote the parameters of a plane that passes through a given
point in space and the fixation point in the above coordinate system, so that Z = &X + BY. Thus
@ is tan(a) in the previous notations if 3 = 0 and vice versa.

Then, to a first order in p, we have ([4])

Az =23 -z = [(&cos(v) + sin(v))z + B cos(v)y
+(cos(v) — asin(v))z? — Bsin(v)zy]- I/ R,
Ay=y —y= [sin(v)y + (cos(v) — @sin(v))zy
~sin(v)y?] - I/R (s)

(The coordinate system used to obtain (10) is the Cyclopean coordinate system. This, however,
does not change the results when changing to our coordinate system since the angle-bisector and
the median are the same line to a first order in g and the translation of the origin has been taken
into account in the definition of the target plane.)

It is usually possible to consider only the plane passing through a point in space and the fixation
point and is perpendicular to the base plane (that is, ﬁ = 0). This plane is parametrized only by
&. Thus, we have

~ = [sin(v) 4 (cos(v) — asin(v))z] - I /R
= [tan(v) 4+ (1 — @ tan(v))z] - tan(2p)labelll (9)

Let (@1, 91, Az1 , Ay; ) be the coordinates and disparities of a point on the vertical axis, so

that 1 ~ 0. Then we have
A
AN tan(v) - tan(2u).
n

Let (22, y2 , Azg , Ayz ) be the coordinates of a point with & ~ 0. Such a point, if it exists,

. . . . . . ! !
can be easily identified since it satisfies % ~ . Then we have:

A A A ; ]
Tg -tan(2u) = L tan(v) - tan(2u) = S Sh B 5

Y2 Y2 oo oy
In other words,
1 ! !
tan(2u) = — - [2 — A,
L2 Y2 0N

Now, for any point (z,y) in the image we have, using (10) with B =0:

7 '
Yy Az Ay .

— L =— - 2 =6 -1Icos(v)/R=a-tan(2u).
Lt 2 o (20

This leads to the final equations:

8|8

1 ! !
tan(2p) = [ 2~ L. (12)



Computer Vision, Graphics, and Image Processing 49:222-241, 1990 19

and
g _ v Ay I
A o— x y oo, t — Y1 . RI
“ tan(2p) an(v) tan(2u) ’

\/tan?(Q,u) + %2

The ratio £ near the Y-axis is relatively reliable and easy to obtain. However, a point with
& = 0 does not necessarily exist, in which case we can solve the initial scheme directly. The set of
equations remained to be solved is
Ayq’ /
tan(2u) — & - a1, (£ - 4)
7" ¢ Ny owm
tan(2pu) - & =L-4 (10)

which reduces to a second degree polynomial in é&.
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