Distance Metric between 3D Models and 2D Images
for Recognition and Classification

Ronen Basri* Daphna Weinshall
Dept. of Applied Math Institute of Computer Science
The Weizmann Inst. of Science The Hebrew University of Jerusalem
Rehovot 76100, Israel 91904 Jerusalem, Israel
Internet: ronen@wisdom.weizmann.ac.il Internet: daphna@cs.huji.ac.il
Abstract

Similarity measurements between 3D objects and 2D images are useful for the tasks of
object recognition and classification. We distinguish between two types of similarity metrics:
metrics computed in image-space (image metrics) and metrics computed in transformation-
space (transformation metrics). Existing methods typically use image metrics; namely,
metrics that measure the difference in the image between the observed image and the nearest
view of the object. Example for such a measure is the Euclidean distance between feature
points in the image and their corresponding points in the nearest view. (This measure
can be computed by solving the exterior orientation calibration problem.) In this paper we
introduce a different type of metrics: transformation metrics. These metrics penalize for
the deformations applied to the object to produce the observed image.

In particular, we define a transformation metric that optimally penalizes for “affine
deformations” under weak-perspective. A closed-form solution, together with the nearest
view according to this metric, are derived. The metric is shown to be equivalent to the
Euclidean image metric, in the sense that they bound each other from both above and below.
It therefore provides an easy-to-use closed-form approximation for the commonly-used least-
squares distance between models and images. We demonstrate an image understanding
application, where the true dimensions of a photographed battery charger are estimated by
minimizing the transformation metric.

1 Introduction

Object recognition is a process of selecting the object model that best matches the observed
image. A common approach to recognition uses features (such as points or edges) to represent
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objects. An object is recognized in this approach if there exists a viewpoint from which the
model features coincide with the corresponding image features, e.g. [R65, FB81, L85, HUS7,
BU93, TM87, UB91]. Since images often are noisy and models occasionally are imperfect, it
is rarely the case that a model aligns perfectly with the image. Systems therefore look for a
model that “reasonably” aligns with the image. Consequently, measures that assess the quality
of a match become necessary.

Similarity measures between 3D objects and 2D images are needed for a range of applica-
tions:

e The recognition of specific objects in noisy images, as described above.

e The initial classification of novel objects. In this application a new object is associated
with similar objects in the database. This way an image of, e.g., a Victorian chair is
associated with models of (different) familiar chairs.

e The recognition of non-rigid objects whose geometry is not fully specified. An example
is the recognition of 3D hand gestures. In this task only the generic shape of the gesture
is known, and the particular instances differ according to the specific physiology of the

hand.

Existing recognition methods are usually tailored to solve the first of these application, namely,
the recognition of specific objects from noisy images. Many of these methods are sub-optimal
(see Section 2 for a review), which may result in large number of either mis-recognition or
false-positives. When these methods are extended to handle problems such as classification and
recognition of non-rigid objects their performance may even be less predictable. The general
problem of recognition therefore requires measures that provide a robust assessment of the
similarity between objects and images. In this paper we describe two such measures, and
develop a rigorous solution to the minimization problem that each measure entails.

A common measure for comparing 30 objects to 2D images is the Euclidean distance be-
tween feature points in the actual image and their corresponding points in the nearest view of
the object. The assumption underlying this measure is that images are significantly less reliable
than models, and so perturbations should be measured in the image plane. This assumption
often suits recognition tasks. Other measures may better suit different assumptions. For exam-
ple, when classifying objects, there is an inherent uncertainty in the structure of the classified
object. One may therefore attempt to minimize the amount of deformations applied to the
object to account for this uncertainty. Such a distance is measured in transformation space
rather than in image space. A definition of these two types of measures is given in Section 3.

Measures to compare 3D models and 2D images generally are desired to have metrical
properties; that is, they should monotonically increase with the difference between the measured
entities. (A more exact definition is given in Appendix A.) The Euclidean distance between
the image and the nearest view defines a metric. (We refer to this measure as the image
metric.) The difficulty with employing this measure is that a closed-form solution to the
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problem has not yet been found, and therefore currently numerical methods must be employed
to compute the measure. A common method to achieve a closed-form metric is to extend the
set of transformations that objects are allowed to undergo from the rigid to the affine one. The
problem with this measure is that it bounds the rigid measure from below, but not from above.
Other methods either achieve only sub-optimal distances, or they do not define a metric. The
existing approaches are reviewed in Section 2.

This paper presents a closed-form distance metric to compare 3D models and 2D images.
The metric penalizes for the non-rigidity induced by the optimal affine transformation that
aligns the model to the image under weak-perspective projection. Specifically, if A is the affine
transformation that best aligns the model with the image, and Rig represents the set of all
rigid transformations, then the metric is defined as

Ny = min || A— R 1
o= guin A= R 1)
where the norm taken is the sum of squared elements. This metric is shown to bound the

least-square distance between the model and the image both from above and below. We foresee
three ways to use the metric developed in this paper:

1. Obtain a direct assessment of the similarity between 30 models and 2D images.

2. Obtain lower and upper bounds on the image metric. In many cases such bounds may
suffice to unequivocally determine the identity of the observed object.

3. Provide an initial guess to be then used by a numerical procedure to solve the image
distance.

The rest of this paper is organized as follows: In Section 2 we review related work. In
Section 3 we define the concepts used in this paper. In Section 4 we summarize the main
results of this paper. These results are discussed in detail and proved in section 5 for the
transformation metric, and section 6 for the image metric. Sections 5 and 6 can be omitted
on first reading. In Section 7 we describe possible applications of these metrics, and some
comparisons to other methods; in one image understanding application we estimate the true
dimensions of a photographed battery charger by minimizing the transformation metric.

2 Previous approaches

Previous approaches to the problem of model and image comparison using point features are
divided into three major categories:

1. Least-square minimization in image space.

2. Sub-optimal methods using correspondence subsets.
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3. Invariant functions.

The traditional photometric approach to the problem of model and image comparison in-
volves retrieving a view of the object that minimizes the least-square distance to the image.
This problem is referred to as the exterior orientation calibration problem (or the recovery of the
hand-eye transform) and is defined as follows. Given a set of n 3D points (model points) and a
corresponding set of n 2D points (image points), find the rigid transformation that minimizes
the distance in the image plane between the transformed model points and the image points.
An analytic solution to this problem has not yet been found. (Analytic solutions to the absolute
ortentalion problem, the least-square distance between pairs of 3D objects, have been found,
see [FH86, H87, H91]. An analytic solution to the least-square distance between pairs of 2D
images has not yet been found.) Consequently, numerical methods are employed (see reviews
in [T87, Y89]). Such solutions often suffer from stability problems, they are computationally
intensive and require a good initial guess.

To avoid using numerical methods, frequently the object is allowed to undergo affine trans-
formations instead of just rigid ones. Affine transformations are composed of general linear
transformations (rather than rotations) and translations, and they include in addition to the
rigid transformations also reflection, stretch, and shear. The solution in the affine case is sim-
pler than that of the rigid case because the quadratic constraints imposed in the rigid case
are not taken into account, enabling the construction of a closed-form solution. At least six
points are required to find an affine solution under perspective projection [FB81], and four are
required under orthographic projection [UB91].

The affine measure bounds the rigid measure from below. The rigid measure, however, is
not bounded from above, and so the actual rigid measure may sometimes be significantly larger
than the computed afline measure. This is demonstrated by the following example. Consider
the case of matching four model points to four image points under weak-perspective. Since
in this case there always exists a unique affine solution, the affine distance between the model
and the image is zero. On the other hand, since three points uniquely determine the rigid
transformation that aligns the model to the image, by perturbating one point we can increase
the rigid distance unboundedly.

A second approach to comparing models to images, often called alignment, involves the
selection of a small subset of correspondences (alignment key), solving for the transformation
using this subset, and then transforming the other points and measuring their distance from
the corresponding image points. Three [FB81, RBPD81, HLON91] or four [HCLL89] points are
required under perspective projection, and three points under weak perspective [U89, HU87]

The obtained distance critically depends on the choice of alignment key. Different choices
produce different distance measures between the model and the image. The results almost
always are sub-optimal, since it is generally better to match all points with small errors than to
exactly match a subset of points and project all the errors onto the others. However, by relying
on small subsets of correspondences alignment can overcome occlusion and clutter.

A third approach involves the application of invariant functions. Such functions return
a constant value when applied to any image of a particular model. Invariant functions were
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successfully used only with special kinds of models, such as planar objects (e.g., [LSW87,
FMZCHROI1]). More general objects can be recognized using model-based invariant functions
[W93]. For noise-free data, model-based invariant functions return zero if the image is an
exact instance of the object. To account for noise, the output of these functions usually is
required to be below some fixed threshold. In general, very little research has been conducted
to characterize the behavior of these functions when the model and the image do not perfectly
align. The result of thresholding therefore becomes arbitrary.

3 Definitions and notation

In the following discussion, we assume weak-perspective projection. Namely, the object un-
dergoes a 3D transformation that includes rotation, translation, and scaling, and is then or-
thographically projected onto the image. Perspective distortions are not accounted for and
treated as noise. The weak-perspective projection model is particularly useful when objects are
observed from a relatively long distance.

In order to define a similarity measure for comparing 3D objects to 2D images, as discussed
in section 1, we first define the best-view of a 3D object given a 2D image:

Definition 1: [best-view] Let 0 denote a difference measure between two 2D images of n
features. Given a 2D image of an object composed of n features, the best-view of a 3D object
(model) composed of n corresponding features, is the view for which the smallest value of J is
obtained. The minimization is performed over all the possible views of the model; the views
are obtained by applying a transformation T, taken from the set of permitted transformations
A, and followed by a projection, 1I.

We compute 0, the difference between two 2D images of n features in two ways:

image metric: we measure position differences in the image, namely, it is the Fuclidean dis-
tance between corresponding points in the two images, summed over all points.

transformation metric: the images are considered to be instances of a single 3D object.
The metric measures the diflerence between the two transformations that align the object
with the two images. This difference can be measured, for instance, by computing the
Euclidean distance between the matrices that represent the two transformations (when
the two transformations are linear).

As is mentioned above, the measure 0 is applied to the given image and to the views of
the given model. These views are generated by applying a transformation from a set A of
permitted transformations. The view that minimizes the distance 0 to the image is considered
as the best view, and the distance between the best view and the actual image is considered
as the distance between the object and the image.
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We consider in this paper two families of transformations: rigid transformations' and affine
transformations, and we discuss the following metrics:

Nim: a metric that measures the image distance between the given image and the best rigid

view of the object.

Nqs: a metric that measures the image distance between the given image and the best affine
view of the object.

Nyt atransformation metric. We assume that the image is an affine view of the object. (When
it is not, we substitute the image by the best affine view.) We look for the rigid view of
the object so as to minimize the difference between the two transformations: the affine
transformation (between the object and the image) and the rigid transformation (between
the object and its possible rigid view.) In other words, we look for a view so as to minimize
the amount of “affine deformations” applied to the object.

To illustrate the difference between image metrics and transformation metrics, Fig. 1 shows
an example of three 2D images, whose similarity relations reverse, depending on which kind
of metric is used. Consider the planar object in Fig. 1(b) as a reference object, and assume
A contains the set of rigid transformations in 2D. The images in (a) and (c) are obtained by
stretching the object horizontally (by 9/7) and vertically (by 3/2) respectively. (The image in
(b) is obtained by applying a unit matrix to the object.)

closer in closer in
transformation-— image-
Space space

] I SN

(a) (©)

Figure 1: The 2D image shown in (b) is closer to the image in (a) when the difference is computed in
transformation space, and closer to the image in (c) when the difference is the Euclidean difference between the

two images.

! Note that a rigid transformation under weak perspective is equivalent to a similarity transformation followed

by an orthographic projection
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e The image metric between the images in (b) and (a) is 4, two pixel at each of the left
corners of the rectangle.
The image metric between the images in (b) and (c) is 2, one pixel at each of the upper
corners of the rectangle.
Therefore, according to the image metric, Fig. 1(c) is closer to (b) than (a) is.

e To compute the transformation metric consider the planar object illustrated in (b). We
compute the difference between the matrices that represent the affine transformation from
(b) to both (a) and (c) and the matrix that represent the best rigid transformation (in
this case it is the unit matrix): (a) is obtained from (b) by a horizontal stretch of 9/7.
The transformation metric between (a) and (b) is therefore 2/7=9/7 — 1.

(c) is obtained from (b) by a vertical stretch of 3/2. The transformation metric in this
caseis 1/2=3/2— 1.
Therefore, according to the transformation metric, Fig. 1(a) is closer to (b) than (c) is.

It is interesting to note that in this example the solution obtained by minimizing the transfor-
mation melric seems to better correlate with human perception than the solution obtained by
minimizing the image metric.

3.1 Derivation of N;,, and N,

We now define the rigid and the affine image metrics precisely. Under weak-perspective projec-
tion, the position in the image, ¢; = (z;,y;), of a model point p; = (X;,Y;, Z;) following a rigid
transformation is given by

¢i = 1I(Rp; +1) (2)

where R is a scaled, 3 x 3 rotation matrix, { is a translation vector, and II represents the
orthographic projection operator. More explicitly, denote by 7] and 71 the top two row vectors
of R, and denote { = (tz,ty,1,); we have that

Y = FQT‘@+ty
where
flT.Fl — 7?2T.7?2

The rigid metric, N, minimizes (over all R and 7) the difference between the two sides of
Eq. 3 subject to the constraints (4).

When the object is allowed to undergo affine transformations, the rotation matrix R is
replaced by a general 3 X 3 linear matrix (denoted by A) and the constraints (4) are ignored.
That is

gi = TI(Ap; + 1) (5)
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Denote by @ and @ the top two row vectors of A, we obtain

=T —
r;, = ay *p;+1
S (6)
Yyi = Gy ~pitiy

The affine metric, N,f, minimizes (over all A and 7) the difference between the two sides of
Eq. 6.

To define the rigid and the affine metrics, we first note that the translation component of
both the best rigid and affine transformations can be ignored if the centroid of both model and
image points are moved to the origin. In other words, we begin by translating the model and
image points so that

@:th-zo (7)

We claim that now ¢ = 0 obtains the minimum. The proof is given in Appendix C.

Denote
X1 Y 4

p- ; (®)
X, Y. Z,
a matrix of model point coordinates, and denote
L1 U

(9)

&)
Il

=y
Il

Ln Yn

the location vectors of the corresponding image points. A rigid metric that reflects the desired
minimization is given by
Ny = _min_ |7 — PA|)* + |7 — P (10)
71,72 €R3
.. 7 Ty =0, T =0 0
The corresponding affine metric is given by

N, = i 7 — Pady|? 7 — P, 11
o = min |7 = Par|* + 17 - P (11)

In the affine case the solution is simple. We assume that the rank of P is 3 (the case for
general, not coplanar, 3D objects). Denote Pt = (PTP)~1PT  the pseudo-inverse of P; we
obtain that

@ = PtZ
iy = p-}—g (12)

And the affine distance is given by

Nog = ||(1 = PPH)E* + || (1 = PPT)g]|* (13)
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Since the solution in the rigid case is significantly more difficult than the solution in the

affine case, often the affine solution is considered, and the rigidity constraints are used only for
verification (e.g. [UB91, W93, DD92]).

The constraints (4) (substituting @; for 7;, and using Eq. 12) can be rewritten as

gZipHpty = 0

fT(P+)TP+f — ng(P‘*‘)TP‘*‘?j (14)
Denote
B = (pHlpt (15)
we obtain that .
By = 0
i'Br = y'By (16)

where B is an n X n symmetric, positive-semidefinite matrix of rank 3. (The rank would be
smaller if the object points are coplanar.)

We call B the characteristic matrix of the object. B is a natural extension to the 3 x 3
model-based invariant matrix defined in [W93]. A more general definition, and its efficient
computation from images, is discussed in Appendix B.

3.2 Derivation of ,,

We can now define a transformation metric. Consider the affline solution. The nearest “afline
view” of the object is obtained by applying the model matrix, P, to a pair of vectors, @; and
@y, defined in Eq. 12. In general, this solution is not rigid, and so the rigid constraints (4) do
not hold for these vectors. The metric described here is based on the following rule. We are
looking for another pair of vectors, 7} and 75, which satisfy the rigid constraints, and minimize
the Euclidean distance to the affine vectors @;, and @,. (This is equivalent to assuming that
the transformation parameters vary normally around their true value.) P} and P7, define the
best rigid view of the object under the defined metric. The metric, Ny, is defined by

Ny = min_||@ — 71||* + ||@ — 72 st FLoFyp=0, P .7 =77 (17)
7"1,7‘2€RS

where @y and @y constitutes the optimal affine solution, therefore

Ny = min _||PY&— 7|2+ |PTg— Rl st 7 F=0, FL-F=7 7  (18)
71,72 €R3

In Section 5 we present a closed-form solution for this metric, and in Section 6 we show how
this metric can be used to bound the image metric from both above and below.

4 Summary of results

In the rest of the paper we prove the following results:
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4.1 Transformation space:

The transformation metric defined in Eq. 18 has the following solution

1
Nip = 5 (fTBf+ 7' By — 2\/fTBa?- 7T By — (fTBg)?)

where B is defined in Eq. 15, and #,% in Eq. 9. The best view according to this metric is
given by

*

= PPY(Bi7 + BoF)
= PP (&4 729)

8y

=4

where 1, 82,71, 72 are defined in Appendix D.

4.2 Image space:

Using Ny we can bound the image metric from both above and below. Denote

Nag = |1 = PPH)Z|* + (I - PP)*
we show that

Nus + M Nir < Nim < Nag+ AaNy, (19)
where Ay < Ay < A3 are the eigenvalues of PTp. A sub-optimal solution to N;,, is given by

21 fi2
Nog + H1k2
! M1+ 2 !

where the computation of py, g is described in Appendix E. A tighter upper bound is deduced
from this sub-optimal solution

Nim < Nag+h(A2,23)Ney < Nag + 22Ny,

where h(Az,A3) = 5

% is the Harmonic mean of Ay, A3. The sub-optimal solution is proposed

22 T3
as an initial guess for an iterative algorithm to compute N;,.

5 Closed-form solution in transformation space

We now present a metric to compare between 3D models and 2D images under weak perspective
projection. The metric is a closed-form solution to the transformation metric, Ny, defined in
Eq. 18. We use the notation developed in Section 3. B is the n X n characteristic matrix
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of the object, Z, 4 € R™ contain the z- and y-coordinates of the image features. The metric is
given by

1
Nip = 5 (fTBf—|— 7' By — 2\/fTBa?- 7T By — (fTBﬁ)Q) (20)

This metric penalizes for the nonrigidities of the optimal affine transformation. Note that
Ny = 0 if the two rigid constraints in Eq. 16 are satisfied. Otherwise, Ny > 0 represents the
optimal penalty for a deviation from satisfying the two constraints.

Derivation of the results:

In the rest of this section we prove that the expression for Ny, given by Eq. 20, is indeed
the solution to the transformation metric defined in Eq. 18. The proof proceeds as follows:
Theorem 1 computes the minimal solution when 7; and 75 are restricted to the plane spanned
by @1 and d@s; Theorem 2 extends this result to three-space.

Figure 2: The vectors @y, @2, ™1, and 75 in the coordinate system specified in Theorem 1. @ and @ represent
the solution for the affine case. 71 and 7 are constrained to be in the same plane with @; and @, to be orthogonal,
and to share the same norm.

Theorem 1: When 7, and 7 are limited to span{dy,ds}, Ny, is given by Eq. 20.

Proof:  We first define a new coordinate system in which

(_il = wl(l,O)
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d; = wy(cosh,sinb)
1 = s(cosa,—sina)
2 = s(sina,cosa)

(see Fig. 2). 0 is the angle between @; and @3, wy and w; are the lengths of @ and @; respectively.
s is the common length of the two rotation vectors, 7, and 75, and —a is the angle between d;
and 7. Without loss of generality it is assumed below that 0° < 8 < 180° and —90° < a < 90°.
Notice that wy, wy, and @ are given and that s and « are unknown.

Denote f the term to be minimized, that is
fla,s) = [la = 7* + [|@ — 7|7
then
fla,s) = (w; —scosa)? + s*sin?a + (ssina — wycos 0)* + (s cos a — wy sin #)?
= w% + w% +28% - 2s([wy + wy sin @] cos a 4+ w, cos @ sin a)
The partial derivatives of f are given by
fa = 2s([wy + wysinf]sina — wy cos b cos )
fs = 4s—2([wy + wysin @] cos a + w;y cos fsin )
To find possible minima we equate these derivatives to zero
fae =
fs =

Solutions with s = 0 are not optimal. In this case f(a,0) = w? + w3, and later we show that
solutions with s > 0 always imply smaller values for f.

When s # 0, f, = 0 implies

: wq cos b
tana™ = —————
wy + wy sin
therefore ) 0
. w1 + wy sin
cos ™" = =
\/1 + (tan amim)? \/w% + w% + 2w wy sin @
fs = 0 implies
s™" = —([wy + wysin 0] cos ™" + w;y cos O sin a™'")

2

Notice the similarity of this expression to the expression for f. At the minimum point f can
be rewritten as

Jrin = wh 4wl - 2(smin? (21)
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(From which it is apparent that any solution for f with s # 0 would be smaller than the solution
with s = 0.) Substituting for o™ we obtain

S = 5([101 + wy sin 0] cos ™" 4 wq cos O sin a™*")
= —cosa w1 + wy sin @ + wq cos @ tan «

2

wy + wosin w% cos?

= (w1 4+ wosinf +
2\/w% + w% + 2w w4 sin 8

)

w1y + wg sin 0

1
= 5\/10% + w% + 2wiwo sin 0
and therefore
min 2 2 min\2 2 2 1 2 2 :
= wi 4wy — 2(s™") :wl—|—w2—§(w1+w2—|—2w1wgsm€)
or,

: 1
= 5(10% + w3 — 2w wy sin 6)

Recall that wy and wq are the lengths of @; and @5, that is

w? = al @ = 7'B¥
2 ST = T 1 —
wy; = dy ~dy =y By

and 6 is the angle between the two vectors, namely

wywzsin § = \/w%w%(l —cos?f) = \/fTBf- 7L By — (2T By)?

We obtain that

fmin _ <9?TBf + 7B -2,/ BT B - (fTBg)Q)

N | —

In Theorem 1 we proved that if ¥, and 75 are restricted to the plane spanned by @; and ds,
the metric Ny, is given by Eq. 20. In Theorem 2 below we prove that any other solution for 7
and 75 results in a larger value for f, and therefore the minimum for f is obtained inside the
plane, implying that Ny, indeed is given by Eq. 20.

Theorem 2: The optimal ¥y and 75 lie in the plane spanned by d; and 5.

Proof: Assume, by way of contradiction, that 7,7y & span{d,ds}; we show that the
corresponding value for f is not minimal.
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Consider first the plane spanned by 73 and @, and assume, by way of contradiction, that
7 & span{iy,d; }; we show that there exists a vector 7 such that

[RY I |
oL
and
17 = d@ll < |77 — @i
contradicting the optimality of f.
Assume ||73]| = s, and denote by 7| a vector with length s in the direction (7 X @) X 7.
This vector lies in span{r,,d;} and satisfies
173l =l
oL
(There exist two such vectors, opposing in their direction. We consider the one nearest to d.)

We now show that
|17 = @l < |71 — @]

Denote the angle between @; and 7] by «, and denote the angle between 7 and 7 by 5. Also,

denote wy = ||d@1]| and s = ||| = ||72]| = ||7}]|]. We can rotate the coordinate system so as to
obtain

7= s(1,0,0)

7_‘)2 S(O, 1, O)

i = wi(cosa,sina,0)

1 = s(cosf,0,sinj)

Now,

2

(s — wy cos a)2 + w% sin“a = w% + s2 — 25wy cos a

175 — @|*

IF1 — @]|* = (scosp —wicosa)® + wisin®a+ s*sin?f = wi 4 s* — 25w cos a cos B
and therefore, when o # 0° and 8 # 0° (when 8 = 0°, ¥, and 7] coincide.)
17 = @l < |7y —

contradicting the minimality property. Therefore, ¥} € span{i;,@;}. Similarly, it can be shown
that 7 € span{7y, ds}, therefore all four vectors @y, @,, 71, and 7 lie in a single plane.
O
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Corollary 3: The transformation metric is given by

1
Ny = 5 <fTBf—|- 7' By — 2\/fTBa?- 7T By — (fTBg)?)

and the best view for this metric is

= PPT(5i7 4+ 520)
J PP (7 + 727)
where
1 y' By
o= 21+ J_ By
/T BT - T B — (77 BY)?
i’ By
fr=m = -
2\/a?TBf 7T B — (T Byj)?
1 ' B¥
Y2 = 3 1+
VT BT - T B — (#7 BY)*
Proof: The expression for the metric immediately follows from Theorem 1 and 2. The
expression for the best view is developed in the Appendix D.
O

6 Solution in image space

In order to compute the image metric as defined in section 3, we need to solve the constraint
minimization problem defined in Eq. 10

Nim = min || — PA|? + ||§ — PRl st. 7L -7 =0, 7l -7 =75 -7
71,72 €ER?

Section 6.1 shows that Ny, computed in the previous section, can be used to bound N,
from both above and below. Section 6.2 describes a direct method to compute a sub-optimal
approximation to N;, and outlines an iterative algorithm to improve this estimate to obtain
the optimal N;,,.

6.1 Bounding the image metric with the transformation metric

In this section we show that using the {ransformation metric defined in Section 5 Ny,., and the
affine metric N, (given in Eq. 13), we can bound the image metric N;y,, from both above and
below. We prove the following theorem:
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Theorem 4: Let 0 < Ay < Ay < A3 denote the three eigenvalues of PTP, then

jvaf + AletT < IVim < jVaf + A?)th'r (22)

Proof:  Denote by 77 and 75 the vectors that minimize the term for the image metric given
in Eq. 10, namely
Nim = |7 = Pi|* + [|§ = P75

and denote by 71 and 75 the vectors that minimize the transformation metric given in Eq. 18,
namely
N = |PT7 = 7| + || P57 = 7

We start by showing the upper bound. Since 7] and 7; minimize the term for N;,,, we can
write

Niw = |7 = PA|* + 1§ - Pr3||*
1E = PRl + |7 — Praf|?

IN

We now break each term in this sum into two orthogonal components as follows
T — Pry = (& — PPY%) 4+ (PPYZ - PF))
for which it holds that
(& — PPT&)T . (PPTZ - Pr)=0
The orthogonality readily follows from the identity
(PPHYTP=(PHYIPTP =PPTP) Y (PTP)=P

Since the two components are orthogonal it holds that

17 = PR* = || - PPYE|* + || PPTZ - PRI
and, similarly,

17 = PRal* = |7 = PPY3|* + [|[PPYG — Pra®
Therefore (recall that 7} and 7z minimize Ny and that Az is the largest eigenvalue of PTP)

Nim 1Z = PA* + |7 — PP

|7 = PPYE|* + ||[PPTZ = PRA|* + ||7 = PPTg* + ||[PPT 5 — Pry|*
I(1 = PPO)T|* + [|(1 = PPO)GI* + | P(PFT = 7)||* + || P(PTG = 7|
Nag +[|P(PTT = )" + | P(PHG = )|
Nag + Xs(I(PFT = ) |* + (PG = 72)|P)
jvaf + ASJVtT

IA 110
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Next, we prove the lower bound. The proof is similar to the proof in the upper bound case,
but this time we start by breaking up the terms into orthogonal components. Then we use the
facts that ¥ and 7 minimize Ny and that A; is the smallest eigenvalue of PTp.

Nim = || = PP + |7 - P3|

| — PPYE|* + || PPYE - PA|* + |7 - PPT|? + | PPTG— PT|
I(1 = PPHYZ|* +[|(1 = PPHF + || P(PTE = )|* + || P(PTG —75)|)?
Nog +[[P(PTE —)|* + || P(PTg - 75)|?

Nog + M([[(PTZ =D +[I(PTF - 7))

Nog+ M N,

(AVAAYS

Consequently
jvaf + Aljvtr < jvim < jVaf + >\3]Vt'r

6.2 Direct solution for the image metric

In this section we develop tighter bounds on the image metric by direct methods, following
the same steps we took in the derivation of the transformation metric in Section 5. Unlike for
the transformation metric, we cannot obtain a closed-form solution for the image metric, but
we can obtain a better estimator than we have previously described. This also enables us to
develop an iterative method to compute the distance exactly.

In section 6.2.1 we describe a change of coordinate system, arriving at a minimization
problem which is similar to the one we had to solve for the transformation metric. The difference
is that the sought vectors are constrained to lie on an ellipsoid rather than a sphere, and the
ellipsoid is defined by a 3 x 3 positive-definite version of the characteristic matrix B.

In section 6.2.2 we restrict the solution vectors, i, ¥, to lie in a plane with the data vectors,
Z,7 and we derive the optimal solution under this constraint. The solution, however, is only
sub-optimal, since in contrast to the transformation metric, the optimal solution in this case
does not have to lie in the plane. Using this solution we derive a tighter upper bound on the
optimal solution.

In section 6.2.3 we describe the general problem that needs to be solved, and outline an
iterative method. We propose the solution obtained in the plane as an initial guess for this
method.

6.2.1 Reducing the dimensionality of the problem

In Section 6.1 we have shown that the image metric can be broken into two orthogonal terms,
implying that

Nim = Nag + [|[P(PTT = 7)||* + | P(P*g - 75)|* (23)
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This property is useful for a direct computation of the image metric. The first term, Ny, does
not depend on 71, 73. To compute N;,, therefore, only the second term needs to be minimized

min_||PPYZ — PR + |PPT§ — Pia||* st 7 i =0, 7 T =05 7 (24)
71,71 ER?

Note first that PPT# and PP*, two vectors in R", both lie in a single linear subspace of
dimension 3. (This follows from the fact, shown in [UB91], that every image of a 3D object can
be written as a linear combination of three independent views.) Moreover, the three columns
of P lie in the same subspace. It therefore follows that the vectors @ = P7; and ¥ = P75 must
also lie in this subspace.

Denote X = PPYZ and Y = PP*{, the projection of Z and % to the column space of P,
and denote @ = P7; and ¥ = P7,. (Note that 7j = PT@, 7, = PT¥, and B = (P"')TP"', the
characteristic matrix of the object.) We rewrite the problem as follows

min || X —@|? +||Y - 7> st @ BF=0, @ Bi=4%'BF (25)
a€,0€R™

Since all the vectors, )?, }7, @, and ¥, lie in a 3D subspace (the column space of P) we can
perform the minimization in R3. To transform the system into R>, we rotate the vectors and the
characteristic matrix B so as to get nontrivial (nonzero) values only in three of the coordinates.
Recall that distances and quadratic forms are invariant under rotation. The rotation matrix
that should be applied to all terms is defined by the eigenvectors of B. Applying this matrix
to B (in the form Q7 BQ) results in a diagonal matrix with the three positive eigenvalues of B.

6.2.2 Closed-form solution in the plane

Theorem 5: When @ and ¥ are limited to span{)?,l_}}, the solution of Eq. 25 is given by

Ny = 12H2 (fTBf—|- 7' By - 2\/5TB3?- 7' By — (fTBg)2) (26)

where /i1 < \/u2 are the principal axes of the ellipse, defined by the intersection of the ellipsoid
B with the plane span{f,f}.

Note the similarity between this solution and N in Eq. 20. In fact,

= A2 N (27)

The proof closely follows the proof for Ny, presented in Section 5 (Theorem 2). We therefore
skip some of the details.
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Proof:  We first define a new coordinate system in which

X = wi(Vpq cosn, iz sing)
Y = wy(y/ji1 cos B, \/fiz sin 0)
i s(y/f1 cos a, \/pig sin a)
7 = s(—y/p1sina, /g cos a)
+— 0 By
B = 0 L+ B
B B B

Without loss of generality it is assumed below that —90° < n < 90°, n < 8 < n+ 180°, and
—90° < a < 90°. Notice that wy, wg, 7 and 0 are given and that s and a are unknown.

Notice that this setting of coordinate system is similar to the one used in Theorem 1 with
the exceptions that here @ and ¥ lie on an ellipse rather than on a circle, and that in general
none of the points can be brought to lie on a principal axis.

Denote by f the term to be minimized, that is
flays) = | X —a@|* + Y - #])”
then

fla,s) = p(wycosn — scosa)? 4 uz(wysin g — ssina)? + py(wq cosf + ssina)? +
pi2(wq sin @ — s cos a)?
= wi(uy cos® 54 pgsin® n) 4+ wi(py cos® @ + ug sin® 0) + s* (g + po) —

2s(wy g cos ncosa 4+ wypg sin ysin a — wapy cos @ sin o + wapy sin  cos a)

The partial derivatives of f are given by

fa = 2s[(wyipq cosn+ wapgsin @) sin o — (wypg sin np — wap cos @) cos )]
fs = 2s(p1 + p2) — 2(wipy cos ncos a 4+ wypg sin psin a — wapy cos B sin o + wapg sin f cos a)
To find possible minima we equate these derivatives to zero

fa =

fs =

Again, solutions with s = 0 can be ignored since they do not correspond to the global minimum
(for a similar reason as in the proof of Theorem 1).

When s # 0, f, = 0 implies

w1 g SN 7 — wapy cos

w1 b1 €08 1 + wopig sin

tana™'" =
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fs = 0 implies

min _ W11 COST + wapg sin 0
~ cosa™ (g + 13)

and, similarly to Eq. 21,
7 = (g cos® g+ g sin? ) + W cs? 0 + gz sin?0) — (uy + pz)(s™)E (28

We substitute s and cos a™™

, using the identity cosa = \/%, into Eq. 28. After

1+4tan? o
some manipulations, we obtain

\ min H1p2 2 2 .
Ny = = —" (wf + w5 — 2wywssin(d — 29
S P ( 1+ w3 1wy sin( 77)) (29)

Note that

(PPHYIB(PPY) = (PHYPY(PHTPrPPT = (PHY(PTP)(PTP)PY = (PT)'PT =B
(30)
from which it follows that

w? = X"BX =#'B7
w: = YTBY =§'By (31)
wywycos(§ —n) = XTBY =T By

We substitute the identities from Eq. 31 into Eq. 29, obtaining the expression for Nj,, in
Eq. 26.
O

The derivation for p; and pg is given in Appendix E.

The sub-optimal solution in the plane can be used to improve the bounds on the image
metric, which were previously discussed in Theorem 4.

Theorem 6: Let 0 < Ay < Ay < Az be the three eigenvalues of PTP, then
*Naf + A1*7\7257’ S IVim S E\'Taf + h(A% AS)L}Vt'r (32)

where h(Ag, A3) = ﬁ, the Harmonic Mean of Ay, As.

Az 1Az

Proof:  The eigenvalues of the characteristic matrix B are A , /\1 , and 1 . (This is shown

in Appendix E.) Since 1/p1 and 1/uy represent the eigenvalues of a section of B it holds that
(see, e.g., [ST6] p. 270)

1 1 1 1
—>—>—>—
A M1 Az K2
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Using Eq. 27 we obtain that

. 2 2 2
jVim = 1 *Nt'r =71 1 thr < 71\7257“ = h(A%AS)*NW

M1+ o = + L L

231 2] E A3

And, using Eq. 23 we obtain the upper bound

Nim < IVaf + A}im < jvaf + h(A27 AS)*NH’

Corollary 7:

jvaf + Alj\TtT < ]Vim < ]Vaf + thT (33)

Note that, since h(a,b) < 2min{a,b} for every a,b, we have the following corollary.

Corollary 8:

jvaf + Al*/VtT < *Nim < *Naf + 2A2*Nt'r
We cannot yet improve the lower bound in theorem 4; but we conjecture that

Conjecture 1: Let 0 < Ay < Ay < A3 be the three eigenvalues of PI'P, then
Nog+ A1, A2) Ny < Nipw < Nog+ (A, A3) Ny, (34)
Motivation: We know that if the two data points )_(),}7 lie on the ellipse whose principal
axes are of length Ay, Ay (the smallest cross-section of the ellipsoid B), then
Nim = jVaf + h(Alv AQ)IVW

We can show that this solution is a local minimum, namely, it is not possible to improve the
solution by applying small perturbations to the solution vectors.
O

6.2.3 An iterative optimal solution

The solution we obtained in Theorem 5 is sub-optimal; it is not the lowest distance. We now
give the cost function, a function of four variables, which should be minimized to obtain the
precise value of the image metric.
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We first define a coordinate system such that

X = wl(\/xcosﬁcosy,\/5605051111/,\//\7351110)
Y = wg(\//icosfcosn,\//\_gcosfsinn,\//\_35111C)
U = s(\/xcosacosﬁ,\/gcosasinﬂ,\/Esina)
7 = s(\/x(sinﬂcosy—|—sinacosﬂsinﬁ/),\//G(—cosﬂcos*/—I—sinasinﬁsinﬂ;’),
—v/A3cos asiny)
r 0 0
B =10 & 0
0 0

where wy, wa, A1, A, A3, (, 1, 0, and v are known, and s, a, § and v are {ree.

Note that this setting of coordinate system is similar to the one used in Theorem 5, but
now # and ¥ lie on an ellipsoid rather than on an ellipse.

In this notation the free parameters are selected so as to satisfy the two rigid constraints,
@' B@ = #T Bv and 4! BT = 0. To compute the image metric, the following function should be
minimized.

f(s,a,8,7) = Ai(scosacosf — wy cosfcosv)? + Ay(scosasin f — wy cos fsinv)? +

Az(ssin o — wy sin 0)2 +

Az
As

scos 3 cosy + ssinasin Fsiny — wy cos sinn)? +

(
(
A1(ssin B cosy 4 ssin a cos 3 siny — wy cos { cos n)? + (35)
(
(—scosasiny — wysin ()?

Ny, is the global minimum of f(s, a, 3,7). Assuming that f(s,a,3,7)is convex in the area
that contains both the global minimum N;,, and the sub-optimal solution (N,f + Ny, ), we can
employ the following iterative method to compute N;,:

1. compute N,

2. improve the solution by any gradient-descent method until a local minimum is obtained.

If the convexity assumption is correct, this method returns the correct image metric, otherwise
it may return a sub-optimal solution.

7 Applications

In this section we describe possible applications of the theory described above, and some com-
parisons to other methods: in 7.1 we illustrate the outcome of using the new transformation
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metric with a real example; in 7.2 we demonstrate an image understanding application, where
the true dimensions of a photographed battery charger are estimated by minimizing the trans-
formation metric; finally in 7.3 we compare the distances between 3D objects and 2D images,
obtained by alignment, to our results.

7.1 Experiments with real images

We have applied the transformation metric to real images. In this experiment a 3D model of
a chair, including twelve of its feature points, was given. Four images of the chair at different
orientations, as well as two more images of two different chairs, were photographed (see Figs. 3-
4). Twelve feature points corresponding to the model points were manually extracted from
these images. The model was compared to the 6 pictures using the transformation metric.
Figs. 3-4 also show the model points in the best view according to the transformation metric,
overlaid on their corresponding points in the reference image. We can see that albeit the model
chair is compared in Fig. 4 to different chairs, the matching obtained is relatively good. Note
that in Fig. 3 the matching between the model and the images of the same chair is not perfect
due to errors in the 3D measurements and the weak perspective approximation.

The distances between the model of the reference chair (condition number 5.25) and the six
images of Figs. 3-4 are given in Table 1. It can be seen that the transformation metric values
obtained for the images of the same chair (range between 0.04 and 0.06) are significantly smaller
than those of the other chairs (range between 0.41 and 1.08). Similar results are obtained for the
affine metric and the various bounds. As is expected, the affine metric always underestimates
the image metric. The tightest upper bound is 10%-30% larger than the lower bound, and the
worst upper bound for the same chair (2.73 for the top left image in Fig. 3) is still much lower
than the lowest upper bound for the other chairs (5.587 for the left image in Fig. 4). Thus,
the bounds suffice to discriminate between the images of the same chair from the images of the
other chairs.

7.2 Using the metric in 3D reconstruction

Here we demonstrate the usefulness of the transformation metric by using it in an image
understanding application. In this application we attempt to infer the dimensions of an object
from a single view. We will use an image of a battery charger as an input (Fig. 5). Suppose that
we can identify the object either by recognizing it as a box of some arbitrary dimensions or by
identifying certain surface markings on the object. Our task now is to estimate the dimensions
of the box from the image coordinates of the seven visible corners of the charger.

To find the actual dimensions of the battery charger, we search the parameter space uXvXw,
where u is the depth of the charger (the width of the left face), v is its height, and w is the
length of the front face. Since under the weak-perspective projection model we can infer the
dimensions of objects up to a scale factor only, we may set one of these parameters to be
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Figure 3: Top and middle rows: four images of a chair, with feature points marked on one of them for illustration
(but not all points were used here), for which the 3D coordinates of the points are known (i.e., the model is
given). Bottom row: for three of the images, the original feature points of the image are marked by +; for
comparison, the feature points of the model, in the closest image according to N, are marked by diamonds.
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Figure 4: Top row: two images of different chairs, with feature points marked on one of them for illustration.

Bottom row: the original feature points of the image are marked by +; for comparison, the feature points of the
model chair (shown in Fig. 3), in the closest image according to Ny, are marked by diamonds.

Same chair (Fig. 3) Other chairs (Fig. 4)
Top left | Top right | Bottom left | Bottom right Left | Right
Ny, 0.060 0.048 0.053 0.040 1.080 0.410
Nayy 1.745 1.352 1.240 1.240 4.008 5.364
Lower bound (Eq. 19) 1.971 1.582 1.510 1.450 5.587 5.876
Upper bound (Eq. 19) 2.730 2.319 2.332 2.122 9.777 7.680
Tighter (Eq. 32) 2.336 1.941 1.916 1.778 7.719 6.731
Tightest (Eq. 33) 2.313 1.884 1.878 1.755 7.350 6.514

Table 1: The transformation metric values N¢., the affine metric, and the various bounds computed for the
four chairs in Fig. 3 and in Fig. 4. Except for the transformation metric, the values are normalized so they reflect
the average distortion in pixels of a single feature point.
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Figure 5: A picture of a battery charger, whose dimensions are: depth - 22.5cm, length - 28cm, and height -
19cm.

constant and search the space of the other two measurements. In our experiment we set w to
its true value, 28cm, and searched the space of the other two parameters, u and v.

In Fig. 6 the upper limit on N;,,, given in Eq. 32, is plotted for each pair of parameters. The
first search was done on a coarse scale (Fig. 6a). The minimum of the error bound is obtained
for w = 22.6, v = 19.1, which is the (correct) answer with certainty of +2 cm for u, and +1
cm for v. The second search was done on a finer scale (Fig. 6b). The minimum of the error
bound is obtained for v = 22.06, v = 19.1, which is the answer with certainty of £0.28 cm in
each dimension. This final result provides a reasonably good estimate of the dimensions of the
battery charger, with an error of ~ 0.5cm in one dimension (u).

7.8 Simulations

To test the presented metric we have compared it with the alignment method. As was mentioned
in Section 2 the alignment method involves the selection of a small subset of correspondences
(alignment key), solving for the transformation using this subset, and then transforming the
rest of the points and measuring their distance from the corresponding image points. The
obtained distance critically depends on the choice of alignment key. Different choices produce
different distance measures between the model and the image. The results are almost always
sub-optimal, since it is usually better to match all points with small errors than to exactly
match a subset of points and project the errors entirely onto the others.

In our simulations, models composed of four points were projected to the image using weak
perspective projection. Gaussian noise (with standard deviation 0.05 of the radius of the 3D
object) was added to the obtained images. Using the expression for Ny given in (20), we
computed the upper and lower bounds on the image metric between the model to the noisy
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Figure 6: Plots of the upper bound on N, (Eq. 32), when comparing the picture in Fig. 5 to a box model
whose dimensions are u X v X 28cm. (a) Plot of the bound, for coarse sampling in log scale of u € [13.9 — 86.1cm]
and v € [14.5 — 41cm]. (b) Plot of the bound, for fine sampling in linear scale of v € [19.82 — 25.42cm] and
v € [16.3 — 21.9cm].

images. In addition, we computed the corresponding alignment distances, each reflecting the
distance between one model point and its predicted projection in the image after the alignment
of the remaining three image points to the model. Note that in computing the alignment
distances we considered only those distances that are obtained from correct matches (and so in
the error free case these distances would vanish).

The figures below summarize our results. Fig. 7 shows the percentage of alignment distances
which actually lie within the bounds on the image metric computed by our metric (given in
Eq. 32). It can be seen that when the bounds are relatively tight (when the condition number
on the characteristic matrix B is relatively low) most of the alignment solutions exceed
the upper bound. This is surprising since the alignment distances are computed for correct
matches. Only when the condition number gets larger do the alignment distances lie within
the bounds. When a tighter upper bound is used (Eq. 33), a smaller portion of the alignment
distances actually lie within the bounds.

Fig. 8 shows the maximal and minimal alignment distances obtained in different runs relative
to the upper and lower bounds on the image metric, given in Eq. 32 and Eq. 33. It can be seen
that in many cases even the best alignment solution (the one that minimizes the distance) still
exceeds the upper bound.

The simulations demonstrate that the bounds on the image metric developed in this paper
provide approximations to the metric that are often preferable to the distances obtained by the
alignment method. These bounds are better for “symmetric” objects, objects whose convex-hull
is close to a sphere, than for objects which are significantly stretched or contracted along one
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Figure 7: The percent of alignment distances which lie within the bounds on the image metric computed from
our closed-form equations. The abscissa gives the condition number of the characteristic matrix, B, which
determines how far apart the lower and upper bounds on the image metric are. The larger the condition number
is, the further apart the bounds are. Solid graph: alignment distances relative to the wide bounds from Eq. 32.
Dashed lines: alignment distances relative to the tight upper bound from Eq. 33.

spatial dimension.

It should be noted that measuring the difference between models and images is not the only
objective of the alignment method. More importantly, by relying only on a small number of
correspondences, alignment enables recognizing non-segmented objects in cluttered scenes in a
worst-case polynomial time complexity. However such a strategy would often yield errors in
estimating the transformation (see, [AG93, GHA92, GHJ92]), and so typical algorithms often
try, after obtaining an initial alignment, to extend the match with more correspondences (e.g.,
[AG93, F'B81]). Consequently, an accurate and fast estimation of the alignment transforma-
tion at this stage can reduce the amount of computation that is necessary to eliminate false
hypotheses. The simulations above demonstrate the potential use of the transformation metric
in this context, both by providing bounds to eliminate erroneous hypotheses and by providing
an initial guess for an iterative pose estimation.

8 Conclusion

We have proposed a transformation melric to measure the similarity between 3D models and
2D images. The transformalion metric measures the amount of affine deformation applied to
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Figure 8: The maximal and minimal alignment distances are plotted for a number of models and objects,

varying along the abscissa. The distances in these plots were normalized so as to obtain constant lower and
upper bounds (the lower bound is set to 1; the upper bound is set to be the average ratio of the upper bound to
the lower bound in each sequence of runs). Small (between 1.5 and 2.5) and large (between 4.5 and 5.5) condition
numbers are used, and the results are compared to both the wide (Eq. 32) and the tight (Eq. 33) bounds. (a)
Small condition number, wide bounds. (b) Small condition number, tight bounds. (c) Large condition number,

wide bounds. (d) Large condition number, tight bounds.
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the object to produce the given image. A simple, closed-form solution for this metric has been
presented. This solution is optimal in transformation space, and it is used to bound the image
metric from both above and below. The transformation metric presented in this paper can be
used to obtain a direct assessment of the similarity between models and images or as a mean
to evaluate the image metric. The proposed metric can be used in several different ways in the
recognition and classification tasks. We conclude the paper with a brief discussion of possible
applications of the metric.

The transformation metric provides a sub-optimal closed-form estimate for the image metric.
A scheme which uses this measure will prefer “symmetric” objects, objects whose convex-hull
is close to a sphere, over other objects which are significantly stretched or contracted along one
spatial dimension. This solution can also be used as an initial guess in an iterative process that
computes the optimal value of the image metric numerically. The sub-optimal solution derived
using the image metric provides a better estimate for the image metric than the affine solution,
which has been used for example in [DD92] as the initial guess for computing the perspective
image metric numerically.

Another potential application of the metric is in evaluating hypothesized correspondences
in an alignment algorithm. Alignment is a method for evaluating the similarity between models
and images based on a small number of correspondences. While the use of few correspondences
is advantageous for recognizing objects in polynomial time complexity while overcoming partial
occlusion, it may often yield errors in estimating the distance between models and images (see,
e.g., [GHA92]). Therefore, typical algorithms often try, after obtaining an initial alignment, to
extend the match with additional correspondences (e.g., [FB81]). The bounds derived on the
image metric may be used at this stage to evaluate potential correspondences. Our simulations
show that these bounds often provide better estimates than those provided by using alignment.

Finally, our transformation metric can be used in schemes that attempt to classify objects.
A scheme for classification was recently proposed [B93], in which classes contain objects that
share the same basic features in distorted positions. Our metric can be used under such a
scheme to evaluate the amount of affine distortion applied to the object relative to a prototype
object in order to determine its class identity.

Appendices

A Metric properties

The measures described in this paper compare entities of different dimensionalities: 3D objects
and 2D images. We define a metric for comparing such entities as follows. Let P be a set of n
model points, and let ¢ be a set of n corresponding image points. A distance function, N(P,q),
defined using a difference function 9(q, ¢') between two views (see Section 3), is called a metric

if
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1. N(P,q) > 0 for every model P and image q.

2. N(P,q)=0if, and only if, ¢ is a rigid view of P.
3. V¢', N(P,q)<N(P.q)+0(¢—q')

For the image metric, N;,, @ is simply the Euclidean distance between corresponding points in
the compared images. It is straightforward to see that the conditions hold for this case. In the
rest of this appendix we prove that these conditions also hold for the transformation metric,

7
Nyp.

Transformation metric

The transformation metric, Ny, measures the amount of “affine deformation” applied to the
object in the image. The metric conditions for Ny, are defined as follows.

1.
2.

N(P,q) > 0 for every model P and image g.

N(P,q) = 0 if, and only if, there exists a rigid view which coincides with PP*q. (In
other words, the best afline view of the object is a rigid view and there is no “affine

deformation”.)

. VYq¢', N(P,q) < N(P,¢')+||Pt(q—¢)

Theorem 9: N,, is a metric.

Proof:

1.

Ny > 0. Ny minimizes a non-negative distance function. It is therefore always non-

negative.

Ny = 01if, and only if, the best affine view is rigid. Denote Z and ¥ the  and y coordinates
of the points in ¢, according to Eq. 20

*/Vtr = O
—= (@B 4y By)? = 4@ Bz - § By — (zT By)?)
= (@TB#)*+ 27T BZ - 4T By) + (7' By)* = 47T BZ - 4 By) — 4(&T By)?
—  (Z'B7 - § BYy)* = —4(z" By)?
This equation holds if, and only if, both sides are zero implying that
@'Br = §'By
By = 0

The best affine view of the object is given by PPtx, PPTy. Following Eq. 16, the best
affine view also satisfies the rigidity constraints above, and therefore it forms a rigid view.
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3. The metric Ny, is defined in Eq. 18 as:

Ner(Pog) = min [[PTE =7+ [[PTF- 7" st o =0, FLF =77
71,72 €

71,72
Let @; and @, be the optimal vectors for ¢', that is
Nip(P,q') = ||PTE —@1|* + || PHG — |
And we obtain
No(P,q) +[1PF(q = ¢
1PFE — @ ||* + | PTF — @) + | PTE — PHE|? + || PTg - PPy
|P*2 = Gl +1|P* g - o

omin ||PYZ - 7|)* 4 [|PT - 7||* = Niw(P,q)
7’1,7‘2€RS

(AVARLY]

B The computation of the characteristic matrix

In Eq (15) the characteristic matrix B was defined using the matrix of Fuclidean model point
coordinates P. We now give a more general (though equivalent) definition of B using a matrix of
affine model point coordinates ¢J. Namely, the point coordinates in ) are given in a coordinate
system whose axes are not necessarily orthonormal. This definition makes it possible to compute
B directly from three or more images with a completely linear algorithm, which requires no
more than pseudo-inverse.

We select an affine coordinate system whose independent axes are defined by three of the
object points, to be called the basis points. Let Pp,s denote the submatrix of P corresponding
to the coordinates of the basis points, and let () denote the affine coordinates of all the object
points in this basis. It immediately follows that:

P =Q - P
Let Bp,s denote the characteristic matriz of the three basis points. From Eq (15) it follows that
Bras = (Pb_ai)TPb;i (36)
Finally, from the definition of pseudo-inverse it can be readily verified that
P = (Q- P = PLAQY (37)

We now describe B in terms of @ and By,s. Substituting Eq (37) into the definition of B
in Eq (15), and using Eq (36), we obtain

B=(PHTPt = Q") B, - Q7

The linear and incremental computation of the matrices ) and Bp,s from at least three
images of the object points is described in [WT95].
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C Eliminating translation

In this appendix we show that translation can be ignored if we set the centroids of both model
and image points to be the origin. To show this, we prove that the best rigid and afline
transformations maps the model centroid to the image centroid. We begin by showing that,
given two sets of n 2D points (images), the best translation that relates the two images maps
the centroid of the first image to that of the second.

Lemma 10:  Let p1,...,p, € R* and ¢1,...,q, € R* be two sets of corresponding points.
Denote by p = %Z?:l p; and ¢ = %Z?:l ¢; the centroids of py, ..., p, and qq, ..., q, respectively.
The translation t* € R? that minimizes the term

k13
D*=min > |pi+1t— ¢l
o 2 Ipi +t — g

is given by

r=q-p
Proof:  Assume, by way of contradiction, that the best translation is given by
V=146

for some nonzero § € R%. Denote the new term by D’
n
D= Y e+t = al?
=1

= ZHPH—If* + 6 — g?

=1
= S+ —al?+2Y (i + 0 —aq) -8+ |6
=1 =1 =1

= D*42n(p+t*—q) -6+ n|d?
Since t* = ¢ — p, we obtain that
P+ —q=0
and, therefore,
D' = D* + nl|6|
which implies that
D*< D
contradicting the initial assumption.

O

Using Lemma 10 we prove that the best rigid and affine transformations map the model
centroid to the image centroid.
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Theorem 11: Let Py,...,P, € R® be a set of n model points, and let qi,...,q, € R? be the
corresponding n image points. The rigid transformation {s*, R*,t*} that minimizes the term

n
* = mi MRP; +t — ¢l
(i g oAl

where Il denotes the orthographic projection, satisfies
g=s1R*P+t*

Proof:  Denote by p; = s*IIR*F;; according to Lemma 10

"=q-p

Since

1 < ~
pi= 3 SUR'P = STRP
: n
1 =1
we obtain that
Gg=p+1"=s"IIR*P + "

The theorem holds also if we consider affine transformations rather then only the rigid ones.
The rotation matrix R is replaced in this case by a general linear transformation A.
O

Theorem 11 shows that the best rigid and affine transformations map the model centroid to
the image centroid. Consequently, if the two centroids are moved to the origin, the translation
component vanishes. This follows immediately from Theorem 11, since

q=s1R*P+1t*

then B
P =

<
[
=)

implies

D Best View

In this appendix we develop an expression for the best view of the transformation metric, Ny,.
The derivations here follow the notations used in the proof of Theorem 1, from which we have
that

1
s = 5\/10% + w2 4 2wywy sin @

scosa = §(w1+w251110)

ssina = 5’11]2 cos @
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According to Theorem 2, 7,7, € span{dy,dz}. We can therefore express i"; and 7 by
o= Pidy 4 Pady
Ty = 71di + Y202

where (1, B2, 71, and 75 are scalars. Substituting the definitions of the vectors 7, 75, @, and
do we obtain

prwy + Pawg cos 8

—ssina = [owysind

SCOS Y

and

ssina = yrwy + yawq cosd

scosa = 7awysinb

Therefore

ssina cosf + scosasin @

fr =

wi sin 6
ssin o

Pz = _w2 sin 6

ssinasin @ — scosacosf

7= :
wi sin 6

S COsS &

Y2 = ;
ws sin 6

Substituting for s and a we obtain

pr = 1(1‘|‘ =2

2 wi sin 6
cos 6
2sin 6

1 w1

Y2 = 5(1 +

B =71 =

)

ws sin 6

And substituting for wy, wq, and 6

1 g1 By
pr = B 1+ Y
/T BT - T B — (77 BY)?

fa=m = -
2\/9?TB5- 7T B — (ZT Byj)?
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Now, to obtain the best view we use the following identities
T = P 7 = Bidy + Bads . = Pt&
g = Pry T2 = M+ 72a2 a; = Pty
Therefore

¥ = PPY(6iT+ B27)
yo= PP+(715-|-”/2?7)

E Computing the eigenvalues of an ellipse

In this appendix we compute the eigenvalues of the ellipsoid B and the eigenvalue of an elliptic
section of this ellipsoid.

We first show that the eigenvalues of the characteristic matrix, B, are /\1—1, %, and /\1—3,

where A1, Az, and A3 are the three positive eigenvalues of PTP. This is derived as follows.
1 1

Bi = i <= P(P'P){(P'P)T' Pla=1d

Multiplying both sides by PT we obtain that
1
(PTpP)y~tpPla = XPTJ

Denote b = PTg
(PTP)Y'b= b

> | =

which implies that B B
(PTP)b = \b

Given X = PPtZ and Y = PPty in R3, and a positive definite 3 x 3 matrix B, let B’
denote the ellipse defined by the intersection of the ellipsoid B with the plane span{X,Y}. We
need to find the eigenvalues of B’, %1 and %2

Without loss of generality we assume that X and Y lie on the ellipsoid defined by B (namely,
we normalize the vectors so that XTBX = #T B = 1 and YTBY = §TB7 = 1). Let 8 denote
the angle between X and Y. We define two orthonormal vectors & and 7', which span the
plane spcm{/\_;, }7}, as follows:

., X
X = —_—
| X|
BB
- Y- Xp

|Y|sin 6
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Every vector 7 € span{)f,}_;} can be written as
7= ad + By

and the intersection ellipse B’ is given by

iB5=1 < (a ﬁ)ATBA<g>:1

for A the 3 X 2 matrix whose columns are ¥ and §'. We therefore have that

B/ — ATBA — ((f/)TBf/ (f/)TB/J/)

@) "'By (7)) BY

Substituting the expressions for &’ and 7', we get

1
T
BT = E
@y = ANV cosdXTBY) 4 ¥ costd
| | | X|2|Y|?sin% @
@y = XBYIX] - [Y]cosd

| X [?]Y|sin @

To obtain the two eigenvalues of B’ :—1 and %2, we solve the characteristic equation of B’,
whose roots are

|IX]2 4+ |Y]? = 2|X]|]Y|cos8 - k % \/(|X|2 + V]2 = 2|X||Y]| cos @ - k)2 — 4| X |?|Y |2 sin? (1 — K2)
2| X |2|Y|%sin? 6

~u

for k = XTBY = _)TBZZ | X| = |PP+5|7 Y] = |PP+37|7 and cos § = |§|.|Y|'
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