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Abstract

Invariance under a group of 3D transformations seems a desirable component of an effi-
cient 3D shape representation. We propose representations which are invariant under weak
perspective to either rigid or affine 3D transformations, and we show how they can be com-
puted efficiently from a sequence of images with a linear and incremental algorithm. We show
simulated results with perspective projection and noise, and the results of model acquisition
from a real sequence of images. The use of linear computation, together with the integration
through time of invariant representations, offers improved robustness and stability. Using these
invariant representations, we derive model-based projective invariant functions of general 3D
objects. We discuss the use of the model-based invariants with existing recognition strategies:
alignment without transformation, and constant time indexing from 2D images of general 3D
objects.

1 Introduction

Efficient object representation is a key to a successful application of pattern recognition methods.
Representations which are invariant to the actions of a group of transformations, describing any
aspect of the imaging process, are of particular interest in vision. Such representations are not
sensitive to changes in the appearance of objects, which are due solely to the imaging process and
not to the quality of the objects. One group is given by the possible transformations of the camera,
e.g., 3D rotations and translations. Other transformations describe the change of illumination.

In this paper we are interested in the group of 3D transformations. We describe a hierarchy of
invariant representations, produced by the particular selection of the group of 3D transformations

(cf. [11]):

Complete: The complete representation of a scene includes the 3D coordinates of each point,
possibly as a depth map, and the pose of the camera relative to the object in each image.
This representation is typically sought in reconstruction algorithms in computer vision.

Rigid invariant: A description of the 3D shape of objects which is invariant to the action of
the group of similarity transformations in 3D, which includes rotations, translations, and
isotropic scaling. Rigid representations are unique.
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Affine invariant: A description of the 3D shape of objects which is invariant to the action of the
group of linear transformations in 3D and translations. The group of affine transformations
includes the group of similarity transformations. Affine representations are not unique.

A complete representation describes uniquely the object and its orientation relative to the
camera. It includes the largest amount of information, and therefore not surprisingly it is the
most difficult to compute. Moreover, it has been demonstrated many times that errors introduced
in the pose computation, which is rather sensitive to noise, often lead to large errors in the shape
computation. Nevertheless, most Structure From Motion algorithms attempt to compute a complete
representation of the scene, namely, structure in the form of a depth map and pose, using a sequence
of 2D images (see, for example, [18, 7]).

The invariant representations do not require the computation of camera calibration (or pose),
and therefore they should be easier to compute robustly. Moreover, an invariant representation
is a natural frame of reference for the integration of information across time. Therefore when the
pose information is not needed, which is typically the case in recognition tasks, the use of invariant
representations promises significant computational advantages. Affine invariant representations in
particular, and their computational advantages, were discussed in [11]. Affine representations were
initially used for recognition applications, in geometric hashing [12] and linear combination [24].
The cost of using an affine representation is more false positive matches, since affline representations
are not unique.

3D shape representations, which are invariant to projective 3D transformations, are of particular
interest for the recognition of 3D objects from 2D images. Invariance with respect to projective
transformation is harder to accomplish. Recently, Burns et al. [2] (as well as Clemens & Jacobs
[3] and Moses & Ullman [16]) have shown that unconstrained projective invariant functions do not
exist. Most of the research in the area of projective invariance has concentrated on the identification
of computable invariances in some special cases [26]. In fact, most of the published results address
planar collections of points or curves. One elegant example of the use of such invariants, e.g.
pairs of plane conics, has been recently given in [5]. More generally, Moses & Ullman [16] studied
the existence of projective invariants for specific classes of objects, such as bilaterally symmetric
objects.

In this paper we describe a particular hierarchy of affine and rigid invariant representations. We
describe the transformations between different representations, and show some object symmetries
that are readily mediated by these representations. The justification for these representations is
computational, both in model acquisition and model-based recognition:

Model acquisition: To compute these representations we discuss a hierarchical shape from mo-
tion algorithm which, given correspondence, requires solving two linear systems of equations,
one for afline shape and one for rigid shape. The algorithm requires at least three frames
for the rigid shape, and at least two frames for the afline shape. Additional frames are in-
corporated into the linear systems to increase robustness. This algorithm appears simpler
and easier to use in an incremental way (as additional data is accumulated) than existing
structure from motion algorithms. Moreover, the computation of the “usual” depth map and
pose can be obtained with an additional, almost trivial, non-linear step.

Model-based recognition: Since unconstrained projective invariants do not exist, we study the
existence of model-based projective invariants. Using our hierarchy of invariant represen-
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tations, we describe two model-based projective invariant functions for any non-planar 3D
object. It immediately follows that a projective invariant function can be defined for any
finite set of 3D objects. The computational complexity of these invariant functions depends
linearly on the number of objects. We also show how model-based invariant functions can be
used for recognition with constant computational complexity, providing a constant time index
into a lookup table (cf. [12]). The cost is the need to use large multi-dimensional lookup
tables (two- and four-dimensional in our examples) instead of a one-dimensional table.

The rest of this paper is organized as follows: in Section 2 we describe affine and rigid invariant
representations of 3D shape. In Section 3 we describe affine and rigid model-based invariant
functions. In Section 4 we discuss model acquisition, namely, the linear computation of invariant
shape from motion. In Section 5 we apply the model-based invariant functions to existing model-
based recognition techniques: we describe alignment without transformation, and the generalization
of geometric hashing to 2D views of general 3D objects.

2 Invariant representations of 3D shape

We first describe a hierarchy of invariant representations which can be computed hierarchically
with a linear algorithm, introducing an affine-invariant representation of objects in Section 2.1.1
and a rigid-invariant representation in Section 2.1.2. We discuss the linear computation of these
representations in Section 2.2. Alternative representations, and the transformation between differ-
ent representations, are described in Section 2.3. Finally we describe some symmetries, which the
rigid invariant representation readily reveals, in Section 2.4.

2.1 Definitions:

Let D : 2 — R™ denote a representation function from the space of objects to R”™, where for
every object w € Q, D(w) is a description of the 3D shape of the object. Let G be a group of
transformations acting on the space of objects {2 such that an element g € G is a transformation
g : Q0 — Q, together with the composition of transformations as the product rule. A representation
function D is invariant with respect to the group of transformations G if D(g(w)) = D(w),Vg € G.

Generally, the camera’s motion is characterized by the rigid group of transformations G,;,,
which includes 3D rotations and translations. When weak perspective is assumed, G,;, is the
similarity group, which includes rotations, translations, and isotropic scaling. The weak perspective
approximation, which is assumed in this paper, is valid when the relative distances between points
in the object are much smaller than their distances to the camera.

A representation function D, which is invariant to G,;;, will be called a rigid-invariant repre-
sentation. During recognition, the camera’s position with respect to objects is usually unknown.
A rigid-invariant representation is therefore desirable since it eliminates the need to compute the
orientation of the object.

For computational convenience, we also consider the group of transformations G, s, which in-
cludes 3D translations and linear (or affine) transformations [11]. A representation function D,
which is invariant to G,s¢, will be called an affine-invariant representation. Affine represen-
tations cannot be unique: objects which are related by a linear transformation will have the same
affine representation. Note that an afline-invariant representation is also rigid-invariant.
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Let (P) = {P}",, P € R?, denote the 3D coordinates of an object w composed of n + 1
features. To account for translations, we fix the origin at point Py = (0,0,0). Let {p;};*; denote
the 3D vectors corresponding to the remaining n points.

2.1.1 Affine shape

Let vq, vy, v3 denote three independent vectors in R>. The vectors {Vl}?zl are the basis of an affine
coordinate system V (a system whose basis is not necessarily orthonormal). Every vector p; € R?
can be written as a linear combination of this basis:

P = bllV1 + leVQ + béV:a

The vector b! = (b}, b}, b%) is an affine invariant of point P, (a related representation is discussed in
12]). Given a particular basis of three independent vectors {v;}?_, defining the coordinate system
P P =1 g y
V, the affine coordinates {b'}7; of the set of points (P) are unique, providing an affine-invariant
representation of the object.
Since the above affine-invariant representation depends on the basis, and in order to obtain
a representation which depends only on the object, we choose the basis from the set of vectors
11 . Let P denote the affine coordinate system whose basis is p;, p;, px. We have:
Piji=1 y P:,P;, P

p; = bip; + bhp; + bipr, VI (1)

Note that in P b* = (1,0,0), b’ = (0,1,0), and b* = (0,0, 1).

Dusy = {bl}?:1 is an affine-invariant representation of object w since any linear transformation
of the coordinate system does not change the values of the coefficients b! in Eq (1). Because of
the invariance to linear transformations, the computation of Dyss does not require knowledge of
the aspect-ratio of the camera. b can be computed from (at least) two images (or one image
and a perpendicular optical flow) by solving a linear system of equations. b does not contain 3D
information on the five points (such as depth).

2.1.2 Rigid shape

We represent the Euclidean metric information on the basis points using their inverse Gramian
matrix B = G™!, which is invariant to rotations of the coordinate system but not to general linear
transformations. The Gramian of the basis points F;, P;, P is the following 3 X 3 symmetric matrix

G:

p/pi plp; plp:
G=|p/p; PP, P/ pPK (2)
p/pPr PIPx PiPk

The elements of G contain all the 3D information on the geometry of the four basis points, such as
angles and length. Thus, given a particular choice of coordinate system, the depth of all the points
can be computed from G (see discussion in Section 2.3.2).

D,iy = [B,D,sy] is a hierarchical rigid-invariant representation of object w. The computation of
B (and Dgyy) is linear and incremental, requiring at least three images, as described in Section 2.2.
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2.2 Computation
2.2.1 Affine shape:

Given the image coordinates of five points (zo,v0), (z1,91), (2,92), (23,¥y3), (z4,ys), assume
without loss of generality that z¢9 = 0,y9 = 0, namely, the origin is defined to be at point 0.
(Otherwise, replace any z; in the following expressions by z; — x¢, and y by yi — yo.) From the
definition of b, it follows that in any image:

3 3
Ty = me, and  y4 = Zblyl- (3)
=1 =1

It follows that each image gives two equations that are linear in the elements of b. There are
three unknown elements in b, thus we need three equations, or at least two views, to compute b.
(Note that the computations of b does not require knowledge of the aspect-ratio of the camera.)

Two views give us 4 equations, 1 too many. Indeed, it can be readily shown that it is sufficient
to use one view and the perpendicular component of the 2D motion field at each point. (This result
has also been shown by Shashua in [19].) This is useful when the aperture problem constrains the
computation of the 2D motion field, and for the generalization of this analysis to continuous optical
flow.

More specifically, if the perpendicular optical flow vector at point (z;,y;) is (] — 21,9, — w1),
and let m; denote the slope of the line perpendicular to (2] — z;,y] — yi), then b can be computed
from the two equations in (3) and the following equation:

3
vy + mgal = Z bi(y; + myay).
=1

2.2.2 Rigid shape:

Given the image coordinates of Py and the three basis points (2o, v0), (24, ¥i), (2}, y;), and (g, &),
assume without loss of generality zg = 0,59 = 0. (Otherwise, replace any z; in the following
expressions by z; — zg, and y; by yi — yo.) Let x = (24,25, 2%) and y = (¥4, ¥;, Y&)-

By fixing the origin in the first point Py = (0,0, 0), we account for the translation and can ignore
it in further discussion. Let P; = (X,,Y;, Z;), P; = (X;.,Y;, Z;), and P, = (X, Y, Zy) denote the
3D coordinates of the three basis points in some fixed frame of reference with origin at Fy. Any
image is the orthographic projection of the object rotated from this absolute frame by a rotation
matrix R = {ry »}>, ,—; and scaled by s.

First note that:

X, Y Z sT11 x; X, Y Z sT91 Ys
X, Y Z; srig | = | 25 |, X; Y Z; srae | = Y5 | -
Xy Yi Zg 8713 Tg Xy Y Zg 8T23 Yk

Using the notation

X; Y, Z 711 721
Y, Z; |, ri=|rz2], and rp= | re (4)
Xy Yo Zg T13 23

A

I
s
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we can rewrite the above equations as follows:

1 1
r; = EA_IX , ro = EA_ly . (5)

From the orthonormality of the rotation matrix we have:

x'(AAT) 'y =0, x(AAT)Ix —yT(AAT) 'y = 0. (6)

We denote B = (AAT)™!, and rewrite B as follows:

Xi Yi Zi\ (Xi X; Xi p/pPi P/P; PPk
B =|X; v, z||Y v Y= P/P, P,P; PPk (7)
Xe Yi Zg Zi Zj  Zy p/Pr P! Pr PPk

B is the inverse Gramian of the basis points. It follows from Eq (6) that:
x'By =0, and x!Bx-y!'By=0. (8)

Note that we could have started the derivation from any initial 30 configuration of the four
points, rotated from the original configuration by matrix R’. Let A’ denote another initial con-
figuration, where A’ = AR’. It follows that B'~! = A’A’”" = AR'R'TAT = AAT = B~!. Thus
B is invariant of the particular viewpoint, or the orientation of the initial coordinate system. The
invariance of B makes it possible to compute it from a few images, and to use it in a structure from
motion algorithm. (Note that the computation of B requires knowledge of the aspect-ratio of the
camera. )

The equations in (8), which are linear in B, can be used to compute B directly from images by
solving an overdetermined linear system of equations, as will be discussed in detail in Section 4.1.
This computation requires correspondence and the use of at least three images. Since the linear
system in Eq (8) is homogeneous, B is only determined up to a scaling factor. Therefore there are
only five independent unknown elements in Eq (8).

From Eq (8) it also follows that each image gives two linear equations in the elements of B.
Since there are five independent unknowns, we need at least three views to compute B!. This is
the theoretically minimal information required for structure from motion [22, 1]. Note, however,
that three views give us six equations, enough to compute B and to verify that the three views of
the four points indeed come from a rigid object and a rigid transformation. Thus we extend the
minimal structure from motion theorem to the following;:

Extended minimal structure from motion theorem: Assuming weak perspective projection,
three views of four points give enough equations to compute the structure of the points and to verify
that they are moving rigidly.

!Under orthographic projection without scale, three views are still needed, as is shown in the appendix.
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2.3 Alternative representations

We first describe the transformation between two representations of the type D,;,, with differ-
ent basis points (Section 2.3.1). We then describe the transformation from any basis to an or-
thonormal basis (Section 2.3.2). Finally, we describe alternative invariant representations to D,
(Section 2.3.3).

2.3.1 Change of basis:

Let B denote the 3 X 3 Gramian matrix of the four original basis points, and let b® denote the
affine coordinates of point Ps in the original basis. Let D denote the Gramian matrix of another
basis Fy, P, Py, P,, and let d®* denote the affine coordinates of point P in the new basis. Let
S= (b’ b™ b" )T denote the 3 x 3 matrix whose rows are the affine coordinates of the new basis
points in the original basis. It can be readily shown that:

D = (s HiBs!
ds = (S—l)Tbs

2.3.2 Change to orthonormal basis, or depth:

It may be necessary to represent points or surfaces by their coordinates in a Cartesian coordinate
system (i.e., a coordinate system with orthonormal axes). This may be useful when differential
properties of surfaces, such as the Gaussian curvature, are required. We therefore define an invariant
Cartesian coordinate system Q = {X,Y,Z} with orthonormal axes. Let P denote the affine
invariant coordinate system defined in Section 2.1.1. We obtain Q by orthonormalizing the basis of
P, in a similar way to Gram-Schmidt: we choose X to parallel p;, Y € span{p;,p;} is perpendicular
to X, and Z is perpendicular to the X — Y plane.

Let q; denote the coordinates of point P in system Q. Let Q denote the upper triangular
3 x 3 matrix whose columns are q;, q;, qx, the coordinates of the basis points. It follows from the
definition in Eq (1) that q; = Qb', Vi. Since any rigid transformation of the coordinate system
does not change the values of {q;}"_, Dears = {Qb'}, is a rigid-invariant representation of object
w. Deyre is equivalent to a depth map.

It follows from Eq (2) that B~! = Q1'Q. Q, which is the root of B~!, can be easily com-
puted using a decomposition known as Choleski factorization. Since B is positive definite, the
computation of Q from B is straightforward and very fast. Thus the following lemma immediately
follows:

Lemma 1: [Transformation between coordinate systems:] Given a 3D point whose coordinates in
the affine system P are b = (b1,bg,bs), its coordinates in the Cartesian system Q are (X,Y,Z) =
Qb, where B~ = Q7 Q.

The transformation to the new orthonormal coordinate system requires a non-linear step, taking
the root (or Cholesky decomposition) of the original Gramian B~!. Although this root is simple
to compute, it only exists for positive-definite matrices. When the inverse Gramian B is computed
from noisy data, it may not turn out to be positive definite, and the root may not exist. Thus it



International Journal of Computer Vision 10(1):27-42, 1993 8

is computationally more robust to use the rigid invariant representation D,;, rather than a depth
map representation such as Dg4s.

2.3.3 Other representations:

It is possible to represent the set of points (P) by the set of invariant representations of subsets of
four points, thus capturing only local properties of the object. This can be implemented by storing
up to O(n*) 3 x 3 matrices (see [14]).

It is also possible to represent (P) by a n X n symmetric matrix B, the extension of the inverse
Gramian B to n + 1 points. Given four points, matrix B was defined above, using the 3 x 3
coordinates matrix A given in Eq (4), as B = (A71)TA~!. Given n + 1 points, and a n x 3
coordinate matrix A, we define? B = (A+)TA+. Applying similar considerations, it can be readily
shown that the quadratic invariant equations in Eq (8) hold for B as well.

B is of rank 3, and therefore cannot be computed directly from images. It can, however, be
obtained from D,;, directly, since, if we let S denote the matrix whose [-th row is bl

B = (s*)'Bs+

2.4 Symmetry:

In D,;; we represent the 3D geometrical information on four non-coplanar points by their inverse-
Gramian matrix B. Since B contains 3D Euclidean invariant information on the four points, some
symmetries in the 3D configuration are immediately apparent from it. For example, if points 1,2
(e.g., two eyes) have a reflection (bilateral) symmetry with respect to the line going through points
0,3 (e.g., the nose and mouth), then B shows this symmetry as B1s = Bgs and By = Bgy. If the
points’ configuration is a box with sides u, v, w, then

= 0 0
Bx| 0 =% 0
0 0

Thus B can be used to classify 3D objects by their symmetries.

On the other hand, a known symmetry of the object can reduce the amount of images required
to compute B. For example, with known bilateral symmetry there are only four unknown elements
in B, thus two views are sufficient to compute the rigid structure of the four points and to verify
their rigidity. This complements the results discussed in [17, 13], where it was shown that a single
view of a bilaterally symmetric object is equivalent to having two views of the object.

3 Model Based Invariant functions

We now define model-based projective invariant functions (Section 3.1), and describe a rigid and
an affine model-based invariant functions (Section 3.2).

At = (ATA)_IAT denotes the pseudo-inverse of A,
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3.1 Definitions:

Let an object be a set of n points in R>, to be denoted w = {P;}7_,, w € Q. The image of the
object is a set of n 2D points {p;}}'_, (disregarding occlusion), produced by a 3D transformation
g € G of the object, and followed by a projection © which is a 3D to 2D mapping:

p=7(g(F)) pZERQ, 7r:7€3—>722, gEeGQG, PeRr?

A projective view-invariant function f: 7(w) — R with respect to some group of transforma-
tions @ is a real function on the viewed set of points {p;}, which has the property that it is invariant
to the action of the group G, namely, f(7(g(w))) = f(w(w)). More precisely, it is the projection of
a scalar invariant description D on the 3D points {F;}}~;. f is a universal invariant function
if there is no restriction on the domain (2, the set of possible objects (namely, Q = R>").

More precise definitions, as well as the enumeration of the number of invariants under different
transformation groups G and object sets €2, are given in [5, 6]. As discussed in the introduction,
a few recent papers showed that universal invariant functions (which are not constant) do not
exist [2, 3, 16] for perspective and weak perspective projections. Special-case invariants for special
sets of objects 2 are discussed in [16, 5], for example.

another object

Invariant object

/)-’0

Point P,
q

image 1

f(LBb

image 2

Figure 1: An illustration of a model-based invariant function whose invariant value is 0, n = 4.

A projective invariant function f is model-based invariant if its domain of objects is a single
general 3D object, namely, Q@ = {w}, w € R®" (see illustration in Fig. 1). The parameters of the
invariant function depend on the choice of object (thus it is model-based). A composite model-
based invariant function returns a different view-independent value for each object in a set Q
which contains a finite number of general 3D objects. (A composite model-based invariant function
for a set of objects is like a discriminant over that set, with properties undefined outside the set.)

Let G be the similarity group (rigid transformations and scale), and let f be a model-based
invariant function for & = {w}. It is possible that for another object &', f(7(w)) = f(7(g(w')))
for some transformation g. Such false identifications are called accidental matches. If, however,
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f(m(w)) = f(m(g(w))) for all g € G, these false identifications are called non-accidental matches.
It follows from the definition that affine invariants lead to non-accidental matches.

3.2 Examples of model based invariant functions:
Rigid invariant:

Consider an object composed of four non-coplanar 3D points. (If all points are coplanar, there exist
a few other projective invariants, e.g., the affine invariant discussed in [12]). Let {P;};_, denote the
3D coordinates of the four points in some frame of reference. Assume Py = (0,0,0) without loss
of generality, and let {p;};_, denote the 3D vectors corresponding to the three remaining points
(see illustration in Fig. 2). Let B denote the inverse Gramian matrix of the four points, defined in

Eq (2).

(%.Y2)

Point P,
(0,0)

Figure 2: Four 3D points P, whose image coordinates are (z1, y1).

Given the image coordinates of the four points (zg, y0), (z1, ¥1), (Z2, ¥2), (Z3, y3), assume without
loss of generality ¢ = 0,yo = 0. (Otherwise, replace any ; in the following expressions by z; — z,
and y1 by y1 — yo.) Let x = (21,22, 23) and y = (y1, ¥2, y3)-

Definition 1 (Quadratic) Given four non-coplanar 3D points, let

|x'By| + [x'Bx — y’ By|
fB(X7Y) = (9)
[x[ | B |yl

JB s a rigid model-based projective invariant function, which allows accidental matches only. [
returns 0 for all the views of a single object, and possibly for accidental views of other objects.

The model-based invariance of fg follows from Eq (8), since fg(x,y) = 0 for any image of the
object described by B. fp is normalized, so that its value does not depend on the distance from
the camera to the object (or the scale factor). The quadratic invariant function may operate on



International Journal of Computer Vision 10(1):27-42, 1993 11

less than four points if the transformation of the object is restricted. For example, the 3D rotations
group requires only three points.

The equations in (8) correspond to two orthonormality constraints on the columns of the rotation
matrix R (see Section 2.2.2). For r3 = (7‘31,T32,T33)T, the constraints rirs = 1, rir, = 0, and
rlr; = 0 cannot be verified from a single 2D image. This explains why accidental matches,
where the invariant function defined in Eq (9) returns 0 for isolated views of different objects, are
possible. Non-accidental matches are not possible. This is guaranteed by the satisfaction of a few

of the orthonormality constraints.

Affine invariant:

Consider an object composed of (at least) five 3D points, and assume w.l.g. that the first four
points are not coplanar. Let {P,}}_, denote the 3D coordinates of the five points in some frame of
reference. Assume Py = (0,0,0) without loss of generality, and let {p;};_, denote the 3D vectors
corresponding to the four remaining points. Let b = (b1, bz, b3) denote the affine invariant vector
representation of the five points, as defined in Eq (1).

Given the image coordinates of the five points (zg, o), (z1,91), (%2, Y2), (3,¥3), (x4, y4), assume
without loss of generality that 9 = 0,y9 = 0, namely, the origin is defined to be at point 0.
(Otherwise, replace any z; in the following expressions by z; — zg, and y; by y — yo.) Let x =

(3017$27903) and y = (?/17?/27?/3)-

Definition 2 (Linear) Given five non-coplanar 3D points, let
|24 = 30y biws] | [ya — 0 biyil
+ .

|yl[b]

Jfb is an affine model-based projective invariant function for the five points. fy, returns 0 for non-
accidental views of a family of related objects.

(10)

fb(Xv Y) =

The model-based invariance of f, follows from Eq (3), since fh,(x,y) = 0 for any image of the
object described by b. f, is normalized, so that its value does not depend on the distance from the
camera to the object (or the scale factor). The linear invariant function may operate on less than
five points if the transformation of the object is restricted. For example, the 3D rotations group
requires only four points.

A composite invariant:

Given M > 1 objects with four to n points, let f;(x,y) denote the model-based invariant function
of the j—th object. Depending on the value of n and other preferences, f;() can be one of the
functions given in Eq (9) or Eq (10), or a combination of them. Let ¢ denote a small threshold,
the maximal allowed deviation from 0 of the model-based invariant functions due to expected
noise. A function that returns 5 given object j, and 0 otherwise, is the following variation on a
winner-takes-all function:

7 f]'<€ and fjgfk VI<kE<M
0 otherwise

F(frses fu) = { (11)
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Result 1 (Model-based invariants) For every M objects with four to n 3D points, there exists
a composite model-based invariant function, given in Fq (11). The time complezily of the evaluation
of this function is O(M).

4 Model acquisition

Invariant representations make it possible to integrate information across different frames in a
natural way. This integration offers robustness and stability in building the 3D description of
objects from multiple images. In Section 4.1 we use this property to outline a new structure from
motion algorithm. In Section 4.2 we show results with simulated and real data. A more complete
and efficient algorithm is described in [25], with additional tests and a quantitative comparison to
other algorithms.

4.1 Linear structure from motion algorithm given correspondence

We have shown that the rigid representation D,;, can be computed from as few as three images of
four points with a linear algorithm. We have also shown in Section 2.3.2 how to obtain the depth
map representation D.,,¢ from D,;;. We will now use these results to describe a linear structure
from motion algorithm for n points from m > 3 views. This algorithm assumes weak perspective,
of which orthographic projection is a special case, and it requires correspondence

The proposed algorithm differs from other SFM algorithms in that it does not compute structure
in the usual sense, and it does not compute the transformation between the images. Thus it is a
shape from motion algorithm without depth and without transformation. Instead, the algorithm
computes an invariant 3D representation of the object. Depth can be optionally computed from
this representation by computing the square root of a 3 X 3 matrix.

The point to be made here is that by computing an invariant representation, rather than depth,
and by not computing the motion of the camera, the problem becomes simpler and linear. The non-
invariant quantities (such as depth and transformation) can be later computed from the invariant
function, but they need not always be computed, e.g. they need not be computed at recognition.
This direct approach may therefore save computation time and increase robustness.

The algorithm:

Initialization: Select the origin Py and subtract its coordinates from the image measurements of
all the other points. Select three independent basis points.

Affine: For all but the basis points, compute their affine representation b by solving the overde-
termined linear system defined in Eq (3).

Rigid: For the three basis points, compute their inverse Gramian B by solving the overdetermined
linear system defined in Eq (8).
Verify with principal component analysis that the homogeneous linear system has a solution,
namely, that the basis points move rigidly.

This algorithm is completely linear. In order to compare its results to other algorithms which
compute depth, we add the following step:



International Journal of Computer Vision 10(1):27-42, 1993 13

Depth (optional): Compute Q, the root of B™!, and multiply the affine vector b at each point
by Q.

This step is non-linear and may not have a closed-form solution.
We now describe in detail the computation of the inverse Gramian B, the second step of the
algorithm:

The computation of B:

First, we rewrite Eq (8) as 2 linear equations in the elements of B. B is a 3 X 3 symmetric
matrix and therefore has 6 unknown elements. Since the equations in (8) are homogeneous, we can
only compute B up to a scaling factor, and therefore we arbitrarily set Bzs = 1. We define a 5-
dimensional vector h = (By; Biz Bis Bi Bas )T, where h includes the remaining unknown
elements of matrix B. We can now rewrite (8) as follows:

uth = o, ubh = v} (12)
where
T T
Ty Tk — YiYi
Tiyj + Ty 2(iw; — yiy))
o= | g oy | uh = | 2(wizk — yive)
z;y; TiTj = Yiyj
Tiyk + Try; 2(zjok — YiYk)
and
vy = —(Tky), vh = —(@kTk — YkYk)

Each image I, 1 < I < m, provides 2 linear constraints on h. We define a constraint matrix
U of dimensions (2m) x 5, where rows (2/ — 1) and 2/ are u} and u), of Eq (12) respectively. We
denote the solution of the linear system v, a 2m-dimensional vector whose elements (2/ — 1) and
20 are v} and v}, of Eq (12) respectively. Given m > 3 frames, h can be computed by solving the
following overdetermined linear system of equations:

Uh=v
We obtain the minimal least square solution of this system by using the pseudo-inverse:
h=(UTu)! . UTv (13)

The solution of h above is described in terms of a 5 X 5 matrix multiplied by a 5-dimensional
vector. It can be readily seen that both the inverse of the matrix, U7 U, and the vector, Ulv, are
additive in the number of images (number of rows in U and v), and therefore this algorithm can
be implemented in an incremental way as follows:

e UTU and U'v are computed from three images or more and stored.
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e his computed from Eq (13).

e When additional data is obtained, UTU and UTv are computed from the new data, and
their new values are added to their stored estimate.

e his computed from Eq (13).

Note that if the basis points move rigidly, the five columns of matrix U and vector v are
linearly dependent. An indication that the points do not move rigidly, or that the weak perspective
approximation is not appropriate, can be obtained from an analysis showing that the vectors are
independent.

Discussion

The invariant structure from motion algorithm described above belongs to a small group of recent
algorithms which rely on many images to compute structure (e.g., [21]; see also [23] for an earlier
work). This is an important feature, since motion disparities are typically noisy with low signal
to noise ratios. Our algorithm is particularly simple, requiring only the closed-form solution of
over-determined linear systems of equations.

Unlike most algorithms, our algorithm computes shape without computing explicit depth or
the transformation between images. Like [23] and unlike most algorithms, it can be implemented
in an incremental way, updating the results with additional data without storing all the previous
data. Finally, the algorithm is guaranteed to converge as the number of images grow, as long as the
distribution of the noise in the images (including errors due to perspective distortions) approaches
a Gaussian distribution with mean value 0.

4.2 Experiments with simulated and real data:

The discussion of model-based invariants and structure from motion above assumes weak perspec-
tive. The analysis and conclusions are therefore only approximately correct for real images, which
are produced by perspective projection, and which are noisy. The simulations in Section 4.2.1
were designed to test the effects of perspective projection and noise on the SFM algorithm and the
model-based invariant functions. In Section 4.2.2 we present results with a real matched sequence
of images.

4.2.1 Simulated perspective projection and noise

In the following simulations we generated a test object of four points, for which we computed the
invariant matrix B. For the computation we used 20 simulated random views of the test object,
with noise added to the image, and with either real or weak perspective projection. B was then
used to define the model-based invariant function fp (defined in Eq (9)) specific to the test object.
We evaluated fg on 10,000 new random views of the test object. We also evaluated fg on views
of different objects.

We varied the distance from the camera to the object, which affected the relative size of the
object in the image and the amount of perspective distortions. We present comparative plots of
the value of fg as a function of the varying distance between the camera and the object, using two
different test objects:
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e The first test object (graphs I in Fig 3) was composed of four points selected randomly in
[0,1]°. We compared it to two other types of objects: in type 1 the objects were composed
of four points selected randomly in [0, 1]>; in type 2 the object was composed of four non-
coplanar corners of the unity cube.

e The second test object (graphs II in Fig 3) was composed of four non-coplanar corners of the
unity cube. We compared it to two slightly different types of objects: type 1 as above; in
type 2 the object was composed of four non-coplanar corners of a box with edges of length
1,2,3.

We repeated the simulation 1000 times (each time generating a new random object), and for each
set of objects we repeated the simulation 10 times (for 10 randomly generated views).

Fach graph in Fig 3 shows three plots of the value of fg, where B represents one of the two
test objects. The three plots were generated by applying fg to the test object and to two other
types of objects (as discussed above). For each test object, three conditions are shown: (a) weak
perspective, (b) full perspective, (c) full perspective and Gaussian noise. In condition (c), we added
1% Gaussian noise to the data. The noise was added to the image x— and y— coordinates, and its
mean value amounted to 1% of the actual radius of the 3D object. (Thus, in images obtained at 10
units away from the camera, this noise was equivalent to 10% Gaussian noise in the image plane.)
The value of fg was computed using simulated images at randomly selected viewpoints, and was
averaged over 10,000 repetitions. The error bars at each data point indicate half the standard
deviation of the distribution of the value of fg.

In all the graphs, for both test objects and under all conditions, the average value of the invariant
operator, when applied to the test object, was always lower than its average value when applied to
different objects of all the types tested. This was true even with high perspective distortions (when
the distance to the camera was smaller than the size of the object), as can be seen in Fig 3(b).
Thus the invariant operator can be used to distinguish the test object from most views of other
objects at any distance, using a fixed threshold of 0.3. Moreover, a comparison of plots (a) and
(b) shows that the dominant source of error was the variation in the appearance of objects, some
of which appear similar to the test object at some viewpoints, rather than the distortion due to
perspective projection.

4.2.2 Experiments with real data

We used a sequence of 226 images of a ping-pong ball with black marks on it, rotating 450
degrees in front of the camera. The sequence was provided by Carlo Tomasi, who also provided
the coordinates of the tracked marks, which were obtained by his tracking algorithm described in
[20]. One image of the sequence is shown in Fig 4. The object was relatively far from the camera,
and therefore the weak perspective assumption is appropriate for this sequence.

Four points were selected to serve as basis points. The invariant matrix B was computed for the
four points using half the frames in which all the basis points had appeared. The affine coordinates
vectors b, for each of the remaining points, were also computed using the same frames. B and b
were used to compute the model-based invariant functions: fg from Eq (9) and f}, from Eq (10).
These functions were then evaluated on all the frames in which the relevant points appeared. As
expected, they returned small values, distributed around 0 with a small variance. The average
result and standard deviation were:
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Figure 3: The invariant operator of a test object, applied to images of the same object and two other types of
objects (see text): I- The test object was generated randomly, II- the test object was a cube. (a) The images were
produced with weak perspective projection at different distances from the camera, (b) full perspective, (c) perspective

projection and Gaussian noise.
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Figure 4: One frame from the ping-pong sequence.

/B = 0.0264 £ 0.0157
b = 0.0194 + 0.0217

Typically, the model-based invariant functions returned higher values when applied to the wrong
points (higher by an order of magnitude or 2 orders of magnitude). Asexpected from the simulations
above, the results varied around 1, with a large variance. One example of a wrong correspondence
between the image and the model, where the model-based invariants strongly suggested rejection
of the model, was the following:

/B 1.7073 £ 0.1209
fb = 0.8034 £ 0.2888

Another example of a wrong correspondence, where the rejection was somewhat weaker, was
the following;:

fB = 0.1708 + 0.0417
fp = 0.8015 £ 0.2644
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4.2.3 Discussion

The results of the simulations, discussed in Section 4.2.1, show robustness to the effects of per-
spective distortions. Even when the depth variations between points were of the same order of
magnitude as the depth of the points, the model-based invariant in Eq (9) could be used to suc-
cessfully distinguish the “correct” object from most views of other objects with a fixed threshold.

When the scheme proposed in Section 3.2 is extended to full perspective projection, a non-
linear algorithm is obtained. The extended algorithm depends on small variations in the data,
variations which may not be reliably obtainable from a noisy image. Unless the perspective effects
are sufliciently large, it may be better to use the robust linear scheme for weak perspective, rather
than rely on small variations that may be unobservable in practice. To compensate, the weak
perspective algorithm uses all the available images in order to minimize the errors due to noise
and higher order effects of perspectivity. The weak perspective scheme requires at least three
images. Algorithms that use full perspective (see [4, 15] for recent related work on structure
without calibration) are useful under conditions typical to stereo viewing, namely, when there are
only two images or when the differences between the images are large and observable.

The experiments with simulated and real data show that the model, matrix B for the four
basis points and the affine coordinates for the remaining points, can be extracted reliably from
a few images. Both in the simulated and real data, the rigid and affine model-based invariant
functions effectively rejected most of the images of points whose 3D configuration was different
from the configuration of the points in the learned model. The distribution of the values returned
by the model-based invariant functions, when operating on images of the correct configuration,
was reliably distinguishable from the distribution of values when operating on images of the wrong
configuration.

When the correspondence between image and model is not known and the number of features
in the image is large, the number of possible correspondences increases exponentially. If all corre-
spondences are possible, the distributions of the invariant functions are not sufficiently separated
to prevent false identifications (which happens when an image from the tail of the false distribution
overlaps the tail of the correct distribution). Thus it is necessary to initially constrain the corre-
spondence so that it can be reliably decided whether the model exists in the image or not. For
example, it is possible to decrease the number of features by choosing more selective features or by
using grouping.

5 Application to model-based recognition

A model-based invariant function can be viewed as a recognition operator that operates on a
single image. This operator can distinguish images of a particular object from images of all other
objects. We now discuss how the model-based invariant functions can be used with various existing
recognition schemes. In Section 5.1 we discuss their use with alignment, a computationally-intense
recognition strategy. In Section 5.2 we discuss their use with a memory-intense strategy, geometric
hashing, introducing an indexing scheme into a database of 3D objects given a single frame (2D
image).
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5.1 Alignment:

The following is based on the results discussed in Section 2. We showed that at recognition it is
sufflicient to verify the rigid structure of the four basis points with the quadratic invariant given in
Eq (9), and the affine structure of the remaining points with the linear invariant given in Eq (10).

Alignment without transformation:

The alignment method for recognition [9] can be summarized as follows:

1. match three points in the image to the model;
2. compute the transformation between the model and the image;

3. verify recognition by predicting and matching additional model points using the computed
transformation.

The model-based invariants can be used to implement alignment without computing the trans-
formation, and with the same time complexity. The modified scheme can be described as follows
(modified steps are marked with *):

1. match three points in the image to the model;

2. *compute from the appropriate B the image coordinates of the fourth basis point and verify
its existence;

3. *verify recognition by predicting and matching additional model points using their affine
coordinates.

This scheme involves one non-linear step, the prediction of the location of the fourth basis
point from the locations of the matched three basis points. The worst-case time complexity of this
algorithm is O(Mm>n®), for M models, n image points and m model points.

The model-based invariants may be used more effectively for verification, rather than prediction.
In this case, the recognition scheme does not involve any calculation other than the computation
of the value of the quadratic and linear invariant functions, and comparing them to 0. The fol-
lowing linear alignment scheme has higher time complexity, but may be more robust and easier to
implement:

1. match four points in the image to the model;
2. verify the match with the quadratic invariant fg;

3. verify recognition by predicting and matching additional model points using their affine co-
ordinates.

The worst-case time complexity of this scheme is O(Mm*n*) for M models, n image points and
m model points.
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5.2 How model based invariants can be used for indexing:

Result 1 can, in principle, be used as a recognition operator, which returns the serial number relative
to the database of the object in the image. However, it requires O(M) computations on a serial
machine. We now describe a different use for recognition of the model-based invariant functions
given in Eq (9) and Eq (10). The time complexity of the proposed computation does not depend
on M. Another application for indexing is described in [14].

In this discussion we use a variation on the recognition scheme proposed by Lamdan & Wolfson
in [12]. The idea there is to store as much information as possible on all the objects in the database,
and all their possible appearances, in a lookup table. A set of features in the image provides an
index into the table, pointing to a location where all the objects in the database, which could
have possibly lead to the particular geometry of the observed set of features, are listed. The
principle behind this approach is the conversion of on-line time-complexity at recognition time to
space-complexity, at the cost of additional preprocessing computation time.

In the scheme proposed in [12], each ordered subset of the object features is represented by a
single entry in the table. At recognition time, using 20D images of coplanar objects or using range
data, the data provides a unique index into the table. However, when 2D images of general 3D
objects are used, the index produced by the image is not unique. Therefore it is necessary to scan
a line in the table, which increases the time complexity of recognition. Thus for each ordered set of
image features, the complexity goes up from constant to O(M ), where M is the size of the table.
This is unfortunate, and has lead to the limitation of most practical applications of this scheme to
range data or images of coplanar objects.

To solve this problem, we construct the lookup table in a different way. Basically, we use different
variables to fix the dimensions of the table, as will be defined shortly. These new dimensions bear
less direct relationship to properties of the image features. The number of dimensions, denoted by
[, depends on the particular invariant used to describe the geometry of sets of features.

In our scheme, a subset of ordered object features is represented by a [—1 dimensional hyperplane
in the table, rather than by a single entry. Thus, for example, we will describe a 4-dimensional
table where four ordered features of the object are represented by a 3-dimensional hyperplane in
the table. A set of four ordered features in the image provides a single index at recognition time,
so that the time complexity remains constant at the recognition of 2D views of general 3D objects.

The following discussion describes how the affine and rigid model-based invariant functions can
be used to construct a table with the properties described above:

e Each of the model-based invariants requires a certain amount of features to operate on. For
example, the quadratic invariant discussed in the previous section requires four features. We
first find the necessary number of ordered features in the image.

e Each model-based invariant has a fixed number of unknown parameters, denoted [ + 1. For
example, the quadratic invariant is determined by five parameters since B is a 3 X 3 scale-free
symmetric matrix. Fach image provides two constraints on the unknown parameters of the
invariant, leaving us with two linear equations with [ unknowns (one unknown is eliminated
from each constraint). For example, [ is 1 for a universal invariant (which does not exist), 2
for the affine invariant given in Eq (10), and 4 for the quadratic invariant given in Eq (9).
We build two [-dimensional tables, one for each constraint. We use the coeflicients of each
linear constraint as an index into the table.
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For anything but a universal invariant the image provides a vector index. Thus the price we pay
for not being able to use a universal invariant is the size of the table, which is not one-dimensional
anymore but multi-dimensional. We also pay in a higher frequency of inevitable false positive
matches (or accidental matches).

As an example, we will derive the lookup table for the affine model-based invariant function (a
similar scheme is described in [10]):

Let b denote the affine representation of five non-coplanar image points, as defined in Eq (3).
There are three unknown parameters in this representation, by, bg, bz, while a single image gives
only two constraints on these unknowns. We project the two constraints to a lower dimension by
substituting one of the unknowns in each constraint. Thus, if we substitute b; for example, we are
left with a linear constraint and two unknown parameters only:

by + hi(x,¥)bs = ha(x,y) (14)

We store a two-dimensional table to which the image provides a single index pair:
[h1(x,¥), ha(x,y)]. A second table is stored for the second linear constraint.

When the table is precomputed, an object is represented by a straight line. This line is de-
termined uniquely by the object, since all possible image measurement pairs (hq, h2) must satisfy
by + h1bs = hy. (Note that at the time the table is constructed, by, b3 are known, and hy, hy are not
known.) More specifically, an object is represented by a line which identifies all the possible pairs
(h1, hy) which can be computed from an image of the given object.

Given n image features and using the affine invariant which operates on five features, the
corresponding lookup table can be used for recognition with complexity O(n®). This follows an
assumption that all features may be similar in the worst case, and therefore all possible combinations
of five image features should be examined. If the rigid invariant, which operates on four features
only, is used, the indexing complexity can be reduced to O(n*). This should be compared with
time complexity of O(Mn®), where M is the size of the table, when the original geometric hashing
scheme is used. However, to avoid the need in storing large hyper-planes in four-dimensional tables,
it is possible to use the two-dimensional tables of the affine invariant, and add the verification of
the rigid invariant at each entry.

6 Summary

We proposed representations which are invariant to either rigid or linear 3D transformations, and we
showed how they can be computed efficiently from a sequence of images with a linear algorithm. The
algorithm assumed weak perspective, and it required at least four points and at least two frames. We
derived from these invariant representations model-based projective invariant functions of general
3D objects. We showed how these functions can be used with novel and existing recognition
strategies, in particular alignment and geometric hashing.

Appendix:

Under orthographic projection, or weak perspective without scale (s = 1), each image gives three
constraints on the parameters of the symmetric matrix B. More specifically, (8) becomes:
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x'By =0, x'Bx=1, and y!By=1. (15)

Since the relations in (15) are not homogeneous, B should be fully determined including its
scale. Thus there are 6 unknown elements in B, for which two images give three constraints each.
If the equations were independent, two images of four points should have been suflicient to compute
depth. This contradicts previous results [1], and therefore it is not surprising that the 6 equations
are linearly dependent, as the following discussion shows.

Given four image points (2o, o), (z1,¥1), (2,¥2), (¥3,y3), assume without loss of generality
that 20 = 0,y0 = 0. Let x = (21,22, 23) and y = (91, Y2, y3). Let X and Y denote the coordinates
of the three points in a second image, and let R = {"‘i,j}?,jﬂ denote the 3D rotation matrix between
the two images. In addition to the relations in (15), which hold for both images, we know from [8]
that:

Y = Tﬁx— Tﬂy—l— TﬁX:clx—l—CQy—l—c;gX, (16)
T13 T13 T13
where
rha i =T+l = dtd-d=1 (17)

Substituting (16) in one of the corresponding relations given in (15) for the second image, and
using X'BX = 1, we get:

Y'BX=0 = c3+eax'BX+eay’BX=0. (18)
Using the equations in (15) for the first image, X’BX = 1, (17), (18), and the symmetry of B,
we get:

YIBY = cd+ 2¢1c5x BX 4 i+ 2¢5c5y T BX 4 A= +ci-ci=1.

Thus the last constraint, Y/BY = 1, follows from the first five constraints, and the 6 equations
produced by the two images are not linearly independent.
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