Linear and Incremental Acquisition of Invariant Shape Models from
Image Sequences

Daphna Weinshall* Carlo Tomasi'
Department of Computer Science Department of Computer Science
The Hebrew University of Jerusalem Cornell University
91904 Jerusalem Ithaca, NY 14853
ISRAEL USA
Abstract

We show how to automatically acquire similarity-invariant shape representations of objects
from noisy image sequences under weak perspective. The proposed method is linear and incre-
mental, requiring no more than pseudo-inverse. It is based on the observation that the trajecto-
ries that points on the object form in weak-perspective image sequences are linear combinations
of three of the trajectories themselves, and that the coefficients of the linear combinations rep-
resent shape in an affine-invariant basis. A nonlinear but numerically sound preprocessing stage
is added to improve the accuracy of the results even further. Experiments show that attention
to noise and computational techniques improve the shape results substantially with respect to
previous methods proposed for ideal images.

1 Introduction

In model-based recognition, images are matched against stored libraries of three-dimensional object
representations, so that a good match implies recognition of the object. The recognition process
is greatly simplified if the quality of the match can be determined without camera calibration,
namely, without having to compute the pose of each candidate object in the reference system of the
camera. For this purpose, three-dimensional object representations have been proposed [34] that are
invariant with respect to similarity transformations, that is, rotations, translations, and isotropic
scaling. These are exactly the transformations that occur in the weak perspectlive projection model
[1], where images are scaled orthographic projections of rotated and translated objects. Because of
its linearity, weak perspective strikes a good balance between mathematical tractability and model
generality.

In this paper, we propose a method for acquiring a similarity-invariant representation from a
sequence of images of the objects themselves. Automatic acquisition from images avoids the tedious
and error prone process of typing three-dimensional coordinates of points on the objects, and
makes expensive three-dimensional sensors such as laser rangefinders unnecessary. However, model
recognition techniques such as geometric hashing have been shown [9] to produce false positive
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matches with even moderate levels of error in the representations or in the images. Consequently,
we pay close attention to accuracy and numerical soundness of the algorithms employed, and derive
a computationally robust and efficient counterpart to the schemes that previous papers discuss
under ideal circumstances.

To be sure, several systems have been proposed for computing depth or shape information
from image sequences. For instance, [28, 32, 23, 18, 27, 16] identify the minimum number of
points necessary to recover motion and structure from two or three frames, [2, 21] recover depth
from many frames when motion is known, [17, 14, 3, 6, 11] consider restricted or partially known
motion, [30] solves the complete multiframe problem under orthographic projection, and [26, 13]
propose multiframe solutions under perspective projection.

Conceivably, one could use one of these algorithms to determine the complete three-dimensional
shape and pose of the object in an Euclidean reference system, and process the results to achieve
similarity invariance. However, a similarity-invariant representation is weaker than a full repre-
sentation with pose, since it does not include the orientation of the camera relative to the object.
Consequently, the invariant representation contains less information, and ought to be easier to
compute. This intuition is supported by experiments with complete calibration and reconstruction
algorithms, which, given a good initial guess of the shape of the object, spend a large number
of iterations modifying the parameters of the calibration and pose matrices, without affecting the
shape by much!.

In this paper, we show that this is indeed the case. (We assume weak perspective projection;
A few recent papers described structure from motion algorithms without camera calibration and
with perspective projection [7, 22].) Specifically, we compute a similarity-invariant representation
of shape both linearly and incrementally from a sequence of weak perspective images. This is a
very important gain. In fact, a linear multiframe algorithm avoids both the instability of two- or
three-frame recovery methods and the danger of local minima that nonlinear multiframe methods
must face. Moreover, the incremental nature of our method makes it possible to process images
one at a time, moving away from the storage-intensive batch methods of the past.

Our acquisition method is based on the observation that the trajectories that points on the
object form in weak perspective image sequences can be written as linear combinations of three of
the trajectories themselves, and that the coefficients of the linear combinations represent shape in
an affine-invariant basis. This result is closely related to, but different from, the statement that
any image in the sequence is a linear combination of three of its images [31].

In this paper, we also show that the optional addition of a nonlinear but numerically sound
stage, which selects the most suitable basis trajectories, improves the accuracy of the representation
even further. This leads to an image-to-model matching criterion that better discriminates between
new images that depict the model object and those that do not. In order to compare our method to
existing model acquisition (or structure from motion) methods, we describe a simple transformation,
by which we compute a depth representation from the similarity-invariant representation computed
by our algorithm.

In the following, we first define the weak perspective imaging model (Section 2). We review the
similarity-invariant shape representation and the image-to-model matching measure (Section 3).
We then introduce our linear and incremental acquisition algorithm, as well as the nonlinear pre-
processing procedure (Section 4). Finally, we evaluate performance with some experiments on real
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image sequences (Section 5).

2 Multiframe Weak Perspective

Under weak perspective, a point p, = (Xn,Yn,Zn)T on an object can be related to the corre-
sponding image point Wy, = (&, Mmn )’ in frame m by a scaling, a rotation, a translation, and a
projection:

Wmn = P(SmRmpn + Tm) (1)

where R,, is an orthonormal 3 x 3 matrix, 7, is a three-dimensional translation vector, s,, is a
scalar and P is the projection operator that simply selects the first two rows of its argument. The
two components of w,,, are thus:

‘Emn = Smi;rnpn + am
(2)
Nmn = Smjrj;zpn + bm

where the orthonormal vectors il , j7 are the first two rows of R,,, and a,,, b,, are the first two

components of 7,,. In a sequence of images, feature points can be extracted and tracked with one
of the methods described in [24, 29, 8] (see the experiments in section 5 below). If N points are
tracked in M frames, the equations (2) are repeated M N times, and can be written in matrix form

as follows:
[ & -0 &N | [ 5111T 1 [ a1
Evn o Eun sarily am
_ : 11
M1 o N st P1 Py |+ b
Lo o0 o ] L smiay | bm
that is,
W =RP+t17 (3)

where 1 is a vector of N ones. Thus, W collects the image measurements, R represents both scaling
and rotation, P is shape, and t is translation. In Section 4, we show that R and P need not in fact
be computed explicitly in order to compute a similarity-invariant representation.

3 Review of the Similarity-Invariant Representation

Starting with Eq. (3) as a multiframe imaging model, we now describe how to define a shape repre-
sentation that is invariant with respect to similarity transformations, that is, rigid transformations
and isotropic scalings [34]. Specifically, we work towards similarity invariance in three steps:

1. invariance to translation (Section 3.1);

2. invariance to affine transformations (Section 3.2);
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3. invariance to similarity transformations (Section 3.3).
For performance evaluation only, we will also discuss the
4. computation of depth (Section 3.4).

Using the invariant representations, we describe an image-to-model matching measure (Sec-
tion 3.5). For completeness, we outline how to compute the pose of the camera (Section 3.6),
although this is not used in this paper.

3.1 Translation Invariance

Invariance with respect to translation is easily achieved by measuring the coordinates in P using
some linear combination of the points themselves as a reference origin: if the object translates, so
does the reference point, and the representation does not change. In [16], it is suggested to pick an
object point as the reference origin. In [30], the centroid of all the points is used instead (this is
the optimal translation in a least-square sense [11]). In practice, our experiments show that there
is little difference between these two choices.

Let now t be a 2M-dimensional vector that collects the two coordinates of the projection of
the reference point in each frame. In a suitable reference system where the reference point is the
origin, this vector is the same as the vector t of Eq. (3). The image measurements in the matrix
W can now be centered by subtracting t from each column to yield

w=w-t11, (4)

so that Eq. (3) becomes
W =RP. (5)

3.2 Affine Transformation Invariance

The M X 3 matrix R in Eq. (5) is built from 3 X 3 orthonormal matrices and isotropic scaling
factors (see Eq. (2)). Therefore, corresponding rows in the upper and lower halves of R (that is,
rows m and m + M for m = 1,..., M) must be mutually orthogonal and have the same norm s,,.
If these orthogonalily constraints are satisfied, we say that R, t represent full Euclidean motion,
and the corresponding P represents Euclidean shape. In particular, the columns of P are the three-
dimensional coordinates of the object points with respect to some orthonormal reference basis.

Invariance with respect to afline transformations is achieved by replacing this basis by one that
is more intimately related to the shape of the object. Specifically, the basis is made by three
of the object points themselves, that is, by the vectors from the reference origin to the three
points, assumed not to be coplanar with the origin. This basis is no more orthonormal. The new
coordinates were called affine in [16]. If now the object undergoes some affine transformation, so
do the basis points, and the affine coordinates of the N object points do not change.

The choice of the three basis points can be important. In fact, the requirement that the points
be noncoplanar with the origin is not an all-or-nothing proposition. Four points can be almost
coplanar, and with noisy data this is almost as bad as having ezactly coplanar points. We discuss
this issue in Section 4, where we propose a method that selects a basis as far away as possible from
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being coplanar with the origin. In the experiments of Section 5, this additional nonlinear stage is
shown to improve markedly the quality of the shape representation.

Notice that in the new affine basis the three selected basis points have coordinates (1,0,0),
(0,1,0), and (0,0,1), so that the new 3 x N matrix A of affine coordinates is related to the
FEuclidean matrix P of Eq. (5) by the 3 x 3 linear transformation:

PA=P (6)

where Py = [p; p; px] is the submatrix of P that collects the three selected basis points.
If we substitute Eq. (6) into the centered projection Eq. (5), we obtain

W = W,A (7)

where Wy, = RP,. However, because the submatrix Ay = [a; a; a;] is the identity matrix, we see
that Wj is a submatrix of W:
Wb:{wi w; Wk] .

In more geometric terms, Eq. (7) expresses the following key result:

all the image trajectories (W) of the object points can be written as a linear combination
of the image trajectories (W) of three of the points. The coefficients (A) of the linear
combinations are the three-dimensional coordinates of the corresponding points in space
in the affine three-dimensional basis of the points themselves.

Notice the analogy and difference between this result and the statement, made in [31], that
under weak perspective any image of an object is a linear combination of three of its views. We
are saying that any trajectory is a linear combination of three trajectories, while they are saying
that any snapshot is a linear combination of three snapshots. The concise matrix equation in (7)
contains these two statements in a symmetric form: Ullman and Basri read the equation by rows,
we read it by columns. When we discuss the recognition stage in Section 3.5, we consider the case
in which new rows (unfamiliar views) are added to W, and so we revert to Ullman and Basri’s
reading of Eq. (7).

3.3 Similarity Invariance

Although conceptually a useful intermediate step, affine transformations are too general. Affine-
invariant representations are also invariant with respect to similarity transformations, since the
latter are a special case of the former. However, a representation that is invariant with respect to
similarity and not, say, shearing (an affine transformation) will be able to discriminate among more
models: for instance, the roman letter A’ will not be confused with an italic ’A’. In other words,
it is best to have representations that are invariant ezactly with respect to the class of possible
transformations between model and viewer reference systems. Under weak perspective, this is the
class of similarity transformations, a proper subset of affine transformations.

To achieve invariance with respect to similarity transformations, we augment the affine repre-
sentation introduced above with metric information about the three basis points. Of course, we
cannot simply list the coordinates of the three basis points in a fixed reference system, since these
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coordinates would not be invariant with respect to rotation and scaling. Instead, we introduce the
Gramian matrix of the three basis points, defined as follows [34]:

p'p; p'p; plpk
G = pgpi Pl p; Pzpk : (8)
PipPi PiP, PiPk

In Section 4.2 we normalize G to make it invariant to scaling.

The Gramian is a symmetric matrix, and is defined in terms of the Fuclidean coordinates of the
basis points (see Eq. (1)). However, we show in Section 4 that G can be computed linearly from
the images, without first computing the depth or pose of the object.

The pair of matrices (A, ) is our target representation. Because of centering and the appropri-
ate selection of the affine basis, A is invariant with respect to translations and affine transformations.
The Gramian G, on the other hand, can be normalized for scale invariance. Furthermore, except
for scale, its entries are cosines of the angles between the vectors of P, (see Eq. (8)). This makes G
invariant to rotations and, because of centering, to translations, but sensitive to affine transforma-
tions that change angles between points. In the next subsection we show constructively that the
pair (A, G) contains complete information about the object’s shape, but not directly about its pose
in each image.

3.4 Depth Map

Determining the depth of the object requires to express its shape in an orthonormal system of
reference, that is, to compute the matrix P of Eq. (5). We now show that the shape Gramian G of
Eq. (8) contains all the necessary information. In fact, let W, be the matrix of the basis trajectories
introduced in Eq. (7), and let P, be the coordinates of the corresponding basis points in space in
an orthonormal reference system (see Eq. (6)). Then, the definition (8) of the Gramian can be
rewritten as

G=P'P . (9)

Suppose now that 7" is the Cholesky factor of the Gramian G. We recall [10] that the Cholesky
factor of a symmetric positive definite matrix G is the unique upper triangular matrix 7" with
positive diagonal entries such that

G=T1TT. (10)

Eq. (9) and Eq. (10) are formally similar factorizations of G. We claim that P, can differ from
T only by a rotation or a mirror transformation, so that 7T is in fact the representation of the three
selected basis points on the object in an orthonormal frame of reference. The projection equation
(5) does not specify the particular orientation of the orthonormal axes of the underlying reference
system, so P, and T can be taken to be the same matrix:

P,=T.

The remaining ambiguity due to the possibility that 7" is a mirror reflection of the “true” Py is
intrinsic in the weak perspective model (Necker reversal), and cannot be eliminated. Similarly, the
overall scale cannot be determined. In fact, we will see in Section 8 that G is the solution of a
homogeneous system of linear equations.
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From the triangular structure of T" we can easily determine where the new orthonormal basis
vectors are with respect to the points in space: the first basis vector points from the origin to point
1, because the first entry of column 1 in 7T is its only nonzero entry. Since the third entry of the
second column of T is zero, the second basis vector, orthogonal to the first, must be in the plane
of the origin and points 1 and 2. Finally, the third basis vector is orthogonal to the first two.

To prove our claim that P, and T can only differ by orthonormal transformations, we first
observe that G = TTT = PbTPb, which implies that 7" and P, must be related by a linear trans-
formation. In other words, there must be a 3 X 3 matrix @ such that T" = @ P,. However, by
replacing this expression in 777 = PbTPb7 we obtain QTQ = I (the 3 x 3 identity), so @ must be
orthonormal.

In summary, we have the following method for computing the shape matrix P of Eq. (5):
determine the Gramian G by the linear method of Section 4, take its Cholesky factorization T = Py,
and let T be the transformation of the affine shape matrix A into the new orthonormal basis.
Namely:

P=TA

Notice that the three basis points ¢, 7, k, whose coordinates in A are the identity matrix, are
transformed into the columns of 7.

We emphasize once more that this last decomposition stage need not be performed for the
computation of the similarity-invariant shape representation. Furthermore, this stage can fail in
the presence of noise. In fact, the matrix G can be Cholesky-decomposed only if it is positive
definite. Bad data can cause this condition to be violated.

3.5 Recognition

Once the similarity-invariant representation (A,G) has been determined from a given sequence of
images, it can be used on new, unfamiliar views to determine whether they contain the object
represented by (A, G). In fact, from Eq. (5) and Eq. (9) we obtain

WyG—*W{ = RP,(PI P,)"'PIRT = RRT .

If we write out the relevant terms of this equation, we have Ym:

xG7x,, =
G 'ym = sk,
x'Gly,, = 0
so that in particular
LG % = YRG 'ym (11)
x'Gly, = 0

T

= (Tm1, Tma, Tma) and yI = (Ym1, Ym2, Yms3) are the rows of the upper and

lower half of the centered image measurement matrix Wy. Namely, x,, and y,, are the centered
image measurement of the basis points in frame m.

Eq. (11) provide strong constraints, capturing all the information that can be obtained from
a single image, since all the images that satisfy Eq. (11) are a possible instance of the object

where the vectors x
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represented by G. The two equations in Eq. (11) can be used in two ways: during recognition, the
given G can be used to check whether new image measurements x_ , y. represent the same three
basis points as in the familiar views, thus yielding a key for indexing into the object library. During
acquisition of the shape representation, on the other hand, G is the unknown, and Eq. (11) can be
solved for G. In this section, we review the use of G for recognition (as discussed at length in [34]).
We discuss its computation, the major point of the present paper, in Section 4.

Essentially, the recognition scheme checks the residues between the left- and the righthand sides
of the equations in (11). The residues, however, must be properly normalized to make the matching
criterion independent of scale. The most straightforward definition of matching measure for the

three basis points is the following [34]:

g(X y ) _ |X£G_IYm| + |X?nG_1Xm - yTj;LG_IYm|
e XL G71% | + [y LGyl

(12)

The function (12) is a quadratic image invariant that can be used to check the basis points.
The matching of all the other points, on the other hand, can be verified by using the affine part
A of the similarity-invariant shape representation. In fact, all the terms of Eq. (7) are known once

a new frame

T
Xm
W: T

m

becomes available, so the following matching criterion suggests itself naturally:

<|$z — (xs)La] N ly1 — (yb)ﬁazl)

[(xp)L | I(ys)La|

a(xmv3’m) = Z

1,5,k

(13)

where (Xp)m = [Tmi Tmj Tmk) a0d (¥b)m = [Ymi Ymj Ymk) are the new image coordinates of the
basis points, and ay,...,ay are the columns of A.

3.6 Pose

The computation of pose is beyond the scope of the present paper. For completeness, we now
briefly outline methods to compute pose.

Since the Gramian matrix G defined in Eq. (8) contains the complete 3D information on the
basis points, and given the z and y coordinates of the basis points in frame m (x4 ), and (y4)m, it is
straightforward to obtain their depth z in the coordinate system M corresponding to the camera’s
orientation in frame m. Namely, the coordinate system whose X — Y plane is parallel to the
image plane in frame m, and whose depth axis Z is perpendicular to the image plane. The known
coordinates of the basis points in system M and in the orthonormal system defined in Section 3.4
can be used to compute the transformation between the two coordinates system, e.g., using the
method described in [11]. This transformation gives the pose of the camera in frame m.

Alternatively, it is possible to compute pose directly from the image measurements, using
Eq. (5). Tomasi & kanade [30] described a relatively simple non-linear method, which computes
pose from the Singular Value Decomposition of the centered measurement matrix W.
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4 The Algorithm

In this section, we show how to compute the affine shape matrix A (Section 4.1) and the Gramian
G of the basis points (Section 4.2) linearly and incrementally from a sequence of images. We then
show how to choose three good basis points 7, j, k (Section 4.3). This algorithm can use as little
as two frames and five points for computing matrix A, and as little as three frames and four points
for computing matrix G. More data can be added to the computation incrementally, if and when
available.

4.1 The Affine Shape Matrix

The affine shape matrix A is easily computed as the solution of the overconstrained linear system
(7), which we repeat for convenience:

W =W,A.

Recall that W is the matrix of centered image measurements, and W3 is the matrix of centered
image measurements of the basis points.

It is well known from the literature of Kalman filtering that linear systems can be solved
incrementally (see for instance [20]) one row at a time. The idea is to realize that the expression
for the solution

A=WiWw
where W/E:" is the pseudoinverse of Wy:
Wit = (Wi wy)~'wyf

is composed of two parts whose size is independent of the number of image frames, namely, the
so-called covariance matrix
Q= (W) wy)™
of size 3 X 3, and the 3 X M matrix
S =wiw.

Both @ and S can be updated incrementally every time a new row w' is added to W (so the
corresponding row WbT is also added to W}). Specifically, the matrices @4 and S after the update
are given by

Qwywi
= (- <57
Sy = S+ WbWT
where I is the 3 X 3 identity matrix. For added efficiency, this pair of equations can be manipulated
into the following update rule for A [20]:

Qwy T T
A, = A4+ ———1——— — Al .
+ + i, WbTQWb (W W, )

Note that the computation of A requires at least two frames.
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4.2 The Gramian

For each frame m, the two equations in (11) define linear constraints on the entries of the inverse
Gramian H = G~!, so H can be computed as the solution of a linear system. This system, however,
is homogeneous, so H can only be computed up to a scale factor.

To write this linear system in the more familiar form C'h = 0, we first notice that H is a
symmetric 3 X 3 matrix, so it has six distinct entries h;;, 1 <7 < j < 3. Let us gather those entries
in the vector

C oy T

Furthermore, given two 3-vectors a and b, define the operator
zT(a,b) = [ a1b1 a1b2 + a2b1 a1b3 + a3b1 a2b2 a2b3 + a3b2 a3b3 ] .

Then, the equations in (11) are readily verified to be equivalent to the 2M X 6 system

Ch=0 (14)
where ) )
ZT(X17X1) - ZT(Y17Y1)
o 2! (xpr,%x01) — 28 (Y01, Y M)
= T
z' (X1,¥1)
L ZT(XM7 ym) J

A unit norm solution to this linear system is reliably and efliciently obtained from the singular
value decomposition of C' = UCECVg as

hIVCGv

the sixth column of V. Because this linear system is overconstrained as soon as M > 3, the
computation of H, and therefore of the Gramian G = H~!, can be made insensitive to noise if suf-
ficiently many frames are used. Notice that the fact that the vector h has unit norm automatically
normalizes the Gramian.

Alternatively, in order to obtain an incremental algorithm for the computation of the Gramian
G, Eq. (14) can be solved with pseudo-inverse. (The incremental implementation of pseudo-inverse
was discussed in Section 4.1.) However, the method of choice for solving a homogeneous linear
system, which avoids rare singularities, is the method outlined above using SVD.
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4.3 Selecting a Good Basis

The computation of the similarity-invariant representation (A, G) is now complete. However, no
criterion has yet been given to select the three basis points ¢, j, k. The only requirement so far
has been that the selected points should not be coplanar with the origin. However, a basis can be
very close to coplanar without being strictly coplanar, and in the presence of noise this is almost
equally troublesome.

To make this observation more quantitative, we define a basis to be good if for any vector v the
coordinates a in that basis do not change much when the basis is slightly perturbed. Quantitatively,
we can measure the quality of the basis by the norm of the largest perturbation of a that is obtained
as v ranges over all unit-norm vectors. The size of this largest perturbation turns out to be equal
to the condition number of Wy, that is, to the ratio between its largest and smallest singular values
[10].

The problem of selecting three columns W, of W that are as good as possible in this sense is
known as the subset selection problem in the numerical analysis literature [10]. In the following, we
summarize the solution to this problem proposed in [10]:

1. compute the singular value decomposition of W,

w=uxv?l,

2. apply QR factorization with column pivoting to the right factor V7:
vl = QRIT .

The first three columns of the permutation matrix II are all zero, except for one entry in each
column, which is equal to one. The row subscripts of those three nonzero entries are the desired
subscripts 1, 7, k.

The rationale of this procedure is that singular value decomposition preconditions the shape
matrix, and then QR factorization with column pivoting brings a well conditioned submatrix in
front of QR. (See [10] for more details, as well as for definitions and algorithms for singular value
decomposition and QR factorization.)

Although heuristic in nature, this procedure has proven to work well in all the cases we consid-
ered (see also [5] for a discussion of possible alternatives). Both the singular value decomposition
and the QR factorization of a M X N matrix can be performed in time O(M N?2), so this heuris-
tical algorithm is much more efficient than the O(M N?3) brute-force approach of computing the
condition numbers of all the possible bases.

4.4 Summary of the Algorithm

The following steps summarize the algorithm for the acquisition of the similarity-invariant repre-
sentation (A, G) from a sequence W of images under weak perspective (see Eq. (3)).

1. Center the measurement matrix with respect to one of its columns or the centroid of all its
columns:

W=w —t17

where t is either the first column of W or the average of all its columns.
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2. (optional) Find a good basis 4, j, k for the columns of W as follows:
(a) compute the singular value decomposition of W,
w=uxvT:
(b) apply QR factorization with column pivoting to the right factor V7:
vT = QRuU" .
The row subscripts of the three nonzero entries in the first three columns of II are ¢, j, k.
These are the indices of the chosen basis points.

3. Compute the solution A to the overconstrained system W = W,A by adding one row at a

time. Specifically, initialize A to a 3 x N matrix of zeros. Let w’! be a new row, let wa

collect entries ¢, j, k of w, and let () = (WbTW/b)_l. The matrix A is updated to

Qwy T T
A, = A4+ ———F7—— — Al .
+ + i wawa (W W, )

4. Determine the Gramian G as follows:

(a) construct the 2M X 6 matrix

I ZT(X17X1) - ZT(Y17Y1)
C = ZT(XM7XM) - ZT(YMaYM)
ZT(X17Y1)
L ZT(XMaYM) J

where

zT(a,b) = [ a1by  arby 4 azby  a1bs + azby  azby  azbs + asby  asbs | ;

(b) solve the system
Ch=0

which yields the distinct entries of the symmetric matrix H. Compute G as the inverse

of H.

This is the complete acquisition algorithm. When new images become available, the criteria
(12) and (13) can be used to decide whether the new images depict the same object as the old ones.

In order to compute a depth map P from the similarity-invariant representation (A, G'), another
optional step is added to the algorithm:

5. (optional) Take the Cholesky factorization of matrix G = T7T, and let T be the transforma-
tion of the affine shape matrix A into an orthonormal basis. Namely:

P=TA
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5 Experiments

We first illustrate the ideas presented in this paper with some experiments performed on a real
image sequence (Section 5.1).

We applied our algorithm, including the depth computation, to two other sequences of images,
originally taken by Rakesh Kumar and Harpreet Singh Sawhney at UM ASS-Ambherst. The data was
provided by J. Inigo Thomas from UMass, who also provided the solution to the correspondence
problem (namely, a list of the coordinates of the tracked points in all the frames).

For comparison, we received the 3D coordinates of the points in the first frame as ground truth.
We used the algorithm described in [11] to compute the optimal similarity transformation between
the invariant depth map representation computed by our algorithm (step 5), and the given data in
the coordinate system of the first frame. We applied the transformation to our depth reconstruction

to obtain z.4 at each point, and compared this output with the ground truth data z,.q;. We report
Zest— Zreal

Zreal

the relative error at each point, namely,

We evaluated the affine shape reconstruction separately We computed the optimal afline trans-
formation between the invariant affine representation computed by our algorithm (matrix A com-

puted in step 3), and the given depth data in the coordinate system of the first frame. We applied
aff

est

the transformation to the affine shape representation to obtain z_;’ at each point, and compared

this output with the ground truth data z,.;.

5.1 The Ping Pong Ball:

Figure 1: The first frame of the ping pong ball sequence.
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A ping pong ball with clearly visible marks was rotated in front of a Sony camera. Thirty frames
were used in these experiments, and the ball rotated 2 degrees per frame. Fig. 1 shows the first
frame of the sequence. A number of frames (five in some cases, fifteen in others) were used for the
acquisition of the similarity-invariant representation. The quadratic and linear matching criteria
(12) and (13) were then applied to each frame of the entire sequence, old frames and new alike. In
every experiment, the two criteria were also applied to a random sequence. The ratio between the
value of the criterion applied to the actual sequence over that for the random sequence was used
as a performance measure: if the ratio is very small, the algorithm discriminates well between the
“true” object and other “false” comparison objects.

The tracker described in [29] was used to both select and track features from frame to frame.
Only those features that were visible throughout the thirty frames were used in these experiments.
Ninety points on the ball satisfied this requirement. Fig. 2a shows the trajectories of those 90
points. Fig. 2b shows the trajectories of points used as basis and origin. More specifically, the
dashed trajectory is that of point 1, used for centering the measurement matrix. The three solid
trajectories (two of them overlap) correspond to the basis points found by the basis selection
procedure. The three dotted trajectories are a very poor choice, corresponding to three points that
happen to be close to coplanar with the origin. The condition number of the good basis is about
19, that of the poorly selected basis is about 300.

I &/j p | ol

-200f ] -200¢

= |

= — ’ il
—

—40%0 100 150 200 250 300 350 400 450 40%0 100 150 200 250 300 350 400

(a) (b)

Figure 2: (a) The ninety tracks automatically selected and tracked through thirty frames. (b) The dashed track
was used as the origin; The three solid tracks are the ones chosen by the selection algorithm, while the three dotted
tracks yield a poor basis, since the corresponding points in space are almost coplanar with the origin.

Fig. 3 shows the ratios described above for the quadratic criterion (12) and for the linear criterion
(13), respectively. In particular, the dotted curves correspond to the dotted basis of Fig. 2b, and
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Figure 3: Discrimination ratio (true/random sequence) for the quadratic (left) and linear (right) criterion, plotted
in logarithmic scale. The dotted curves use the poor basis, the solid curves use the good basis.

the solid curves correspond to the solid basis.

For the poor basis (dotted curves in Fig. 3), only the first five frames were used for acquisition.
Both the quadratic and the linear criterion functions are good (small) for those five frames, and then
deteriorate gradually for new unfamiliar views (frames 5-30). In particular, the quadratic criterion
becomes basically useless after frame 23 or so, that is, after more than 30 degrees of rotation away
from the familiar views. In fact, the value that the criterion returns for a random sequence is about
the same as the one it returns for the actual object. Up to frame 15 or so, however, the quadratic
criterion has at least a 10:1 discrimination ratio. Similar considerations, but with different numbers
and a more erratic trend, hold for the linear criterion.

The situation changes substantially with the good basis chosen by the selection algorithm. The
trajectories are the solid lines in Fig. 2b, and the corresponding plots are the solid curves in Fig. 3.
For the linear criterion, the situation is undoubtedly improved: the discrimination ratio becomes
an order of magnitude better in most cases. The results with the quadratic criterion are less
crisp. However, the effect on unfamiliar views are clearly beneficial, and make the criterion useful
throughout the sixty degrees of visual angle spanned by the sequence.

Fig. 4 shows the effect of changing the number or distribution of frames used for acquisition.
The good basis is used for all the curves. The solid curves, labeled ’1-5’, are the same as the
solid curves in Fig. 3: the first five frames were used for acquisition. The dashed curves, labeled
’1-15°, are the result of using the first fifteen frames for acquisition. For the quadratic criterion,
the results are at some points two orders of magnitude better, and consistently better throughout
the sequence. The bad effect of moving away from familiar viewing angles, however, is even more
marked: the discrimination ratio is small (good) for the fifteen frames used for acquisition, but
increases rapidly for unfamiliar frames. Even there, however, the value of the quadratic criterion

30
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Figure 4: Discrimination ratio (true/random sequence) for the quadratic (left) and linear (right) criteria, plotted
in logarithmic scale. The solid curve uses the first five frames for acquisition, the dashed curve uses the first fifteen
frames, the dotted curve uses five frames spread throughout the sequence.

is more than ten times smaller for the real object than it is for a random sequence (that is, the
discrimination ratio is smaller than 0.1).

The dotted lines in Fig. 4 (’1,6,...") use again five frames during acquisition, but the five frames
are spread throughout the viewing positions. Specifically, frames 1,6,11,16,21 were used. Not
surprisingly, the results are typically worse over the fifteen frames used for the dashed curve, but
they are much better for unfamiliar views. In other words, interpolating between unfamiliar views
is better than extrapolating from them. Similar considerations hold again for the linear criterion.

5.2 Box sequence:

This sequence includes 8 images of a rectangular chequered box rotating around a fixed axis (one
frame is shown in Fig. 5). 40 corner-like points on the box were tracked. The depth values of the
points in the first frame ranged from 550 to 700 mms, therefore weak perspective provided a good
approximation to this sequence. (See a more detailed description of the sequence in [25] Fig. 5, or
[15] Fig. 2.)

We compared the relative errors of our algorithm to the errors reported in [25]. Three results
were reported in [25] and copied to Table 1: column “Rot.” — depth computation with their
algorithm, which assumes perspective projection and rotational motion only; column “2-frm” —
depth computation using the algorithm described in [12], which uses 2-frames only; and column
“2-frm, Ave.” — depth computation using the 2-frames algorithm, where the depth estimates were
averages over six pairs of frames. Table 1 summarized these results, as well as the results using our
affine algorithm (column “Aff. Invar.”) and similarity algorithm (column “Rigid Invar.”).

30
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Figure 5: One frame from the box sequence.
Pt. | Pose Rigid Invar. Aff. Invar. Rot. 2-frm 2-frm, Ave.
# Z Z |E(%) Z |E(%) Y/ | E (%) Y/ | E (%) 7z | E (%)
1 591.4 587.8 -0.6 591.3 -0.0 588.9 -0.4 613.9 3.8 591.7 0.1
2 666.3 669.7 0.5 662.0 -0.7 665.8 -0.1 694.4 4.2 666.4 0.0
3 621.8 618.3 -0.6 621.9 0.0 617.8 -0.6 648.4 4.3 624.9 0.5
4 640.7 642.2 0.2 640.2 -0.1 635.0 -0.9 667.5 4.2 641.5 0.1
5 637.7 633.7 -0.6 637.0 -0.1 637.7 0.0 665.0 4.3 639.6 0.3
6 647.9 647.6 -0.1 647.0 -0.1 650.9 0.5 679.2 4.8 651.7 0.6
7 656.6 656.5 -0.0 654.3 -0.3 661.9 0.8 687.5 4.7 658.8 0.3
8 640.0 640.2 0.0 639.7 -0.0 653.8 2.2 668.0 4.4 642.3 0.4
9 709.7 708.8 -0.1 706.5 -0.5 700.7 -1.3 744.8 5.0 714.4 0.7
10 614.8 615.4 0.1 618.2 0.5 603.6 -1.8 644.1 4.8 618.5 0.6
11 602.3 602.6 0.0 601.5 -0.1 606.2 0.6 626.9 4.1 604.8 0.4
12 628.9 631.2 0.4 626.3 -0.4 636.5 1.2 655.3 4.2 630.5 0.2
ave. 0.27% 0.23% 0.86% 4.4% 0.35%

Table 1: Comparison of the relative errors in depth computation using our algorithm (rigid and affine shape
separately), with two other algorithms. The average of the absolute value of the relative errors is listed at the bottom
for each algorithm.
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5.3 Room sequence

This sequence, which was used in the 1991 motion workshop, includes 16 images of a robotics
laboratory, obtained by rotating a robot arm 120°. 32 corner-like points were tracked. The depth
values of the points in the first frame ranged from 13 to 33 feet, therefore weak perspective does not
provide a good approximation to this sequence. Moreover, a wide-lens camera was used, causing
distortions at the periphery which were not compensated for. (See a more detailed description of
a similar sequence in [25] Fig. 4, or [15] Fig. 3.)

Table 2 summarizes the results of our invariant algorithm for the last 8 points. Due to the
noise in the data and the large perspective distortions, not all the frames were consistent with rigid
motion. (Namely, when all the frames were used, the computed Gramian was not positive-definite).
We therefore used only the last 8 frames from the available 16 frames.

Pt. | Pose Rigid Invar. Aff. Invar.
# Y/ Y/ | Err (%) Z | Err (%)
1 14.4 16.8 16.3 14.4 0.2
2 15.1 15.1 -0.0 15.1 -0.1
3 14.5 16.3 12.5 14.3 -1.1
4 13.5 16.0 18.4 12.3 -9.1
5 21.7 23.7 9.6 21.8 0.9
6 18.8 20.1 7.0 18.4 -2.3
7 21.5 20.7 -4.0 22.0 2.3
8 20.0 23.7 18.0 19.8 -1.3
9 21.6 21.5 -0.5 22.3 2.9
10 21.0 22.5 7.3 21.8 4.1
11 21.6 20.1 -7.0 22.7 4.9
12 21.0 21.0 0.3 22.2 6.0
ave. 8.4% 2.9%

Table 2: The relative errors in depth computation using our invariant algorithm, for affine and rigid shape.

We compared in Table 3 the average relative error of the results of our algorithm to the average
relative error of a random set of 3D points, aligned to the ground truth data with the optimal
similarity or affine transformation.

Rigid Invar. | Rigid random || Aff. Invar | Aff. random
8.4% 27.6% 2.9% 23.3%

Table 3: The mean relative errors in depth computation.

5.4 Discussion:

Not surprisingly, our results (Section 5.3 in particular) show that affine shape can be recovered
more reliably than depth. We expect this to be the case since the computation of affine shape
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does not require knowledge of the aspect-ratio of the camera, and since it does not require the
computation of the square root of the Gramian matrix G.

The results reported in Section 5.1 illustrate the importance of a good basis selection, the
improved performance when more frames are used for the model acquisition, and the improved
performance when the frames used for acquisition are well chosen (namely, spaced further apart).
The only advantage for the simultaneous analysis of more than five points was the availability of a
better (more independent) basis. A comparison with a SVD based algorithm for the computation of
the decomposition in Eq. (7), which was described in [30], showed a comparable average performance
of both our simple linear algorithm and the SVD based algorithm.

In our simulations of a recognition operator (Fig. 4), we see a marked difference between in-
terpolation and extrapolation. More specifically, the discrimination ratio between images of the
model and images of random objects is lower (and therefore better) for images that lie between
images used for model acquisition (interpolation) than for images that lie outside the range of im-
ages used for model acquisition (extrapolation). We also see an average lower discrimination ratio
for images used for model acquisition than for other images. This replicates the performance of
human subjects in similar recognition tasks [4]. This demonstration is of particular interest since
the results with human subjects were used to conclude that humans do not build an object-centered
3D representation, which is exactly what our algorithm is doing, but rather use a viewer-centered
2D representation (namely, storing a collection of 2D views of the object).

The sequence discussed in Section 5.2 was taken at a relatively large distance between the camera
and the object (the depth values of the points varied from 550 to 700 mms). The weak perspective
assumption therefore gave a good approximation. This sequence is typical of a recognition task.
Under these conditions, which lend themselves favorably to the weak perspective approximation,
our algorithm clearly performs very well.

The excellent results of all the algorithms with the box sequence are due in part to the reliable
data, which was obtained by the particular tracking method described in [25]. Given this reliable
correspondence, our algorithm gave the best results, although it relies on the weak perspective
approximation. When compared with the other two algorithms, our algorithm is more efficient in
its time complexity, it is simpler to implement, and it does not make any assumption on the type
of motion (namely, it does not use the knowledge that the motion is rotational). A perspective
projection algorithm should be used, however, if the scale of the object, or its actual distance from
the camera, are sought.

The sequence discussed in Section 5.3 had very large perspective distortions (the depth values of
the points varied from 13 to 33 feet). Moreover, the sequence was obtained with a wide-lens camera,
which lead to distortions in the image coordinates of points at the periphery. This sequence is more
typical of a navigation task. Under these conditions, which do not lend themselves favorably to the
weak perspective approximation, our algorithm is not accurate. The accuracy is sufficient for tasks
which require only relative depth (e.g., obstacle avoidance), or less precise reconstruction of the
environment. Note, however, that even algorithms which use the perspective projection model do
not necessarily perform better with such sequences (compare with the results for a similar sequence
reported in [25]).

In this last sequence, the computation of invariant shape using 8 frames or 16 frames lead
to rather similar results for the affine shape matrix and the Gramian matrix. However, in the
second case the computed Gramian matrix was not positive-definite, and therefore we could not



short version in IEEE Trans. on Pattern Anal. Machine Intel., 17(5), 512-517, 1995 20

compute depth. This demonstrates how the computation of depth is more sensitive to errors
than the computation of the similarity invariant representation. For the same reason, the affine
reconstruction was an order of magnitude closer to the ground truth values than a set of random
points, whereas the depth reconstruction had an average error only 3 times smaller than a set of
random points.

6 Summary and Conclusions

We described a simple linear algorithm to compute similarity-invariant shape from motion, requir-
ing only the closed-form solution of an over-determined linear system of equations. Unlike most
algorithms, our algorithm computes shape without computing explicit depth or the transformation
between images. Depth can be optionally obtained by computing the square root of a 3 X 3 matrix.
Like [33] and unlike most algorithms, it can be implemented in an incremental way, updating the
results with additional data without storing all the previous data. Finally, the algorithm is guar-
anteed to converge as the number of images grow, as long as the distribution of the noise in the
images (including errors due to perspectivity) approaches a Gaussian distribution with mean value
0.

Our analysis shows that by computing an invariant representation, rather than depth, and by
ignoring the transformation of the camera between different frames (or camera calibration), the
problem becomes simpler. The non-invariant quantities (such as depth) can be later computed
from the invariant representation, but they need not always be computed, e.g., they need not be
computed at recognition. Thus computing an invariant representation directly promises to save
computation time and to increase robustness.

Acknowledgements: We thank J. Inigo Thomas, who gave us two of the real data sets.
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