
Motion of Disturbances: Detection and Tracking of multi-Body non-Rigid
Motion

�

Gilad Halevi and Daphna Weinshall
�

Institute of Computer Science, The Hebrew University,
91904 Jerusalem, Israel

Abstract

We present a new approach to the tracking of very non
rigid patterns of motion, such as water flowing down a
stream. The algorithm is based on a ”disturbance map,”
which is obtained by linearly subtracting the temporal av-
erage of the previous frames from the new frame. Every lo-
cal motion creates a disturbance having the form of a wave,
with a ”head” at the present position of the motion and a
historical ”tail” that indicates the previous locations of that
motion. These disturbances serve as loci of attraction for
”tracking particles” that are scattered throughout the im-
age. The algorithm is very fast and can be performed in
real time. We provide excellent tracking results on various
complex sequences, using both stabilized and moving cam-
eras, showing: a busy ant column, waterfalls, rapids and
flowing streams, shoppers in a mall, and cars in a traffic
intersection.

1. Introduction

The tracking of motion in computer vision can be di-
vided into two subtopics: the motion of rigid bodies and
the motion of nonrigid bodies. In the latter more compli-
cated case it is often assumed that the changes in the shape
of the object are relatively slow and that it is therefore pos-
sible to compare local features, such as edges. However,
the shape constancy assumption is not always valid, and
there are cases in which large changes occur in objects from
frame to frame. An example of this is the case of water
flowing down a rushing stream. In addition, it is not always
possible to extract local features since this process requires
successful object segmentation, which cannot always be ac-
complished reliably (e.g., under camouflage).

Is local shape information the only information that can
assist tracking? Introspection tells us that it is far easier to
identify objects in motion than stationary objects, and that
the identification of motion may preceed the identification
of shape. This observation leads us to the following idea:
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the spatial information in a picture may be used as global
information that helps to stabilize large regions in an image,
whereas motion is identified by means of temporal changes
(disturbances) that are detected within the stabilized region.
These disturbances are tracked without regard to the spatial
shape of the object being tracked.

Having defined the problem in this way, our solution is
the following: we compare the present frame with a “back-
ground” image obtained by averaging over previous frames,
thus obtaining an effect similar to the effect obtained by a
photographer who tries to capture motion by exposing film
for a long time: in the over-exposed picture every moving
object creates a smeared image in the direction in which it
moves. Now all that is left to do is to scatter ”tracking parti-
cles” in the image, which will lock on these trails and follow
them to the present position of each object or motion pat-
tern. By limiting ourselves to following these well-defined
trails, we obtain highly stable tracking even when different
objects pass in close proximity to each other.

The algorithm basically does not make any assumptions
regarding the smoothness of the motion of the objects, the
ability to distinguish between objects and the background,
or a restriction on the magnitude of the changes that can
occur in an object upon passage from frame to frame. Col-
lisions between objects, however, require special treatment.
In addition, there is a certain constraint on the velocity of
the objects, and the assumption is that the motion of an ob-
ject from frame to frame does not greatly exceed the dimen-
sions of the object. This assumption nearly always holds,
and it is far weaker than the restrictions imposed by most of
the existing algorithms in regard to the velocity of objects
between consecutive frames.

Thus highly stable tracking is obtained in the following
difficult situations, when: (1) the simultaneous tracking of
a large number of objects is required; (2) it is difficult to
distinguish between the objects and the background (cam-
ouflage); (3) the objects undergo complex, non-rigid and
varying motion; (4) the shape of the objects varies fast rela-
tive to the frame rate.

We shall illustrate the algorithm in the difficult examples
of an ant column, water flowing down streams and water-
falls, shoppers in a mall, and cars at a traffic intersection. A
review of related literature can be found in the full version
of this paper [1].
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2. Tracking in Stabilized Images

We want to treat cases in which the objects to be tracked
undergo significant changes in shape upon transition from
frame to frame, e.g., water flowing down a waterfall. Our
claim is that in these cases we can still observe a dynamic
sequence of abrupt changes in the picture, to be called ”dis-
turbances”, which successively appear and vanish. For sim-
plicity, we begin with cases in which the camera is stabi-
lized, and thus complete frames can be compared.
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In this section we define a disturbance by means of
temporal changes between the present frame and previous
frames, and we shall obtain a disturbance field, in which
every moving object creates a disturbance. The basic struc-
ture of the disturbance does not depend on the changes in
shading or shape that the object undergoes, but only on its
motion. (Cf. to [2] where such changes were used for fig-
ure/ground segmentation.)

A disturbance is an abrupt change in grey-levels that
appears (and disappears) in a certain region and at a certain
time. When there are many moving objects, a complete field
of disturbances is obtained (see example for one sequence
in Fig. 1-middle). In this smooth field every disturbance
acts as a locus of attraction, which attracts ”tracking parti-
cles” found in the history of that disturbance. The field is
obtained by linear subtraction of the temporal average of the
previous frames from the last frame in the following man-
ner:

1. The new temporal average at time % is computed as
follows, where & denotes the temporal average im-
age, ' the actual image after initial smoothing, and(*),+-)/.

a history factor:

&1032 4 .657+98 ':0�; + &10�<>= (1)

2. The disturbance field ? is computed using linear sub-
traction of the previous temporal average from the
new frame, followed by smoothing:

? 0 2 ' 0 5 & 0�<>=
Thus every moving object creates a disturbance in the

field in the form of a wave, which includes one extremum
at the present position of the object - to be called the ”head”
of the disturbance, and a ”tail” having the opposite sign of
the head - indicating the previous positions of the object.
There is a smooth monotonic path between the extremum at
the tail of the disturbance to the extremum at its head (see
detailed discussion in [1]).
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Above we defined a disturbance field and showed how
every moving object in an image creates a disturbance that

includes a ”head” and a historical ”tail”. We shall now de-
fine ”tracking particles,” which are attracted to these distur-
bances. The form of every disturbance is such that it attracts
only particles found in its tail, i.e., in its previous positions,
and does not attract other particles even if they happen to be
closer. In this way excellent separation between different
trajectories is achieved, and highly stable tracking is ob-
tained.

Disturbances as attractors: In order to track distur-
bances, we shall utilize data structures called ”tracking par-
ticles”, or simply ”particles”. Every particle contains the
following information: (1) location in the picture; (2) track-
ing state (inactive, tracking, holding), and how much time
it has been in the last state; (3) is the object being tracked
brighter or darker than the particle; (4) history of the ob-
jects’ motion (e.g., previous positions, velocities). The third
point, describing the relative shading of the object, is a fea-
ture which is maintained for a long period of time; there-
fore, it is sufficient to determine it at the beginning of the
tracking (see discussion in [1]).

After we set the relative shading of the object and place
the particle on it during initialization, we move on to the
tracking stage based on the disturbance field. W.l.o.g. we
shall henceforth assume that the shading of the object is
bright relative to the background. In this case there is a
negative change at the previous position of the object, and
the tracking particle will find itself at the minimum at the
tail of a new disturbance. The maximum at the head of the
disturbance marks the new position of the object and is the
location to which the particle must be attracted. Utilizing
the fact that there is always a smooth monotonic path be-
tween the two extrema, the tracking particle moves along
this monotonic path from the previous position of the ob-
ject (the minimum) to its new position (the maximum).

In order to identify cases in which the object disappears,
for example, as a result of occlusion, a very low threshold
level is set so that if the extremum found is smaller in ab-
solute value than this level, it is assumed that tracking is
lost. In this case the particle switches to a holding state
and remains at the last point where the object was detected.
During the wait period, the particle continues to search for
the object, as we shall see below. If renewed detection is
not achieved within a certain time period, the particle goes
into the inactive state and searches for a new object to track.

Initialization and revision of tracking particles: The
particle initialization stage is designed to find one of the
following: (1) a group of “good” objects to track, and the
type of object (bright or dark); (2) new objects to track. The
number of objects that can be tracked simultaneously is re-
stricted by the number of free particles. Thus, if we have N
inactive particles that are not in the tracking state, we can
assign to them the N best (i.e., those with the highest ab-
solute value) disturbances. In addition, we must determine
the position of the head of the disturbance for each distur-
bance (or, equivalently, the relative shading of the object).
The entire process can be described as follows:

O First the system is allowed to stabilize for time % , so
that the average will faithfully reflect the background.
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O Next the grid of the disturbance pattern is scanned,
and the grid points are sorted in a list in decreasing
order of intensity.

O We assign free particles to grid points in the list by
scanning the grid points, starting from the highest
value. An assigned particle is then drawn to its near-
est extremum.

O Each particle is now located either at the head of the
disturbance or at its tail. To determine head from tail,
the nearest extremum of opposite sign is found, and
the absolute values of the maximum and the mini-
mum are compared, selecting the larger of the two as
the head of the disturbance.

O Should the disturbance be “vacant,” we position the
particle there and switch it to the tracking state; oth-
erwise, we move the particle to the next point in the
list of grid points and repeat the process.

O We continue until all the particles that were in the
inactive state are used up or until the intensity of the
disturbance that we have reached is less than a pre-
defined threshold.

The above process can be actually performed very fast,
since we do not examine the entire frame but only a certain
number of selected points. The above process repeats itself
in each frame after the positions of the active particles are
revised. In this way it is possible to discover new distur-
bances that were not identified previously.
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1. Read a new frame and revise the disturbance map (as
described in Sec. 2.1).

2. Move particles in the tracking state toward the heads
of the disturbances, and assign inactive particles to
new disturbances that are not yet covered (as de-
scribed in Sec. 2.2).

The free parameters in the algorithm are: (1) the thresh-
old level for identifying a new disturbance; (2) The thresh-
old level for identifying the disappearance of a disturbance
(less or equal to the former level); (3) the number of track-
ing particles; (4) The history factor

+
. Our initial experi-

ments showed robustness to the choice of the parameters:
different parameter values did not lead to significantly dif-
ferent results. Thus, in all the different experiments to be
described, we retained the same parameter values without
change. Parameters were not tuned to obtain optimal results
per each sequence.
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Fig. 1 shows the results using a sequence depicting the
activity in a column of ants that move along fast while
changing their trajectories and velocities almost randomly

Figure 1. Results with the ant sequence.
Top: ants detection: each disturbance at-
tracts one particle. Middle: the disturbance
field, where the bright areas denote the dis-
turbances heads while the dark denote their
tails. Bottom: the trajectories of the ants af-
ter 30 frames; note that the trajectories are
smooth despite the complexity of the mo-
tion. (See demonstration of these results in
http://www.cs.huji.ac.il/˜ daphna.)
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in their attempt to overcome various obstacles. In the top
picture, each x indicates the position of a particle, corre-
sponding to an individual ant; the bottom picture shows the
trajectories of the disturbances (ants) after 30 frames. Apart
from the fact that the shading of the ants is very similar
to the background and it is very difficult to discern them
when they are not in motion, we are dealing here with a
very complex scene: the ants are avoiding obstacles, climb-
ing on branches, or passing beneath leaves, being partially
or fully occluded. They bump into one another and intermit-
tently change their angle and shape. Despite all this, stable
tracking over a long period of time is attained, and it appears
that the trajectories are mostly accurate except for isolated
points.

Fig. 2 shows the results obtained for various sequences
of waterfalls and water flowing down a stream. In these
cases the changes from frame to frame are enormous. Nev-
ertheless, good tracking of the flow is attained.

3. Tracking in Non-Stabilized Images

The computation of the disturbance field until now was
based only on temporal changes. This requires that the re-
gion under consideration be stabilized. When the camera
moves, we perform affine registration of the average for
each new frame, and then we compare and revise the av-
erage for the ensuing frames. Since the comparison to the
average drastically lowers the sensitivity of the computation
to noise, better results are also obtained in cases in which
the registration is not perfect. In this section we discuss
how to incorporate affine stabilization into our algorithm,
and illustrate the results on a few examples.

The frame stabilization is a process that is based entirely
on spatial information, and its purpose is to achieve optimal
overlap between a pair of frames on the basis of a limited
number of parameters. In our case the frames that we want
to compare are the new frame and the picture of the average
of the previous frames, which reflects the background.

If we would perform registration of the last frame to
the background frame, as is normally done, we would very
quickly reach a situation in which there are almost no ar-
eas of overlap between the new frames and the average due
to the motion of the camera and its increased distance from
the first frame. For this reason we employ the opposite ap-
proach of repeated registration of the background to the last
frame. In this way maximum overlap between the average
and the new frame is always maintained, cf. [10].

The stabilization process is based on a search for affine
correspondence between the frames. In [8] it was proved
that this computation always converges to a result that cor-
rectly reflects the most dominant motion in the scene. In
most cases it is the motion of the background. Therefore,
this stabilization method can also be applied to scenes that
include the independent motion of many objects relative to
the background.

After performing the registration and revising the distur-
bance map, registration of the particles should be performed
according to the parameters found. In this way we maintain

Figure 2. Sequences of waterfalls and river
flows: Top: the computed trajectories super-
imposed on one frame from the waterfall se-
quence. Middle: the computed trajectories
super-imposed on one frame from a com-
plex rapids sequence; the trajectories fol-
low the flow of the water correctly (when
looking at a movie of the particles, they ap-
pear to be carried downstream by the water,
see http://www.cs.huji.ac.il/˜ daphna). Bottom:
similarly for another rapids sequence.
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the stability of the particles positions relative to the back-
ground. Only after this step can the particles be displaced
according to the new disturbance map.

Fig. 3 shows 3 frames from a 60 frames movie taken
from the second floor of a shopping mall while the camera
was moving downward. Three figures moving along the en-
tire sequence, for which individual stable continuous track-
ing trajectories were obtained, can be discerned (see trajec-
tories in frame 3). Stable tracking was not achieved for the
fourth figure, the soldier moving along the lower right-hand
side of the picture, possibly because his direction of mo-
tion was similar to the camera’s motion. In this example we
used tracking particles which have a dynamic size, i.e., the
particle size varied during tracking in order to optimally fit
itself to the size of the disturbance that it is tracking.

Fig. 4 shows a group of frames from a sequence of 60
frames showing vehicles going through a traffic intersec-
tion. Many of the vehicles make a left turn accompanied by
a change in their two-dimensional projection. Nevertheless,
the tracking remains stable along the entire sequence (see
trajectories in last frame).

4. Comparison with Other Methods

Most of the published methods for tracking nonrigid ob-
jects are not suitable for handling the examples presented
here. The basic assumption is almost always that the shape
of the object changes slowly (small deformation), as in the
methods based on the occluding contours of objects [3], or
methods based on extreme points in the object [4]. Clearly,
these approaches are not suitable to handle flowing wa-
ter (what are the ”objects” in this case?), or camouflaged
ants where occluding contours cannot be discerned reli-
ably. Also, an approach like that described in [6], in which
the minimum of the Hausdorff distance between prominent
points sampled from the frame is sought, requires that the
shape of the object changes slowly between consecutive
frames, and thus it does not meet our needs. The only meth-
ods that are not based on the assumption of slow changes,
such as the method described in [5], require a geometric
model that is confined to very specific cases. Typically,
however, we do not have a general geometric model for
flowing water or the motion of ants.

The methods that could potentially be successful are the
conventional methods for computing a motion field on the
basis of brightness changes. These algorithms start out from
the erroneous assumption (erroneous in our case) that all the
changes in shading are caused only by motion and are not
caused by any other factor, particularly not by changes in
shape; at the same time, however, they are general enough
to deal with diverse kinds of motions and do not require the
isolation of the objects being tracked or the knowledge of
their shape.

We performed extensive experiments with the algorithm
of Lucas & Kanade [11]. With all our efforts, the optical
flow results obtained by this algorithm using the ants se-
quence (which was very challenging for this algorithm since
it violated all the algorithm’s basic assumptions) were far

Figure 3. Three frames from a long se-
quence, taken with a downward moving cam-
era while the people in the scene are mov-
ing in different directions. There are 60
frames between the first picture (top) and
the last one (bottom); still, 3 figures are re-
liably tracked, and the tracking is very sta-
ble, as indicated by the faint trajectories
in black and white (see demonstration in
http://www.cs.huji.ac.il/˜ daphna).
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Figure 4. Three frames from another long
sequence, taken by a non-stabilized cam-
era in a traffic intersection. The cars which
turned to the left changed their ��� projec-
tion non-rigidly. There are 60 frames between
the first picture (top) and the last one (bot-
tom). The computed trajectories are shown
with faint white lines (see demonstration in
http://www.cs.huji.ac.il/˜ daphna).

from the true motion, and stable tracking was not possible.
Using the waterfalls sequences, the direction of the optical
flow typically matched the actual motion, but the magnitude
was far from the true speed, rendering tracking along a few
frames impossible. These experiments, as well as compar-
isons to point matching algorithms, are described in [1].

In conclusion, in our experiments our algorithm was very
reliable and performed better than other algorithms on se-
quences with many independently moving objects or com-
plex patterns of motion. The reason for the superior perfor-
mance seems to be the use for tracking of a shape invariant
property, whose character is only weakly influenced by the
shape of the moving objects. In addition, there was a dif-
ference of orders of magnitude between the run time of our
algorithm (a few frames per second) to that of the multi-
scale optical flow algorithm (a few minutes per frame).
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