
LEIBNIZ CENTER FORRESEARCH INCOMPUTERSCIENCE

TECHNICAL REPORT2003-43

Computing Gaussian Mixture Models with EM using Equivalence
Constraints

Noam Shental, Aharon Bar-Hillel, Tomer Hertz and Daphna Weinshall
School of Computer Science and Engineering and the Center for Neural Computation

The Hebrew University of Jerusalem, Jerusalem, Israel 91904
Email: ffenoam,aharonbh,tomboy,daphnag@cs.huji.ac.il

Abstract

Gaussian mixture models for density estimation are usuallyestimated in an unsupervised manner,
using an Expectation Maximization (EM) procedure. In this paper we show howequivalence constraints
can be incorporated into this procedure, leading to improved model estimation and improved clustering
results.Equivalence constraints provide additional information on pairs of data points, indicating if the
points arise from the same source (positive constraint) or from different sources (negative constraint).
Such constraints can be gathered automatically in some learning problems, and are a natural form of
supervision in others. We present a closed form EM procedurefor handling positive constraints, and
a Generalized EM procedure using a Markov network for the incorporation of negative constraints.
Using publicly available data sets, we demonstrate that incorporatingequivalence constraints leads to
considerable improvement in clustering performance, and that our algorithm outperforms all available
competitors.

Keywords: semi-supervised learning, equivalence constraints, clustering, EM, Guassian mixture mod-
els

1 Introduction

Gaussian Mixture Models (GMM) for density estimation are popular for two main reasons: they can be
reliably computed by the efficient Expectation Maximization (EM) algorithm [1], and they provide a gener-
ative model for the way the data may have been created. The second property in particular makes for their
common use for unsupervised clustering, where typically the Gaussian components of the GMM model are
taken to represent different sources. This use is common because most other clustering algorithms are not
generative, and therefore cannot provide predictions regarding previously unseen points.

1

When used for clustering in this way, the underlying assumption - i.e., that the density is comprised of
a mixture of different Gaussian sources - is often hard to justify. It is therefore important to have additional
information, which can steer the GMM estimation in the “right” direction. For example we may have access
to the labels ofpart of the data set. Now the estimation problem belongs to the semi-supervised learning
domain, since the estimation relies on both labeled and unlabeled points.

In this paper we focus on another type of side-information, in which equivalence constraints between
a few of the data points are provided. More specifically, we use an unlabeled dataset augmented byequiv-
alence constraints between pairs of data points, where the constraints determine whether each pair was
generated by the same source or by different sources. We denote the former case as ‘positive’ constraints,
and the latter case as ‘negative’ constraints, and present amethod to incorporate them into an EM procedure.

What do we expect to gain from the semi-supervised approach to GMM estimation? We may hope that
introducing side-information into the EM algorithm will result in faster convergence to a solution of higher
likelihood. But much more importantly, our equivalence constraints should change the GMM likelihood
function. As a result, the estimation procedure may choosedifferent solutions, which would have otherwise
been rejected due to their low relative likelihood in the unconstrained GMM density model. Ideally the
solution obtained with side information will be more faithful to the desired results. A simple example
demonstrating this point is shown in Fig. 1.

Unconstrained constrained unconstrained constrained

(a) (b)

Figure 1: Illustrative examples to demonstrate the added value ofequivalence constraints. (a) The data set consists of two
vertically aligned classes: left - given no additional information, the EM algorithm identifies twohorizontal classes, and this can
be shown to be the maximum likelihood solution (with log likelihood of�3500 vs. log likelihood of�2800 for the solution shown
on the right); right - additional side information in the form of equivalence constraints changes the probability function and we get
a vertical partition as the most likely solution. (b) The dataset consists of two classes with partial overlap: left - without constraints
the most likely solution includes twonon-overlapping sources; right - with constraints the correct model with overlapping classes
was retrieved as the most likely solution. In all plots only the class assignment of novelun-constrained points is shown.

Why do we use equivalence constraints, rather than partial labels as in prior work (summarized below)?
Our basic observation is that unlike labels, in many unsupervised learning tasks equivalence constraints may
be extracted with minimal effort or even automatically. Oneexample is when the data is inherently sequential
and can be modelled by a Markovian process. Consider for example a security camera application, where
the objective is to find all the frames in which the same intruder appears. Due to the continuous nature of
the data, intruders extracted from successive frames in rthe same clip can be assumed to come from the
same person, thus forming positive constraints. In addition, two intruders which appear simultaneously in
front of two cameras can not be the same person, hence a negative constraint is automatically established.
Another analogous example is speaker segmentation and recognition, in which the conversation between
several speakers needs to be segmented and clustered according to speaker identity. Here, it may be possible
to automatically identify small segments of speech which are likely to contain data points from a single yet
unknown speaker.

2

Knowing what to do with equivalence constraints comes in handy in some supervised learning settings
as well. In what we call the ’distributed learning’ scenario, we only have access to many independent
and unccordinated teachers, each of whom see only a small fraction of the data.1 For example, consider a
database collected from locally labeled sets of images (with some overlap) from around the world. In the
absence of coordination, the labels provided by the different teachers are inconsistent. Coordinating the
labels of the different teachers can be almost as hard as labeling the original dataset. However, equivalence
constraints can be easily extracted from the data provided by each teacher, and no further coordination is
required.

Most of the work in the field of semi-supervised learning focused on the case of partial labels augmenting
a large unlabeled data set [2, 3, 4]. A few recent papers useequivalence constraints, but without using
any unlabeled data [5, 6, 7]. Two recent semi-supervised methods [8, 9] use both equivalence constraints
and unlabeled data: In [8]equivalence constraints were introduced into the K-means clustering algorithm;
this algorithm allows for the incorporation of both positive and negative constraints. In [9] equivalence
constraints were introduced into the complete linkage clustering algorithm.

We describe comparative results in Section 3 using a number of data sets from the UCI repository and
a large database of facial images [10]. Our experiments showthat our algorithm gives significantly better
clustering results, when compared with the two related algorithms mentioned above. One reason may be
that the Gaussian mixture model is much more powerful as a clustering algorithm. More importantly, the
probabilistic semantics of the EM procedure allows for the introduction of constraints in a principled way,
thus overcoming many drawbacks of the heuristic approaches.

The rest of the paper is organized as follows: Section 2 presents our method of introducing equivalence
constraints into EM. As it turns out, positive constraints can be easily incorporated into EM, while negative
constraints require heavy duty inference machinery such asMarkov networks. Hence we present the case of
positive constraints and the case of negative constraints separately, and then discuss the case in which both
types of constraints are provided. Experimental results are described in Section 3.

2 Constrained EM: the update rules

A Gaussian mixture model (GMM) is a parametric statistical model which assumes that the data origi-
nates from a weighted sum of several Gaussian sources. More formally, a GMM is given by:p(xj�) =�Ml=1�lp(xj�l) whereM denotes the number of Gaussian sources in the GMM,�l denotes the weight of
each Gaussian, and�l denotes its respective parameters (�l its center and�l its covariance matrix).

EM is often the method of choice for estimating the parameterset of the model (�) using unlabeled data
[1]. The algorithm iterates between two steps:� ’E’ step: calculate the expectation of the log-likelihood over all possible assignments of data points

to sources.� ’M’ step: maximize the expectation by differentiating w.r.t the current parameters.

Equivalence constraints modify the ’E’ step in the following way: instead of summing over all possible
assignments of data points to sources, we sum only over assignments which comply with the given con-
straints. For example, if pointsxi andxj form a positive constraint, we only consider assignments inwhich
both points are assigned to thesame Gaussian source. On the other hand, if these points form a negative

1A related scenario (which we call ’generalized relevance feedback’), where users of a retrieval engine are asked to annotate the
retrieved set of data points, has similar properties.

3

constraint, we only consider assignments in which each of the points is assigned to adifferent Gaussian
source.

It is important to note that there is a basic difference between positive and negative constraints: While
positive constraints are transitive (i.e. a group of pairwise positive constraints can be merged using transitive
closure), negative constraints are not transitive. The outcome of this difference is expressed in the complex-
ity of incorporating each type of constraint into the EM formulation. Therefore, we begin by presenting a
formulation for positive constraints (Section 2.1), and then move on to negative constraints (Section 2.2).
We conclude by presenting a unified formulation for both types of constraints (Section 2.3).

The following notations are used throughout:� p(x) =PMl=1 �l p(xj�l) denotes our GMM: eachp(xj�l) is a Gaussian parametrized by�l = (�l;�l),
with the mixing coefficient�l, where

PMl=1 �l = 1.� X denotes the set of all points,X = fxigNi=1.� Y denotes the assignment of all points to sources.� E
 denotes the eventfY complies with the constraintsg.

2.1 Incorporating positive constraints

In this setting we are given a set of unlabeled data points anda set of positive constraints. Since positive
constraints may be grouped using transitive closure, we obtain (small) subsets of constrained points that
share the same source. We call each subset achunklet. Hence the data set is initially partitioned into
chunklets, while unconstrained points form chunklets of size one. Let� fXjgLj=1 denote the set of all chunklets, andfYjgLj=1 denote the set of assignments of chunklet points

to sources.� The points which belong to a certain chunklet are denotedXj = fx1j ; : : : ; xjXj jj g, whereX = SjXj .
In order to write down the likelihood of a given assignment ofpoints to sources, a probabilistic model

of how chunklets are obtained must be specified. We consider two such models:

1. Chunklets are sampled i.i.d, with respect to the weight oftheir corresponding source (points within
each chunklet are also sampled i.i.d).

2. Data points are sampled i.i.d, without any knowledge about their class membership, and only after-
ward chunklets are selected from these points.

The first assumption is justified when chunklets are automatically obtained from sequential data with
the Markovian property (see discussion in the introduction). The second sampling assumption is justified
whenequivalence constraints are obtained duringdistributed learning. When incorporating these sampling
assumptions into the EM algorithm, different algorithms emerge: With the first assumption we obtain closed-
form update rules for all of the GMM parameters. When the second sampling assumption is used there is no
closed-form solution for the sources’ weights. We therefore derive the update rules under the first sampling
assumption, and then briefly discuss the second sampling assumption.

4

2.1.1 Deriving the update equations when chunklets are sampled i.i.d.

In order to derive the update equations of our Constrained GMM model, we must compute the expectation
of the log likelihood, which is defined as:E[log(p(X;Yj�new; E
))jX�old; E
℄ =XY log(p(X;Yj�new; E
)) � p(YjX;�old; E
) (1)

In (1)
PY denotes the summation over all assignments of points to sources:

PY �PMy1=1 : : :PMyN=1. In
the following discussion we shall also reorder the sum according to chunklets:

PY �PY1 : : :PYL , wherePYj stands for
Pyj1 � � �PyjjXj j .

Calculating the Posterior probability Using Bayes rule and the assumption of chunklet independence,
we can write p(YjX;�old; E
) = p(E
jY;X;�old) p(YjX;�old)PY p(E
jY;X;�old) p(YjX;�old) (2)

From the by the definition ofE
 it follows thatp(E
jY;X;�old) = LYj=1 ÆYj
whereÆYj � Æyj1;:::;yjjXj j equals1 if all the points in chunkleti have the same source, and0 otherwise.

Using the assumption of chunklet independence we have:p(YjX;�old) = LYj=1 p(Yj jXj ;�old)
Therefore (2) can be rewritten as:p(YjX;�old; E
) = QLj=1 ÆYj p(YjjXj ;�old)PY1 : : :PYLQLj=1 ÆYj p(YjjXj ;�old) (3)

Computing the complete data likelihood The complete data likelihood can be written as:p(X;Yj�new; E
) = p(Yj�new; E
) p(XjY;�new; E
) = p(Yj�new; E
) NYi=1 p(xijyi;�new)
where the last equality is due to the independence of datapoints, given the assignments to sources. Using
Bayes rule and the assumption of chunklet independence, we can write:p(Yj�new; E
) = QLj=1 ÆYj p(Yj j�new)PY1 : : :PYLQLj=1 ÆYj p(Yjj�new)

5

Let us use the notationZ � PY1 : : :PYLQLj=1 ÆYj p(Yjj�new). The likelihood can now be rewritten
as: p(X;Yj�; E
) = 1Z LYj=1 ÆYj p(Yjj�new) NYi=1 p(xijyi;�) (4)

Under the first sampling assumption introduced above,ÆYj p(Yj j�new) = �yj . HenceP (Y j�new; E
) =QLj=1 �yj . It can also be easily shown that under this sampling assumption Z, the normalizing constant,
equals 1. Therefore, the resulting log likelihood islog p(X;Yj�new; E
) = LXj=1 Xxi2Xj log p(xijyi;�new) + LXj=1 log(�yj)
Computing the expectation of the log likelihood We substitute (3) and (4) into (1) to obtain (after some
manipulations) the following expression:E(LogLikelihood) = MXl=1 LXj=1 Xxi2Xj log p(xijl;�new) � p(Yj = ljXj ;�old)+ MXl=1 LXj=1 log �l � p(Yj = ljXj ;�old) (5)

where the chunklet posterior probability is:p(Yj = ljXj ;�old) = �oldl Qxi2Xj p(xijyji = l;�old)PMm=1 �oldm Qxi2Xj p(xijyji = m;�old)
In order to find the update rule for each parameter, we differentiate (5) with respect to�l, �l and�l, to

get the following update equations:�newl = 1L LXj=1 p(Yj = ljXj ;�old)�newl = PLj=1 �Xjp(Yj = ljXj ;�old)jXj jPLj=1 p(Yj = ljXj ;�old)jXj j�newl = PLj=1�newjl p(Yj = ljXj ;�old)jXj jPLj=1 p(Yj = ljXj ;�old)jXj jfor �newjl = Pxi2Xj (xi � �newl)(xi � �newl)TjXj j
Above �Xj denotes the sample mean of the points in chunkletj, jXj j denotes the number of points in chunkletj, and�newjl denotes the sample covariance matrix of thejth chunklet of thelth class.

As can be readily seen, the update rules above effectively treat each chunklet as a single data point
weighted according to the number of elements in it.

6

2.1.2 Deriving the update equations when constraints are sampled i.i.d.

We now derive the update equations under the assumption thatthe data points are sampled i.i.d, and that
chunklets are selected only afterwards. The difference between the two sampling assumptions first appears

in the derivation folowing (4) above, since now the prior probabilitiesp(Yjj�new) equal�jXj jyj . We therefore
have: p(Yj�new; E
) = QLj=1 �jXj jyjQLj=1PMm=1 �jXj jm (6)

and the expected log likelihood becomes:MXl=1 LXj=1 Xxi2Xj log p(xijl;�new) � p(Yj = ljXj ;�old) + MXl=1 LXj=1 jXj jlog �l � p(Yj = ljXj ;�old)� LXj=1 log(MXm=1�jXj jm) (7)

The difference between (5) and (7) lies in the last term, which can be interpreted as a “normalization”
term. Differentiating (7) with respect to�l and�l readily provides the same update equations as before, but
now the posterior takes a slightly different form:p(Yj = ljXj ;�old) = (�oldl)jXj jQxi2Xj p(xijyji = l;�old)PMm=1(�oldm)jXj jQxi2Xj p(xijyji = m;�old)

A problem arises with the derivation of update equations forthe sources’ weights�l. In order to calculate�newl , we need to differentiate (7) subject to the constraint
PMl=1 �l = 1. Due to the “normalization” term

we cannot obtain a closed-form solution, and we must resort to using a Generalized EM (GEM) scheme
where the maximum is found numerically.

2.2 Incorporating negative constraints

As mentioned above incorporating negative constraints is inherently different and much more complicated
than incorporating positive constraints. This difficulty can be related to the fact that unlike positive con-
straints, negative constraints are not transitive. For example if pointsxi andxj are known to belong to
different classes, and pointsxj andxk are also known to belong todifferent classes, pointsxi andxk may
or may not belong to the same class. Hence negative constraints are given as a group
 = f(a1i ; a2i)gPi=1 of
index pairs corresponding toP negatively constrained pairs.

Similar to the case of positive constraints, it is straightforward to write down the complete data likeli-
hood. p(X;Yj�; E
) = 1Z Y(a1i ;a2i)(1� Æya1i ;ya2i) NYi=1 p(yij�)p(xijyi;�) (8)

Notice the similarity between (4) and (8), where the productoverÆ in (4) is replaced by the product over(1� Æ) in (8). Also, the normalizing constant is now given byZ �Xy1 : : :XyN Y
 (1� Æya1j ;a2j) NYi=1 p(yij�):
7

In the following derivations we start with the update rules of �l and�l, and then discuss how to update�l, which once again poses additional difficulties.

Deriving the update equations for �l and �l
Following exactly the same derivation as in the case of positive constraints, we can write down the update
equations of�l and�l:�newl = PNi=1 xip(yi = ljX;�old; E
)PNi=1 p(yi = ljX;�old; E
) �newl = PNi=1 �ilp(yi = ljX;�old; E
)PNi=1 p(yi = ljX;�old; E
)
where�il = (xi � �newl)(xi � �newl)T denotes the sample covariance matrix.

The difficulty lies in calculating the posterior probabilitiesp(yi = ljX;�old; E
), which are calculated
by marginalizing the following expression:p(YjX;�old; E
) = Q(a1i ;a2i)(1� Æya1i ;ya2i)QNi=1 p(yijxi;�old)Py1 : : :PyN Q(a1i ;a2i)(1� Æya1i ;ya2i)QNi=1 p(yijxi;�old) (9)

It is not feasible to write down an explicit derivation of this expression even for a very small number of
constraints, since the probability of a certain assignmentof pointxi to sourcel depends on the assignments
of all other points to whichxi is negatively constrained. However, since the dependencies enforced by the
constraints are local, we can describe (8) as a product of local components, and therefore it can be readily
described using a Markov network.

A Markov network is a graphical model defined by a graphG = (V;E), whose nodesv 2 V represent
a random variable and whose edgesE represent the dependencies between the different nodes. Inour case,
a data pointxi is represented by two nodes in the graph: an observable nodeoi and a hidden nodehi. The
hidden nodehi describes its source label, while the data point itselfoi is an observed example from the
source (see Fig. 2). Each observable nodeoi is connected to its hidden nodehi by a directed edge, holding
the potentialp(xijyi;�). Each hidden nodehi also has a local potential in the form ofp(yij�), reflecting
the prior on the source weights. A negative constraint between data pointsxi andxj is represented by an
undirected edge between their corresponding hidden nodeshi andhj , having a potential of(1 � Æhi;hj).
Intuitively these edges prevent both hidden variables fromhaving the same value.

The mapping of our problem into the language of graphical models makes it possible to use efficient
inference algorithms. We use Pearl’s junction tree algorithm [11] to compute the posterior probabilities.
The complexity of the junction tree algorithm is exponential in the induced-width of the graph, hence for
practical considerations the number of negative constraints should be limited toO(N).2 Therefore, in order
to achieve scalability to large sets of constraints, we mustresort to approximations; in our implementation
we specifically replaced the graph by its spanning tree.

Deriving the update equations for �l
The derivation of the update rule of�l = p(yi = lj�new; E
) is more intricate due to the normalization
constantZ. In order to understand the difficulties, note that maximizing the expected log-likelihood with

2The general case withO(N2) constraints is NP-hard, as the graph coloring problem can bereduced to it.

8

Figure 2: An illustration of the Markov network required for incorporating negative constraints. Data points1 and2 have a
negative constraint, and so do points2 and3.

respect to�l is equivalent to maximizing:I = �log(Z) + MXm=1[NXi=1 p(yi = mjX;�; E
)℄log(�m)
where the normalization factorZ is:Z = p(E
j�) =XY p(Yj�)p(E
jY) =Xy1 :::XyN NYi=1�yi Y(a1i ;a2i)(1� Æya1i ;ya2i) (10)

The gradient of this expression w.r.t.�l is given by�I��l = � 1Z �Z��l + PNi=1 p(yi = ljX;�; E
)�l (11)

Equating (11) to 0 (subject to the constraint
PMl=1 �l = 1) does not have a closed form solution, and

once again we must use the numerical GEM procedure. The new difficulty, however, lies in estimating
(11) itself; although the posterior probabilities have already been estimated using the Markov network, we
still need to calculateZ and its derivatives. This calculation is bound to be difficult, as suggested by the
similarity betweenZ and �Z��l and the posterior probabilities.

To address this new difficulty, we considered two different approaches for calculatingZ and its deriva-
tives3. In the first approach we perform an exact calculation of bothterms using additional Markov networks,
and in the second approach we use an approximation based on a pseudo-likelihood assumption.

Calculating Z and �Z��l exactly: When comparing (9) and (10), it is evident thatZ can be calculated using
a Markov network. This network has a similar structure to theformer network: it contains the same hidden
nodes and local potentials, but lacks the observable nodes (see Fig 3). CalculatingZ then amounts to an
elimination of all the variables in this network.

3As the simplest brute-force alternative we may completely ignoreZ and its derivatives, which leads to a closed form update
rule for�l. However, we have observed that this solution tends to degrade the algorithm’s performance.

9

Figure 3:An illustration of the Markov network required for calculatingZ, for the case where data points1 and2 have a negative
constraint, as do points2 and3.

As for �Z��l , each of theM derivatives requires its own Markov network. The derivatives are given by:�Z��l =Xy1 :::XyN Y(a1i ;a2i)(1� Æya1i ;ya2i) ���l NYi=1�yi =Xy1 :::XyN Y(a1i ;a2i)(1� Æya1i ;ya2i) NXj=1 NYi=1;i6=j �yi
and the value of each derivative is calculated by eliminating all the variables, just as forZ.

ComputingZ and its gradients is equivalent toM + 1 elimination processes, whose complexity is
exponential in the induced-width of the graph. Since the gradient computation is performed many times in
each EM round, this method can be rather slow for complicatedconstraint graphs.

Approximating Z using the pseudo-likelihood assumption: Z can be approximated under the assump-
tion that the negative constraints are mutually exclusive.Denote the number of negative constraints by c.
If we now assume that all pairs of constrained points are disjoint, the number of unconstrained points isu = N � 2. Assume, without loss of generality, that the unconstrained data points are indexed by1 : : : u,
and the remaining points are ordered so constrained points are given successive indices (pointsu + 1 andu+ 2 are negatively constrained, etc.). HenceZ can be decomposed as follows:Z = Xy1 :::XyN NYi=1�yi Y(a1i ;a2i)(1� Æya1i ;ya2i)= Xy1 �y1 :::Xyu �yu Xyu+1Xyu+2 �yu+1�yu+2(1� Æyu+1;yu+2):::XyN�1XyN �yN�1�yN (1� ÆyN�1;yN)(12)= (1� MXi=1 �2i)

This expression forZ may be easily differentiated, and can be used in a GEM scheme.Although the
assumption is not valid in most cases, it seems to yield a goodapproximation for sparse networks. We
empirically compared the three approaches presented. As can be expected, the results show a trade-off
between speed and accuracy. However, the average accuracy loss caused by ignoring or approximatingZ
seems to be small.

10

2.3 Combining positive and negative constraints

Both types of constraints can be incorporated into the EM algorithm using a single Markov network by a
rather simple extension of the network described in the previous section. Assume we have, in addition to
the negative constraints, a setfig of chunklets, where eachi is a list of points’ indices, known to share the
same label4. The likelihood becomesp(X;Y j�; E
) = 1ZYi Æyi Y(a1i ;a2i)(1� Æya1i ;ya2i) NYi=1 p(yij�)p(xijyi;�)
whereÆyi is 1 iff all the points in chunkleti have the same label. Since the probability is non-zero
only when the hidden variables in the chunklet are identical, we can replace the hidden variables of each
chunklethi1 � � � hijij with a single hidden variable. Hence in the Markov network implementation positively
constrained points share a hidden father node (see Fig 4). The EM procedure derived from this distribution
is similar to the one presented above, requiring only a modified normalizing constantZ.

Figure 4:An illustration of the Markov network required for incorporating both negative and positive constraints. Data points1
and2 have a negative constraint, and so do points2 and3. Data points2 and4 have a positive constraint, and so do points3,5 and6.

3 Experimental results

In order to evaluate the performance of our EM derivations and compare it to the performance of the con-
strained K-means algorithm presented in [8], we tested our algorithms using several data sets from the UCI
repository. We simulated a ’distributed learning’ scenario in order to obtain side information. In this sce-
nario, we obtainequivalence constraints using the help ofN teachers. Each teacher is given a random
selection ofK data points from the data set, and is then asked to partition this set of points into equivalence
classes. The constraints provided by the teachers are gathered and used asequivalence constraints. We
compared the performance of the following algorithms:� K-means algorithm when no side information is used.

4In this section , positive constraints are sampled in accordance with the first sampling assumption described in Section2.1, as
the data points are assumed to be i.i.d before the introduction of the constraints.

11

 a b c d e f g h i a b c d e f g h i
0.5

0.6

0.7

0.8

0.9

1

"little" "much"

BALANCE N=625 d=4 C=3

f1
/2

 a b c d e f g h i a b c d e f g h i
0.5

0.6

0.7

0.8

0.9

1

"little" "much"

BOSTON N=506 d=13 C=3

f1
/2

 a b c d e f g h i a b c d e f g h i
0.5

0.6

0.7

0.8

0.9

1

"little" "much"

IONOSPHERE N=351 d=34 C=2

f1
/2

 a b c d e f g h i a b c d e f g h i
0.5

0.6

0.7

0.8

0.9

1

"little" "much"

PROTEIN N=116 d=20 C=6

f1
/2

 a b c d e f g h i a b c d e f g h i
0.5

0.6

0.7

0.8

0.9

1

"little" "much"

WINE N=168 d=12 C=3

f1
/2

 a b c d e f g h i a b c d e f g h i
0.5

0.6

0.7

0.8

0.9

1

"little" "much"

IRIS N=150 d=4 C=3

f1
/2

Figure 5:Combined precision and recall scores (f 12) of several clustering algorithms over 5 data sets from the UCI repository.
Results are presented for the following algorithms: (a) K-means, (b) constrained K-means using only positive constraints, (c)
constrained K-means using both positive and negative constraints, (d) regular EM, (e) EM using positive constraints, and (f) EM
using both positive and negative constraints. Results are shown twice, using15% of the data points in constraints (left bars) and30% of the points constrained (right bars). The results were averaged over 100 realizations of constraints. Also shown are the names
of the data sets used and some of their parameters: N - the sizeof the data set; C - the number of classes; d - the dimensionality of
the data.� Constrained K-means [8], using only positiveequivalence constraints.� Constrained K-means [8], using both positive and negativeequivalence constraints.� EM of a Gaussian mixture model when no side information is used.� Our closed form EM algorithm when only positiveequivalence constraints are used.� Our Markov network EM algorithm, using both positive and negativeequivalence constraints.

The number of constrained points was determined by the number of teachersN and the size of the subsetK that they were each given. By controlling the productNK we modified the amount of side information
provided to the different algorithms. Specifically, we experimented with two conditions: using “little” side
information (approximately15% of the data points are constrained) and using “much” side information
(approximately30% of the points are constrained).5 All algorithms were given the same initial conditions
that did not take into account the availableequivalence constraints. The clustering obtained was evaluated
using a combined measure of precisionP and recallR scores:f 12 = 2PRR+P

The results over several UCI data sets are presented in Fig. 5. Several effects can be clearly seen:
5**TODO** on two of the datasets presented we used more side-information, since the amounts described above showed little

or no improvement.

12

� As expected, our constrained EM algorithm outperforms the constrained K-means algorithms on all
databases, and shows substantial improvement over the baseline EM as well.� Introducing side information in the form ofequivalence constraints clearly improves the results of
both K-means and the EM algorithms. As the amount of side-information increases, the algorithms
which make use of it tend to improve.� Most of the improvement can be attributed to the positive constraints, and can be achieved using
our closed form EM version. In most cases adding the negativeconstraints contributes a small but
significant improvement over results obtained when using only positive constraints.

Figure 6:Three images of the same person from the YaleB data set.

a b c d e f a b c d e f
0

0.2

0.4

0.6

0.8

1
"little" "much"

f1
/2

YaleB N=640, d=60, C=10

Figure 7: combined precision and recall scores of several clusteringalgorithms over the YaleB facial data set. The results are
presented using the same format as in Fig. 5, representing anaverage over more than 1000 realizations of constraints. Percentage
of data in constraints was 50% (left bars) and 75% (right bars). It should be noted that when using 75% of the data in constraints,
the constrained K-means algorithm failed to converge in more than half of its runs.

It should be noted that most of the UCI data sets considered sofar contain only two or three classes.
Thus in the ’distributed learning’ setting a relatively large fraction of the constraints were positive. In a
more realistic situation, with a large number of classes, weare likely to gather more negative constraints
than positive constraints. This is an important point in light of the results in Fig. 5, where the major boost in
performance was due to the use of positive constraints.

In order to see what happens with many classes, we conducted the same experiment using a subset of
the YaleB facial image dataset [10] which contains a total of640 images, including 64 frontal pose images
of 10 different subjects. In this database the variability between images of the same person is due mainly to
different lighting conditions. We automatically centeredall the images using optical flow. Images were then
converted to vectors, and each image was represented using the first 60 principal components coefficients.
The task was to cluster the facial images belonging to these 10 subjects.

13

Some example images from the data set are shown in Fig. 6. Due to the random selection of images
given to each of theN teachers, most of the constraints obtained were indeed negative. Our results are
summarized in Fig. 7. We see that even though there were only asmall number of positive constraints, most
of the beneficial effect of constraints is obtained from looking at this small subset of positive constraints; as
before, our constrained algorithms all substantially outperformed the regular EM algorithm.

4 Summary

We have shown how equivalence constraints can be incorporated into the EM algorithm, in order to com-
pute in a semi-supervised manner a Gaussian Mixture Model ofthe data. When using only positive con-
straints, we provided an efficient closed form solution for the update rules, and demonstrated that using
positive constraints can significantly boost clustering performance. When negative constraints are added,
the computational cost increases since a Markov network is used as an inference tool, and we must defer to
approximations of the source weights update rules. Our experiments show that most of the improvement in
performance is obtained from the positive constraints alone, with some small (but significant) contribution
from the negative constraints (which are also harder to use efficiently).

References

[1] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM
algorithm. JRSSB, 39:1–38, 1977.

[2] D. Miller and S. Uyar. A mixture of experts classifier withlearning based on both labelled and unla-
belled data. In M. C. Mozer, M. I. Jordan, and T. Petsche, editors,NIPS 9, pages 571–578. MIT Press,
1997.

[3] M. Szummer and T. Jaakkola. Partially labeled classification with markov random walks. InNIPS,
volume 14. The MIT Press, 2001.

[4] K. Nigam, A.K. McCallum, S. Thrun, and T.M. Mitchell. Learning to classify text from labeled and
unlabeled documents. InProceedings of AAAI-98, pages 792–799, Madison, US, 1998. AAAI Press,
Menlo Park, US.

[5] P.J. Phillips. Support vector machines applied to face recognition. In M. C. Mozer, M. I. Jordan, and
T. Petsche, editors,NIPS 11, page 803ff. MIT Press, 1998.

[6] N. Shental, T. Hertz, D. Weinshall, and M. Pavel. Adjustment learning and relevant component anal-
ysis. In M. Nielsen A. Heyden, G. Sparr and P. Johansen, editors, Computer Vision - ECCV 2002,
volume 4, page 776ff, 2002.

[7] E.P Xing, A.Y. Ng, M.I. Jordan, and S. Russell. Distance metric learnign with application to clustering
with side-information. InAdvances in Neural Information Processing Systems, volume 15. The MIT
Press, 2002.

[8] K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl. Constrained K-means clustering with background
knowledge. InProc. 18th International Conf. on Machine Learning, pages 577–584. Morgan Kauf-
mann, San Francisco, CA, 2001.

14

[9] D. Klein, S. Kamvar, and C. Manning. From instance-levelconstraints to space-level constraints:
Making the most of prior knowledge in data clustering, 2002.

[10] A. Georghiades, P.N. Belhumeur, and D.J. Kriegman. From few to many: Generative models for
recognition under variable pose and illumination.IEEE international Conference on Automatic Face
and Gesture Recognition, pages 277–284, 2000.

[11] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan
Kaufmann Publishers, Inc., 1988.

15

