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Abstract

Gaussian mixture models for density estimation are uswealymated in an unsupervised manner,
using an Expectation Maximization (EM) procedure. In traper we show howquivalence constraints
can be incorporated into this procedure, leading to impatowedel estimation and improved clustering
results.Equivalence constraints provide additional information on pairs of data points,igading if the
points arise from the same source (positive constraintyam fdifferent sources (negative constraint).
Such constraints can be gathered automatically in somaitepproblems, and are a natural form of
supervision in others. We present a closed form EM procefturbandling positive constraints, and
a Generalized EM procedure using a Markov network for th@rparation of negative constraints.
Using publicly available data sets, we demonstrate thairparatingeguivalence constraints leads to
considerable improvement in clustering performance, &atldur algorithm outperforms all available
competitors.

Keywords. semi-supervised learning, equivalence constraintstaring, EM, Guassian mixture mod-
els

1 Introduction

Gaussian Mixture Models (GMM) for density estimation argpar for two main reasons: they can be
reliably computed by the efficient Expectation Maximizat{&M) algorithm [1], and they provide a gener-
ative model for the way the data may have been created. Tohadg@roperty in particular makes for their
common use for unsupervised clustering, where typicallyGlaussian components of the GMM model are
taken to represent different sources. This use is commoauisecmost other clustering algorithms are not
generative, and therefore cannot provide predictionsrdagg previously unseen points.



When used for clustering in this way, the underlying assionpti.e., that the density is comprised of
a mixture of different Gaussian sources - is often hard ttfyudt is therefore important to have additional
information, which can steer the GMM estimation in the “tigtirection. For example we may have access
to the labels ofart of the data set. Now the estimation problem belongs to the-sepervised learning
domain, since the estimation relies on both labeled andeaidd points.

In this paper we focus on another type of side-informatiornywhich equivalence constraints between
a few of the data points are provided. More specifically, we ars unlabeled dataset augmentecdbtpyiv-
alence constraints between pairs of data points, where the constraints determvhether each pair was
generated by the same source or by different sources. Weedgroformer case as ‘positive’ constraints,
and the latter case as ‘negative’ constraints, and presasttzod to incorporate them into an EM procedure.

What do we expect to gain from the semi-supervised appraa@MM estimation? We may hope that
introducing side-information into the EM algorithm willgelt in faster convergence to a solution of higher
likelihood. But much more importantly, our equivalence stoaints should change the GMM likelihood
function. As a result, the estimation procedure may chaldf&ent solutions, which would have otherwise
been rejected due to their low relative likelihood in the emgtrained GMM density model. Ideally the
solution obtained with side information will be more faithfto the desired results. A simple example
demonstrating this point is shown in Fig. 1.
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Figure 1: lllustrative examples to demonstrate the added valueqoivalence constraints. (a) The data set consists of two
vertically aligned classes: left - given no additional information, the EM aithom identifies twohorizontal classes, and this can
be shown to be the maximum likelihood solution (with log likeod of —3500 vs. log likelihood of—2800 for the solution shown
on the right); right - additional side information in the foof equivalence constraints changes the probability fan@nd we get
a vertical partition as the most likely solution. (b) Theatst consists of two classes with partial overlap: left haitt constraints
the most likely solution includes twaon-overlapping sources; right - with constraints the correatiel with overlapping classes
was retrieved as the most likely solution. In all plots orilg tlass assignment of novel-constrained points is shown.

Why do we use equivalence constraints, rather than paatiel$ as in prior work (summarized below)?
Our basic observation is that unlike labels, in many unsuged learning tasks equivalence constraints may
be extracted with minimal effort or even automatically. @xample is when the data is inherently sequential
and can be modelled by a Markovian process. Consider for geaansecurity camera application, where
the objective is to find all the frames in which the same irgrugppears. Due to the continuous nature of
the data, intruders extracted from successive frames ensdime clip can be assumed to come from the
same person, thus forming positive constraints. In additiwo intruders which appear simultaneously in
front of two cameras can not be the same person, hence avgegatistraint is automatically established.
Another analogous example is speaker segmentation angnigoa, in which the conversation between
several speakers needs to be segmented and clusteredirgtorspeaker identity. Here, it may be possible
to automatically identify small segments of speech whighli&ely to contain data points from a single yet
unknown speaker.



Knowing what to do with equivalence constraints comes irdigan some supervised learning settings
as well. In what we call the 'distributed learning’ scenanwe only have access to many independent
and unccordinated teachers, each of whom see only a smalbfraof the datd. For example, consider a
database collected from locally labeled sets of imagesh(®ome overlap) from around the world. In the
absence of coordination, the labels provided by the diffieteachers are inconsistent. Coordinating the
labels of the different teachers can be almost as hard aknigibiee original dataset. However, equivalence
constraints can be easily extracted from the data provigegbbbh teacher, and no further coordination is
required.

Most of the work in the field of semi-supervised learning feed on the case of partial labels augmenting
a large unlabeled data set [2, 3, 4]. A few recent paperseqgi®alence constraints, but without using
any unlabeled data [5, 6, 7]. Two recent semi-supervisedaadst[8, 9] use both equivalence constraints
and unlabeled data: In [&uivalence constraints were introduced into the K-means clustering algorithm;
this algorithm allows for the incorporation of both positiand negative constraints. In [9] equivalence
constraints were introduced into the complete linkagetetirgy algorithm.

We describe comparative results in Section 3 using a nunfldata sets from the UCI repository and
a large database of facial images [10]. Our experiments shatvour algorithm gives significantly better
clustering results, when compared with the two relatedridlyos mentioned above. One reason may be
that the Gaussian mixture model is much more powerful asstaring algorithm. More importantly, the
probabilistic semantics of the EM procedure allows for thteaduction of constraints in a principled way,
thus overcoming many drawbacks of the heuristic approaches

The rest of the paper is organized as follows: Section 2 ptesmir method of introducing equivalence
constraints into EM. As it turns out, positive constrairas de easily incorporated into EM, while negative
constraints require heavy duty inference machinery sudhaakov networks. Hence we present the case of
positive constraints and the case of negative constragarately, and then discuss the case in which both
types of constraints are provided. Experimental resuéésiascribed in Section 3.

2 Constrained EM: theupdaterules

A Gaussian mixture model (GMM) is a parametric statisticaldel which assumes that the data origi-
nates from a weighted sum of several Gaussian sources. Moralfly, a GMM is given by:p(z|©) =
SM aup(z|0;) where M denotes the number of Gaussian sources in the GMMienotes the weight of
each Gaussian, arl denotes its respective parametersi{s center and, its covariance matrix).

EM is often the method of choice for estimating the paramsgenf the model®) using unlabeled data
[1]. The algorithm iterates between two steps:

e 'E’ step: calculate the expectation of the log-likelihoogepall possible assignments of data points
to sources.

e 'M’ step: maximize the expectation by differentiating wthe current parameters.

Equivalence constraints modify the 'E’ step in the following way: instead of summingevall possible
assignments of data points to sources, we sum only overnassigs which comply with the given con-
straints. For example, if points andzz; form a positive constraint, we only consider assignmentghith
both points are assigned to tkame Gaussian source. On the other hand, if these points form aineg

1A related scenario (which we call 'generalized relevaneglfmck’), where users of a retrieval engine are asked tctaterite
retrieved set of data points, has similar properties.



constraint, we only consider assignments in which each efpthints is assigned to different Gaussian
source.

It is important to note that there is a basic difference betwgositive and negative constraints: While
positive constraints are transitive (i.e. a group of paenpositive constraints can be merged using transitive
closure), negative constraints are not transitive. Theauae of this difference is expressed in the complex-
ity of incorporating each type of constraint into the EM fardation. Therefore, we begin by presenting a
formulation for positive constraints (Section 2.1), andrthmove on to negative constraints (Section 2.2).
We conclude by presenting a unified formulation for both sypeconstraints (Section 2.3).

The following notations are used throughout:

e p(x) = Zf‘il oy p(z|6;) denotes our GMM: each(x|6;) is a Gaussian parametrized #lyy= (1, ),
with the mixing coefficienty;, wherezf‘i1 o = 1.

¢ X denotes the set of all pointX, = {z;} .
¢ Y denotes the assignment of all points to sources.

e Fq denotes the eveRtY complies with the constraings

2.1 Incorporating positive constraints

In this setting we are given a set of unlabeled data pointsaaset of positive constraints. Since positive
constraints may be grouped using transitive closure, waimlfsmall) subsets of constrained points that
share the same source. We call each subs#iuaklet. Hence the data set is initially partitioned into

chunklets, while unconstrained points form chunklets oé sine. Let

o {X; }]Lzl denote the set of all chunklets, afi; ]Lzl denote the set of assignments of chunklet points
to sources.

¢ The points which belong to a certain chunklet are dendfgd= {x;, e ,gc‘ij‘}, whereX = Uj X;.

In order to write down the likelihood of a given assignmenpoints to sources, a probabilistic model
of how chunklets are obtained must be specified. We considestich models:

1. Chunklets are sampled i.i.d, with respect to the weigttheir corresponding source (points within
each chunklet are also sampled i.i.d).

2. Data points are sampled i.i.d, without any knowledge abfmir class membership, and only after-
ward chunklets are selected from these points.

The first assumption is justified when chunklets are autarali obtained from sequential data with
the Markovian property (see discussion in the introdugtiofhe second sampling assumption is justified
whenequivalence constraints are obtained durindistributed learning. When incorporating these sampling
assumptions into the EM algorithm, different algorithmseege: With the first assumption we obtain closed-
form update rules for all of the GMM parameters. When the sé@ampling assumption is used there is no
closed-form solution for the sources’ weights. We therefiderive the update rules under the first sampling
assumption, and then briefly discuss the second samplingngsien.



2.1.1 Deriving the update equations when chunklets are sampled i.i.d.

In order to derive the update equations of our ConstrainedviGhbdel, we must compute the expectation
of the log likelihood, which is defined as:

Ellog(p(X,Y|0™", Eq))|X 0", Eq] = " log(p(X, Y|0"", Eq)) - p(Y|X, 0%, Eq) (1)
Y

In (1) >~ denotes the summation over all assignments of points t@esuy_, = Z;‘le . Z%:l- In

the following discussion we shall also reorder the sum atingrto chunklets 'y =3y, ... >y, , where

Zyj stands forZy{ e

Yix;|

Calculating the Posterior probability Using Bayes rule and the assumption of chunklet indepermdenc
we can write

p(EQ‘Ya Xa @Old) p(Y|X7 ®0ld)

Y|X, 0%, Bq) = 2
PO B0) = 5 o (Bal Y. X, 6°1) (Y /X, 6°1) ”
From the by the definition afq, it follows that
L
p(EalY, X, 0%) =[] oy,
7=1
whereéyj = 5yj ¥ equalsl if all the points in chunklet have the same source, ahdtherwise.
ety |
Using the assumjption of chunklet independence we have:
L
p(Y[X, eold) = Hp(YvJ‘X]v GOZd)
7=1
Therefore (2) can be rewritten as:
L old
. oy, p(Yi| X5, 0
H(YIX, 0%, ) — Lo 2 P 2 O 3)

ZYI et ZYL Hf:l 6)/} p(Y7|X]7 GOZd)

Computing the complete data likelihood The complete data likelihood can be written as:

N
p(X,Y|0"", Eq) = p(Y|0"", Eo) p(X|Y,0"", Eq) = p(Y|0", Eq) [ p(wily:, ™)
i=1

where the last equality is due to the independence of datipajiven the assignments to sources. Using
Bayes rule and the assumption of chunklet independenceawwite:

[1j= oy, p(YjlOmev)
ZYl e ZYL H]I'lil 6Yj p(}/]‘@new)

p(Y[0"", Eq) =



Let us use the notatiodd = 3y, ... >y, Hle dy; p(Y;/©"¢"). The likelihood can now be rewritten
as:

N
p(X,Y|0, Eg) = Hay p(v;10") [ p(xilyi, ©) 4)
] 1 i=1
Under the first sampling assumption introduced abéyep(Y;|©™") = «,,.. HenceP (Y |0"" Eq) =
f) J Yj
Hle ay,. It can also be easily shown that under this sampling assamgt, the normalizing constant,
equals 1. Therefore, the resulting log likelihood is

L

log p(X,Y|©"" Eq) Z Z log p(x;|y;, ©"") —I—Zlog (vy;)
j=1z;eX; j=1

Computing the expectation of thelog likelihood We substitute (3) and (4) into (1) to obtain (after some
manipulations) the following expression:

ML
E(LogLikelihood) = Z Z Z log p(zil, ©™") - p(Y; = 1|X;,0°%)
1= 1j 126X
-I-ZZlog a - p(Y; = 1|1X;,0%) (5)

=1 j=1

where the chunklet posterior probability is:
of Ty ex, plaily! =1.07)
> [1;,ex, p(zily] = m, ©°)

In order to find the update rule for each parameter, we diftéate (5) with respect tp;, ¥; anday, to
get the following update equations:

L
1
af = = p(V;=1X;,0")
j=1
Jew = > Xip(Y) = 11X, 07X
new
Z] 1 p(Y; =1/ X;, ©°1) | X
e _ o= i (Y = 11X, 071X

Z] 1 p(Y) =1]X;, ©°1)[ X}

S e, (@i — ppo) ;- )"

for Xnew —
| X

Above X ; denotes the sample mean of the points in chunklet ;| denotes the number of points in chunklet
7, andZ?fw denotes the sample covariance matrix of ttfechunklet of thdth class.

As can be readily seen, the update rules above effectiveit #ach chunklet as a single data point
weighted according to the number of elements in it.
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2.1.2 Deriving the update equations when constraints are sampled i.i.d.

We now derive the update equations under the assumptiorthihatata points are sampled i.i.d, and that
chunklets are selected only afterwards. The differencerdmt the two sampling assumptions first appears

in the derivation folowing (4) above, since now the priortmabilitiesp(Y;|©"™") equalal,fj‘. We therefore
have:

HL a\Xj‘
j=1;

I M X;
Hj:l > om=1 a‘m]‘

p(Y[0"", Eq) = (6)

and the expected log likelihood becomes:

M L M L
YN dog plaill, 07) - p(V; = 11X;, 07 + 3N | X|log oy - p(YV; = 11X, ©0°)

=1 j=1z;€X; =1 j=1
L M x

S ol @
j=1 m=1

The difference between (5) and (7) lies in the last term, tvigian be interpreted as a “normalization”
term. Differentiating (7) with respect @ and; readily provides the same update equations as before, but
now the posterior takes a slightly different form:

(') NI T, e x, plaily] =1, 0°1)
M ) i

A problem arises with the derivation of update equationgHeisources’ weights;. In order to calculate
o, we need to differentiate (7) subject to the const@j’iﬁ1 oy = 1. Due to the “normalization” term
we cannot obtain a closed-form solution, and we must resousing a Generalized EM (GEM) scheme
where the maximum is found numerically.

2.2 Incorporating negative constraints

As mentioned above incorporating negative constraintshsriently different and much more complicated
than incorporating positive constraints. This difficulgncbe related to the fact that unlike positive con-
straints, negative constraints are not transitive. Fomgta if pointsz; andz; are known to belong to
different classes, and points; andz;, are also known to belong ifferent classes, points; andz; may
or may not belong to the same class. Hence negative corsteaimgiven as a group = {(a},a?)}Z, of
index pairs corresponding 1 negatively constrained pairs.
Similar to the case of positive constraints, it is straightfard to write down the complete data likeli-
hood.
1 N
PX, Y10, E) = — [ (1=0y,10,0) [T p(si[O)p(ilys, ©) 8)

(a;.a7) i=1

Notice the similarity between (4) and (8), where the prodwetré in (4) is replaced by the product over
(1 — ) in (8). Also, the normalizing constant is now given by

N
z=> S Tl -46,,..) [[rwe).
|

Y1 yn Q



In the following derivations we start with the update rulés.pand?};, and then discuss how to update
ay, which once again poses additional difficulties.

Deriving the update equationsfor p; and ¥

Following exactly the same derivation as in the case of pestonstraints, we can write down the update
equations of:; andy;:

e — >y ziply = 1|X, 0, Bo) spew _ > Silp(yi = 11X, 094, Eq)
SV ply: = 1|X, 000, Eq) SV ply = 1|X, 001, Eq)

whereS,l = (z; — pl?)(z; — ple)" denotes the sample covariance matrix.
The difficulty lies in calculating the posterior probabéi p(y; = 1|X, ©°'¢, Eq), which are calculated
by marginalizing the following expression:

H(a},a?)(l - 51!011902) Hi\;l p(yilzi, ®0ld)
2+ gy Har a2y (1 = 5@/%1 =yag) [T plyilzs, ©°)

It is not feasible to write down an explicit derivation ofstéxpression even for a very small number of
constraints, since the probability of a certain assignrépbint z; to source depends on the assignments
of all other points to which; is negatively constrained. However, since the dependemgitorced by the
constraints are local, we can describe (8) as a product af tmmponents, and therefore it can be readily
described using a Markov network.

A Markov network is a graphical model defined by a gr&ph- (V, E'), whose nodes € V represent
a random variable and whose eddesepresent the dependencies between the different nodear base,

a data pointz; is represented by two nodes in the graph: an observable mata a hidden nodk;. The
hidden nodeh; describes its source label, while the data point iteglis an observed example from the
source (see Fig. 2). Each observable neds connected to its hidden nodg by a directed edge, holding
the potential(z;|y;, ©). Each hidden nodé; also has a local potential in the form pfy;|©), reflecting
the prior on the source weights. A negative constraint betwaata points:; andz; is represented by an
undirected edge between their corresponding hidden nddeandh;, having a potential ofl — 0, ;).
Intuitively these edges prevent both hidden variables fnarwing the same value.

The mapping of our problem into the language of graphical eteothakes it possible to use efficient
inference algorithms. We use Pearl’'s junction tree algori{11] to compute the posterior probabilities.
The complexity of the junction tree algorithm is exponénitiethe induced-width of the graph, hence for
practical considerations the number of negative consgsraimould be limited t@)(N).2 Therefore, in order
to achieve scalability to large sets of constraints, we memsirt to approximations; in our implementation
we specifically replaced the graph by its spanning tree.

p(Y X, 0%, Eq) =

(9)

Deriving the update equations for «

The derivation of the update rule of = p(y; = [|Onew, Fa) is more intricate due to the normalization
constantZ. In order to understand the difficulties, note that maxingzihe expected log-likelihood with

>The general case wit(N?) constraints is NP-hard, as the graph coloring problem caedheced to it.
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Figure 2: An illustration of the Markov network required for incormting negative constraints. Data poidtand2 have a
negative constraint, and so do poi@tand3.

respect tay, is equivalent to maximizing:

= —log(Z) + Z Zp ; = m|X, 0, Eq)llog(an)

m=1 i=1

where the normalization factdf is:

7 = p(Ea|®©) = ZpY|G) (BalY)=)".. ZH% [T (1=6y00,.) (10)

Y1 yn =1 (al,a?)

177

The gradient of this expression w.kd; is given by

oI 190z SN plyi=1X,0,Eq)
= = 11
80&1 Z@al + ) ( )

Equating (11) to O (subject to the constraﬁt{‘;’1 a; = 1) does not have a closed form solution, and
once again we must use the numerical GEM procedure. The rféeulty, however, lies in estimating
(11) itself; although the posterior probabilities haveealty been estimated using the Markov network, we
still need to calculatéZ and its derivatives. This calculation is bound to be difficak suggested by the
similarity between”z andg—j and the posterior probabilities.

To address this new difficulty, we considered two differgopraaches for calculating and its deriva-
tives’. In the first approach we perform an exact calculation of berims using additional Markov networks,
and in the second approach we use an approximation basedsadmlikelihood assumption.

Calculating Z and g—fl exactly: When comparing (9) and (10), itis evident tl#atan be calculated using
a Markov network. This network has a similar structure toftdrener network: it contains the same hidden
nodes and local potentials, but lacks the observable nagesKig 3). Calculating’ then amounts to an
elimination of all the variables in this network.

3As the simplest brute-force alternative we may completghpieZ and its derivatives, which leads to a closed form update
rule for ;. However, we have observed that this solution tends to degtee algorithm’s performance.



Figure 3:An illustration of the Markov network required for calcurag Z, for the case where data poiriteind2 have a negative
constraint, as do pointsand3.

As for , each of theMf derivatives requires its own Markov network. The derivasgiare given by:

aal %: ZH yhyzaaH i Z ZH ylayzi ﬂ Qy;

N (al,a?) YN (a},a?) J=li=1,i#j

and the value of each derivative is calculated by elimimptéith the variables, just as fdf.

Computing Z and its gradients is equivalent fd + 1 elimination processes, whose complexity is
exponential in the induced-width of the graph. Since thaligra computation is performed many times in
each EM round, this method can be rather slow for complicatedtraint graphs.

Approximating Z using the pseudo-likelihood assumption: Z can be approximated under the assump-
tion that the negative constraints are mutually exclusdenote the number of negative constraints by c.
If we now assume that all pairs of constrained points areigisjthe number of unconstrained points is
u = N — 2¢. Assume, without loss of generality, that the unconstcidata points are indexed Qy . . u,
and the remaining points are ordered so constrained paiatgieen successive indices (pointst 1 and

u + 2 are negatively constrained, etc.). Heritean be decomposed as follows:

N
7 = ZZH% H 1—5@,&},%?)

Y1 yn =1 (a},a?)
= E :O‘yl"'E :O‘yu E : E :ayu+1o‘yu+2( = Ot ) - E : E :O‘yzv Ly (1= 0y ya(12)
Y1 Yu Yu+1 Yu+2 YN—-1 YN
M

= (1= a))F
i=1
This expression foZ may be easily differentiated, and can be used in a GEM schéitieough the
assumption is not valid in most cases, it seems to yield a gppiloximation for sparse networks. We
empirically compared the three approaches presented. Mbeaxpected, the results show a trade-off
between speed and accuracy. However, the average accasacgdused by ignoring or approximatiag
seems to be small.
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2.3 Combining positive and negative constraints

Both types of constraints can be incorporated into the EMralym using a single Markov network by a
rather simple extension of the network described in theipusvsection. Assume we have, in addition to
the negative constraints, a et} of chunklets, where eaghj is a list of points’ indices, known to share the
same labél The likelihood becomes

N
1
p(X,Yl@,EQ)ZEH%Ci IT =6y, 4.) [Tr@il©p(ily:,©)
- =t

whered,, . is 1 iff all the points in chunkletc; have the same label. Since the probability is non-zero
only when the hidden variables in the chunklet are identieal can replace the hidden variables of each
chunkleth,, -- h” . with a single hidden variable. Hence in the Markov networklementation positively
constralned pomts share a hidden father node (see Fig €)EWhprocedure derived from this distribution
is similar to the one presented above, requiring only a medlifiormalizing constarit.

L= 2 2 & 3

/‘"‘\\
Data Data Data Data Data
Point 1 Point 2 Point 3/\ Point 5/\ Point 6

2N
Hidden3

Figure 4:An illustration of the Markov network required for incorgting both negative and positive constraints. Data pdints
and2 have a negative constraint, and so do ponasd3. Data point® and4 have a positive constraint, and so do poisand
6.

3 Experimental results

In order to evaluate the performance of our EM derivatiorss @mpare it to the performance of the con-
strained K-means algorithm presented in [8], we tested lgarithms using several data sets from the UCI
repository. We simulated a 'distributed learning’ scemani order to obtain side information. In this sce-
nario, we obtainequivalence constraints using the help ofV teachers. Each teacher is given a random
selection ofK data points from the data set, and is then asked to parthisrsét of points into equivalence
classes. The constraints provided by the teachers arergdthad used asguivalence constraints. We
compared the performance of the following algorithms:

¢ K-means algorithm when no side information is used.

“In this section , positive constraints are sampled in acoord with the first sampling assumption described in Seéibnas
the data points are assumed to be i.i.d before the intraztuofithe constraints.

11



BALANCE N=625 d=4 C=3 BOSTON N=506 d=13 C=3 IONOSPHERE N=351 d=34 C=2

“little" "much" “little" "much" “little"” "much"

abcdefghi abcdefghi ) abcdefghi abcdefghi ) abcdefghi abcdefghi

PROTEIN N=116 d=20 C=6 WINE N=168 d=12 C=3 IRIS N=150 d=4 C=3

“little" "much" “little" "much" “little" "much"

abcdefghi abcdefghi ) abcdefghi abcdefghi ) abcdefghi abcdefghi

Figure 5: Combined precision and recall scorq% | of several clustering algorithms over 5 data sets from ti# tepository.
Results are presented for the following algorithms: (a) &ams, (b) constrained K-means using only positive comiga{c)
constrained K-means using both positive and negative @n#, (d) regular EM, (e) EM using positive constraintsd &) EM
using both positive and negative constraints. Resultstavers twice, using15% of the data points in constraints (left bars) and
30% of the points constrained (right bars). The results weresgezl over 100 realizations of constraints. Also shownte@ames
of the data sets used and some of their parameters: N - thefdize data set; C - the number of classes; d - the dimensigrudli
the data.

Constrained K-means [8], using only positieguivalence constraints.

Constrained K-means [8], using both positive and negatijugval ence constraints.

EM of a Gaussian mixture model when no side information isluse

Our closed form EM algorithm when only positieguivalence constraints are used.

Our Markov network EM algorithm, using both positive and atdge equivalence constraints.

The number of constrained points was determined by the nuafibeachersV and the size of the subset
K that they were each given. By controlling the proddk we modified the amount of side information
provided to the different algorithms. Specifically, we esipented with two conditions: using “little” side
information (approximatelyi5% of the data points are constrained) and using “much” siderimétion
(approximately30% of the points are constrained)All algorithms were given the same initial conditions
that did not take into account the availalefguivalence constraints. The clustering obtained was evaluated
using a combined measure of precisiBrand recallR scores:f% = %
The results over several UCI data sets are presented in.Fgg\veral effects can be clearly seen:

5=+ TODO** on two of the datasets presented we used more sifierination, since the amounts described above showedl littl
or no improvement.
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e As expected, our constrained EM algorithm outperforms thestrained K-means algorithms on all
databases, and shows substantial improvement over thinleaS# as well.

¢ Introducing side information in the form @fuivalence constraints clearly improves the results of
both K-means and the EM algorithms. As the amount of sidexinétion increases, the algorithms
which make use of it tend to improve.

¢ Most of the improvement can be attributed to the positivestraimts, and can be achieved using
our closed form EM version. In most cases adding the negatimstraints contributes a small but
significant improvement over results obtained when using positive constraints.

Figure 6:Three images of the same person from the YaleB data set.

YaleB N=640, d=60, C=10

"little" "much"”

abocdef abocdef

Figure 7: combined precision and recall scores of several clusteriggrithms over the YaleB facial data set. The results are
presented using the same format as in Fig. 5, representingeaage over more than 1000 realizations of constraintseRtage

of data in constraints was 50% (left bars) and 75% (right)barshould be noted that when using 75% of the data in coinéra
the constrained K-means algorithm failed to converge inentisan half of its runs.

It should be noted that most of the UCI data sets considerddrsmntain only two or three classes.
Thus in the 'distributed learning’ setting a relativelydarfraction of the constraints were positive. In a
more realistic situation, with a large number of classesareelikely to gather more negative constraints
than positive constraints. This is an important point iltigf the results in Fig. 5, where the major boost in
performance was due to the use of positive constraints.

In order to see what happens with many classes, we conduweshine experiment using a subset of
the YaleB facial image dataset [10] which contains a totd@4d images, including 64 frontal pose images
of 10 different subjects. In this database the variabil#yween images of the same person is due mainly to
different lighting conditions. We automatically centeadtthe images using optical flow. Images were then
converted to vectors, and each image was represented bsiriigst 60 principal components coefficients.
The task was to cluster the facial images belonging to thesujects.
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Some example images from the data set are shown in Fig. 6. ®te random selection of images
given to each of théV teachers, most of the constraints obtained were indeediveg®ur results are
summarized in Fig. 7. We see that even though there were amall number of positive constraints, most
of the beneficial effect of constraints is obtained from logkat this small subset of positive constraints; as
before, our constrained algorithms all substantially etfrmed the regular EM algorithm.

4 Summary

We have shown how equivalence constraints can be incogubmato the EM algorithm, in order to com-
pute in a semi-supervised manner a Gaussian Mixture Modtieoflata. When using only positive con-
straints, we provided an efficient closed form solution fog tipdate rules, and demonstrated that using
positive constraints can significantly boost clusteringfggenance. When negative constraints are added,
the computational cost increases since a Markov networ&ed as an inference tool, and we must defer to
approximations of the source weights update rules. Ourrerpats show that most of the improvement in
performance is obtained from the positive constraintsglevith some small (but significant) contribution
from the negative constraints (which are also harder to fiiméeatly).
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