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Abstract. Given multiple image data from a set of points in 3D, there are two fundamental questions that can be
addressed:

• What is the structure of the set of points in 3D?
• What are the positions of the cameras relative to the points?

In this paper we show that, for projective views and with structure and position defined projectively, these
problems are dual because they can be solved using constraint equations where space points and camera positions
occur in a reciprocal way. More specifically, by using canonical projective reference frames for all points in space
and images, the imaging of point sets in space by multiple cameras can be captured by constraint relations involving
three different kinds of parameters only, coordinates of: (1) space points, (2) camera positions (3) image points. The
duality implies that the problem of computing camera positions fromp points inq views can be solved with the same
algorithm as the problem of directly reconstructingq + 4 points inp − 4 views. This unifies different approaches
to projective reconstruction: methods based on external calibration and direct methods exploiting constraints that
exist between shape and image invariants.
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1. Introduction

The problems of determining the position of cameras
relative to a scene, and the 3D reconstruction of the
scene from image data, have traditionally been treated
as separate problems with relative camera positioning
preceding the reconstruction. Given calibrated cam-
eras, their relative orientation can be determined from
observations of corresponding points in the images us-
ing the epipolar constraint. The Euclidean structure
of the set of points in space can then be determined

using the relative orientation of the cameras. In the
case of uncalibrated cameras, relative camera position
and 3D structure of the point set can still be deter-
mined, but only up to a linear transformation depend-
ing on the projection model of the camera. For parallel
projection, position and structure can be determined
up to an arbitrary affine transformation (Koenderink
and van Doorn, 1991), and for perspective projection
cameras, position and structure can be determined up
to an arbitrary linear transformation inP3 (Faugeras
et al., 1992; Hartley et al., 1992). In the perspective
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projection case we therefore use the terms projective re-
construction and projective shape for the computation
of 3D shape when we are dealing with uncalibrated
cameras.

Camera positioning, or external calibration, in the
perspective projection case is based on the determi-
nation of the epipolar geometry which for two cam-
eras is captured by the fundamental matrix (Faugeras
et al., 1992). This matrix can be used to constrain im-
age coordinates of points in two images of the same
scene. Projective reconstruction is then achieved using
the epipolar information in various alternative ways:
projective shape from projection matrices (Faugeras,
1992; Mohr et al., 1995), cross-ratios (Gros, 1994),
or more direct methods expressing 3D invariants di-
rectly in terms of the fundamental matrix (Carlsson,
1994; Csurka and Faugeras, 1994). Recently, initi-
ated by the work in (Shashua, 1994, 1995), the gen-
eralization of the epipolar constraints to the case of
multiple uncalibrated cameras has received widespread
attention (Faugeras and Mourrain, 1995; Hartley, 1994;
Heyden, 1995a; Luong and Vi´eville, 1994; Shashua
and Werman, 1995; Triggs, 1995). The bilinear image
constraints in the case of two images are then gener-
alized to multilinear constraints between multiple im-
ages. The case of multiple camera constraints has also
been investigated for the case of reconstruction from
lines for calibrated cameras (Chen and Huang, 1990;
Spetsakis and Aloimonas, 1990) and for uncalibrated
cameras (Hartley, 1994).

Interestingly, there are alternative direct ways for
projective reconstruction, not relying on the computa-
tion of epipolar geometry (Long Quan, 1994; Sparr,
1991, 1994). Especially in the case of constrained
scenes, direct methods are powerful (Carlsson, 1995a;
Rothwell et al., 1993; Sparr, 1992; Zisserman, 1994)
in the sense that fewer points are needed for recon-
struction. Constraining the scene also makes possi-
ble the computation of epipolar geometry with fewer
points (Demey et al., 1992; Mohr, 1992; Zisserman,
1994). The direct methods for reconstruction exploit
constraints existing between projective coordinates of
coordinates of space points and their image coordi-
nates, not involving camera geometry. Direct methods
in unconstrained scenes, but assuming weak perspec-
tive projection, were described in (Tomasi and Kanade,
1992; Weinshall, 1993; Weinshall and Tomasi, 1995).

The existence of basically two alternative methods
for achieving projective reconstruction naturally poses
the question whether there is a relation between them.
In this paper we will demonstrate that this is indeed the

case. Essentially what we will show is this:

There exist joint constraint equations or canonical
projection equations, involving projective coordi-
nates of space points, camera positions and image
coordinates. In these constraints, space points and
camera positions appear symmetrically so that elimi-
nation of either one gives rise to constraint equations
between space points and image coordinates or be-
tween camera positions and image coordinates that
have exactly the same mathematical structure. The
problems of computing scene structure and camera
positions from image data are therefore dual in the
sense that they can be solved with the same algo-
rithm depending on the number of space points and
cameras.

We will see that the method proposed corresponds to
the computation of a fundamental matrix and tensors
in a canonical image coordinate system, similar to that
presented in (Heyden, 1995a). In distinction to the
work in (Heyden, 1995a) however, we use aprojective
canonical frame which permits us to write all constraint
equations in dual form.

In the positioning case, this canonicalF-matrix is
parameterized by camera positions only. In the recon-
struction case, the constraints between space points and
image coordinates can be written using a dual of the
F-matrix or tensor (denoted below theG-matrix). In
the same way as theF-matrix constrains points in dif-
ferent images to lie along epipolar lines, the dual of the
F-matrix will constrain points in the same image to lie
along lines defined by the structure of the space points.

More generally, we will show that the problem of
computing camera positions fromp points inq views
is mathematically identical to the problem of recon-
structingq +4 points inp−4 views. For example, we
show that the eight-points linear algorithm for comput-
ing epipolar geometry between two views can be used
for direct projective reconstruction of six points in four
views.

The duality between positioning and reconstruction
was first reported in the 1995 Workshop on Repre-
sentations of Visual Scenes: The basic algebraic re-
lations, and the geometrical interpretation in terms of
duality between the position of the camera’s center
of projection and the position of a point in 3D, was
described in (Carlsson, 1995b). The basic algebraic
duality, which formally exists for any representation
of the basis points, was also described in (Weinshall
et al., 1995). Weinshall et al. (1995) described the new
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space-image relations that are obtained using the dual-
ity observation, and obtained a low rank factorization of
the seven points shape tensor (cf., Shashua and Avidan,
1996). Recently a dual epipolar structure, where the
dual epipole is defined by the shape geometry instead of
camera geometry, was described in (Irani and Anandan,
1996).

2. Linearly Invariant Representations

The perspective projection of a pointP in space to an
image plane can be written as:

p = M P (1)

wherep andP are respectively the homogeneous im-
age and space point coordinates of the point in arbi-
trarily chosen coordinate systems.M is a 3× 4 matrix
depending on the position of the image plane and the
camera’s projection center.

Given multiple views of a set of points, reconstruc-
tion can be achieved by determining the projection ma-
tricesM i and the 3D point positionsPi . In the general
uncalibrated camera case, these can only be determined
up to an arbitrary linear transformation (Faugeras et al.,
1992; Hartley et al., 1992). Given thatP1, P2, . . . , Pn

is a reconstruction, it follows that

(P′
1, P′

2, . . . , P′
n) = T(P1, P2, . . . , Pn)

whereT is an arbitrary 4× 4 matrix, is an equally
valid reconstruction given the observed image data.
This equivalence class of reconstructions can be com-
pactly described by the linear invariants of the set
P1, P2, . . . , Pn of space points.

The basic relation that will be derived is the con-
straint relation involving linearly invariant represen-
tation of space points, camera positions and image
coordinates. We will use five space points as a pro-
jective basis and express all other space points and
camera positions in this basis with projective coordi-
nates. In each image we choose four corresponding
image points as a projective basis and express each im-
age point in this basis. The homogeneous projective
coordinates are then a linearly invariant representation
of space and image points in the sense that ratios of ho-
mogeneous coordinate components are absolute linear
invariants.

As a consequence of this representation, cameras
will be represented by the position of their projection

Figure 1. For two arbitrary orientations of the image plane, the
image coordinates are related by a projective transformation. Thus
choosing a linearly invariant representation for image data implies
that the exact position and orientation of the image plane is irrelevant.
The camera can therefore be represented by its positionP̌ only.

center in space only. The specific position and orien-
tation of the image planes does not enter at all in the
relations. The reason why the orientation of the image
plane is irrelevant when using linearly invariant coor-
dinate representations is illustrated in Fig. 1: for two
arbitrary choices of image planes to a given projection
center P̌ the image coordinates are linearly related;
the projective coordinate representation is therefore
unaffected by this choice.

The advantage of using a linearly invariant represen-
tation at the outset is that we get more compact expres-
sions describing the relations between the important
variables. The price we pay is that when we want to
go back to the standard representation, i.e., choosing
Cartesian coordinate systems in image and space, our
relations will be expressed as high order polynomials
in these coordinates.

3. Constraints between Space Points, Camera
Positions and Image Coordinates

Using the projection relation (1) we will now derive
invariant relations between points in 3D, camera posi-
tions and image coordinates. For that purpose we take
five 3D points, with no four of them coplanar, with
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coordinatesP∗
1 , P∗

2 , P∗
3 , P∗

4 , P∗
5 as a projective basis,

where∗ indicates that we have fixed the scale factor of
the homogeneous coordinates.X, Y, Z, andW are the
homogeneous projective coordinates of a pointP with
respect to this basis if

P = X P∗
1 + Y P∗

2 + Z P∗
3 + W P∗

4 (2)

The scale factors of the basis are determined by the
requirement that pointsP∗

1 , P∗
2 , P∗

3 , P∗
4 be basis vec-

tors in this representation and pointP∗
5 has coordinates

(1, 1, 1, 1).
For the center of projection of the camera we use the

notationP̌ and it can be expressed as

P̌ = X̌ P∗
1 + Y̌ P∗

2 + Ž P∗
3 + W̌ P∗

4 (3)

Similarly we choose the projective basis for image
coordinates as the first four image points,p∗

1, p∗
2,

p∗
3, p∗

4, corresponding to the space pointsP1, P2,

P3, P4. The requirement is then that no three image
points are collinear. An image point can then be ex-
pressed as

p = xp∗
1 + yp∗

2 + wp∗
3 (4)

wherex, y, w are homogeneous projective image co-
ordinates. Pointsp1, p2, p3 will be the unit vectors and
point p4 will have the projective coordinates (1, 1, 1).

To summarize, if we use the projective coordinates
representation, we get

p1 p2 p3 p4 p

1 0 0 1 x

0 1 0 1 y

0 0 1 1 w

(5)

P̌ P1 P2 P3 P4 P5 P

X̌ 1 0 0 0 1 X

Y̌ 0 1 0 0 1 Y

Ž 0 0 1 0 1 Z

W̌ 0 0 0 1 1 W

(6)

It follows that the projection relation (1) must have
the form x

y

w

 =

α 0 0 δ

0 β 0 δ

0 0 γ δ




X

Y

Z

W



Every space point except the camera’s projection
centerX̌, Y̌, Ž, W̌ projects to the image plane, and ev-
ery point in the image plane except(0, 0, 0) is image
of a space point. This implies that we must have

0

0

0

 =

α 0 0 δ

0 β 0 δ

0 0 γ δ




X̌

Y̌

Ž

W̌


Thus we get

α = σ X̌−1, β = σ Y̌−1,

γ = σ Ž−1, δ = −σ W̌−1
(7)

We can therefore write the projection equation (1),
relating linearly invariant representations of image
points, space points, and camera projection centers,
as

 x

y

w

 = σ


X̌−1 0 0 −W̌−1

0 Y̌−1 0 −W̌−1

0 0 Ž−1 −W̌−1




X

Y

Z

W


By eliminating the arbitrary scale factorσ we get the

following two equations:

x

w
= X̌−1X − W̌−1W

Ž−1Z − W̌−1W
(8)

y

w
= Y̌−1Y − W̌−1W

Ž−1Z − W̌−1W
(9)

which can be written in the form of constraint relations:

Theorem (Structure position constraint duality).
Projective coordinates X, Y, X, W of a point in 3D
and camera positioňX, Y̌, X̌, W̌ are constrained by
projective image coordinates x, y, w according to

w
Y

Y̌
− y

Z

Ž
+ (y − w)

W

W̌
= 0 (10)

w
X

X̌
− x

Z

Ž
+ (x − w)

W

W̌
= 0 (11)

These constraints are dual w.r.t. scene structure and
camera positions in the sense that they are unaffected
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by the substitutions

(X, Y, Z, W) ⇐⇒ (X̌−1, Y̌−1, Ž−1, W̌−1)

The consequence of this theorem is that the problems
of computing positions of points in space(X, Y, Z, W),
and camera positions(X̌, Y̌, Ž, W̌), from image data
have identical mathematical structure.

Note that the actual choice of the fifth point in the
3D projective basis does not affect the basic dual con-
straint relations that were derived above. In the follow-
ing chapters we will have reason to choose this point
with some liberty, e.g., as one of the camera points.

In the case of multiple points and cameras, we
get a pair of constraint equations (10) and (11) for
each combination of points cameras. We will use
indices 1, 2, 3, 4, n, m, . . . , i to denote space points
and indicesa, b, c, . . . , q to denote camera projec-
tion points. The image point of space pointi in
cameraq has indexq

i . Thus we use the following
notations:

Space points: P1, P2, P3, P4, . . . , Pn, . . . , Pm, . . . , Pi

Camera projection points: P̌a, P̌b, P̌c, . . . , P̌q

Image point i in camera q: pq
i

3.1. Projective Reconstruction from Known Camera
Positions and Two Images

Using (10) and (11) we can solve for the projective
coordinates of pointn given the images in two cameras
a, b with known positions:

0 wa
nY̌−1

a −ya
n Ž−1

a

(
ya

n − wa
n

)
W̌−1

a

wa
n X̌−1

a 0 −xa
n Ž−1

a

(
xa

n − wa
n

)
W̌−1

a

0 wb
nY̌−1

b −yb
n Ž−1

b

(
yb

n − wb
n

)
W̌−1

b

wb
n X̌−1

b 0 −xb
n Ž−1

b

(
xb

n − wb
n

)
W̌−1

b



×


Xn

Yn

Zn

Wn

 = 0 (12)

This equation defines the homogeneous coordinates of
the position of pointn in space as the null-space of the
matrix on the left side, which is determined by cameras
a andb.

3.2. Relative Positioning from Known Space Points
and One Image

In a very similar way the camera position for camera
a can be computed given a known configuration of six
points in space 1, . . . , 4, n, m. From (10) and (11) we
get:

0 wa
nYn −ya

n Zn
(
ya

n − wa
n

)
Wn

wa
n Xn 0 −xa

n Zn
(
xa

n − wa
n

)
Wn

0 wa
mYm −ya

mZm
(
ya

m − wa
m

)
Wm

wa
mXm 0 −xa

mZm
(
xa

m − wa
m

)
Wm



×


X̌−1

a

Y̌−1
a

Ž−1
a

W̌−1
a

 = 0 (13)

Using pointsm 6= n wherem > 4 andn > 4 we can
solve for the projective coordinates of the camera po-
sition in terms of image and space point coordinates in
the same way as in the projective reconstruction above.

We see that the problems of projective reconstruc-
tion from known camera positions and camera posi-
tioning from known space points are mathematically
identical. This is a consequence of the structure of the
basic constraint relations (10) and (11). We will also
see that, using the constraint relations we get by elim-
inating either space points or camera positions, we get
mathematically identical expressions.

4. Position and Structure Constraints
from Image Measurements

From (12) and (13) we can derive relations between
camera positions and image measurements, or between
space coordinates and image measurements, by noting
that the 4× 4 matrices in general have rank 3.

4.1. Position Constraints—Camera Positions
and Image Coordinates

The geometric basis for the space-image and camera-
image constraint relations developed below can be seen
in Fig. 2. The camera-image (or epipolar) constraint
follows from the four point coplanarity of the camera
positions and image points in 3D (a0, b0, a1, b1 and
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Figure 2. Geometric interpretation of epipolar and space-image
constraints in terms of four point coplanarities, see text.

a0, b0, a2, b2 in the figure). The space-image constraint
follows from coplanarities of space points and image
points (u1, u2, a1, a2 andu1, u2, b1, b2 in the figure).

From (12) we get

det



0 wa
nY̌−1

a −ya
n Ž−1

a

(
ya

n − wa
n

)
W̌−1

a

wa
n X̌−1

a 0 −xa
n Ž−1

a

(
xa

n − wa
n

)
W̌−1

a

0 wb
nY̌−1

b −yb
n Ž−1

b

(
yb

n − wb
n

)
W̌−1

b

wb
n X̌−1

b 0 −xb
n Ž−1

b

(
xb

n − wb
n

)
W̌−1

b


= 0 (14)

This can be written in the following bilinear form

xa
n

ya
n

wa
n


T  0 f2 − f1 f3 − f2

f4 − f5 0 f5 − f3

f6 − f4 f1 − f6 0




xb
n

yb
n

wb
n

 = 0

(15)

where

f1 = X̌−1
b Y̌−1

a Ž−1
b W̌−1

a

f2 = X̌−1
b Y̌−1

a Ž−1
a W̌−1

b

f3 = X̌−1
b Y̌−1

b Ž−1
a W̌−1

a

f4 = X̌−1
a Y̌−1

b Ž−1
b W̌−1

a

f5 = X̌−1
a Y̌−1

b Ž−1
a W̌−1

b

f6 = X̌−1
a Y̌−1

a Ž−1
b W̌−1

b

This is the epipolar constraint on the projective im-
age coordinates in imagea and imageb. The 3× 3
matrix F in (15) is the fundamental matrix parameter-
ized by the positions of camerasa andb. The choice of
the basis for the projective image coordinates ensures
that the fundamental matrix is determined completely
by the camera positions and no other imaging param-
eters. The structure of thisF-matrix is similar to the
one derived in (Heyden, 1995a) where a similar but not
identical canonical framework is used.

It can be readily shown that the determinant

( f2 − f1)( f5 − f3)( f6 − f4)

+ ( f3 − f2)( f4 − f5)( f1 − f6) = 0 (16)

The rank of theF-matrix is therefore≤2.

4.2. Structure Constraints—Space Points
and Image Coordinates

For two points in one image we get from (13)

det


0 wa

nYn −ya
n Zn

(
ya

n − wa
n

)
Wn

wa
n Xn 0 −xa

n Zn
(
xa

n − wa
n

)
Wn

0 wa
mYm −ya

mZm
(
ya

m − wa
m

)
Wm

wa
mXm 0 −xa

mZm
(
xa

m − wa
m

)
Wm


= 0 (17)

Because of the duality in the structure of the equa-
tions for space points and camera positions we can
write the space-image constraint in a form similar to
the epipolar constraint

xa
n

ya
n

wa
n


T 0 g2 − g1 g3 − g2

g4 − g5 0 g5 − g3

g6 − g4 g1 − g6 0




xa
m

ya
m

wa
m

 = 0

(18)

where

g1 = XmYnZmWn

g2 = XmYnZnWm
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g3 = XmYmZnWn

g4 = XnYmZmWn

g5 = XnYmZnWm

g6 = XnYnZmWm

Given known space points, this equation constrains an
image point to lie on a line determined by the space
points and five image points in the very same way as
epipolar lines constrain the position of image points in
multiple images. Note that form, n < 5 the constraints
are trivially satisfied.

It can be readily shown that the determinant

(g2 − g1)(g5 − g3)(g6 − g4)

+ (g3 − g2)(g4 − g5)(g1 − g6) = 0 (19)

The rank of theG-matrix is therefore≤2.

5. Computing Camera and Space Projective
Coordinates from the Constraint Relations

5.1. Linear Computation of the F- and G-Matrices

The constraints (15) and (18) have exactly the same
form if we make the identificationsa ↔ n andb ↔ m.
The problem of computing the projective coordinates
of the camera’s projection center from the fundamental
matrix (15) is therefore equivalent to the problem of
computing projective coordinates of space points from
the space-image constraint matrix (18).

Equations (15) and (18) provide linear constraints
on the six unknown elements of theF-matrix and the
G-matrix, respectively. Due to the structure of theF-
andG-matrices their elements sum to 0.∑

fi j =
∑

gi j = 0

This gives one additional constraint in both cases.
Since there are six homogeneous non-zero elements

of the matricesF andG, and we have the constraint
that the elements sum to 0, we need four constraints of
the type (15) and (18) for a linear computation of the
matrix elements in both cases.

In order to get a more compact notation we write
p̂aT

n = (xa
n , ya

n , wa
n) for the projective coordinates of

point n in imagea and Fab andGmn to indicate that
the F- andG-matrices are associated with the pair of
camerasa, b and the pair of pointsm, n, respectively.

Linear F-matrix Computation from Eight Points and
Two Images. Given two images, image points with
index i ≥ 5 provide constraints of type (15) on the
F-matrix. Fori = 1, 2, 3 we get trivial identities due
to the structure of theF-matrix andi = 4 just gives
the summation constraint. Thus eight points observed
in two imagesa, b will give four linear constraints on
the elements of the matrixFab

p̂aT

i Fabp̂b
i = 0, i = 5, 6, 7, 8 (20)

Linear G-matrix Computation from Six Points and
Four Images. Similarly, given six points 1, 2, 3, 4,

m, n and multiple images, we get one constraint from
each image on theG-matrix for pointsmn. Note that
the elements of the matrixGmn are trivially 0 form ≤ 4
or n ≤ 4. Thus six points observed in four images
will give four linear constraints on the elements of the
matrix Gmn

p̂qT

m Gmnp̂q
n = 0 q = a, b, c, d (21)

5.2. Computing Relative Projective Coordinates
from the F- and G-Matrices

The projective coordinates of space and camera pro-
jection points can be computed from the elements of
the F- andG-matrices. These can be given a simpler
structure by introducing the relative projective coordi-
nates

χ = X̌−1
b

X̌−1
a

ψ = Y̌−1
b

Y̌−1
a

ζ = Ž−1
b

Ž−1
a

ω = W̌−1
b

W̌−1
a

and (22)

χ = Xm

Xn
ψ = Ym

Yn
ζ = Zm

Zn
ω = Wm

Wn
,

respectively.
After factoring out common factors, theF- andG-

matrices in (15) and (18):

F =

 0 f12 f13

f21 0 f23

f31 f32 0

 G =

 0 g12 g13

g21 0 g23

g31 g32 0


(23)
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can now be written as

∝

 0 χ(ω − ζ ) −χ(ω − ψ)

−ψ(ω − ζ ) 0 ψ(ω − χ)

ζ(ω − ψ) −ζ(ω − χ) 0


(24)

Given the elements of theF- and G-matrices, we
want to compute the coordinatesX̌a, . . . , W̌a, X̌b, . . . ,

W̌b of the camera positions, andXm, . . . , Wm, Xn, . . . ,

Wn of pointsm andn, respectively. As an intermediate
step we compute the parametersχ, ψ, ζ, ω. If we let
qi j denote eitherfi j or gi j we get from (23) and (24)
the explicit solutions for the normalized variables:

χ

ω
= −q1,2 + q1,3

q3,1 + q2,1

ψ

ω
= −q2,3 + q2,1

q1,2 + q3,2
(25)

ζ

ω
= −q3,1 + q3,2

q1,3 + q2,3

5.3. Nonlinear Computation of F- and G-Matrices

The linear computation of the elements of theF- and
G-matrices does not make use of the fact that these
matrices are rank≤2. This imposes an extra constraint
on the matrix elements, which means that we need only
seven points and two images in theF-matrix case and
six points and three images for theG-matrix computa-
tion. However, since the rank constraint is non-linear,
we will in general have multiple solutions in these
cases. Alternatively, the computation can be made
more efficient by directly computing the substitution
variablesχ, ψ, ζ and ω. Note that the form of the
matrix (24) automatically imposes the rank constraint.
Now every constraint relation of the form:xip

yip

wi p


T 0 χ(ω − ζ ) −χ(ω − ψ)

−ψ(ω − ζ ) 0 ψ(ω − χ)

ζ(ω − ψ) −ζ(ω − χ) 0



×

 xjq

yjq

w jq

 = 0 (26)

can be considered as a nonlinear constraint on the three
normalized unknownsχ

ω
,

ψ

ω
,

ζ

ω
. This means that we

need a minimum of three equations to get a solution.

Nonlinear F-matrix Computation for Seven Points
and Two Images. In the F-matrix case we can take
p = a, q = b, andi = j = 5, 6, 7 in order to get three
equations for computing camera positions from seven
points and two cameras.

Nonlinear G-matrix Computation for Six Points and
Three Images. In theG-matrix case we can takep =
q = a, b, c and i = 5, j = 6 in order to get three
equations for computing space point positions from six
points and three cameras.

These equations are exactly those treated and solved
in (Long Quan, 1994) for the structure computation
case.

5.4. Computing Projective Coordinates
from the F- and G-Matrices

The parametersχ, ψ, ζ, ω give ratios of homogeneous
projective coordinates for either camera positions or
space points. The computation of either camera posi-
tions or space point positions can be made especially
simple by making a particular choice of the fifth point
in the projective 3D basis.

Choosing the Fifth Basis Point as a Space Point.
Suppose we choose the fifth 3D basis point as the fifth
space pointP5. We then have

(X5, Y5, Z5, W5) = (1, 1, 1, 1) (27)

Forn = 5, m > 5 in (22) we then get

χ = Xm, ψ = Ym, ζ = Zm, ω = Wm (28)

In other words, we get the position of pointm directly
from the substituted variables.

For the camera positions we still get ratios of pro-
jective coordinates for two cameras. However, we now
have auxiliary constraints on the camera positions from
the original constraint equations (12).

wa
5Y̌−1

a − ya
5 Ž−1

a + (
ya

5 − wa
5

)
W̌−1

a = 0

wa
5 X̌−1

a − xa
5 Ž−1

a + (
xa

5 − wa
5

)
W̌−1

a = 0

wb
5Y̌−1

b − yb
5 Ž−1

b + (
yb

5 − wb
5

)
W̌−1

b = 0

wb
5 X̌−1

b − xb
5 Ž−1

b + (
xb

5 − wb
5

)
W̌−1

b = 0

(29)
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If we use these together with (22)

χ = X̌−1
b

X̌−1
a

, ψ = Y̌−1
b

Y̌−1
a

, ζ = Ž−1
b

Ž−1
a

, ω = W̌−1
b

W̌−1
a

(30)

we get a linear system for computing camera positions
fromχ, ψ, ζ, ω (which are computed linearly from the
F-matrix, as described in Section 5.2).

Choosing the Fifth Basis Point as a Camera Point.
In a completely dual way we can get a simple solution
for the camera positions if we choose the fifth 3D basis
point as a camera position.

(X̌a, Y̌a, Ža, W̌a) = (1, 1, 1, 1) (31)

We then get from (22)

χ = X−1
b , ψ = Y−1

b , ζ = Z−1
b , ω = W−1

b

(32)

In other words, we get the position of camerab directly
from the substituted variables. This position is now
computed in a system spanned by the first four space
points and the position of cameraa. In order to express
the space points in this system, we have to use auxiliary
constraints that are dual to those in (29). From (13) we
get:

wa
nYn − ya

n Zn + (
ya

n − wa
n

)
Wn = 0

wa
n Xn − xa

n Zn + (
xa

n − wa
n

)
Wn = 0

wa
mYm − ya

mZm + (
ya

m − wa
m

)
Wm = 0

wa
mXm − xa

mZm + (
xa

m − wa
m

)
Wm = 0

(33)

Which can be used together with (22)

χ = Xn

Xm
, ψ = Yn

Ym
, ζ = Zn

Zm
, ω = Wn

Wm
(34)

to compute the positions of space pointsm and n
linearly fromχ, ψ, ζ, ω.

6. Duality of Reconstruction and Positioning
from Multiple Data

6.1. Multilinear Constraints

The constraints (12) and (13) can be written for ar-
bitrary number of camerasa, b, c, . . . and arbitrary
number of points 5, 6, 7, . . . respectively. Instead of

4 × 4 matrices we get rectangular four column matri-
ces whose rank≤3.

For one point and many images (12) becomes:

0 · · ·aY̌−1
a · · ·a Ž−1

a · · ·a W̌−1
a

· · ·a X̌−1
a 0 · · ·a Ž−1

a · · ·a W̌−1
a

0 · · ·bY̌−1
b · · ·b Ž−1

b · · ·bW̌−1
b

· · ·b X̌−1
b 0 · · ·b Ž−1

b · · ·bW̌−1
b

0 · · ·cY̌−1
c · · ·c Ž−1

c · · ·cW̌−1
c

· · ·c X̌−1
c 0 · · ·c Ž−1

c · · ·cW̌−1
c

...



×


Xn

Yn

Zn

Wn

 = 0 (35)

Similarly, for many points in one image (13) be-
comes:

0 · · ·5Y5 · · ·5 Z5 · · ·5W5

· · ·5 X5 0 · · ·5 Z5 · · ·5W5

0 · · ·6Y6 · · ·6 Z6 · · ·6W6

· · ·6 X6 0 · · ·6 Z6 · · ·6W6

0 · · ·7Y7 · · ·7 Z7 · · ·7W7

· · ·7 X7 0 · · ·7 Z7 · · ·7W7

...




X̌−1

a

Y̌−1
a

Ž−1
a

W̌−1
a

 = 0

(36)

Since both rectangular matrices have rank≤3 all
their 4× 4 minors must vanish, giving us constraints
among up to four cameras and image measurements,
or up to four space points and image measurements
(Faugeras and Mourrain, 1995). These constraints are
bi- tri- or quadri-linear in the projective image co-
ordinates. They are related to the multiple image
epipolar constraints previously derived and discussed
in (Faugeras and Mourrain, 1995; Heyden, 1995a;
Shashua, 1994; Triggs, 1995).

The problems of computing scene structure and cam-
era positions from multiple points and views are math-
ematically identical:
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Theorem (Reconstruction positioning duality).
For multiple cameras and points, the camera position,
or epipolar constraints have exact dual counterparts in
constraints on space points and image coordinates de-
pending on the choice of number of points and frames.
In general the constraints we get for camera positions
from p points in q views are mathematically identical
to the constraints for space points from q+ 4 points in
p − 4 views.

The multilinear constraints in the position and recon-
struction cases can be treated in a unified way, similar
to the bilinear constraints. We first recall that they are
obtained from the fact that the rank of some rectangu-
lar matrix is 3. This remains true when the matrix is
multiplied on the right by

X 0 0 0

0 Y 0 0

0 0 Z 0

0 0 0 W

 (37)

for (almost) anyX, Y, Z, W.
We first multiply the rectangular matrices in (35) and

(36) by 
X̌a 0 0 0

0 Y̌a 0 0

0 0 Ža 0

0 0 0 W̌a

 (38)

and 
X−1

5 0 0 0

0 Y−1
5 0 0

0 0 Z−1
5 0

0 0 0 W−1
5

 (39)

respectively. Next we generalize (22) and substitute for
the camera positions and image coordinates in (35):

χ ′ = X̌−1
b

X̌−1
a

, ψ ′ = Y̌−1
b

Y̌−1
a

, ζ ′ = Ž−1
b

Ž−1
a

, ω′ = W̌−1
b

W̌−1
a

,

χ ′′ = X̌−1
c

X̌−1
a

, ψ ′′ = Y̌−1
c

Y̌−1
a

, ζ ′′ = Ž−1
c

Ž−1
a

, ω′′ = W̌−1
c

W̌−1
a

,

χ ′′′ = X̌−1
d

X̌−1
a

, ψ ′′′ = Y̌−1
d

Y̌−1
a

, ζ ′′′ = Ž−1
d

Ž−1
a

, ω′′′ = W̌−1
d

W̌−1
a

.

(40)

x = xa
n , y = ya

n , z = za
n, w = wa

n,

x′ = xb
n, y′ = yb

n, z′ = zb
n, w′ = wb

n,

x′′ = xc
n, y′′ = yc

n, z′′ = zc
n, w′′ = wc

n,

x′′′ = xd
n , y′′′ = yd

n , z′′′ = zd
n, w′′′ = wd

n .

(41)

and for the space point positions and image coordinates
in (36)

χ ′ = X6

X5
, ψ ′ = Y6

Y5
, ζ ′ = Z6

Z5
, ω′ = W6

W5
,

χ ′′ = X7

X5
, ψ ′′ = Y7

Y5
, ζ ′′ = Z7

Z5
, ω′′ = W7

W5
,

χ ′′′ = X8

X5
, ψ ′′′ = Y8

Y5
, ζ ′′′ = Z8

Z5
, ω′′′ = W8

W5
,

(42)

x = xa
5 , y = ya

5 , z = za
5, w = wa

5,

x′ = xa
6 , y′ = ya

6 , z′ = za
6, w′ = wa

6,

x′′ = xa
7 , y′′ = ya

7 , z′′ = za
7, w′′ = wa

7,

x′′′ = xa
8 , y′′′ = ya

8 , z′′′ = za
8, w′′′ = wa

8.

(43)

Instead of both (35) and (36) we get the following con-
straint matrix whose rank is also 3:

C =



w 0 −x (x − w)

0 w −y (y − w)

w′ χ ′ 0 −x′ ζ ′ (x′ − w′) ω′

0 w′ ψ ′ −y′ ζ ′ (y′ − w′) ω′

w′′ χ ′′ 0 −x′′ ζ ′′ (x′′ − w′′) ω′′

0 w′′ ψ ′′ −y′′ ζ ′′ (y′′ − w′′) ω′′

w′′′ χ ′′′ 0 −x′′′ ζ ′′′ (x′′′ − w′′′) ω′′′

0 w′′′ ψ ′′′ −y′′′ ζ ′′′ (y′′′ − w′′′) ω′′′

...


(44)

All the multilinear constraints are obtained from the
equations describing the fact that the determinant of
each 4× 4 minor ofC is 0; these equations are derived
below.
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6.2. Bilinear Equations

We are given a constraint matrix composed of the first
four rows of matrixC from (44); thus there is a single
constraint—the determinant ofC should vanish. This
analysis was carried out in detail, for the structure and
positioning cases, in Sections 4 and 5.

6.3. Trilinear Equations

We are given a constraint matrix composed of the first
six rows of matrixC from (44). There are( 6

4) = 15
constraints when considering all 4× 4 minors ofC.
However, using algebraic tools we found that generi-
cally there are only seven independent equations: three
bilinear equations involving subsets of six points (sim-
ilar to those given in (15), (18)), and four new trilinear
equations. The four new equations give us the follow-
ing set of constraints:

0 A B 0 0 0 C 0 D E 0

0 0 0 F G H I 0 J K 0

L M N 0 0 0 0 O P 0 Q

0 0 0 0 R S 0 T U 0 V



×



χ ′ ψ ′′ − ω′ ζ ′′

χ ′ ζ ′′ − ω′ ζ ′′

χ ′ ω′′ − ω′ ζ ′′

ψ ′ χ ′′ − ω′ ζ ′′

ψ ′ ζ ′′ − ω′ ζ ′′

ψ ′ ω′′ − ω′ ζ ′′

ζ ′ χ ′′ − ω′ ζ ′′

ζ ′ ψ ′′ − ω′ ζ ′′

ζ ′ ω′′ − ω′ ζ ′′

ω′ χ ′′ − ω′ ζ ′′

ω′ ψ ′′ − ω′ ζ ′′



= 0 (45)

where the elements of the constraint matrix above are
trilinear functions of the image measurements:

A = −x x′′ w′ + x′′ w w′

B = x x′′ w′ − x w′ w′′

C = x x′ w′′ − x′ w w′′

D = −x′ x′′ w + x′ w w′′

E = −x x′ w′′ + x w′ w′′

F = −x w′ w′′ + y w′ w′′

G = −x′′ y w′ + x′′ w w′

H = x′′ y w′ − y w′ w′′

I = x y′ w′′ − y′ w w′′

J = −x′′ y′ w + y′ w w′′

K = −x y′ w′′ + x w′ w′′

L = −x w′ w′′ + y w′ w′′ (46)

M = x y′′ w′ − y′′ w w′

N = −x y′′ w′ + x w′ w′′

O = −x′ y w′′ + x′ w w′′

P = x′ y′′ w − x′ w w′′

Q = x′ y w′′ − y w′ w′′

R = −y y′′ w′ + y′′ w w′

S = y y′′ w′ − y w′ w′′

T = y y′ w′′ − y′ w w′′

U = −y′ y′′ w + y′ w w′′

V = −y y′ w′′ + y w′ w′′

We can write each new trilinear constraint in a tensor
form, using 3×3×3 tensorsTl . More specifically, we
have

∑
i, j,k

Tl
i jk (p)i (p′) j (p′′)k = 0, l = 1, . . . , 4 (47)

Each of the four constraints has a different shape ten-
sor. For example, the 3× 3× 3 tensor of the first con-
straint (the first row in (45)) is composed of the 3× 3
matrices:

T1
i j 1 =

 0 0 χ ′(ω′′ − ζ ′′)
0 0 0

ω′ζ ′′ − ζ ′ω′′ 0 χ ′ζ ′′ − ω′ζ ′′

 (48)

T1
i j 2 =

0 0 0

0 0 0

0 0 0

 (49)
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T1
i j 3 =

 χ ′′(ζ ′ − ω′) 0 ω′χ ′′ − χ ′ω′′

0 0 0

ζ ′(ω′′ − χ ′′) 0 0

 (50)

Linear F-tensor and G-tensor Computation from
Seven Points and Three Images.There are only 11
homogeneous variables (or 10 unknowns) in all four
tensors. Writing the constraints as in (45), and since
there are four constraints with 10 unknowns, we can
compute the elements of the shape tensors from three
images or more, or the camera tensors from seven
points or more. In either case, we are left with an
overconstrained linear system of equations for the 10
unknowns using at least three images or at least seven
points.

Given the elements of theF- andG-tensors, we want
to compute the coordinates of the camera positions and
the space points. As an intermediate step we compute
the parametersχ ′, ψ ′, ζ ′, ω′ andχ ′′, ψ ′′, ζ ′′, ω′′. If we
let {qi }11

i =1 denote the 11 different elements of the 3D
F- orG-tensors from (45), we get from (45) the explicit
solutions for the normalized variables

χ ′

ω′ = q1 − q2

q11
,

ψ ′

ω′ = q4 − q5

q10
,

ζ ′

ω′ = q7 − q8

q10 − q11
,

χ ′′

ω′′ = q4 − q7

q6 − q9
,

ψ ′′

ω′′ = q1 − q8

q3 − q9
,

ζ ′′

ω′′ = q2 − q5

q3 − q6
.

(51)

Nonlinear F-tensor Computation from Six Points and
Three Images and G-tensor from Seven Points and
Two Images. We can normalize the homogeneous
four-vectorsχ ′, ψ ′, ζ ′, ω′ andχ ′′, ψ ′′, ζ ′′, ω′′ by set-
ting ω′ = ω′′ = 1, which leaves us with six unknowns.
Thus it is possible tononlinearlycompute the shape
parameters from two images of seven points, and the
camera parameters from three images of six points.

6.4. Quadrilinear Equations

We are given a constraint matrix composed of the first
eight rows of matrixC from (44). There are( 8

4) = 70
constraints when considering all 4× 4 minors ofC.

Using Gröbner bases in the Computer Algebra Sys-
tem SINGULAR, we computed an algebraic basis for
the space spanned by the 15 constraints. This basis
has seven equations: three bilinear equations involv-
ing subsets of six points, and 12 trilinear equations
involving seven points. Thus there are no algebraically

new constraints, and we get no new equations on the
original variablesχ ′, ψ ′, ζ ′, ω′, χ ′′, ψ ′′, ζ ′′, ω′′.

However, there are new quadrilinear equations that
define 22 independent linear constraints on 41 un-
knowns. We can write each quadrilinear constraint in
a tensor form, using 3× 3 × 3 × 3 tensorsQl :∑
i, j,k,l

Ql
i jkl (p)i (p′) j (p′′)k(p′′′)l = 0, l = 1, . . . , 22

(52)

Linear F-tensor Computation from Six Points and
Four Images and G-tensor from Eight Points and
Two Images. Each of the 22 constraints has a dif-
ferent tensor. However, there are only 41 unknowns
in all 22 tensors, and writing the constraints as in 45
allows us to compute allF-tensors from two images
or more. Dually we can compute all theG-tensors
using six or more points in four images. Given the
elements of theF- andG-tensors, we once again com-
pute the parametersχ ′, ψ ′, ζ ′, ω′, χ ′′, ψ ′′, ζ ′′, ω′′ and
χ ′′′, ψ ′′′, ζ ′′′, ω′′′. If we let {qi }41

i =1 denote the 41 dif-
ferent elements of the 3DF- or G-tensors, we get the
explicit solutions for the normalized variables:

χ ′

ω′ = q35 − q38

q15 − q11
,

ψ ′

ω′ = q28 − q21

q3 − q11
,

ζ ′

ω′ = q9 − q33

q3 − q15
,

χ ′′

ω′′ = q8 − q2

q13 − q1
,

ψ ′′

ω′′ = q4 − q14

q12 − q1
,

ζ ′′

ω′′ = q16 − q17

q12 − q13
,

χ ′′′

ω′′′ = q39 − q40

q24 − q7
,

ψ ′′′

ω′′′ = q22 − q23

q41 − q7
,

ζ ′′′

ω′′′ = q31 − q5

q41 − q24
.

(53)

Nonlinear F-tensor and G-tensor Computation.No
new nonlinear algorithm can be described because no
new independent constraint equation is obtained from
the quadrilinear equations.

6.5. Space-Point and Camera-Point Relations

The tri-linear constraints for external calibration de-
scribed in (Hartley, 1994; Shashua, 1994) are obtained
from (45), and the quadrilinear constraints described in
(Faugeras and Mourrain, 1995; Shashua and Werman,
1995; Triggs, 1995) are obtained from the correspond-
ing quadrilinear system. This is done by making the
substitutions defined in (40) and (41). We can use these
equations to find camera positions. If we choose the co-
ordinates of the center of cameraa to be at [1, 1, 1, 1],
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thenχ ′, ψ ′, ζ ′, ω′ give the center of camerab (inverse),
χ ′′, ψ ′′, ζ ′′, ω′′ give the center of camerac (inverse),
andχ ′′′, ψ ′′′, ζ ′′′, ω′′′ give the center of camerad (in-
verse), in the basis defined by the first four space points
and the camera positiona.

Similarly, the dual trilinear relations between seven
points in three images are obtained from (45), and the
dual quadrilinear relations between eight points in two
images are obtained from the corresponding quadri-
linear system. This is done by substituting (42) and
(43), for eight pointsP1, . . . , P8 observed in the im-
age of cameraa. If we choose the coordinates of the
fifth space point to be at [1, 1, 1, 1], thenχ ′, ψ ′, ζ ′, ω′

give the coordinates of point 6,χ ′′, ψ ′′, ζ ′′, ω′′ give the
coordinates of point 7, andχ ′′′, ψ ′′′, ζ ′′′, ω′′′ give the
coordinates of point 8 in the basis defined by the first
five space points.

In order to relate the alternative representations for
different choices of basis points we may use the trans-
formations described in Section 5.4.

7. Discussion

7.1. The Duality between Reconstruction
and Positioning

We showed that the constraints we get for camera
positions from p points in q views are mathemat-
ically identical to the constraints for space points
from q + 4 points in p − 4 views. This means
that algorithms developed for multiple camera ge-
ometry for various sets of points and images can be
used for direct computation of projective structure of
space points. Similarly, the algorithms for direct com-
putation of projective structure can be used to ob-
tain relative camera positions. This is illustrated in
Fig. 3. Figure 4 illustrates this for various published
algorithms.

As was discussed in Section 5, the linear eight-
points algorithm for computing theF-matrix (Longuet-
Higgins and Prazdny, 1980) can be used for direct
computation of projective structure for six points in
four images. Likewise, as pointed out in (Shashua,
1994), there is a linear algorithm for camera geometry
for seven points in three views. This algorithm could
equally well be applied to the projective reconstruction
problem with the same number of points and views,
as discussed in Section 6. A systematic description of
direct reconstruction algorithms has been presented in
(Heyden, 1995b).

Figure 3. Dual pathways for camera positioning and scene recon-
struction from image coordinates.

Figure 4. The problem of positioning cameras fromp points inn
views is mathematically identical to the problem of reconstructing
n + 4 points in p − 4 views (The points indicate work in which
algorithms were discussed for the first time).

Table 1 gives a summary of the dual algorithms, and
how they can be obtained from the above analysis:

The fact that the problems of projective reconstruc-
tion and camera positioning have this dual structure
poses challenging problems for computationally effi-
cient algorithms. The problems of reconstruction and
positioning are very intimately connected and should
not be solved separately. Since for a given number of
points and views there are alternative ways to achieve
reconstruction and positioning, this poses the question
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Table 1. Summary of dual algorithms for reconstruction and positioning.

Positioning Reconstruction

Points Frames Points Frames Constraint Algorithm Discussion

8 2 6 4 Bilinear Linear Section 5.1

7 3 7 3 Trilinear Linear Section 6.3

6 4 8 2 Quadrilinear Linear Section 6.4

7 2 6 3 Bilinear Nonlinear Section 5.3

6 3 7 2 Trilinear Nonlinear Section 6.3

of what the best choice in a given situation is. Con-
straints on scene structure and constraints on camera
geometry can be used to reduce the number of un-
knowns to be solved for and should be exploited in
similar ways. The existence of ambiguous configura-
tions of points (Maybank, 1990) should have a dual
counterpart in ambiguous camera configurations.

7.2. Conditions for Duality

In the discussion above we used linear invariant rep-
resentation of points in the image and in space, which
made the exact orientation of the image plane irrelevant
(see Fig. 1). Thus the camera was fully characterized
by its position—a vector inP3. The general case can
be handled in a similar way, only that it will be nec-
essary to substitute the vector of image measurements
by:  xa

n

ya
n

wa
n

 H⇒ Q

 xa
n

ya
n

wa
n

 (54)

whereQ is some nonsingular 3× 3 matrix. Now the
parameterization of the camera includes the center of
projection,andthe orientation of the image plane rep-
resented by the 8 numbers in matrixQ.

Substituting (54) into (35)would notchange signifi-
cantly the essence of the following derivations. Indeed
the fundamental matrix and the multilinear camera
tensors will now depend on 12 numbers (the cam-
era position and the image orientation) instead of 4
(only the camera position) from each camera, but it is
still possible to derive multilinear camera-image re-
lations which are independent of shape. This is the
essence of the analysis described in, e.g., (Faugeras
and Mourrain, 1995; Hartley, 1994; Heyden, 1995a;
Luong and Viéville, 1994; Shashua and Werman, 1995,
Triggs, 1995).

On the other hand, substituting (54) into (36)would
significantly change the essence of the following
derivations. Now theG-matrix and the multilinear
shape tensors depend on the shape and the camera—
they now depend on the orientation of the image via
matrix Q. It is not possible anymore to derive multi-
linear space-image relations which are independent of
the camera. Thus the normalization of the image plane
is essential for the derivation of space-image relations,
and for the usefulness of the duality observation.
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