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Abstract
The performance of graph based clustering meth-
ods critically depends on the quality of the dis-
tance function, used to compute similarities be-
tween pairs of neighboring nodes. In this pa-
per we learn distance functions by training bi-
nary classifiers with margins. The classifiers
are defined over the product space of pairs of
points and are trained to distinguish whether two
points come from the same class or not. The
signed margin is used as the distance value. Our
main contribution is a distance learning method
(DistBoost), which combines boosting hypothe-
ses over the product space with a weak learner
based on partitioning the original feature space.
Each weak hypothesis is a Gaussian mixture
model computed using a semi-supervised con-
strained EM algorithm, which is trained using
both unlabeled and labeled data. We also con-
sider SVM and decision trees boosting as mar-
gin based classifiers in the product space. We
experimentally compare the margin based dis-
tance functions with other existing metric learn-
ing methods, and with existing techniques for the
direct incorporation of constraints into various
clustering algorithms. Clustering performance
is measured on some benchmark databases from
the UCI repository, a sample from the MNIST
database, and a data set of color images of ani-
mals. In most cases theDistBoostalgorithm sig-
nificantly and robustly outperformed its competi-
tors.

1. Introduction

Graph based clustering methods have been widely and suc-
cessfully used in many domains such as computer vision,
bioinformatics and exploratory data analysis. This category
spans a wide range of algorithms, from classical agglomer-
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ative methods such asaverage linkage(Duda et al., 2001),
to the recently developed and more sophisticated spectral
methods (Shi & Malik, 2000) and stochastic formulations
(Blatt et al., 1997; Gdalyahu et al., 2001). The initial rep-
resentation in all these methods is a matrix (or graph) of
distances between all pairs of datapoints. The computation
of this distance matrix is considered a “preprocessing” step,
and typically one uses someLp norm on the feature space
(or a related variant).

Despite the important differences between the various
graph-based clustering algorithms, it is widely acknowl-
edged that clustering performance critically depends on the
quality of the distance function used. Often the quality of
the distance function is more important then the specifics
of the clustering algorithm. In this paper we focus on the
question of how to learn a “good” distance function, which
will lead to improved clustering. Our main contribution is
DistBoost- a novel semi-supervised algorithm for learning
distance functions.

We consider a semi-supervised clustering scenario in which
the data is augmented by some sparse side information,
in the form of equivalence constraints. Equivalence con-
straints are relations between pairs of data points, which
indicate whether the points belong to the same category
or not. We term a constraint ’positive’ when the points
are known to be from the same class, and ’negative’ oth-
erwise. Such constraints carryless information than ex-
plicit labels on the original datapoints, since clearly equiv-
alence constraints can be obtained from explicit labels but
not vice versa. More importantly, it has been suggested that
in some cases equivalence constraints are easier to obtain,
especially when the database is very large and contains
a large number of categories without pre-defined names
(Hertz et al., 2003).

In recent years there has been a growing interest in semi su-
pervised clustering scenarios, leading to two different (and
related) lines of research. In the first, the constraints are
incorporated directly into the clustering algorithm, limit-
ing the clustering solutions considered to those that com-
ply with the given constraints. Examples are the con-
strained complete linkage algorithm (Klein et al., 2002),
constrained K-means (Wagstaff et al., 2001) and a con-



strained EM of a Gaussian mixture (Shental et al., 2003).
The second line of research, to which this work belongs,
uses the constraints to learn an informative distance func-
tion (prior to clustering). Most of the work in this area has
focused on the learning of Mahalanobis distance functions
of the form(x � y)TA(x � y) (Shental et al., 2002; Xing
et al., 2002). In these papers the parametric Mahalanobis
metric was used in combination with some suitable para-
metric clustering algorithm, such as K-means or EM of a
mixture of Gaussians. In contrast, we develop in this paper
a method that learns a non-parametric distance function,
which can be more naturally used in non-parametric graph
based clustering.

More formally, letX denote the original data space, and as-
sume that the data is sampled fromM discrete labels. Our
goal is to learn a distance functionf : X � X ! [0; 1℄.1
Our key observation is that we can learn such a function,
by posing a related binary classification problem over the
product spaceX � X , and solving it using margin based
classification techniques. The binary problem is the prob-
lem of distinguishing between pairs of points that belong to
the same class and pairs of points that belong to different
classes.2 The training data included a set of equivalence
constraints, which can be formally regarded as binary la-
bels on points inX � X . If we label pairs of points from
the same class by0 and pairs of points belonging to differ-
ent classes by1, we can interpret the classifier’s margin as
the required distance function.

Having reduced distance learning to binary classification
with margins, we can now attempt to solve this problem
using standard powerful margin based classifiers. We have
explored both support vector machines (SVM’s) and boost-
ing algorithms. However, experiments with several SVM
variants and decision trees(C4.5) boosting have led us to
recognize that the specific classification problem we are in-
terested in has some unique features which require special
treatment:

1. The product space binary function we wish to learn
has some unique structure which may lead to ’unnat-
ural’ partitions of the space between the labels. The
concept we wish to learn is an indicator of an equiva-
lence relation over the original space. Thus the proper-
ties of transitivity and symmetry of the relation place
geometrical constraints on the binary hypothesis. Ob-
viously, traditional families of hypotheses, such as
linear separators or decision trees, are not limited to

1Note that this function is not necessarily a metric, as the tri-
angle inequality may not hold.

2Note that this problem is closely related to the multi class
classification problem: if we can correctly generate a binary parti-
tion of the data in product space, we implicitly define a multi-class
classifier in the original vector spaceX .

equivalence relation indicators, and it’s not easy to en-
force these constraints when such classifiers are used.

2. In the learning setting we have described above, we
are provided withN datapoints inX and with a sparse
set of equivalence constraints (or labels in product
space) over some pairs of points in our data. We as-
sume that the number of equivalence constraints pro-
vided is much smaller than the total number of equiv-
alence constraintsO(N2), and is of orderO(N). We
therefore have access to large amounts of unlabeled
data, and hence semi-supervised learning seems like
an attractive option. However, classical binary classi-
fiers like SVM and boosting methods are trained using
labeled data only.

These considerations led us to develop theDistBoostalgo-
rithm, which is our main contribution in this paper.Dis-
tBoostis a distance learning algorithm which attempts to
address the issues discussed above. It learns a distance
function which is based on boosting binary classifiers with
a confidence interval in product space, using a weak learner
that learns in theoriginal feature space (and not in product
space). We suggest a boosting scheme that incorporates un-
labeled data points. These unlabeled points provide a den-
sity prior, and their weights rapidly decay during the boost-
ing process. The weak learner we use is based on a con-
strained Expectation Maximization (EM) algorithm, which
computes a Gaussian mixture model, and hence provides
a partition of the original space. The constrained EM pro-
cedure uses unlabeled data and equivalence constraints to
find a Gaussian mixture that complies with them. A weak
product space hypothesis is then formed as the equivalence
relation of the computed partition.

We have experimented withDistBoostand conducted sev-
eral empirical comparisons of interest. The first is a com-
parison ofDistBoostto other margin based distance func-
tions obtained using the more traditional algorithms of
SVM and decision tree boosting. Another comparison
is betweenDistBoostand previously suggested distance
learning algorithms which are based on Mahalanobis met-
ric estimation. Finally, clustering using the distance func-
tion learnt byDistBoost is compared to previously sug-
gested methods of incorporating equivalence constraints di-
rectly into clustering algorithms. During the comparative
assessmentDistBoostwas evaluated with several agglom-
erative clustering algorithms and with different amounts
of equivalence constraints information. We used several
datasets from the UCI repository (Blake & Merz, 1998), A
sample from the MNIST dataset (LeCun et al., 1998), and a
dataset of natural images obtained from a commercial im-
age CD. In most of our experiments theDistBoostmethod
outperformed its competitors.



2. Boosting original space partitions using
DistBoost

The DistBoostalgorithm builds distance functions based
on the weighted majority vote of a set of original space
soft partitions. The weak learner’s task in this framework
is to find plausible partitions of the space, which comply
with the given equivalence constraints. In this task, the un-
labeled data can be of considerable help, as it allows to
define a prior on what are ’plausible partitions’. In order
to incorporate the unlabeled data into the boosting process,
we augmented the Adaboost with confidence intervals pre-
sented in (Schapire & Singer, 1999). The details of this
augmentation are presented in Section 2.1. The details of
the weak learner we use are presented in Section 2.2.

2.1. Semi supervised boosting in product space

Our boosting scheme is an extension of the Adaboost algo-
rithm with confidence intervals (Schapire & Singer, 1999;
Schapire et al., 1997) to handle unsupervised data points.
As in Adaboost, we use the boosting process to maximize
the margins of the labeled points. The unlabeled points
only provide a decaying density prior for the weak learner.
The algorithm we use is sketched in Fig. 1. Given a par-
tially labeled datasetf(xi; yi)gNi=1 whereyi 2 f1;�1; �g,

the algorithm searches for a hypothesisf(x) = kPi=1�kh(x)
which minimizes the following loss function:Xfijyi=1;�1g exp(�yif(xi)) (1)

Note that the unlabeled points do not contribute to the min-
imization objective (1). Rather, at each boosting round
they are given to the weak learner and supply it with some
(hopefully useful) information regarding the domain’s den-
sity. The unlabeled points effectively constrain the search
space during the weak learner estimation, giving priority
to hypotheses which both comply with the pairwise con-
straints and with the density information. Since the weak
learner’s task becomes harder in later boosting rounds, the
boosting algorithm slowly reduces the weight of the un-
labeled points given to the weak learner. This is accom-
plished in step 4 of the algorithm (see Fig. 1).

In product space there areO(N2) unlabeled points, which
correspond to all the possible pairs of original points, and
the number of weights is thereforeO(N2). However, the
update rules for the weight of each unlabeled point are
identical, and so all the unlabeled points can share the same
weight. Hence the number of updates we effectively do in
each round is proportional to the number of labeled pairs
only. The weight of the unlabeled pairs is guaranteed to

Algorithm 1 Boosting with unlabeled data

Given(x1; y1); :::; (xn; yn); xi 2 X ; yi 2 f�1; 1; �g
InitializeD1(i) = 1=n i = 1; ::; n
For t = 1; ::; T

1. Train weak learner using distributionDt
2. Get weak hypothesisht : X ! [�1; 1℄ with rt =Pni=1Dt(i)ht(i) > 0.

If no such hypothesis can be found, terminate the loop
and setT = t.

3. Choose�t = 12 ln( 1+r1�r )
4. Update:Dt+1(i) = � Dt(i) exp(��tyiht(xi)) yi 2 f�1; 1gDt(i) exp(��t) yi = �
5. Normalize:Dt+1(i) = Dt+1(i)=Zt+1

whereZt+1 =Pni=1Dt+1(i)
6. Output the final hypothesisf(x) =PTt=1 �tht(x)

decay at least as fast as the weight of any labeled pair. This
immediately follows from the update rule in step 4 of the
algorithm (Fig. 1), as each unlabeled pair is treated as a
labeled pair with maximal margin of 1.

We note in passing that it is possible to incorporate un-
labeled data into the boosting process itself, as has been
suggested in (d’Alche Buc et al., 2002; Grandvalet et al.,
2001). In this work the margin concept was extended to
unlabeled data points. The margin for such a point is a pos-
itive number related to the confidence the hypothesis has
in classifying this point. The algorithm then tries to min-
imize the total (both labeled and unlabeled) margin cost.
The problem with this framework is that a hypothesis can
be very certain about the classification of unlabeled points,
and hence have low margin costs, even when it classifies
these points incorrectly. In the semi supervised clustering
context the total margin cost may be dominated by the mar-
gins of unconstrained point pairs, and hence minimizing it
doesn’t necessarily lead to hypotheses that comply with the
constraints. Indeed, we have empirically tested some vari-
ants of these algorithms and found that they lead to inferior
performance.

2.2. Mixtures of Gaussians as weak hypotheses

The weak learner inDistBoostis based on the constrained
EM algorithm presented by (Shental et al., 2003). This al-



gorithm learns a mixture of Gaussians over the original data
space, using unlabeled data and a set of positive and neg-
ative constraints. Below we briefly review the basic algo-
rithm, and then show how it can be modified to incorporate
weights on sample data points. We also describe how to
translate the boosting weights from product space points to
original data points, and how to extract a product space hy-
pothesis from the soft partition found by the EM algorithm.

A Gaussian mixture model (GMM) is a parametric statis-
tical model which assumes that the data originates from a
weighted sum of several Gaussian sources. More formally,
a GMM is given byp(xj�) = �Ml=1�lp(xj�l), where�l de-
notes the weight of each Gaussian,�l its respective parame-
ters, andM denotes the number of Gaussian sources in the
GMM. EM is a widely used method for estimating the pa-
rameter set of the model (�) using unlabeled data (Demp-
ster et al., 1977). In the constrained EM algorithmequiva-
lence constraintsare introduced into the ’E’ (Expectation)
step, such that the expectation is taken only over assign-
ments which comply with the given constraints (instead of
summing overall possible assignments of data points to
sources).

Assume we are given a set of unlabeled i.i.d. sampled
pointsX = fxigNi=1, and a set of pairwise constraints over
these points
. Denote the index pairs of positively con-
strained points byf(p1j ; p2j )gNpj=1 and the index pairs of neg-

atively constrained points byf(n1k; n2k)gNnk=1. The GMM
model contains a set of discrete hidden variablesH , where
the Gaussian source of pointxi is determined by the hid-
den variablehi. The constrained EM algorithm assumes
the following joint distribution of the observablesX and
the hiddensH :p(X;H j�;
) = (2)1Z n�i=1�hip(xij�hi) Np�j=1 Æhp1j hp2j Nn�k=1(1� Æhn1khn2k )
The algorithm seeks to maximize the data likelihood,
which is the marginal distribution of (2) with respect toH .

The equivalence constraints create complex dependencies
between the hidden variables of different data points. How-
ever, the joint distribution can be expressed using a Markov
network, as seen in Fig. 1. In the ’E’ step of the algorithm
the probabilitiesp(hijX;�;
) are computed by applying
a standard inference algorithm to the network. Such in-
ference is feasible if the number of negative constraints isO(N), and the network is sparsely connected. The model
parameters are then updated based on the computed proba-
bilities. The update of the Gaussian parametersf�lg can be
done in closed form, using rules similar to the standard EM
update rules. The update of the cluster weightsf�lgMl=1
is more complicated, since these parameters appear in the
normalization constantZ in (2), and the solution is found

Figure 1.A Markov network representation of the constrained
mixture setting. Each observable data node has a discrete hidden
node as its ancestor. Positively constrained nodes have thesame
hidden node as their ancestor. Negative constraints are expressed
using edges between the hidden nodes of negatively constrained
points.Here points 2,3,4 are constrained to be together, and point
1 is constrained to be from a different class.

with a gradient descent procedure. The algorithm finds a
local maximum of the likelihood, but the partition found
is not guaranteed to satisfy any specific constraint. How-
ever, since the boosting procedure increases the weights of
points which belong to unsatisfied equivalence constraints,
it is most likely that any constraint will be satisfied in one
or more partitions.

We have incorporated weights into the constrained EM pro-
cedure according to the following semantics: The algo-
rithm is presented with a virtual sample of sizeNv. A
training pointxi with weight wi appearswiNv times in
this sample. All the repeated tokens of the same point are
considered to be positively constrained, and are therefore
assigned to the same source in every evaluation in the ’E’
step. In all of our experiments we have setNv to be the
actual sample size.

While the weak learner accepts a distribution over the origi-
nal space points, the boosting process described in 2.1 gen-
erates a distribution over the sample product space in each
round. The product space distribution is converted to a dis-
tribution over the sample points by simple marginalization.
Specifically, denote bywpij the weight of pair(i; j); the
weightwsi of point i is defined to bewsi =Xj wpij (3)

In each round, the mixture model computed by the con-
strained EM is used to build a binary function over the
product space and a confidence measure. We first derive
a partition of the data from the Maximum A Posteriori
(MAP) assignment of points. A binary product space hy-
pothesis is then defined by giving the value1 to pairs of
points from the same Gaussian source, and�1 to pairs of
points from different sources. This value determines the
sign of the hypothesis output. This setting further supports
a natural confidence measure - the probability of the pair’s



MAP assignment which is:maxi p(h1 = ijx1;�) �maxi p(h2 = ijx2;�)
whereh1; h2 are the hidden variables attached to the two
points. The weak hypothesis output is the signed confi-
dence measure in[�1; 1℄, and so the weak hypothesis can
be viewed as a weak “distance function”.

3. Learning in the product space using
traditional classifiers

We have tried to solve the distance learning problem over
the product space using two more traditional margin based
classifiers. The first is a support vector machine, that tries
to find a linear separator between the data examples in a
high dimensional feature space. The second is the Ad-
aBoost algorithm, where the weak hypotheses are decision
trees learnt using the C4.5 algorithm. Both algorithms had
to be slightly adapted to the task of product space learning,
and we have empirically tested possible adaptations using
data sets from the UCI repository. Specifically, we had to
deal with the following technical issues:� Product space representation: A pair of original space

points must be converted into a single point, which
represents this pair in the product space. The simplest
representation is the concatenation of the two points.
Another intuitive representation is the concatenation
of the sum and difference vectors of the two points.
Our empirical tests indicated that while SVM works
better with the first representation, the C4.5 boosting
achieves its best performance with the ’sum and dif-
ference’ representation.� Enforcing symmetry: If we want to learn a symmet-
ric distance function satisfyingd(x; y) = d(y; x), we
have to explicitly enforce this property. With the first
representation this can be done simply by doubling
the number of training points, introducing each con-
strained pair twice: as the point[x; y℄ and as the point[y; x℄. In this setting the SVM algorithm finds the
global optimum of a symmetric Lagrangian and the
solution is guaranteed to be symmetric. With the sec-
ond representation we found that modifying the repre-
sentation to be symmetrically invariant gave the best
results. Specifically, we represent a pair of pointsx; y
using the vector[x+y; sign(x1�y1)�(x�y)℄, wherex1; y1 are the first coordinates of the points.� We considered two linear preprocessing transforma-
tions of the original data before creating the product
space points: the whitening transformation, and the
RCA transformation (Bar-Hilel et al., 2003) which
uses positive equivalence constraints. In general we

found that pre-processing with RCA was most benefi-
cial for both the SVM and C4.5 boosting algorithms.� Parameter tuning: for the SVM we used the polyno-
mial kernel of order 4, and a trade-off constant of 1 be-
tween error and margin. The boosting algorithm was
run for 25-150 rounds (depending on the dataset), and
the decision trees were built with a stopping criterion
of train error smaller than 0.05 in each leaf.

The clustering performance obtained using these two vari-
ants is compared toDistBoostin section 4. The design is-
sues mentioned above were decided based on the perfor-
mance over the UCI datasets, and the settings remained
fixed for the rest of the experiments.

4. Experimental Results

We compared ourDistBoostalgorithm with other tech-
niques for semi-supervised clustering using equivalence
constraints. We used both distance learning techniques,
including our two simpler variants for learning in product
space (SVM and boosting decision trees), and constrained
clustering techniques. We begin by introducing our exper-
imental setup and the evaluated methods. Then we present
the results of all these methods on several datasets from the
UCI repository, a subset of the MNIST letter recognition
dataset, and an animal image database.

4.1. Experimental setup

Gathering equivalence constraints: Following (Hertz
et al., 2003), we simulated adistributed learningscenario,
where labels are provided by a number of uncoordinated
independent teachers. Accordingly, we randomly chose
small subsets of data points from the dataset and parti-
tioned each of the subsets into equivalence classes. The
constraints obtained from all the subsets are gathered and
used by the various algorithms.

The size of each subsetk in these experiments was chosen
to be2M , whereM is the number of classes in the data.
In each experiment we usedl subsets, and the amount of
partial information was controlled by theconstraint indexP = k � l; this index measures the amount of points which
participate in at least one constraint. In our experiments
we usedP = 0:5; 1. However, it is important to note that
the number of equivalence constraints thus provided typi-
cally includes only a small subset of all possible pairs of
datapoints, which isO(N2).
Evaluated Methods: we compared the clustering perfor-
mance of the following techniques:

1. Our proposed boosting algorithm (DistBoost).



2. Mahalanobis distance learning with Relevant Compo-
nent Analysis (RCA) (Bar-Hilel et al., 2003).

3. Mahalanobis distance learning with non-linear opti-
mization (Xing) (Xing et al., 2002).

4. Margin based distance learning using SVM as a prod-
uct space learner (SVM) (described in Section 3).

5. Margin based distance learning using product space
decision trees boosting (DTboost).

6. Constrained EM of a Gaussian Mixture Model (Con-
strained EM) (Shental et al., 2003).

7. Constrained Complete Linkage (Constrained Com-
plete Linkage) (Klein et al., 2002).

8. Constrained K-means (COP K-means) (Wagstaff
et al., 2001).

Methods 1-5 compute a distance function, and they are
evaluated by applying a standard agglomerative clustering
algorithm (Ward) to the distance graph they induce. Meth-
ods 6-8 incorporate equivalence constraints directly into
the clustering process.

All methods were evaluated by clustering the data and mea-
suring theF 12 score defined asF 12 = 2P �RR+ P (4)

whereP denotes precision andR denotes recall. For
the distance learning techniques we also showcumulative
neighbor puritycurves.Cumulative neighbor puritymea-
sures the percentage of correct neighbors up to theK-th
neighbor, averaged over all the datapoints. In each exper-
iment we averaged the results over 50 or more different
equivalence constraint realizations. BothDistBoostand the
decision tree boosting algorithms were run for a constant
number of boosting iterationsT = 25; 150 (depending on
the dataset). In each realization all the algorithms were
given the exact same equivalence constraints.

Dimensionality reduction: the constrained LDA algo-
rithm Some of the datasets reside in a high dimensional
space, which must be reduced in order to perform param-
eter estimation from training data. We used two methods
for dimensionality reduction: standard Principal Compo-
nents Analysis (PCA), and a constrained Linear Discrimi-
nant Analysis (LDA) algorithm which is based on equiva-
lence constraints.

Classical LDA (also called FDA, (Fukunaga, 1990)) com-
putes projection directions that minimize the within-class
scatter and maximize the between-class scatter. More for-
mally, given a labeled datasetfxi; yigNi=1 where yi 2

f0; 1; ::;M � 1g andxi 2 Rd, LDA is given by thek � d
matrixW that maximizesJ(W ) = W TStWW TSwW (5)

whereSt = PNi=1(xi � m)(xi � m)T denotes thetotal
scattermatrix (m is the data’s empirical mean) andSw =PM�1j=0 Pi:yi=j(xi �mj)(xi �mj)T denotes thewithin-
class scattermatrix (mj is the empirical mean of thej-th
class).

Since in our semi-supervised learning scenario we have ac-
cess to equivalence constraints instead of labels, we can
write down a constrained LDA algorithm. Thus we esti-
mate thewithin class scattermatrix using positive equiva-
lence constraints instead of labels. Specifically, given a set
of positive equivalence constraints, we use transitive clo-
sure over this set to obtain small subsets of points that are
known to belong to the same class. Denote these subsets byfCjgL�1j=0 , where each subsetCj is composed of a variable
number of data pointsCj = fxj1; xj2; ::; xjnj g. We use
these subsets to estimateSw as followsSŵ = L�1Xj=0 NjXi=1(xji �mj)(xji �mj)T (6)

where heremj denotes the mean of subsetCj .
4.2. Results on UCI datasets

We selected several datasets from the UCI data repository
and used the experimental setup above to evaluate the var-
ious methods. Fig. 2 shows clusteringF 12 score plots for
several data sets using Ward’s agglomerative clustering al-
gorithm. ClearlyDistBoostachieves significant improve-
ments over Mahalanobis based distance measures and other
product space learning methods. ComparingDistBoostto
methods which incorporate constraints directly, clearly the
only true competitor ofDistBoostis its own weak learner,
the constrained EM algorithm. Still, in the vast majority
of casesDistBoostgives an additional significant improve-
ment over the EM.

4.3. Results on the MNIST letter recognition dataset

We compared all clustering methods on a subset of the
MNIST letter recognition dataset (LeCun et al., 1998). We
randomly selected500 training samples (50 from each of
the 10 classes). The original data dimension was784,
which was projected by standard PCA to the first50 prin-
cipal dimensions. We then further projected the data using
the constrained LDA algorithm to40 dimensions. Cluster-
ing and neighbor purity plots are presented on the left side
of Fig 3. The clustering performance of theDistBoostal-
gorithm is significantly better than the other methods. The
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Figure 2.ClusteringF 12 score over 4 data sets from the UCI repository using Ward’s clustering algorithm. Methods shown are: (a)
Euclidean, (b) RCA, (c) constrained EM, (d) SVM, (e) DTboost, (f) DistBoost, (g) Xing, (h) Constrained Complete Linkage, (i) Con-
strained K-means. The results were averaged over 100 realizations of constraints, and 1-std error bars are shown. Theconstraint indexP was0:5 in all cases.

cumulative purity curves suggest that this success may be
related to the slower decay of the neighbor purity scores for
DistBoost.

4.4. Results on a Animal image dataset

We created an image database which contained images of
animals taken from a commercial image CD, and tried to
cluster them based on color features. The clustering task in
this case is much harder than in the previous applications.
The database contained 10 classes with total of 565 images.
Fig. 3 shows a few examples of images from the database.

The original images were heavily compressed jpg im-
ages. The images were represented using Color Coherence
Vectors (Pass et al., 1996) (CCV’s). This representation
extends the color histogram representation, by capturing
some crude spatial properties of the color distribution in an
image. Specifically, in a CCV vector each histogram bin is
divided into two bins, representing the number of ’Coher-
ent’ and ’Non-Coherent’ pixels from each color. ’Coher-
ent’ pixels are pixels whose neighborhood contains more
than � neighbors which have the same color. We repre-
sented the images in HSV color space, quantized the im-
ages to32 � 32 � 32 = 32768 color bins, and computed
the CCV of each image - a64K dimensional vector - using� = 25.3

In order to reduce the dimension of our data, we first re-
moved all zero dimensions and then used the first100 PCA
dimensions, followed by Constrained LDA to further re-
duce the dimension of the data tod = 40. The cluster-
ing results and neighbor purity graphs are presented on
the right side of Fig 3.4 The difficulty of the task is well
reflected in the low clustering scores of all the methods.

3The standard distance measure used on CCV features is a
Chi-squared distance (also commonly used to measure distance
between histograms). We also tried to cluster the data usingthe
Chi-squared distances, and theF 12 score obtained was0:44.

4On this dataset the COP k-means algorithm only converged
on25% of its runs.

However,DistBoost still outperforms its competitors, as it
did in all previous examples.

5. Discussion

In this paper, we have describedDistBoost- a novel al-
gorithm which learns distance functions that enhance clus-
tering performance using sparse side information. Our ex-
tensive comparisons showed the advantage of our method
over many competing methods for learning distance func-
tions and for clustering using equivalence constraints. An-
other application which we have not explored here, is near-
est neighbor classification. Nearest neighbor classification
also critically depends on the distance function between
datapoints; our hope is that distance functions learned from
equivalence constraints can also be used for improving
nearest neighbor classification.
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