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Abstract

The performance of graph based clustering meth-
ods critically depends on the quality of the dis-
tance function, used to compute similarities be-
tween pairs of neighboring nodes. In this pa-
per we learn distance functions by training bi-
nary classifiers with margins. The classifiers
are defined over the product space of pairs of
points and are trained to distinguish whether two
points come from the same class or not. The
signed margin is used as the distance value. Our
main contribution is a distance learning method
(DistBoos}, which combines boosting hypothe-
ses over the product space with a weak learner
based on partitioning the original feature space.
Each weak hypothesis is a Gaussian mixture
model computed using a semi-supervised con-
strained EM algorithm, which is trained using
both unlabeled and labeled data. We also con-
sider SVM and decision trees boosting as mar-
gin based classifiers in the product space. We
experimentally compare the margin based dis-
tance functions with other existing metric learn-
ing methods, and with existing techniques for the
direct incorporation of constraints into various
clustering algorithms. Clustering performance
is measured on some benchmark databases from
the UCI repository, a sample from the MNIST
database, and a data set of color images of ani-
mals. In most cases thgistBoostalgorithm sig-
nificantly and robustly outperformed its competi-
tors.

1. Introduction

Appearing inProceedings of the1°¢ International Conference
on Machine LearningBanff, Canada, 2004. Copyright 2004 by
the first author.

ative methods such average linkag¢Duda et al., 2001),

to the recently developed and more sophisticated spectral
methods (Shi & Malik, 2000) and stochastic formulations
(Blatt et al., 1997; Gdalyahu et al., 2001). The initial rep-
resentation in all these methods is a matrix (or graph) of
distances between all pairs of datapoints. The computation
of this distance matrix is considered a “preprocessingi,ste
and typically one uses sonig, norm on the feature space
(or arelated variant).

Despite the important differences between the various
graph-based clustering algorithms, it is widely acknowl-
edged that clustering performance critically depends en th
quality of the distance function used. Often the quality of
the distance function is more important then the specifics
of the clustering algorithm. In this paper we focus on the
guestion of how to learn a “good” distance function, which
will lead to improved clustering. Our main contribution is
DistBoost- a novel semi-supervised algorithm for learning
distance functions.

We consider a semi-supervised clustering scenario in which
the data is augmented by some sparse side information,
in the form of equivalence constraints. Equivalence con-
straints are relations between pairs of data points, which
indicate whether the points belong to the same category
or not. We term a constraint 'positive’ when the points
are known to be from the same class, and 'negative’ oth-
erwise. Such constraints carlgssinformation than ex-
plicit labels on the original datapoints, since clearlyiggu
alence constraints can be obtained from explicit labels but
notvice versa. More importantly, it has been suggested that
in some cases equivalence constraints are easier to obtain,
especially when the database is very large and contains
a large number of categories without pre-defined names
(Hertz et al., 2003).

Inrecent years there has been a growing interest in semi su-

Graph based clustering methods have been widely and Sufgyised clustering scenarios, leading to two differend(a
cessfully used in many domains such as computer V's'onr’elated) lines of research.

bioinformatics and exploratory data analysis. This catggo
spans a wide range of algorithms, from classical agglomer;

In the first, the constraints are
incorporated directly into the clustering algorithm, ltmi

ng the clustering solutions considered to those that com-
ply with the given constraints. Examples are the con-

strained complete linkage algorithm (Klein et al., 2002),

constrained K-means (Wagstaff et al., 2001) and a con-



strained EM of a Gaussian mixture (Shental et al., 2003).  equivalence relation indicators, and it's not easy to en-
The second line of research, to which this work belongs,  force these constraints when such classifiers are used.
uses the constraints to learn an informative distance func-
tion (prior to clustering). Most of the work in this area has 5
focused on the learning of Mahalanobis distance functions
of the form(z — y)T A(z — y) (Shental et al., 2002; Xing

et al., 2002). In these papers the parametric Mahalanobis
metric was used in combination with some suitable para-
metric clustering algorithm, such as K-means or EM of a
mixture of Gaussians. In contrast, we develop in this paper

a method that learns a non-parametric distance function,
which can be more naturally used in non-parametric graph
based clustering.

In the learning setting we have described above, we
are provided withV datapoints in¥ and with a sparse
set of equivalence constraints (or labels in product
space) over some pairs of points in our data. We as-
sume that the number of equivalence constraints pro-
vided is much smaller than the total number of equiv-
alence constraint®(N?), and is of ordeO(N). We
therefore have access to large amounts of unlabeled
data, and hence semi-supervised learning seems like
an attractive option. However, classical binary classi-
More formally, letY’ denote the original data space, andas- fiers like SVM and boosting methods are trained using
sume that the data is sampled frdmhdiscrete labels. Our labeled data only.

goal is to learn a distance functigh: X x X — [0,1].2

Our key observation is that we can learn such a f“nCtionThese considerations led us to developEhgBoostalgo-
by posing a related binary classification problem over therithm, which is our main contribution in this papeBis-

product spacet’ x X', and solving it using margin based g,,tis 4 distance learning algorithm which attempts to
cIaSS|f|c.at|.0n tgchnlques. The bllnary prqblem IS the proby jqress the issues discussed above. It learns a distance
lem of distinguishing be_tween pairs of points that belpng ©fynction which is based on boosting binary classifiers with
the same class "’_m_d pairs OT points that belong to_ dlfferené confidence interval in product space, using a weak learner
classes. The training data included a set of equivalencey i jearms in theriginal feature space (and not in product
constraints, which can be formally regarded as binary lag,ce) we suggest a boosting scheme that incorporates un-
bels on points int’ x . IT we Iab_el pairs of pomts frlom labeled data points. These unlabeled points provide a den-
the same class Hyand pairs of points beIo_ngmg to dlffer- sity prior, and their weights rapidly decay during the beost
ent classes by, we can interpret the classifier’s margin as ing process. The weak learner we use is based on a con-
the required distance function. strained Expectation Maximization (EM) algorithm, which
Having reduced distance learning to binary classificatiorcomputes a Gaussian mixture model, and hence provides
with margins, we can now attempt to solve this problema partition of the original space. The constrained EM pro-
using standard powerful margin based classifiers. We haveedure uses unlabeled data and equivalence constraints to
explored both support vector machines (SVM’s) and boostfind a Gaussian mixture that complies with them. A weak
ing algorithms. However, experiments with several SVM product space hypothesis is then formed as the equivalence
variants and decision trees(C4.5) boosting have led us teglation of the computed partition.

recogniZ(_e that the specif!c classification p_roblem we are in_We have experimented witistBoostand conducted sev-

terested in has some unique features which require spec@m empirical comparisons of interest. The first is a com-

treatment: parison ofDistBoostto other margin based distance func-
tions obtained using the more traditional algorithms of

1. The product space binary function we wish to Iearn,SV'vI and decision tree boosting. Another comparison

has some unique structure which may lead to 'unnatiS betweenDistBoostand previously suggested distance
ural’ partitions of the space between the labels. Thdearning algorithms which are based on Mahalanobis met-

concept we wish to learn is an indicator of an equiva—ric estimation. Finally, clustering using the distancedun

lence relation over the original space. Thus the propertion léarnt byDistBoostis compared to previously sug-

ties of transitivity and symmetry of the relation place 9€Sted methods ofincorporating equivalence constraints d
geometrical constraints on the binary hypothesis. oprectly into cIl_Jsterlng algorithms. Durl_ng the comparative
viously, traditional families of hypotheses, such as@SSessmerdistBoostwas evaluated with several agglom-
linear separators or decision trees, are not limited tFrative clustering algorithms and with different amounts
—_— o . _ of equivalence constraints information. We used several
Nc_nte that_thls function is not necessarily a metric, as the tr gatasets from the UCI repository (Blake & Merz, 1998), A
angle inequality may not hold. sample from the MNIST dataset (LeCun et al., 1998), and a

2Note that this problem is closely related to the multi (:Iassd taset of natural i btained f ial i
classification problem: if we can correctly generate a lyiipeaarti- ataset or natural Images obtained from a commercial im-

tion of the data in product space, we impiicitly define a maoltéiss ~ @ge CD. In most of our experiments tBéstBoostmethod
classifier in the original vector spadé. outperformed its competitors.



2. Boosting original space partitions using Algorithm 1 Boosting with unlabeled data
DistBoost Given(a:l,yl) (CUn yn) z; € X, y; € {—1,1,*}

. . . . . Initialize D1 (i) =1/n i =1,..,n
The DistBoostalgorithm builds distance functions based

on the weighted majority vote of a set of original spacer ., _ 1,.,T

soft partitions. The weak learner’s task in this framework

is to find plausible partitions of the space, which comply

with the given equivalence constraints. In this task, the un 1. Train weak learner using distributidpy

labeled data can be of considerable help, as it allows to ] ]

define a prior on what are ’plausible partitions’. In order 2 G%t weak hypothesis; : X — [~1,1] with r; =

to incorporate the unlabeled data into the boosting process 2im1 Di(0)he (i) > 0.

we augmented the Adaboost with confidence intervals pre-  If no such hypothesis can be found, terminate the loop
sented in (Schapire & Singer, 1999). The details of this and sefl" = .

augmentation are presented in Section 2.1. The details of
the weak learner we use are presented in Section 2.2.

3. Choosey; = £ In(1£2)

. . _ 4. Update:
2.1. Semi supervised boosting in product space
Dy(i) exp(—azyihe(z:))  yi € {—1,1}

Our boosting scheme is an extension of the Adaboostalgo-  D;14(i) = { Dy(i) exp(—a) yi —
t t i —

rithm with confidence intervals (Schapire & Singer, 1999;
Schapire et al., 1997) to handle unsupervised data points. , ) )
As in Adaboost, we use the boosting process to maximize - NOFma"ZeiDtﬂ(nl) = Dt+1.(l)/Zt+1

the margins of the labeled points. The unlabeled points whereZiy1 = 3,2, Diya (i)

only provide a decaying density prior for the weak learner. ' . T

The algorithm we use is sketched in Fig. 1. Given a par- 6. Outputthe final hypothesi(z) = 3, a:hu(z)
tially labeled datasef(z;,y;)} ¥, wherey; € {1, -1, %},

k

the algorithm searches for a hypothefis) = > aih(x)

decay at least as fast as the weight of any labeled pair. This

immediately follows from the update rule in step 4 of the
Z exp(—y;f(z;)) (1) algorithm (Fig. 1), as each unlabeled pair is treated as a

{ilyi=1,—1} labeled pair with maximal margin of 1.

i=1
which minimizes the following loss function:

We note in passing that it is possible to incorporate un-
labeled data into the boosting process itself, as has been

Note that the unlabeled points do not contribute to the minsuggested in (d’Alche Buc et al., 2002; Grandvalet et al.,
imization objective (1). Rather, at each boosting round2001). In this work the margin concept was extended to
they are given to the weak learner and supply it with someinlabeled data points. The margin for such a pointis a pos-
(hopefully useful) information regarding the domain’s den itive number related to the confidence the hypothesis has
sity. The unlabeled points effectively constrain the skearc in classifying this point. The algorithm then tries to min-
space during the weak learner estimation, giving priorityimize the total (both labeled and unlabeled) margin cost.
to hypotheses which both comply with the pairwise con-The problem with this framework is that a hypothesis can
straints and with the density information. Since the weakb€ very certain about the classification of unlabeled ppints
learner’s task becomes harder in later boosting rounds, thend hence have low margin costs, even when it classifies
boosting algorithm slowly reduces the weight of the un-these points incorrectly. In the semi supervised clusgerin
labeled points given to the weak learner. This is accomcontext the total margin cost may be dominated by the mar-

plished in step 4 of the algorithm (see Fig. 1). gins of unconstrained point pairs, and hence minimizing it
) . _ doesn’t necessarily lead to hypotheses that comply with the
In product space there a® V") unlabeled points, which  cqnsiraints. Indeed, we have empirically tested some vari-

correspond to all the possible pairs of original points, and, s of these algorithms and found that they lead to inferior
the number of weights is therefof® N?). However, the performance.

update rules for the weight of each unlabeled point are

|de_nt|cal, and so all the unlabeled points can sha.re the Same, \rixtures of Gaussians as weak hypotheses
weight. Hence the number of updates we effectively do in
each round is proportional to the number of labeled pairsThe weak learner iDistBoostis based on the constrained
only. The weight of the unlabeled pairs is guaranteed t&EM algorithm presented by (Shental et al., 2003). This al-



gorithm learns a mixture of Gaussians over the original dat:

space, using unlabeled data and a set of positive and ne / \\

ative constraints. Below we briefly review the basic algo-

rithm, and then show how it can be modified to incorporate N

weights on sample data points. We also describe how t -
Point 6

original data points, and how to extract a product space hy

translate the boosting weights from product space points tw
pothesis from the soft partition found by the EM algorithm.

A Gaussian mixture model (GMM) is a parametric statis-Figure 1.A Markov network representation of the constrained
tical model which assumes that the data originates from &ixture setting. Each observable data node has a discrderhi
weighted sum of several Gaussian sources. More formall)f,‘Ode as its ancestor. Positively constrained nodes haveathe
o i hidden node as their ancestor. Negative constraints aressqd

MM is given =xM wher - 9
Er?oGtes thesv%eifgh?g?(eﬂ?h)Gauézilg;;féiesf[)),ecti\?eiogrg?ne- using edges between the hidden nodes of negatively camstrai
ters, andV/ denotes the number of Gaussian sources in th%oints.Here points 2,3,4 are constrained to be togethdrpamt

! . : . g is constrained to be from a different class.
GMM. EM is a widely used method for estimating the pa-
rameter set of the mode®( using unlabeled data (Demp- _ _ _
ster et al., 1977). In the constrained EM algoritquiva- ~ With & gradient descent procedure. The algorithm finds a
lence constraintare introduced into the 'E’ (Expectation) ocal maximum of the likelihood, but the partition found
step, such that the expectation is taken only over assigriS not guaranteed to satisfy any specific constraint. How-
ments which comply with the given constraints (instead oféver, since the boosting procedure increases the weights of

summing overall possible assignments of data points to Points which belong to unsatisfied equivalence constraints
sources). it is most likely that any constraint will be satisfied in one

. . or more partitions.
Assume we are given a set of unlabeled i.i.d. sampled

pointsX = {z;}}¥,, and a set of pairwise constraints over We have incorporated weights in_to the constrained EM pro-
these points2. Denote the index pairs of positively con- cedure according to the following semantics: The algo-
strained points by (p;, p3) ;V:ﬂ and the index pairs of neg- ithm is presented r‘:‘”th _ahthual sample ?\; sizg. A
atively constrained points by(n},n3)}r",. The GMM ELa.unmg p?lntzlil mt Welgt tdwti Eppea;s’z[ﬁ v imes I'nt
model contains a set of discrete hidden varialdlesvhere 'S sample. € repeated tokens of In€ same point are
the Gaussian source of point is determined by the hid- considered to be positively constrained, and are therefore

den variableh;. The constrained EM algorithm assumes assigned to the same source in every evaluation in the 'E

the following joint distribution of the observable§ and step. In all of our experiments we have & to be the
actual sample size.

the hiddend:
While the weak learner accepts a distribution over the origi
p(X, H[©,Q) = @) hal space points, the boosting process described in 2.1 gen-
1 n Np N erates a distribution over the sample product space in each
= p(x;|0h, ) 1-94§ S e ;
7 igl o (il '“)21 fpr iy 121( h"ih"i) round. The product space distribution is converted to a dis-

tribution over the sample points by simple marginalization
'Specifically, denote by!; the weight of pair(i, j); the
weightw? of pointiis defined to be

The equivalence constraints create complex dependencies

between the hidden variables of different data points. How- wi = Z wy; 3
ever, the joint distribution can be expressed using a Markov J

network, as seen in Fig. 1. In the 'E’ step of the algorithm

the probabilitie(h;| X, ©, Q) are computed by applying In each round, the mixture model computed by the con-
a standard inference algorithm to the network. Such instrained EM is used to build a binary function over the
ference is feasible if the number of negative constraints igproduct space and a confidence measure. We first derive
O(N), and the network is sparsely connected. The modeh partition of the data from the Maximum A Posteriori
parameters are then updated based on the computed prolf84AP) assignment of points. A binary product space hy-
bilities. The update of the Gaussian parameférs canbe  pothesis is then defined by giving the valugo pairs of
done in closed form, using rules similar to the standard EMpoints from the same Gaussian source, arfido pairs of
update rules. The update of the cluster weights}/Z, points from different sources. This value determines the
is more complicated, since these parameters appear in tlsign of the hypothesis output. This setting further support
normalization constant in (2), and the solution is found a natural confidence measure - the probability of the pair’'s

The algorithm seeks to maximize the data likelihood
which is the marginal distribution of (2) with respectit



MAP assignment which is: found that pre-processing with RCA was most benefi-
cial for both the SVM and C4.5 boosting algorithms.

max p(h; = i|z1,0) - max p(hy = i|xa, O)

! ! e Parameter tuning: for the SVM we used the polyno-

whereh,, h, are the hidden variables attached to the two mial kernel of order 4, and a trade-off constant of 1 be-

points. The weak hypothesis output is the signed confi-  tween error and margin. The boosting algorithm was
dence measure ir-1, 1], and so the weak hypothesis can run for 25-150 rounds (depending on the dataset), and
be viewed as a weak “distance function”. the decision trees were built with a stopping criterion

of train error smaller than 0.05 in each leaf.

3. Learning in the product space using
traditional classifiers The clustering performance obtained using these two vari-

ants is compared tBistBoostin section 4. The design is-
We have tried to solve the distance learning problem ovesues mentioned above were decided based on the perfor-
the product space using two more traditional margin basedhance over the UCI datasets, and the settings remained
classifiers. The first is a support vector machine, that triedixed for the rest of the experiments.
to find a linear separator between the data examples in a
high dimensi_onal feature space. The second is the _A_dzL_ Experimental Results
aBoost algorithm, where the weak hypotheses are decision
trees learnt using the C4.5 algorithm. Both algorithms hadMe compared oubDistBoostalgorithm with other tech-
to be slightly adapted to the task of product space learningiiques for semi-supervised clustering using equivalence
and we have empirically tested possible adaptations usingonstraints. We used both distance learning techniques,
data sets from the UCI repository. Specifically, we had toincluding our two simpler variants for learning in product
deal with the following technical issues: space (SVM and boosting decision trees), and constrained
clustering techniques. We begin by introducing our exper-
« Product space representation: A pair of original spacémental setup and the evaluated methods. Then we present
points must be converted into a single point, whichthe results of all these methods on several datasets from the
represents this pair in the product space. The simpled¢Cl repository, a subset of the MNIST letter recognition
representation is the concatenation of the two pointsdataset, and an animal image database.
Another intuitive representation is the concatenation
of the sum and difference vectors of the two points.4.1. Experimental setup

Our empirical tests indicated that while SVM works Gathering equivalence constraints: Following (Hertz
better with the first representation, the C4.5 boosting g €q ' 9

: : . ; et al., 2003), we simulateddistributed learningscenario,
achieves its best performance with the 'sum and dif- . .
; . where labels are provided by a number of uncoordinated
ference’ representation.

independent teachers. Accordingly, we randomly chose

e Enforcing symmetry: If we want to learn a symmet- small subsets of data points from the dataset and parti-
ric distance function satisfyind(z,y) = d(y,z), we  tioned each of the subsets into equivalence classes. The
have to explicitly enforce this property. With the first constraints obtained from all the subsets are gathered and
representation this can be done simply by doublingused by the various algorithms.

the _number_ of t_ralnlng pomts_, introducing each CON"The size of each subsktin these experiments was chosen
strained palr.tW|ceE as the poipt, ] anq as the point be2M, whereM is the number of classes in the data.
[y,z]. In ,th's setting the SVM algorlthm finds the In each experiment we usédsubsets, and the amount of
global optimum of a symmetric Lagrangian and the partial information was controlled by themnstraint index

solution is guaranteed to be symmetric. With the S€Cp — 1. I: this index measures the amount of points which
ond representation we found that modifying the repre-

; . . ) articipate in at least one constraint. In our experiments
sentation to be symmetrically invariant gave the besﬁ,

| ificall i of poi e usedP = 0.5,1. However, it is important to note that
results. Specifically, we representa pair of points  yhe umber of equivalence constraints thus provided typi-
using the vectofx +y, sign(xz1 —y1 ) * (z—y)], where

. , ) cally includes only a small subset of all possible pairs of
x1,y; are the first coordinates of the points. datapoints, which i€ (N2)

e We considered two linear preprocessing transforma-
tions of the original data before creating the productEvaluated Methods: we compared the clustering perfor-
space points: the whitening transformation, and themance of the following techniques:
RCA transformation (Bar-Hilel et al., 2003) which
uses positive equivalence constraints. In general we 1. Our proposed boosting algorithmiétBoos}.



2. Mahalanobis distance learning with Relevant Compo+{0, 1, .., M — 1} andz; € R?, LDA is given by thek x d

nent Analysis (RCA) (Bar-Hilel et al., 2003). matrix W that maximizes
3. Mahalanobis distance learning with non-linear opti- JW) = wTs,w )
mization (Xing) (Xing et al., 2002). - WTS,W

4. Margin based distance learning using SVM as a prodwhere S; = Zﬁil(wi — m)(z; —m)T denotes theotal
uct space learner (SVM) (described in Section 3).  scattermatrix (m is the data’s empirical mean) ais, =
jj\igl > iiyi—j(wi —mj)(z; —m;)T denotes thevithin-
Class scattematrix (m; is the empirical mean of thg-th
class).

6. Constrained EM of a Gaussian Mixture Model (Con- g ce in our semi-supervised learning scenario we have ac-
strained EM) (Shental et al., 2003). cess to equivalence constraints instead of labels, we can
7. Constrained Comp|ete Linkage (Constrained ComWrite down a constrained LDA algorithm. Thus we esti-
plete Linkage) (Klein et al., 2002). mate thewithin class scattematrix using positive equiva-
lence constraints instead of labels. Specifically, giveeta s
8. Constrained K-means (COP K-means) (Wagstafof positive equivalence constraints, we use transitive clo
etal., 2001). sure over this set to obtain small subsets of points that are
known to belong to the same class. Denote these subsets by
Methods 1-5 compute a distance function, and they are{Cj}JLz_Ol, where each subsét; is composed of a variable
evaluated by applying a standard agglomerative clusteringumber of data point€’; = {z;1,z;2,..,2;,, }. We use
algorithm (Ward) to the distance graph they induce. Meth-these subsets to estimafg as follows
ods 6-8 incorporate equivalence constraints directly into
the clustering process.

5. Margin based distance learning using product spac
decision trees boosting (DTboost).

L-1 N;j
_ Si =Y Y (wji —my) (i —my)" (6)
All methods were evaluated by clustering the data and mea- j=0 i=1

suring theF', score defined as
2 where heren; denotes the mean of subget.

o 2P xR 4
5T R+ P (4) 4.2, Results on UCI datasets

where P denotes precision an® denotes recall. For We selected several datasets from the UCI data repository
the distance learning techniques we also skawulative ~ and used the experimental setup above to evaluate the var-
neighbor puritycurves. Cumulative neighbor puritynea-  ious methods. Fig. 2 shows clusterifig score plots for
sures the percentage of correct neighbors up toifkin ~ Several data sets using Ward's agglomerative clustering al
neighbor, averaged over all the datapoints. In each expegorithm. ClearlyDistBoostachieves significant improve-
iment we averaged the results over 50 or more differeninents over Mahalanobis based distance measures and other
equivalence constraint realizations. B&tistBoosiand the ~ product space I_earning methods. C_ZompamigBOOSttO
decision tree boosting algorithms were run for a constantethods which incorporate constraints directly, cleanty t
number of boosting iteratiorE = 25, 150 (depending on  only true competitor oDistBoostis its own weak learner,
the dataset). In each realization all the algorithms werdhe constrained EM algorithm. Still, in the vast majority
given the exact same equivalence constraints. of casedistBoostgives an additional significant improve-
ment over the EM.
Dimensionality reduction: the constrained LDA algo-
rithm Some of the datasets reside in a high dimensiona#.3. Results on the MNIST letter recognition dataset

space, which must be reduced in order to perform paramy o compared all clustering methods on a subset of the

eter estimation from tram_mg. data. We usgd wo memOd%/INIST letter recognition dataset (LeCun et al., 1998). We
for dimensionality reduction: standard Principal Compo- I
randomly selected(0 training samples30 from each of

e e oS LS Dty 1) casses. The ognal data imension v
Y 9 q which was projected by standard PCA to the fii@tprin-

lence constraints. cipal dimensions. We then further projected the data using
Classical LDA (also called FDA, (Fukunaga, 1990)) com-the constrained LDA algorithm t¢0 dimensions. Cluster-
putes projection directions that minimize the within-slas ing and neighbor purity plots are presented on the left side
scatter and maximize the between-class scatter. More foof Fig 3. The clustering performance of tBéstBoostal-
mally, given a labeled datasétr;,y;}Y, wherey; € gorithm is significantly better than the other methods. The



protein ionosphere balance boston

Figure 2.CIusteringF% score over 4 data sets from the UCI repository using Wardisteting algorithm. Methods shown are: (a)
Euclidean, (b) RCA, (c) constrained EM, (d) SVM, (e) DTbhod§t DistBoost, (g) Xing, (h) Constrained Complete Linkag¢i¢ Con-
strained K-means. The results were averaged over 100a8atiz of constraints, and 1-std error bars are shown.cdhsetraint index
P was0.5 in all cases.

cumulative purity curves suggest that this success may bdowever,DistBoost still outperforms its competitors, as it
related to the slower decay of the neighbor purity scores fodid in all previous examples.
DistBoost

o 5. Discussion
4.4. Results on a Animal image dataset

) . . . In this paper, we have describ&istBoost- a novel al-
We created an image database which contained images BBrithm which learns distance functions that enhance clus-

animals taken from a commercial image CD, and tried G ing performance using sparse side information. Our ex-
cIL_Jster thgm based on color fea_ltures. The_clusterln_g ta_sk Ifensive comparisons showed the advantage of our method
this case is much hf_irder than in the previous appllc_atlon%ver many competing methods for learning distance func-
The database contained 10 classes with total of 565 imageg,ns and for clustering using equivalence constraints. An
Fig. 3 shows a few examples of images from the d""t""b"’lseother application which we have not explored here, is near-

The original images were heavily compressed jpg im-€st neighbor classification. Nearest neighbor classi6inati
ages. The images were represented using Color Coherenglso critically depends on the distance function between
Vectors (Pass et al., 1996) (CCV’s). This representatiorflatapoints; our hope is that distance functions learned fro
extends the color histogram representation, by capturin§duivalence constraints can also be used for improving
some crude spatial properties of the color distributiorrin a nearest neighbor classification.

image. Specifically, in a CCV vector each histogram bin is

divided into two bins, representing the number of 'Coher-References

ent’ and 'Non-Coherent’ pixels from each color. 'Coher- ] )

ent’ pixels are pixels whose neighborhood contains morda-Hilel, A., Hertz, T., Shental, N., & Weinshall, D.
than r neighbors which have the same color. We repre- (2003). Learning distance functions using equivalence

sented the images in HSV color space, quantized the im- relations.
ages 1032 x 32 x 32 = 32768 color bins, and computed pgjake, C., & Merz, C. (1998). UCI repository of machine
the CCV of each image -@& K dimensional vector - using learning databases.
T =253
Blatt, M., Wiseman, S., & Domany, E. (1997). Data clus-

In order to reduc;e the.dimension of our data,_we first re- tering using a model granular magniteural Computa-
moved all zero dimensions and then used the f’8tPCA tion. 9. 1805-1842.

dimensions, followed by Constrained LDA to further re- _
duce the dimension of the data #o= 40. The cluster- ~d'Alche Buc, F., Grandvalet, Y., & Ambroise, C. (2002).
ing results and neighbor purity graphs are presented on Semi-supervised marginboost.

the right s_ide of Fig 3. The_difficulty of the task is well Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Max-

reflected in the low clustering scores of all the methods. " '\ clihood from incomplete data via the EM algo-
3The standard distance measure used on CCV features is a rithm. JRSSB39, 1-38.

Chi-squared distance (also commonly used to measure déstan

between histograms). We also tried to cluster the data usimg Duda, R. O., Hart, P. E., & Stork, D. G. (2001Rattern
Chi-squared distances, and tﬁg score obtained was44. Classification John Wiley and Sons Inc.

4On this dataset the COP k-

Igorith I L L
on 25% of its runs. means aigorithm only ConVergeq:ukunag::l, K. (1990)Statistical pattern recognitianSan

Diego: Academic Press. 2nd edition.



0.9

0.8

0.7

0.6

% of correct neighbors
o
~

Mnist

,
"
,

._~=.~.
I

0.55]

0.5]

0.45

0.4

0.35]

0.3]

ccv

ccv

o o 4 o
o =N © ©

% of correct neighbors

o
3

o
e

DistBoost
--=- Xing

40 ’ 5 10 15 20
Number of neighbors

10 20
Number of neighbors

Figure 3.Top Clustering results using Ward's algorithm on a subsét@MNIST dataset (500 datapoints, 10 classes) and on theahni
color image database (565 images, 10 classes). Bottom: lativeuneighbor purity graphs on the same datasets. Metsloalsn are:
(a) Euclidean, (b) RCA, (c) constrained EM, (d) SVM, (e) D®by (f) DistBoost, (g) Xing, (h) Constrained Complete Lagie, (i)
Constrained K-means. Results were averaged over 50 reéafigaThe constraint indeR is 1 in all cases.

Gdalyahu, Y., Weinshall, D., & Werman., M. (2001). Self Schapire, R. E., & Singer, Y. (1999). Improved boosting
organization in vision: stochastic clustering for image using confidence-rated predictionslachine Learning
segmentation, perceptual grouping, and image database 37, 297-336.

organization. ) )
Shental, N., Hertz, T., Bar-Hilel, A., & Weinshall, D.

(2003). Computing gaussian mixture models with EM
using equivalence constraints.

Grandvalet, Y., d’Alche Buc, F., & Ambroise, C. (2001).
Boosting mixture models for semi supervised learning.

Hertz, T., Bar-Hillel, A., Shental, N., & Weinshall, D. Shental, N., Hertz, T., Weinshall, D., & Pavel, M. (2002).
(2003). Enhancing image and video retrieval: Learning Adjustment learning and relevant component analysis.
via equivalence constraint€EE Conf. on Computer Vi- ~ Computer Vision - ECCV

sion and Pattern Recognition, Madison WI, June 2003 Shi, J., & Malik, J. (2000). Normalized cuts and image

Klein, D., Kamvar, S., & Manning, C. (2002). From Segmentation.IEEE Transactions on Pattern Analysis

instance-level constraints to space-level constraints: and Machine Intelligence22, 888—905.

Making the most of prior knowledge in data clustering. Wagstaff, K., Cardie, C., Rogers, S., & Schroedl, S.
(2001). Constrained K-means clustering with back-
ground knowledge.Proc. 18th International Conf. on
Machine Learning(pp. 577-584). Morgan Kaufmann,
San Francisco, CA.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998).
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEB6, 2278-2324.

Pass, G., Zabih, R., & Miller, J. (1996). Comparing images,

using color coherence vectorsACM Multimedia(pp. Xing, E., Ng,_ A, Jor_dan, _M" & R_ussell, S. (2002.)' D'.S'
65-73). tance metric learnign with application to clustering with

side-information.Advances in Neural Information Pro-

Schapire, R. E., Freund, Y., Bartlett, P., & Lee, W. S. cessing System3he MIT Press.

(1997). Boosting the margin: a new explanation for
the effectiveness of voting method2roc. 14th Interna-
tional Conference on Machine Learnirigp. 322—330).
Morgan Kaufmann.



