Flexible Syntactic Matching of Curves and its Application to
Automatic Hierarchical Classification of Silhouettes

Yoram Gdalyahu and Daphna Weinshall
Institute of Computer Science, The Hebrew University
91904 Jerusalem, Israel
email: {yoram,daphna}@cs.huji.ac.il

Abstract

Curve matching is one instance of the fundamental correspondence problem. Our flexible
algorithm is designed to match curves under substantial deformations and arbitrary large scaling
and rigid transformations. A syntactic representation is constructed for both curves, and an
edit transformation which maps one curve to the other is found using dynamic programming.
We present extensive experiments, where we apply the algorithm to silhouette matching. In
these experiments we examine partial occlusion, viewpoint variation, articulation, and class
matching (where silhouettes of similar objects are matched). Based on the qualitative syntactic
matching we define a dissimilarity measure, and we compute it for every pair of images in a
database of 121 images. We use this experiment to objectively evaluate our algorithm: First, we
compare our results to those reported by others. Second, we use the dissimilarity values in order
to organize the image database into shape categories. The veridical hierarchical organization
stands as evidence to the quality of our matching and similarity estimation.

1 Introduction

Given a large collection of images, unraveling its redundancies is an important and challenging
task. One could use this knowledge to assist in image querying, and to construct more efficient and
compact image representations. In order to identify redundancy in the database, we propose the
following approach: First, design algorithms to measure the similarity between images. Second,
given pairwise image similarity, use similarity-based clustering to reveal the structure in the data by
hierarchically dividing the images into distinct clusters. Third, identify redundancy in each cluster
and use it to prune the database and pick cluster representatives; this would allow for efficient
indexing into the database.

It is important to distinguish between our approach, where the clustering of NV images uses only
their N x N similarity matrix, and the more typical approach where images are first embedded
in some D-dimensional vector space, whose dimension should be significantly reduced using such
methods as PCA. Mapping an image into such a space in effect requires the identification of D
measurements (or “features”) that completely describe the image. This has proven to be an elusive
task. The task of image comparison, on the other hand, seems more within our reach: rather
than look for an explicit representation of images as vectors, we seek an algorithm (as complex as
necessary) which receives as input two images, and returns as output the similarity between them.

In this paper we focus on the design of similarity measures, limiting ourselves to the shape
dimension of similarity and ignoring other dimensions (e.g., color, motion, context). The similarity
is therefore defined as similarity between silhouettes. We describe our silhouette matching algorithm
and show results of extensive experiments with real images. We then outline a stochastic clustering



IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 21, No. 12, December 1999 2

algorithm (described at length in [14]), and argue that the good clustering results we show give
objective evidence to the quality of our silhouette matching algorithm. The issue of database
pruning, and how to identify within-cluster redundancies to allow for efficient indexing into the
database, is discussed in later work [21].

More specifically, we describe a novel flexible curve matching algorithm to relate between fea-
ture points that are automatically extracted on the boundaries of objects. Unlike most pattern
recognition applications of clustering, we use real images of three dimensional objects, basing our
similarity measure on the shape of their occluding contours. Our algorithm is designed to give
a graded similarity value, where low values reflect similarity between weakly similar curves, and
higher values indicate strong similarity. To illustrate, given two curves describing the shape of
two different mammals, we consider our algorithm to be “successful” if it matches their limbs and
head correspondingly. The matched pairs of feature points are then aligned using an optimal 2D
similarity transformation (translation, rotation and scale). From the residual distances between cor-
responding features we compute a robust dissimilarity measure between silhouettes. The matching
algorithm is outlined in Section 3, and the resulting dissimilarity values are compared with those
reported in the literature.

According to the general approach adopted in this paper, our next step is to feed the computed
dissimilarities into a pairwise clustering algorithm, to obtain hierarchical clusters of similar images.
A pairwise clustering algorithm exploits only proximity information, and is therefore suitable when
vectorial representation of images is not available. Instead, the images are represented as nodes in a
graph, with edges whose weight reflect the similarity between every image pair. In [14] we describe
our stochastic clustering algorithm, which is outlined in Section 4. Our algorithm determines the
number of clusters in a (true) hierarchical manner, and tolerates to some extent violations of metric
properties (i.e., violation of the triangle inequality). We demonstrate perceptually veridical results
using a database of 121 images of 12 different objects, which are hierarchically classified. The useful
clustering results illustrate the quality of our matching algorithm, and the usefulness of our general
approach.

2 Curve matching: problem and related work

Contour matching is an important problem in computer vision with a variety of applications,
including model based recognition, depth from stereo and tracking. In these applications the two
matched curves are usually very similar. For example, a typical application of curve matching to
model based recognition would be to decide whether a model curve and an image curve are the
same, up to some scaling or 2D rigid transformation and some permitted level of noise.

In this paper we are primarily interested in the case where the similarity between the two curves
is weak. The organization of silhouettes into shape categories (like tools, cars, etc.) necessitates
flexible matching, which can support graded similarity estimation.

While our approach focuses on the silhouette boundary, a dual approach is based on its medial
axis. Specifically, a medial axis together with singularities labeling form a shock graph representa-
tion, and matching shock graphs is an isomorphism problem. The methods for solving it includes
semi-definite programming [37], replicator dynamics [31], graduated assignment [35] and syntactic
graph matching [39]. In some of these cases the matching is only structural, while in others two
levels of matching (structural and metrical) are supported. The methods based on shock graphs
succeed to define a graded similarity measure, and may be combined with suitable database index-
ing [36]. In this paper we show, however, that our results are of the same quality in spite of using
boundary representation, which is inherently less sensitive to occlusion, and which does not involve



IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 21, No. 12, December 1999 3

the NP-complete graph isomorphism problem.

To put our method in the context of existing work on boundary matching, we first distinguish
between dense matching and feature matching. Dense matching is usually formulated as a param-
eterization problem, with some cost function to be minimized. The cost might be defined as the
“elastic energy” needed to transform one curve to the other [5, 8, 10], but other alternatives exist
[2, 15, 12, 29]. The main drawbacks of these methods are their high computational complexity
(which is reduced significantly if only key points are matched), and the fact that they are usually
not invariant under both 2D rotation and scaling. In addition, the computation of elastic energy
(which is defined in terms of curvature) is scale dependent, and requires accurate evaluation of
second order derivatives.

Feature matching methods may be divided into three groups: proximity matching, spread prim-
itive matching, and syntactic matching. The idea behind proximity matching methods is to search
for the best matching while permitting the rotation, translation and scaling (to be called alignment
transformation) of each curve, such that the distances between matched key points are minimized
[4, 20, 22, 44]. Consequently these methods are rather slow; moreover, if scaling is permitted an
erroneous shrinking of one feature set may result, followed by the matching of the entire set with
a small number of features from the other set. One may avoid these problems by excluding many-
to-one matches and by using the points order, but then the method becomes syntactic (see below).
Moreover, we illustrate in section 5.7.3 why proximity matching is not adequate for weakly similar
curves. As an alternative to the alignment transformation, features may be mapped to an intrinsic
invariant coordinate frame [27, 33, 34]; the drawback of this approach is that it is global, as the
entire curve is needed to correctly compute the mapping.

Features can be used to divide the curves into shape elements, or primitives. If a single curve can
be decomposed into shape primitives, the matching algorithm should be constrained to preserve
their order. But in the absence of any ordering information (like in stereo matching of many
small fragments of curves), the matching algorithm may be called “spread primitive matching”.
In this category we find algorithms that seek isomorphism between attributed relational graphs
[6, 25, 9], and algorithms that look for the largest set of mutually compatible matches. Here,
compatibility means an agreement on the induced coordinate transformation, and a few techniques
exist to find the largest set of mutually compatible matches (e.g., clustering in Hough space [38],
geometrical hashing [24], and clique finding in an association graph [7, 11, 18, 23]). Note that at the
application level, finding isomorphism between attributed relational graphs is the same problem as
finding isomorphism between shock graphs (discussed above), although in the last case an additional
constraint may apply [31].

For our purpose of matching complex outlines, it is advantageous to use the natural order of
primitives. This results in a great simplification, and there is no need to solve the difficult graph
isomorphism problem. Moreover, the relations encoded by the attributed relational graphs need to
be invariant with respect to 2D image transformations, and as a result they are usually non local.

A syntactical representation of a curve is an ordered list of shape elements, having attributes
like length, orientation, bending angle etc. Hence, many syntactical matching methods are inspired
by efficient and well known string comparison algorithms, which use edit operations (substitution,
deletion and insertion) to transform one string to the other [45, 28, 17]. The vision problem is
different from the string matching problem in two major aspects, however: first, in vision invariance
to certain geometrical transformations is desired; second, a resolution degradation (or smoothing)
may create a completely different list of elements in the syntactical representation.

There are no syntactic algorithms available which satisfactorily solve both of these problems.
If invariant attributes are used, the first problem is immediately addressed, but then the resolu-
tion problem either remains unsolved [1, 16, 26] or may be addressed by constructing for each



IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 21, No. 12, December 1999 4

curve a cascade of representations at different scales [3, 30, 43]. Moreover, invariant attributes are
either non-local (e.g., length that is measured in units of the total curve length), or they are non-
interruptible (see discussion in section 5.7). Using wvariant attributes is less efficient, but provides
the possibility to define a merge operator which can handle noise [32, 40, 41], and might be useful
(if correctly defined) in handling resolution change. However, the methods using variant attributes
could not ensure rotation and scale invariance.

3 Flexible syntactic curve matching: algorithm

In this section we present a local syntactic matching method which can cope with both occlusion
and irrelevant changes due to image transformation, while using variant attributes. These attributes
support a simple smoothing mechanism, hence we can handle true scale (resolution) changes. The
algorithm is outlined in Section 3.1, while the missing details are given in Section 5. We are primarily
concerned with the amount of flexibility that our method achieves, since we aim to apply it to weakly
similar curves. Section 3.2 shows extensive experiments with real images, where excellent matching
is obtained between weakly similar shapes. We demonstrate silhouette matching under partial
occlusion, under substantial change of viewpoint, and even when the occluding contours describe
different (but related) objects, like two different cars or mammals. Our method is efficient and fast,
taking only a few seconds to match two curves.

3.1 The proposed matching method

The occluding contours of objects are first extracted from the image and a syntactic representation
is constructed, whose primitives are line segments, and whose attributes are length and absolute
orientation. Our algorithm then uses a variant of the edit matching procedure combined with
heuristic search. Thus we define a novel similarity measure between primitives to assign cost to
each edit operation, a novel merge operation, and introduce penalty for interrupting a contour (in
addition to the regular deletion/insertion penalty).

More specifically, let A and A’ be two syntactic representations of two contours; A = {a1,as,...,an}
is a cyclically ordered list of N line segments, and A’ = {a},d),...,a)y/} is another cyclic list of N’
segments.

Let a; be a segment of A and a;- be a segment of A’. Matching these segments uniquely determines
the relative global rotation and scale (2D alignment transformation) between the curves. We assume
that the optimal alignment is well approximated by at least one of the NN’ possible selections of
a; and ag-. In fact, we will discuss in Section 5.2 a method to prune many of them, leaving us with
aset U C A x A’ of candidate global alignments, such that usually || < NN'.

A member {a;,a}} of U (abbreviated {7,j} for convenience) denotes a starting point for our
syntactic matching algorithm. The algorithm uses edit operations to extend the correspondence
between the remaining unmatched segments, preserving their cyclic order. Total cost is minimized
using dynamic programming, where the cost of a match between every two segments depends on
their attributes, as well as on the attributes of the initial chosen pair (a; and a}). This implicitly
takes into account the global alignment operation. The various edit operations and their cost
functions are described in Section 5.3; the cost of the edit operations can be either negative or
positive.!

!Negative cost can be interpreted as positive “gain” or “reward”. Every matching prefix has a total (accumulated)
cost, which should be as negative as possible. A prefix is never extended by a suffix with positive cost, since this
would increase the cost; hence partial matching is achieved by leaving the last segments unmatched. Note that if all
costs are negative then the minimal cost must be obtained by matching all the segments of the shorter sequence, and



IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 21, No. 12, December 1999 5

procedure CURVE-MATCHING:
input: two curve representations A and A’.

output: correspondence between line segments and dissimilarity value.
U, cost*, {i*,j*} + INITIALIZE(A,A")
{i,7}, potential + PICK-CANDIDATE (V)
While cost* > potential
cost*, {i*,j*} + SYNTACTIC-STEP(A,A’,{i,5})
U < PREDICT-COST({%,j})
{i,7}, potential + PICK-CANDIDATE(J)
end-loop
correspondence < TRACE({i*,j*})
dissim < DISSIMILARITY(A,A’,correspondence)
return correspondence and dissim.

Figure 1: Pseudo code for CURVE-MATCHING procedure

We are searching for the member {i,5} € ¥ for which the extended correspondence list has
minimal edit cost. Brute force implementation of this search is computationally infeasible. The
syntactic matching process is therefore interlaced with heuristic search for the best initial pair in
V. Namely, a single dynamic programming extension step is performed for the best candidate in ¥
(possibly a different candidate in each extension matching step), while maintaining the lowest cost
achieved by any of the sequences. When no candidate in ¥ has the potential to achieve a lower
cost, the search is stopped (see below).

The pseudo-code in Figure 1 integrates the components of our matching algorithm into a pro-
cedure which gets two syntactic representations and returns a segment correspondence and a dis-
similarity value. The arrays which support the dynamic programming are not referenced in this
pseudo-code, to increase its readability. We note that the procedure CURVE-MATCHING minimizes
the edit cost which is typically negative, thus, in effect, CURVE-MATCHING is maximizing the “gain”
of matching.

The procedure INITIALIZE performs the initial pruning of pairs of starting points, and returns
the set of candidates ¥ sorted by increasing potential values (see below). Full description is given
in Section 5.2. Its implementation performs a few syntactic matching steps for all NN’ possible
pairs, and computes the intermediate edit cost corresponding to this partial matching. The minimal
intermediate edit cost achieved by any of the candidates is returned as cost*, and the candidate
pair which achieves cost™ is returned as {i*, j*}.

The procedure PICK-CANDIDATE selects a particular member of W, to be fed into the syntactic
algorithm. To understand its operation, we need to define the concept of potential: For each
candidate {i,7} that has been extended to a correspondence list of some length, we compute a
lower bound on its final edit cost. This bound is based on the intermediate edit cost which has
already been achieved, and the cost of the best (lowest cost) possible matching of the remaining
unmatched segments. We call this bound the potential of the candidate {i,j}. The procedure
PICK-CANDIDATE returns the member of ¥ which has best (minimal) potential.

Technically, we store ¥ as an ordered list, sorted by increasing potential value. Each member of
V¥ is a candidate {7, j} and its current potential. The procedure PICK-CANDIDATE then returns the
first member of U. The list U is initially sorted by INITIALIZE, and its order is maintained by the

if all costs are positive then the minimal cost is trivially obtained by leaving all segments unmatched. The average
cost value determines the asymptotic matching length for random sequences [13].



IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 21, No. 12, December 1999 6

procedure PREDICT-COST discussed below.

The search for the best candidate {i*,5*} continues as long as there exists a candidate whose
potential is lower than the best cost achieved so far (cost*). It is implemented by the loop which
iterates as long as cost* > potential. Note that cost* cannot increase and potential cannot decrease
during the search.

The procedure SYNTACTIC-STEP is the core of our algorithm. It is given as input two cyclically
ordered sequences A = {ai,...,anx} and A" = {ai,...,d,}, which are partially matched from
position 7 of A and onward, and from position j of A" and onward. It uses dynamic programming
to extend the edit transformation between A and A’ by one step. Since our editing cost operation
typically takes negative values, the edit cost of {7, j} could become better (lower) than cost*. In this
case {1*,j*} is set equal to {i,j}, and cost* is set equal to the newly achieved edit cost (otherwise
{#*,7*} and cost* remain unchanged). Sections 5.3 and 5.4 give the full description of the procedure
SYNTACTIC-STEP.

Extending the editing sequence of {i,j} is likely to increase its potential, making it a less at-
tractive candidate. This is because the potential of {i,j} is partially determined by a lower bound
on the final edit distance between the yet unmatched segments, and the edit operation just added
can only tighten this bound by decreasing the number of unmatched segments. The procedure
PREDICT-COST re-estimates the final cost, and corrects the potential of {7,j}. Since ¥ is kept as
an ordered list, PREDICT-COST pushes the candidate {¢,j} down to maintain the order of the list.
Section 5.5 gives full details of the potential estimation.

Assuming that the reader is familiar with conventional dynamic programming implementations,
it is sufficient to describe the procedure TRACE as the procedure which reads the lowest cost path
from the dynamic programming array?. When this procedure is applied to the array associated with
the best candidate {i*,5*}, the lowest cost editing sequence is obtained. In our implementation,
in order to keep space complexity low, we keep just the last few rows and columns for each array,
hence the procedure TRACE needs to repeat the syntactic matching for the best pair {i*,5*}. See
Section 5.4 for a description of the dynamic programming implementation.

Finally, using the correspondence we found, we refine the global 2D alignment by minimizing the
sum of residual distances between matched segments endpoints. The procedure DISSIMILARITY
performs the minimization, and uses the residual distances to define a robust measure of dissimi-
larity between the curves (details in Section 5.6).

Our approach thus combines syntactic matching with a proximity measure (in this sense our
method resembles that of [1]). That is, we establish feature correspondence using syntactic match-
ing, and then evaluate the dissimilarity according to the residual distances between matched points.
We do not use the edit distance as a measure of dissimilarity, mainly due to the fact that this quan-
tity depends on the somewhat arbitrary parameters of the edit operation and segment similarity,
whereas typically the best matching result is not sensitive to these exact parameters. That is, the
same matching is obtained for a range of edit parameter values, although the edit distance may be
different. Another advantage to combining syntactic and proximity criteria is that in many cases
the combination provides a mechanism for outliers removal, as is demonstrated in Section 5.6.

3.2 Matching results

We now present a few image pairs and triplets together with the matching results, which demon-
strate perceptually appealing matching. In Section 3.3 below we apply our matching algorithm to
a database of 31 silhouettes given to us by Sharvit & Kimia, and compare our dissimilarity values

2Note, however, that using both positive and negative costs allows for partial matching, hence the path can
terminate at any entry of the dynamical programming array and not necessarily at the last row or column.



IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 21, No. 12, December 1999 7

Figure 2: Qualitative matching between pictures of toy models of a horse and a wolf. Note the correct correspondence
between the feet of the wolf to those of the horse, and the correspondence between the tails. The results are shown
without outliers pruning. In this example, all the features to which no number is attached had been merged; e.g. the
segment 9-10 on the horse outline was matched with 3 segments on the wolf outline.

10~ 1y "

i I
12—+/+ \+

1314 16

Figure 3: Dealing with occlusion: partial matching between three images. Points are mapped from (a) to (b) to (c)
and back to (a). Only points which are mapped back to themselves are accepted (order is not important). The points
on the tail in (a) are matched with the shadow (pointed by the arrow) in (b) , but matching (b) with (c) leaves the
shadow unmatched. Hence the tail is not matched back to itself, and the correspondence with the shadow is rejected.

to those reported in [35]. Additional classification results will be presented in Section 4.2, using the
matching of a few thousands image pairs, to provide indirect objective examination of the matching
quality.

In all the experiments reported in this paper we use the same parameter values (defined in
Section 5): wy; = 1, wy = 0.8, w3 = 8.0 and K = 4 (with the exception of Figure 6, where K = 5).
Each matching of an image pair took only a few seconds (see section 4.2).

Figure 2 shows two images of different objects. There is a geometrical similarity between the two
silhouettes, which has nothing to do with the semantic similarity between them. The geometrical
similarity includes five approximately vertical swellings or lumps (which describe the four legs and
the tail). In other words, there are many places where the two contours may be considered locally
similar. This local similarity is captured by our matching algorithm.

The two occluding contours of the two animals and the feature points were automatically extract-
ed in the preprocessing stage. Corresponding points are marked in Figure 2 by the same numbers.
Hence the tails and feet are nicely matched, although the two shapes are only weakly similar. The
same matching result is obtained under arbitrarily large rotation and scaling of one image relative
to the other.

Figure 3 demonstrates the local nature of our algorithm, namely, that partial matching can be



IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 21, No. 12, December 1999 8

Figure 4: Matching two views of an object subjected  Figure 5: Matching of human limbs at different body

to large foreshortening. Rejected pairs (in circles) were configurations. In this case the outlines were extract-
detected in four lterations of eliminating the (10%) most ed with snakes rather than by gray level clustering (see
distant pairs and re-aligning the others. 33 and 35 fea- acknowledgments). Original images are not shown.

tures were extracted on the two outlines; 32 pairs were
initially matched, and 9 pairs were rejected (28%).

Figure 6: Combination of various sources of difficulty: different models, different viewpoints and occlusion. The
merging utility is used to overcome the different number of feature points around the wheels; gap insertion is utilized
to ignore the large irrelevant part.

found when objects are occluded. Since our method does not require global image normalization,
the difference in length between the silhouette outlines does not impede the essentially perfect
matching of the common parts. Moreover, the common parts are not identical (note the distance
between the front legs and the number of ears) due to a small difference in viewpoint; this also
does not impede the performance of our algorithm.

Figure 3 also demonstrates outliers pruning using three images. In image 3b there is a shadow
between two of the leaves (pointed by the arrow), and as a result the outline penetrates inward.
The feature points along the penetration are (mistakenly) matched with features along the tail in
image 3a, since the two parts are locally similar. However, we use the procedure of mapping the
points of 3a to 3b, then to 3c and back to 3a. Only points which are mapped back to themselves
are accepted as correct matches; these matched are marked by common numbers in Figure 3.

Figures 4 and 6 show results when matching images taken from very different points of view. In
Figure 4 two different views of the same object are matched, and the method of iterative elimination
of distances is demonstrated (see Section 5.6). Figure 6 shows matching between three different
cars, viewed from very different viewpoints and subjected to occlusion. Matching under a large
perturbation of viewpoint can be successful as long as the silhouettes remain similar “enough”.
Note that preservation of shape under change of viewpoint is a quality that defines “canonical”



IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 21, No. 12, December 1999 9

or “stable” views. Stable images of 3D objects were proposed as the representative images in an
appearance based approach to object representation [46].

The last example (Figure 5) shows results with an articulated object, matching human limbs at
different body configurations.

3.3 Dissimilarity measurements: comparison

o ENEN A« A X8 v 0 OO0 ¢« 00

0 30 59 37 77 183 118 103 || 164 124 116 142 || 120 109 113 145 || 116 111 114 93| 125 144 172 143 120

30 0 50 25| 123 84 142 146 | 111 137 109 115 | 111 112 109 113 82 107 153 137 || 106 110 117 132 123

59 50 0 47| 117 85 122 142 | 110 200 73 142 | 108 111 109 112 91 102 132 113 || 134 141 124 140 135

37 25 47 0| 106 112 144 108 | 125 120 104 137 || 109 122 126 140 || 106 111 109 104 || 143 169 163 148 111

77 123 117 106 0 21 59 47| 105 127 163 139 | 105 140 143 123 || 150 145 112 101 || 144 187 163 134 115

183 84 85 112 21 0 89 78| 124 116 134 84| 157 125 108 128 64 132 140 129 177 142 171 140 150

118 142 122 144 59 89 0 65| 103 140 116 179 | 122 141 132 122 85 107 127 95| 134 117 133 162 139

103 146 142 108 47 78 65 0| 114 92 127 82 97 136 118 95 81 180 128 131 | 128 91 116 149 117

164 111 110 125 | 105 124 103 114 0 76 22 61 58 68 67 73| 107 75 77 95 87 93 68 87 69

124 137 200 120 || 127 116 140 92 76 0 28 78 74 82 63 62 72 115 74 91 91 115 99 92 83

116 109 73 104 || 163 134 116 127 22 28 0 86 80 72 81 127 92 77 94 113 93 113 82 114 74

142 115 142 137 || 139 84 179 82 61 78 8 0 94 65 71 85 63 85 80 107 123 127 98 93 88

120 111 108 109 || 105 157 122 97 58 74 80 94 0 24 26 51 77 92 74 83 91 141 66 108 93

109 112 111 122 | 140 125 141 136 68 82 72 65 24 0 45 67 64 46 66 122 106 77 92 92 117

113 109 109 126 || 143 108 132 118 67 63 81 71 26 45 0 53 96 65 80 65| 101 106 101 97 83

145 113 112 140 || 123 128 122 95 73 62 127 85 51 67 53 0 91 83 67 81 70 72 62 98 55

116 82 91 106 || 150 64 85 81| 107 72 92 63 77 64 96 91 0 21 28 20| 143 140 132 124 86

111 107 102 111 | 145 132 107 180 75 115 77 85 92 46 65 83 21 0 15 29| 125 122 117 134 119

114 153 132 109 || 112 140 127 128 77 74 94 80 74 66 80 67 28 15 0 21| 121 174 141 158 124

93 137 113 104 || 101 129 95 131 95 91 113 107 83 122 65 81 20 29 21 0} 123 90 123 138 110

125 106 134 143 || 144 177 134 128 87 91 93 123 91 106 101 70 | 143 125 121 123 0 14 20 20 19

144 110 141 169 || 187 142 117 91 93 115 113 127 | 141 77 106 72| 140 122 174 90 14 0 16 19 15

172 117 124 163 || 163 171 133 116 68 99 82 98 66 92 101 62| 132 117 141 123 20 16 0 30 25

143 132 140 148 || 134 140 162 149 87 92 114 93| 108 92 97 98| 124 134 158 138 20 19 30 0 34

oo «0odde«»«x » « @@ - + - -

120 123 135 111 || 115 150 139 117 69 83 74 88 93 117 83 55 86 119 124 110 19 15 25 34 0

Table 1: The dissimilarity values computed between 25 silhouettes (multiplied by 1000 and rounded). For each line,
the columns that correspond to the three nearest neighbors (and the self zero distance) are highlighted. The first,
second and third nearest neighbor are in the same class a fraction of 25/25, 21/25 and 19/25 of the times respectively.

In this section we use our matching algorithm to compute a dissimilarity value, as will be ex-
plained in Section 5.6. Good matching is essential for correct dissimilarity estimation, whose values
we use for quantitative comparisons with other methods. We use the image database created
by Sharvit & Kimia (see [35]), which consists of 31 silhouettes of 6 classes of objects (including
fish,airplanes, tools).

In [35], 25 images were selected out of this database, and their pairwise similarities were com-
puted. The measure of quality was the number of instances (out of 25) in which the first, second



IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 21, No. 12, December 1999 10

and third nearest neighbor of an image was found in its own class. We follow the same procedure,
and show in Table 1 the dissimilarity values which we obtain for 25 silhouettes.?

We find that the fraction of times (out of 25) that the first nearest neighbor of an image belongs
to its own class is 25/25, namely, it is always the case. For the second and third nearest neighbors
the results are 21/25 and 19/25. In comparison, the results reported in [35] are 23/25, 21/25 and
20/25 respectively, whereas our results for their choice of 25 images are the fractions 25/25, 20/25
and 17/25 respectively. It is to be noted, however, that in the framework of [35] one can use
additional information, specifically, whether the two graphs that represent a pair of shapes have
similar topology.

We conclude that the two methods are comparable in quality when isolated silhouettes are
matched. This is in spite of our using boundary representation, whereas symmetry representation
(shock graph) is used in [35]. The shock graph representation is inherently more sensitive to occlu-
sions, while shock graph matching requires solving the difficult NP-complete graph isomorphism
problem (see Section 1). Moreover, our method can easily be adjusted to handle open curves,
by avoiding the assumption that the syntactic representation is cyclic. On the other hand, shock
graphs must distinguish between interior and exterior.

Recently, progress has been made toward computing the edit distance between shock graphs
[39] using a polynomial time algorithm that exploits their special structure. So far, however, the
algorithm is not capable of dealing with invariance to image transformations, and no quantitative
measures have been reported.

4 Clustering of silhouettes

The next step in our approach involves feeding a graph of image similarity values, computed by
the silhouette matching algorithm, to a similarity-based clustering algorithm. By hierarchically
dividing the images into distinct clusters we discover structure in the data. For this end we de-
veloped a stochastic clustering algorithm [14], whose full description is beyond the scope of this
paper. Instead, we give below a brief review of the algorithm, and show clustering results which
demonstrate the usefulness of our approach, and the quality of the matching results.

4.1 Stochastic clustering algorithm

We represent the image database as a graph, with nodes representing the images and similarity
values assigning weights to the edges. Every partition of the nodes into r disjoint sets is an r-way
cut in the graph, and the edges which connect between different sets of nodes are said to cross the
cut. The value ¢ of a cut is the sum of the weights of all crossing edges.

Our clustering method induces a probability distribution over the set of all r-way cuts in the
graph, with a known lower bound on the probability of the minimal cut. Under this distribution
over cuts, we compute for every two nodes u and v in the graph their probability pi, of being in
the same component of a random r-way cut.

The partition of the nodes into disjoint sets, which satisfies p,,, < 0.5 for every crossing edge
(u,v), is the output of our clustering algorithm for scale level r (r = 1...N). At level r=1 all the
nodes must be in one cluster, and as r is increased the partitions undergo a series of bifurcations.
The “interesting” bifurcation points, which account for meaningful data clustering, can be clearly

3 As table 1 shows, we have at least 4 images in each class. In [35] the same images were chosen, with the exception
that one of the classes consisted of only 3 images, while the fish class contained 5 images. However, for members
of a class consisting of only 3 images, the three nearest neighbors can no longer be all in the same class. Hence we
modified slightly the choice of selected images.



IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 21, No. 12, December 1999 11

distinguished from the others. This is a major advantage of our algorithm over deterministic
agglomerative methods.

Our clustering method is robust and efficient, running in O(N log?(N)) time for sparse graphs,
and O(N?log(N)) for complete graphs. It does not require that the similarity values obey metric
relations, hence it is suitable for the present application, where the similarity provided by our
matching algorithm does not necessarily satisfy the triangle inequality.*

4.2 Clustering results

We now integrate the two steps of similarity estimation and pairwise clustering into one experi-
ment of image database categorization. The database contains 121 images of 12 different objects;
90 of the images were collected by placing 6 toy models on a turntable, so that the objects could
be viewed from different viewpoints. The other images are the 31 silhouettes discussed in Sec-
tion 3.3. For each of the 6 toy models we collected 15 images, by rotating them in azimuth
(¥ = —20°,-10°,0°,10°,20°) and elevation (o = —10°,0°,10°). We used models of a cow, wolf,
hippopotamus, two different cars and a child.

The central images (9 = ¢ = 0) in each of the three groups of pictures of animal models are side
views (i.e., four legs, head and tail are visible). All the different 15 images of each animal model
are somewhat similar in that the same parts are visible (though in some pictures some parts, such
as 2 legs or a leg and a tail, are merged into one in the silhouette). Thus, there is weak geometrical
similarity between all the 45 silhouettes of the three mammals, and there is weak geometrical
similarity between the 30 different silhouettes of the two cars. A desirable shape categorization
procedure should reveal this hidden hierarchical structure.

All the images were automatically preprocessed, to extract the silhouettes of the objects and
represent them syntactically (see Section 5.1). The dissimilarities between the silhouettes are
estimated using the algorithm described in section 3.1. In order to compare all the image pairs in
our database of 121 images, we performed 7260 matching assignments; this took about 10 hours on
an INDY R4400 175Mhz workstation (about 5 seconds per image pair, on average).

The dissimilarity matrix constitutes the input to the clustering algorithm outlined above. When
the scale parameter r is varied, the hierarchical classification shown in Figure 7 is obtained. At
the highest level (r=1) all the images belong to a single cluster. As r is increased, finer structure
emerges. Note that related clusters (like the two car clusters) split at higher r values, which means
that our dissimilarity measure is continuous, assigning low (but reliable) values to weakly similar
shapes.

Since humans can do so, we assume that an ideal shape classifier can put the images of every
object in a different class. It is hard to test this hypothesis, since as humans we cannot ignore
the semantic meaning of the shapes. Nevertheless, comparing with the ideal human perceptual
classification, our finest resolution level is almost perfect, with only two classification error (in the
boxes marked by *) and the undesirable split of the fish cluster.

Our categorization is obtained using only intrinsic shape information. The relative size, orienta-
tion and position of the silhouettes within each category is arbitrary. Moreover, global information
like the length of the occluding contour or the area it encloses are not used. Hence we expect that
moderate occlusion will not affect the classification.

“This would also be the case had we used the generalized Hausdorff distance or the normalized edit distance [28].
The violation of metric properties is also known to exist in the function underlying our human notion of similarity
between both semantic and perceptual stimuli [42].



IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 21, No. 12, December 1999 12

ﬁ‘— |
R E N T | A |22 T P = | § |~
DN ol L) T D =Y N
R N TR S
I Ry | oo | DI g = Y
1% Ry | oo | s

X

Figure 7: The classification tree (dendrogram) obtained for an image database consisting of 121 images. The finest
classification level is shown by putting each cluster of silhouettes is a box. For the large clusters representing our own
toy models (see text) the figure shows only 5 exemplars, but the other 10 are classified correctly as well. Note that
the lower levels of the tree correspond to meaningful hierarchies, where similar classes (like the two cars or the three
sets of mammals) are grouped together. The vertical axis is not in scale.

5 Flexible syntactic matching: details

In this section we give the details of the various procedures and steps involved in the curve matching
algorithm, outlined in Section 3.1. Contour representation is discussed in Section 5.1. The initial
pruning of candidate global alignments is discussed in Section 5.2, where we describe the procedure
INITIALIZE. The syntactic edit operations which are used by SYNTACTIC-STEP, and their respective
costs, are discussed in Section 5.3. The details of the dynamic programming procedure, which
SYNTACTIC-STEP uses to minimize the edit distance, are given in Section 5.4. In Section 5.5 we
define the potentials which are used to guide the search for best starting point and describe the
procedure PREDICT-COST. Finally, the procedure DISSIMILARITY is discussed in Section 5.6.

5.1 Preprocessing and contour representation

In the examples shown in this paper, objects appear on dark background, and segmentation is
successfully accomplished by a commercial k-means segmentation tool. A syntactic representation
of the occluding contour is then automatically extracted: it is a polygon whose vertices are either
points of extreme curvature, or points which are added to refine the polygonal approximation. Thus
the primitives of our syntactic representation are line segments, and the attributes are length and
absolute orientation. The number of segments depends on the chosen scale and the shape of the
contour, but typically it is around 50. Coarser scale descriptions may be obtained using merge



IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 21, No. 12, December 1999 13

operations.

Feature points (vertices) are initially identified at points of high curvature, according to the
following procedure: at every contour pixel p an angle p is computed between two vectors u and
v. The vector u is the vectorial sum of m vectors connecting p to its m neighboring pixels on
the left, and the vector v is similarly defined to the right. Points where p is locally minimal are
defined as feature points. The polygonal approximation (obtained by connecting these points by
straight lines) is compared with the original outline. If the distance between the contour points
to the polygonal segments is larger than a few pixels, more feature points are added to refine the
approximation.

5.2 Global alignment: pruning the starting points

The procedure INITIALIZE receives two cyclic sequences A and A’ of lengths N and N’ respectively,
as defined in Section 3.1. Initially there are N N’ possible starting points for the syntactic matching
procedure; recall that each starting point corresponds to the matching of one segment a; in A to
another segment a; in A’, thus defining the global 2D alignment between the two curves. However,
the number of successful starting points is much smaller than NN’, and they tend to correspond
to similar global 2D alignment transformations for two reasons: (i) Low cost transformations tend
to be similar since any pair of segments {a;, ag-}, which belongs to a good correspondence list, is
likely to be a good starting point for the syntactic algorithm. (ii) The overall number of good
starting points tends to be small since most of the pairs in A x A’ cannot be extended to a low cost
correspondence sequence; the reason is that it might be possible to find a random match of short
length, but it is very unlikely to successfully match long random sequences.

These observations are used by the procedure INITIALIZE to reduce significantly the number of
candidate starting points. The procedure uses as a parameter the number ¢ of edit operations which
are performed for every one of the NN’ possible starting points (in our experiments we use t=>5 or
10). The pruning proceeds using the relation between starting points and global 2D alignments, as
follows.

Every starting point {a;,a}} is associated with a global 2D alignment, and in particular with a
certain rotation angle that maps the direction of a; to that of az-. Let n be min(N, N'), and observe
the distribution of the n rotation angles which achieved the best n edit distances after ¢ steps. If
these angles are distributed sharply enough around some central value ¢, we conclude that c is a
good estimator for the global rotation. Then, we discard every starting point in A x A’ whose
associated rotation is too far from c¢. The remaining set of candidates is the set ¥ (see Figure 8).

Figure 8: An example of initial pruning. Two curves with n = min(N, N’) = 50 are matched syntactically using
t edit steps (see text for details). The 50 candidates which achieve best (minimal) edit cost are examined, to see
whether the distribution of their associated rotations shows central tendency. Here we sample the distribution after
1, 5 and 10 syntactic steps. In this example 5-10 steps are sufficient for a reliable estimation of the global rotation
angle c. We proceed by eliminating the candidates whose associated global rotation is too far from c.



IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 21, No. 12, December 1999 14

For each candidate that remains in ¥ the procedure INITIALIZE computes its future potential,
as discussed in Section 5.5, and sorts the list ¥ by increasing potential values. The minimal edit
distance (cost) that has been achieved during the first ¢ steps is returned as cost*, and the candidate
possessing this cost is returned as {i*, j*}.

5.3 Syntactic operations which determine the edit distance

The goal of classical string edit algorithms is to find a sequence of elementary edit operations, which
transform one string into another at a minimal cost. The elementary operations are substitution,
deletion and insertion of string symbols. Converting the algorithm to the domain of vision, symbol
substitution is interpreted as matching two shape primitives, and the substitution cost is replaced
by the dissimilarity between the matched primitives. The dissimilarity measure is discussed in
Section 5.3.1. Novel operations involving gap insertion and the merging of primitives are discussed
in Sections 5.3.2 and 5.3.3.

5.3.1 Similarity between primitives

We define now the similarity between line segments aj, and aj. The cost of a substitution operation
is this value with a minus sign, hence the more similar the segments are, the lower their substitution
cost is. We denote the attributes of ay, a] - orientation and length - by (8, £) and (#', £') respectively.
The ratio between the length attributes is denoted relative scale ¢ = £/¢'.

The term “reference segments” refers to the starting point segments, which implicitly determine
the global rotation and scale that aligns the two curves (as discussed above). The reference segments
are specified by the argument {,;} in the call to the procedure SYNTACTIC-STEP, and are denoted
here ag,a. The segment similarity also depends on the corresponding attributes - orientation,
length and relative scale - of the reference segments: (6o, %), (65,4,) and co = £o /4

We first define the component of similarity which is determined by the length (or relative scale)
attribute of two matching segments. We map the two matched pairs of length values {/,#'} and
{£o, £y} to two corresponding directions in the (£,¢')-plane, and measure the angle between these
two directions. The cosine of twice this angle is the length-dependent component of our measure of
segment similarity (Figure 9). This measure is numerically stable. It is not sensitive to small scale
changes, nor does it diverge when ¢y = £y/¥j is small. It is measured in intrinsic units between —1
and 1. The measure is symmetric, so that the labeling of the contours as “first” and “second” has
no effect.

curve 2

lo
.

curve 1
| lo

Figure 9: Length similarity is measured by comparing the corresponding reference length values [£o, £5] with the
corresponding length values of the current segment [¢,¢']. Each length pair is mapped to a direction in the plane,
and similarity is defined as cos(2d). This value is bounded between -1 and 1.



IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 21, No. 12, December 1999 15

Let ¢ be the angle between the vectors [£,£'] and [£y, £;]. Our scale similarity measure is:

decg + (2 —1)(c3 — 1)
(2+1)(c2+1)

S¢ thus depends explicitly on the scale values ¢ and ¢ rather than on their ratio, hence it cannot be
computed from the invariant attributes ¢/¢y and ¢'/£j. The irrelevance of labeling can be readily
verified, since Sy(c,co) = Se(c™!, ¢y t).

We next define the orientation similarity Sy between two line segments whose attributes are § and
0' respectively. The relative orientation between them is measured in the trigonometric direction
(denoted 6 — 6') and compared with the reference rotation (6 — 6;):

Sp(0,6'|60,0)) = cos[(8 — ') — (6o — 67)] (2)

Se(£, 2|6y, £) = cos 26 = (1)

As with the scale similarity measure, the use of the cosine introduces non-linearity; we are not
interested in fine similarity measurement when the two segments are close to being parallel or
anti parallel. Our matching algorithm is designed to be flexible, in order to match curves that
are only weakly similar; hence we want to encourage segment matching even if there is a small
discrepancy between their orientations. Similarly, the degree of dissimilarity between two nearly
opposite directions should not depend too much on the exact angle between them. On the other
hand, the point of transition from acute to obtuse angle between the two orientations seems to have
a significant effect on the degree of similarity, and therefore the derivative of Sy is maximal when
the line segments are perpendicular.
Finally, the combined similarity measure is defined as the weighted sum:

S=wS;+ 5y (3)

The positive weight w; (which equals 1 in all our experiments) controls the coupling of scale and
orientation similarity.

5.3.2 Gap opening

In string matching, the null symbol A serves to define the deletion and insertion operations using
a — X and A — a respectively, where a denotes a symbol. In our case, a denotes a line segment
and A is interpreted as a “gap element”. Thus ¢ — X\ means that the second curve is interrupted
and a gap element )\ is inserted into it, to be matched with a. We define, customarily, the same
cost for both operations, making the insertion of a into one sequence equivalent to its deletion from
the other.

The cost of interrupting a contour and inserting £ connected gap elements into it (that are
matched with & consecutive segments on the other curve) is defined as w3 — ws - €, where wy, w3 are
positive parameters. Thus we assign a penalty of magnitude w3 for each single interruption, which
is discounted by ws for every individual element insertion or deletion. This predefined quantity
competes with the lowest cost (or best reward) that can be achieved by ¢ substitutions. A match
of ¢ segments whose cost is higher (less negative) than ws — wy - € is considered