
Stochastic Image Segmentation by Typical Cuts

Yoram Gdalyahu Daphna Weinshall Michael Werman

Institute of Computer Science, The Hebrew University, 91904 Jerusalem, Israel
e-mail:

�
yoram,daphna,werman � @cs.huji.ac.il

Abstract
We present a stochastic clustering algorithm which uses

pairwise similarity of elements, based on a new graph the-
oretical algorithm for the sampling of cuts in graphs. The
stochastic nature of our method makes it robust against noise,
including accidental edges and small spurious clusters. We
demonstrate the robustness and superiority of our method for
image segmentation on a few synthetic examples where other
recently proposed methods (such as normalized-cut) fail. In
addition, the complexity of our method is lower. We describe
experiments with real images showing good segmentation re-
sults.

1 Introduction
There are many situations where one has pairwise similarity

measurements between a set of elements and one wants to par-
tition the set into meaningful parts (clusters). Image segmenta-
tion and partitioning an image data base into different types of
pictures are two examples, where the source of pairwise sim-
ilarity measurements might be local brightness similarity or
color histogram similarity; in both problems clustering of the
data is sought. This paper presents a new general approach to
clustering which is robust, hierarchical, computationally effi-
cient, and produces nice results.

Clustering algorithms can be divided into two categories:
those that require a vectorial representation of the data, and
those which use only pairwise representation. In the former
case, every data item must be represented as a vector in a real
normed space, while in the second case only pairwise relations
of similarity or dissimilarity are used. The pairwise informa-
tion can be represented by a weighted (and perhaps incom-
plete) graph �������
	�� : the nodes � represent data items, and
the positive weight ���� of an edge ��������� represent the amount
of similarity or dissimilarity between items � and � . In the rest
of this paper ���� represents a similarity value.

In this paper we only discuss direct methods for pairwise
clustering, which do not involve the embedding of data items
in a vector space. One such strategy is to use a similarity
threshold � , remove edges with weight less than � , and identify
the connected components that remain as clusters. A trans-
formation of weights may precede the thresholding, to reflect
transitive similarity relations. One recent example is the phys-
ically motivated transformation proposed in [1], which uses a
granular magnet model and replaces weights by “spin correla-
tions”. Our algorithm is similar to this model.

A second pairwise clustering strategy is used by agglom-
erative algorithms [2], which start with the trivial partition of�

points into
�

clusters of size one, and continue by sub-
sequently merging pairs of clusters. At every step the two
clusters which are most similar are merged together, until the
similarity of the closest clusters is lower than some threshold.
Different similarity measures between clusters distinguish be-
tween different agglomerative algorithms. In particular, the
single linkage algorithm defines the similarity between clus-
ters as the maximal similarity between two of their members,
and the complete linkage algorithm uses the minimal value.

A third strategy of pairwise clustering uses the notion of
cuts in a graph. A cut �����
��� in a graph ��������	 � is a par-
tition of � into two disjoint sets � and � . The capacity of
the cut is the sum of weights of all edges that cross the cut,
namely: !"���#����� $&% �('*)�+ ��'", -� � . Among all the cuts that
separate two marked vertices, the minimal cut is the one which
has minimal capacity. The minimal cut clustering algorithm
[9] divides the graph into components using a cascade of min-
imal cuts.

In a related approach, the normalized cut algorithm [8] uses
the association of � (sum of weights incident on �) and the as-
sociation of � to normalize the capacity !"���#����� . In contrast
with the easy min-cut problem, the problem of finding a min-
imal normalized cut is NP-hard, but with certain approxima-
tions it reduces to a generalized eigenvalue problem [8]. This
brings us to the family of algorithms that use spectral methods
for clustering. One such approach uses the first eigenvector of
the similarity matrix [7] to separate figure from ground.

Other pairwise clustering methods exist [5]. However, the
three categories of methods above are of special importance to
us, since our current work provides a common framework for
all of them. Specifically, our new algorithm may be viewed
as a randomized version of an agglomerative clustering proce-
dure, and in the same time it generalizes the minimal cut al-
gorithm. It is also strongly related to the physically motivated
granular magnet model algorithm.

Our method is unique in its stochastic nature while provenly
maintaining low complexity. In addition, our method provides
a “natural” hierarchy of representations which is automatically
determined. At a single hierarchical level our method performs
as well as the aforementioned methods in “easy” cases, while
keeping the good performance in “difficult” cases. In particu-
lar, it is more robust against noise and pathological configura-
tions:

Proceedings of IEEE Conference on Computer Vision & Pattern Recognition, June, 1999 2

(i) A minimal cut algorithm is intuitively reasonable since
it optimizes so that as much of the similarity weight remains
within the parts of the clusters, and as little as possible is
“wasted” between the clusters. However, it tends to fail when
there is no clean separation into 2 parts, or when there are
many small spurious parts due, e.g., to noise. Our stochastic
approach avoids these problems and behaves more robustly.

(ii) The single linkage algorithm deals well with chained
data, where items in a cluster are connected by transitive re-
lations. Unfortunately the deterministic construction of chains
can be harmful in the presence of noise, where a few points can
make a “bridge” between two large clusters and merge them
together. Our algorithm inherits the ability to cluster chained
data; at the same time it is robust against such noisy bridges
as long as the probability to select all the edges in the bridge
remains small.

2 Stochastic pairwise clustering
Our randomized clustering algorithm (a preliminary ver-

sion of which is described in [3]) is constructed of two main
steps:

1. Stochastic partitioning of the similarity graph into � parts
(by randomized agglomeration). For each partition index
� (� $ � ����� �):

(a) We sample a probability distribution defined over
cuts in the similarity graph (Section 2.1.1);

(b) Using this sample and for every pair of nodes, we
compute the marginal probability that they remain
in the same cluster in a random cut, and replace the
weight of the edge between the two nodes by this
probability (Section 2.1.2);

(c) We form clusters (by “typical cut”) using connected
components and threshold of � ��� (Section 2.1.3).

2. Selection of proper � values, which reflect “interesting”
structure in our problem (Section 2.2.

2.1 Stochastic partitioning
2.1.1 Efficient sampling of cuts in graphs

On the way to bi-partite cuts we consider multi-way cuts. An
r-way cut is a partition of � into � components. The capacity
of an � -way cut is the sum of weights of all edges that connect
different components. In the rest of this paper we may refer to
� -way cuts simply as “cuts”.

For each � we induce a probability distribution on the set
of all � -way cuts by assigning to each cut a probability, which
decreases monotonically with its capacity. Hence, for exam-
ple, the minimal cut is the most probable bi-partite cut in the
graph, but other bi-partite cuts are also possible. The proba-
bility distribution over cuts is imposed by stochastic agglom-
eration. While a deterministic procedure, like single linkage,
determines a single cut for each � , the stochastic procedure
generates every � -way cut with probability that depends on its
capacity.

More specifically, we use the contraction algorithm de-
scribed in [6] which can be interpreted as stochastic version

of the single linkage method. It starts with an
�

-way cut, cor-
responding to

�
clusters of size one, and continues by sub-

sequently merging pairs of clusters. Thus at step
�	� � , the

contraction algorithm generates a sample � -way cut.
At each step the contraction algorithm selects two clusters

and merges them. The probability to select a pair of clusters is
proportional to the sum of weights of all edges that connect the
two clusters. It was shown in [6] that this mechanism induces
a probability distribution over cuts, which decays rapidly with
the cut capacity. Farther details can be found in the appendix.

The term “graph contraction” refers to a single path from�
-way cut to 2-way cut. A single graph contraction generates

for every � (� = � ...1) a single sample of an � -way cut in the
following way:
 select edge �(� ��� � with probability proportional to ��� .
 replace nodes � and � by a single node �*� �� .
 let the set of edges incident on �"� �� be the union of the sets

of edges incident on � and � , but remove self loops formed
by edges originally connecting � to � .
 repeat until 2 nodes remain.

It is shown in [6] that for general graphs a single graph con-
traction can be implemented in � � ��� � time. In the appendix
we develop a contraction scheme which lets us perform graph
contraction on sparse graphs in ��� ������� � � time.

2.1.2 Transformation of weights

Using the probability distribution induced on � -way cuts, we
compute the marginal probability ������ that the edge between
elements � and � does not cross a random � -way cut (or in
other words, that elements � and � are in the same cluster of
a random � -way cut). For every integer � between 1 and

�
we obtain a new graph by performing the following weight
transformation: �������� ���� .

We can estimate ������ by repeating the graph contraction �
times and averaging these binary indicators (a better way is
described below). Using the Chernoff inequality it can be
shown1 that if � � �! ��" $#&% �'" �	� ��")(�+*�, � then each
�-���� is estimated, with probability larger than

�.�/(
, within

, from its true value. Since a single graph contraction is of
complexity ��� �0� � for complete graphs and � � �&����� � � for
sparse graphs, it turns out that the complexity of estimating the
marginal probabilities is ��� �1���'�2� � � in the complete case,
and ��� �&����� � � � in the (more relevant) sparse case. Since in
practice we only need to know whether ������ is larger or smaller
than 0.5, a more space-efficient method is described below.

2.1.3 Cluster formation

For every integer � between 1 and
�

we define the typical
cut ���43*��� � � ����� ���$5
� as the partition of � into 6 components,
such that for every �87 �:9 , �;7 ��< (=?>$A@ �B=-�C@ $ � ����� 6)
we have ������ED � ��� . To find the typical cut for every integer �
between 1 and

�
we first remove all the edges whose trans-

formed weight ������ is smaller than � ��� . We then compute the
connected components in the remaining graph.

1Thanks to Ido Bregman for pointing this out.

Proceedings of IEEE Conference on Computer Vision & Pattern Recognition, June, 1999 3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 200 400 600 800 1000

(a) (b) (c)

Figure 1. Clustering of points in the Euclidean plane. (a) The 2000 data points; the coordinates of the points are not available for the
clustering algorithm, which uses only the matrix of pairwise distances. (b) The graph of ��������� , computed for every integer � between 1
and 	 . Two peaks are clearly observed at � =320 and � =353. (c) The typical cut at � =354. The three large components are indicated by
different symbols (crosses, triangles and squares) and the isolated background points are marked by small dots. At � =353 (not shown) the
two spirals marked by crosses and triangles merge and form one cluster. At � =320 (also not shown) the three spirals form one cluster, and
the background points remain isolated.

In order to compute a partition at every � level, we notice
that ���� � is monotonic in � by construction. Thus it is sufficient
to know for every � - � pair which � satisfies ������ $&� ��� (denoted
� � �); we then remove the edge between elements � and � for
every � D � ��� .� � � is found by repeating the contraction algorithm �
times. In each iteration there exists a single � at which the
edge between elements � and � is marked and the points are
merged. Denote by ��
 the level � which joins � and � in the� - �� iteration (� $ � ����� �). The median ��� of the sequence
� � 3 � � � ����� ���1� is the sample estimate for the level � ��� that sat-
isfies ���� � $ � ��� . We use an on-line technique (not described
here) to estimate the median ��� using small constant memory.

2.2 Hierarchical clustering
The stochastic partitioning of the similarity graph, de-

scribed above, gives a cascade of nested partitions parame-
terized by an integer � between 1 and

�
. The question that

remains is to define and choose “good” values of � , for which
a “meaningful” clustering is obtained as part of a hierarchy of
a few selected partitions.

We define the following function of the partition at each � :
� � �"� $ � � � � � �

�
��� �
� � � �

where
� ��� � � denote the number of elements in clusters � ���

respectively.
� � �"� , therefore, measures how many edges cross

over between different clusters in the � -partition, relative to the
total number of edges in the complete graph.

Partitions which correspond to subsequent � values are typ-
ically similar to each other, or even identical, in the sense that
only a few nodes (if any) change the component to which they
belong. Consequently,

� � �"� typically shows a very moder-
ate increase. However, abrupt changes in

� � �"� occur between
different hierarchical levels of clustering, when two or more

clusters are merged.
We propose to look at changes in the value of

� � �"� between
subsequent � values. For every integer � , the graph of � � � �"�
shows the (normalized) number of edges that are added to the
typical cut in the transition from � -1 to � . Our heuristic scheme
targets large peaks in this graph to identify “good” values of �
where “meaningful” changes in the data organization occur.

Thus after computing the stochastic partitions at each � , we
compute � � � �"� and identify peaks in this function (which are
typically few and rather obvious). Sometimes, especially when
the dataset is small, the � values which correspond to large sig-
nificant changes in

� � �"� cannot be reliably distinguished from
random fluctuations. In such cases we may use a variation on
cross-validation, to rule out arbitrary peaks which do not cor-
respond to anything real in the data. The validation scheme
will be described in a forthcoming paper.

3 Examples
We start with an illustrative synthetic point set example in� �
. The information which is made available to the cluster-

ing algorithm includes only the matrix of pairwise Euclidean
distances � ��� between points. The weights ��� , which re-
flect similarities between points, decay with increasing dis-
tances. We use the same functional form as in [1, 7, 8], namely
 ��� $������ � � � ���� *! � � , where is the average distance to the" -th nearest neighbor (we used " =10, but the results are not
sensitive to this choice).

Figure 1(a) shows 2000 data points in
�;�

. The number of
edges in the complete similarity graph is therefore 4 million.
Although this number is still manageable, we observe that the
vast majority of the edges have negligible weight. Note that the
numerical range of ��� is [0,1]. By eliminating all the edges
whose weight is smaller then 0.01, we are left with a sparse
graph containing only about 46000 edges, and the sparse im-
plementation described in the appendix can be applied.

Proceedings of IEEE Conference on Computer Vision & Pattern Recognition, June, 1999 4

(a) (b) (c)

Figure 2. The performance of other algorithms applied on the data of Figure 1. The same exponential transformation from distances
to weights was used (see text). (a) The best normalized cut [8] partition. (b) The result obtained by the factorization method [7]. (c)
Deterministic single linkage. Unlike our randomized algorithm, the deterministic single linkage algorithm is sensitive to “bridges” that
connect large clusters. Here, the procedure is halted manually when 3 large clusters exists, and just before two of them merge together.
The desired structure is already irrevocably missing.

Good results can be obtained by using as few as 200 itera-
tions of graph contraction. Here, in order to reduce statistical
noise even more, we use 1000 iterations (0.57 sec per itera-
tion on Pentium II 450 MHz). The resulting impulse graph of
� � � �"� (see Section 2.2) is shown in Figure 1(b).

The two obvious peaks at � =320 and � =353 mark the mean-
ingful hierarchical levels in the data organization. At � =354
the typical cut splits the data into three large clusters (the 3
spirals) and many isolated points (the background). This is
shown in Figure 1(c). At � =353 two spirals merge together,
hence there is a large change in the number of edges that cross
the typical cut, and a large peak in � � � �"� appears. At � =320
the three spirals form one cluster (separated from the back-
ground points), as is identified by the first peak in � � �!�"� . See
Figure 2 for comparisons with other methods, all of which fail
here; our algorithm clearly produces better results.

Our Second and third examples deal with the segmentation
of brightness images. Each pixel of the image is a data item,
and the similarity ��� between pixels depends on proximity
and intensity values. Again, we use the same functional form
as in [7, 8], namely ���� $�������� � � �� � * � � � ��� � � � � ������ *�� � � .
The first factor measures similarity by proximity and the sec-
ond factor measures similarity by intensity, where � � ��� is the
intensity difference between pixel � and pixel � . As in [7, 8],
the parameters and � are determined manually. To reduce
the number of edges and get a sparse graph, we eliminate
edges whose weight is below some threshold and consider
short range neighborhoods (see figure captions for details).

Figure 3(a) shows a gray level image of a baseball game.
We use the same image used by Shi and Malik [8] to be able
to compare the two methods. Figure 3(b) shows the graph of
� � � �"� that we obtain for this image. It is clear that there are
only a few candidate solutions to consider. The peaks in this
graph mark the detection of large objects in the scene. The
corresponding segmentation levels are shown in Figures 3(c-
f).

After forming the typical cut, some pixels (usually on ob-
ject boundaries) are left isolated or form tiny clusters (say, of

size D�� � , which is less than one thousandth of the number
of pixels in the image). It is a matter of choice whether these
pixels should be assigned to one of the larger clusters or left
“unlabeled”. We prefer the first alternative, hence we merge
each tiny cluster with its nearest large cluster according to the
transformed weights, � ���� .

It appears that the results shown in Figure 3 are better that
those reported in [8]2. In particular, our algorithm segments
fine details (like the palms of the hands of the lower player)
while keeping the whole background as one part for a very
long time; likewise, we have a level in which the circle-like ob-
ject in the upper left corner is separated from the background.

Our next example follows the recent work of Perona and
Freeman [7], who considered segmentation of “structured”
foreground from “unstructured” background. Figure 4(a)
shows a synthetic image that is generated according to the pa-
rameters reported in [7]. The significant difference between
this example and the previous one is that here the background
pixels are not similar to each other in terms of brightness level,
and hence according to standard clustering criteria they cannot
form a single group.

As shown in [7], the normalized cut algorithm [8] breaks
down under these circumstances, since it is based on bi-
partitions. On the other hand, our algorithm is based of multi-
way cuts and has no difficulty dealing with such cases. The
background pixels in this case form isolated or tiny clusters,
which can be ignored, and the foreground pixels form large
and significant clusters.

In Figure 4(b) we show the impulse graph � � � �"� obtained
for this example. The largest peak at � =654 signals that the
typical cut computed at this � -level undergoes a significant
change: at � =655 the pixels of each rectangle are grouped to-
gether, and the background pixels form tiny groups which are

2In addition to the fact that our method appears to work when the Ncut
algorithm fails (Figure 2), the complexityof our algorithm appears to be lower:
while our running time is �	��
��������
�� , the complexity of Ncut is �	����
�� ,
where � is the maximal number of matrix-vector multiplications allowed in
the Lanczos procedure. The number � depends on many factors, and Shi and
Malik observed that it is typically less then �	���
�� .

Proceedings of IEEE Conference on Computer Vision & Pattern Recognition, June, 1999 5

0

0.02

0.04

0.06

0.08

0.1

0 2000 4000 6000 8000 10000

(a) (b) (c)

(d) (e) (f)

Figure 3. Brightness image segmentation. (a) The original image of size 147 X 221. (b) The graph of ��������� . (c)-(f) The segmentation
results which correspond to the four largest peaks of � ������� at � =3968, 5216, 5998 and 8174. At low � values, most of the image pixels
form one giant cluster (and points on object boundaries are left isolated). The large peak at � =3968 marks the splitting of one player body
from this cluster, as shown in (c). The smaller peak at � =5216 marks the splitting of the player hand as is shown in (d). The segmentation
which corresponds to � =5998 is shown in (e), and perceptually it is the most desirable partition. The large peak at � =8174 is due to the
splitting of the background into two parts (f). Parameter setting: Intensity range is [0,1], � =8,

�
=0.1, edges whose weight ��� � is below

0.01 were eliminated, and only the four nearest neighbors plus four random neighbors were included for each pixel.

(a) (c) (e)

0

0.02

0.04

0.06

0.08

0.1

0 200 400 600 800 1000

(b) (d) (f)

Figure 4. Separation of homogeneous objects from noisy background. (a) Synthetic 30 X 42 image, generated with the same parameters
as in [7]: the brightness values are uniformly distributed between 0 and 1 for the background, between 0.2 and 0.21 for the larger rectangle,
and between 0.3 and 0.31 for the smaller one. (b) the graph of � ������� . The largest peak appears at � =654, the second largest appears at
� =146. (c,d) The segmentation results at � =654,655 that correspond to the largest peak of ��������� . Pixels in the Background form isolated
or tiny clusters. (e,f) The segmentation results at � =146,147. These results are brought to show what kind of structure is captured by the
bunch of peaks on the left of the graph in (b). Parameter setting: � =3,

�
=0.1 (like in [7]), only the 8 nearest neighbors of each pixel are

considered.

Proceedings of IEEE Conference on Computer Vision & Pattern Recognition, June, 1999 6

ignored; at � =654 the two rectangles combine into one cluster.
This transition is shown in Figures 4(c-d). As we go down to
low � values, the clusters in the background grow and merge
with the foreground set, as indicated by the bunch of peaks on
the left of the graph. The highest one among them is at � =146,
which corresponds to the transition from (e) to (f) in Figure 4.
We expect that these peaks would be ruled out by a cross vali-
dation technique that we have recently developed.

Our results seem better than those reported by in [7]. In
addition, our algorithm works in cases where the factorization
method fails, as is demonstrated in Figure 2. Another example
in which our method works and the factorization method fails
includes two concentric rings of points in the plane. In general,
the factorization method is not suitable for chained data, since
it looks for block structure in the similarity matrix.

Appendix: algorithms and complexity of cut
sampling

Since the number of cuts in a graph is exponentially large,
one must ask whether the probability distribution over cuts is
computable. Here the decaying rate of the cut probability plays
an essential role. The induced probability is found to decay
fast enough with the capacity, hence the distribution of cuts is
dominated by the low capacity cuts. There exists a polyno-
mial bound on the number of low capacity cuts in any graph
[6], hence the problem becomes computable since a sample of
polynomial size is sufficient to estimate the ������ ’s.

The sampling tool that we use is the “contraction algo-
rithm” [6] whose basic idea is outlined in Section 2.1.1. Its dis-
covery led to an efficient probabilistic algorithm which finds
the minimal cut, as the probability of the contraction algo-
rithm to return the minimal � -way cut of any graph is at least��� � � � � 3�� . Moreover, the probability of every cut to survive a
contraction from

�
to � nodes is equal to the probability of not

selecting an edge which cross this cut. Hence, the probability
to return any cut of the graph decays with increasing capacity.

The procedure which is outlined in Section 2.1.1 involves
the selection of an edge �(� ��� � with probability proportional to
 ��� . As shown in [6], this can be done in ��� � � time by a two
step procedure. One keeps for every node � its (generalized)
degree, i.e., the sum of weights of the edges incident on � , and
one chooses at the first step a node ��� out of

�
, with proba-

bility proportional to the node degree. At the second step the
second node � is chosen, with probability proportional to ��� � .
Hence every step is a selection of one item out of

�
, which

takes ��� � � time. Since a single graph contraction repeats the
edge selection

�
times, the resulting complexity is ��� � � � .

The similarity graphs which appear in clustering problems,
and in particular in image segmentation applications, are nat-
urally very sparse. For image segmentation, it is reasonable to
consider for each pixel only the neighboring pixels. We there-
fore develop a contraction scheme for sparse graphs that runs
in ���
	 �'�2� 	 � time. Here 	 is the number of edges, which is
��� � � in sparse graphs.

We construct a binary tree whose 	 leaves represent the
edges of the sparse graph. Each leaf contains the weight of the
corresponding edge, and each inner node contains the sum of

weights of its two sons. A selection of an edge is implemented
by propagation from the root to one of the leaves, where at
each inner node a probabilistic decision is made regarding the
next node (the probability to select a son is proportional to
its weight). Hence, the complexity of selecting an edge is
��� �'�2� 	 � , and since a single graph contraction involves

�
edge

selections, the total complexity of selections is ��� �&�'�2� 	 � .
The selected edge marks which two connected components

are merged together. We find all the edges that connect these
two components (see below), and starting from each leaf that
represents one of them we propagate toward the root, subtract-
ing the weight of the leaf from each node we path through.
Since eventually every edge is reached and eliminated, a single
graph contraction involves 	 such updates, each one of com-
plexity � � ����� 	 � . The total complexity of maintaining the data
structure is therefore ���
	 �'�2� 	 � , providing that we have an ef-
ficient way to find the edges which connect the two compo-
nents being merged together.

Finding the edges which connect two components in the
graph involves two stages. The first one is to identify the two
components which are merged together after an edge �(� ����� was
selected. This is done using the same technique used by the
Union-Find algorithm that partitions a set of items into equiv-
alence classes. It can be shown that the total complexity of
the 2

�
Find operations is ��� � =-� � � � , where =-� � � is the in-

verse Ackermann’s function, =-� � ��� % for all integers
�

one
is ever likely to encounter.

The second stage consists of finding the other edges which
connect the two identified components. One possible way is to
query all the edges which incident on the smaller component,
checking whether their other vertex is in the larger component.
For each vertex in the smaller component we may present this
query no more than � � ����� � � times, since this is the maximal
number of times that a vertex can be in the smaller one of two
merged components. The total complexity of querying during
one graph contraction is therefore bounded by � � �&����� � � .
We note that in our implementation we maintain a data struc-
ture which supports direct indexing for the connecting edges,
but its description is beyond our scope here.

[1] Blatt M., Wiseman S. and Domany E., “Data clustering using a model
granular magnet”, Neural Computation 9, 1805-1842, 1997.

[2] Duda O. and Hart E., “Pattern classification and scene analysis”, Wiley-
Interscience, New York, 1973.

[3] Gdalyahu Y., Weinshall D. and Werman M., “A Randomized Algorithm
for Pairwise Clustering”, Proc. NIPS, 1998.

[4] Hofmann T. and Buhmann J., “Pairwise data clustering by deterministic
annealing”, PAMI 19, 1-14, 1997.

[5] Jain A. and Dubes R., “Algorithms for clustering data”, Prentice Hall,
NJ, 1988.

[6] Karger D., “A new approach to the minimum cut problem”, Journal of
the ACM, 43(4) 1996.

[7] Perona P. and Freeman, W., “A factorization approach to grouping”,
Proc. ECCV, 1998.

[8] Shi J. and Malik J., “Normalized cuts and image segmentation”, Proc.
CVPR, 731-737, 1997.

[9] Wu Z. and Leahy R., “An optimal graph theoretic approach to data clus-
tering: theory and its application to image segmentation”, PAMI 15,
1101-1113, 1993.

