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Abstract

We investigated human category learning from plartia
information provided as equivalence constraintsrtiéipants
learned to classify stimuli on the basis of eithpasitive or
negative equivalence constraints, that is, wheorinéd that two
exemplars belong to the same category or to diffecategories,
respectively. Knowing that in natural contexts pusi
constraints are usually informative while negatteastraints are
rarely so, we suspected that participants woulduset the two
types of constraints in similar ways, even in éisgtin which the
amount of information in the two types of consttsiis identical
and sulfficient for perfect performance. We foundttim general,
people can use the two types of constraints fargeay learning.
Further analysis revealed that when participantee weovided
with highly informative positive constraints, cabeigation
performance of most participants was moderate avrthally
distributed. In contrast, there was a dichotomypafticipants
who were provided with highly informative negatigenstraints,
with some achieving even higher performances, wihik of
others was significantly poorer. These resultsetiogr with those
of a battery of controls, support the following ctusions: (i)
People use positive constraints more intuitiveljhaugh they
fail to use them perfectly. (i) The use of negatigonstraints
enables a less natural, but potentialy more ateura
categorization strategy, which many participantsleda to
implement even in the current simplified settingne$e results
are consistent with the view that people are nlyutasased
towards similarity-based categorization strate@geg. prototypes
or exemplars) rather than rule-based strategies.

Introduction

It is usually assumed that people categorize objeased on
their perceived similarities (Rosch & Mervis, 197%ersky,
1977; Medin & Schaffer, 1978; Nosofsky, 1988; Gobie
& Barsalou, 1998). Yet, since most objects have ynan
visually-perceived features (values on physical efigions:
e.g. red color, round shape, smooth texture), aiiyl
between objects is often difficult to define. Catgglearning
therefore often becomes learning which object festu
(Tversky, 1977) or dimensions (Nosofsky, 1987) arest
important for similarity judgments (Medin, Golds®n&
Gentner, 1993). In particular, different dimensianay be
relevant in different domains.

Common to all category learning tasks is that thidynately
provide the classifier with clues as to the relagidoetween
particular exemplars — that two exemplars are fthensame
or from different categories. These relations o@istthe
perception and/or use of similarities (or dissimiilas)

between exemplars within (or between) categories.céll a
restriction that two exemplars belong to the saategory, a
Positive Equivalence Constraint (PEC), and a r&tgtn that
two exemplars belong to different categories, a dtigg

Equivalence Constraint (NEC). These two

types of¥V

révekniversity, Jerusalem, 91904 Israel

constraints are the building blocks of any categaidn
learning scenario. In particular, labeling a seepémplars,
including more than one of each of a number ofgmies,
provides both positive and negative constraints. #s
example, when a parent labels three unfamiliar alsno a
young child as “a dog”, “a dog”, and “a cat”, hetuadly
provides the child with one PEC (indicating the tdags as
belong to the same category) and two NECs (indigatihat
each one of the two dogs is not from the same oafegs the
cat). Yet, the way people use these two types pétraints
has not been studied directly or differentially.

Recent observations demonstrated that ecologittedhe are
inherent differences in the properties of PECsMEBEs in a
multifarious world (Hertz et al, 2003). In most ol
scenarios NECs are abundant since it is highlyhyfikibat
randomly chosen pairs of objects belong to differen
categories. And yet, in most cases such pairs dsepr
objects that are highly different from one anotirerboth
informative and irrelevant dimensions. Thus, infative
NECs, (constraints that present two highly simdbjects as
belonging to two different categories) are rare.tfm other
hand, all PECs are informative in the sense they tmply
that features dimensions that differentiate betwdba
positively paired objects are irrelevant, while tt@mmon
features are candidates for being relevant for
categorization task at hand. In a study of the o$e
equivalence constraints in clustering and simyaegarning
algorithms, it was found that generally PECs previd
performance gains that are significantly bettemtiNECs
(Hertz et al, 2003). It was also found that incaogtimg PECs
into various clustering algorithms can be straigiwfard and
computationally feasible, while incorporating NEiEsather
complicated and computationally intensive.

the

For these reasons, we expected that people maydoe m
likely to adopt proper tools for the efficient igtation of
PECs but not NECs. Moreover, we hypothesized thist t
bias will remain evident even when the two types of
constraints are highly and equally informative. Foat it
essential to examine the existence of such a b st
might explain categorization errors as resultingnfrthe
inadequate use of all available information. Tot tdese
hypotheses, we designed an experiment in which améyor

the other type of constraint was presented in each
experimental condition. The amount of informatiooypded

by each type of equivalence constraint was alsapnéated.
First we investigated performance when the contidimg of
PECs and NECs to category learning simulated those
expected in natural settings, by using constraiefined for
randomly selected object pairs. We then tested performance
when PECs and NECs were deliberately selected highty

and equally informative. As a control, we testedfqgrenance
when participants were provided with no equivalence
constraints at all, or, at the other extreme, whesvided

ith “meta-knowledge” — i.e. “tips” on the bestat&gy for

the integration of constraints.
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Methods

Materials

3D computer-generated pictures of “alien creaturee$”
were used as stimuli, as demonstrated in FiguEeagh face
was characterized by a unique combination of 5 rgathy
task-relevant features: chin, nose and ear shapleskan and
eye color. All
dimensions were presented in each of the 10 expetah
trials. Two or three randomly selected dimensiarfstife 5
possible) were relevant for category definitioneach trial.
Stimuli were presented on a 22-inch, high-resotutio
computer screen, using specially designed software.

Participants

89 university students participated in the expentn&hey
were randomly assigned to the different experinenta
control conditions in a mixed experimental design.

s ssn

(32) combinations of these 5 binary

(standard). They were instructed that each trialthie
experiment was independent and would necessitataitg
a new way of discriminating between tribes. Pgptcits
were not informed that for each trial 2 or 3 diniens were
chosen as trial-relevant. In general, specificrirttons were
not given about the categorization strategy to bedufor
maximizing performance; rather, participants weipy
asked to perform the task intuitively, using thaled
provided.

Clues (constraints) were provided as colored fraaresnd
pairs of aliens, indicating that the members ofgghi belong
to different tribes (NEC condition) or the samd¢ri(PEC).
Figure 1 shows examples of constraints. On eagth, t8i
constraints appeared for 20 seconds together whth t
ensemble of alien faces. The constraints were teegmoved
and the alien faces shuffled. Participants wera tlieen 50
seconds to select (by drag-and-drop) those aliesshe or
she thought belonged to the chief’s tribe. Thd tkias then
terminated and the next experimental trial began.

Even without using the information presented in the

Figure 1: Example of the stimulus configuration ame specific trial. Participants decided which loé 82 test stimuli belong to 1
chief’s tribe. Clues (constraints) were presenteftamessurrounding pairs of exemplars. Positive and Negdiiquivalence Constrail
(PECs and NECSs) are illustrated respectively ad $iokes, marked P1-P3, and dashed lines, marketiBlINote that in the experime
the two types of constraints never appdaagether. Highly informative constraints, as destmted here, present pairs of images
differ in only one feature. In the current examplerticipants had to learn that skin color andskepe are relevant for categorizai
Specifically, NEC N2nforms participants that skin color is a relevdimbension because it is the only dimension disc@tng betwee
the two exemplars. Similarly, N1 and N3 both imfitat ear shape is relevant for categorization.F2land P3 inform participants t
eye color, nose shape and chin shapenatreelevant for categorization since these featuresidferent in pairs that belong to the s
tribe. In the highly informative constraint tasls, ia the current example, all the information neefte proper ategorization (for eith

NECs or PECs, separately) was provided (see

Procedure

Participants were told that during the experiméet/twould
have to learn which of the 32 “alien creaturesst(tgtimuli)
belonged to the same tribe as the one identifiettlaief”

Equivalence Constraints, subjects could perforntebeéhan
chance by simply using an associative categorigaiategy
that is based on some idiosyncratic similarity measWe
therefore added a control condition to establish a



R. Hammer et al. / XXVII Conference of Cognitivei&we Society (CogSci2005), July 2005

performance baseline, with a “no Equivalence Cairsts”

selected equivalence constraints (rPECs and rNESS).

(noEC) task. Twelve participants performed the samexpected from the theoretical difference betweeasédh

categorization task in a totally unsupervised manne.
without being provided with either NECs or PECs.

After performing the noEC condition,
participants performed the randomly-selected NEC RBC

tasks (rNEC and rPEC, in counter-balanced ordehe T

constraints were consistent with the assigned alieature
categories, but no attempt was made to selectahsti@ints

in a way that maximized the information providedr fo

optimal performance. Note that for the reasons mopat in
the Introduction, in the rPEC condition the infotina
provided by 3 randomly selected constraints alnabstys
sufficed for identifying the task-relevant dimensso This
was not the case for INECs, where the informatiavided
was almost as poor as in the noEC task.

constraints discussed above, the results cleartyodstrate
that randomly selected PECs are much more usefuthto
categorization task than randomly selected NECsthin

the same 12second — main — experimental condition, both typés

constraints were designed to be highly informa(nd@®EC
and hiNEC). The results for this condition also destrate
that people use PECs and NECs differently. We iresent
results from a third — control — experiment, whiekposes
additional differences between the hiPEC and hiNEC
conditions.

1. Category learning from random ECs

In these experiments, subjects were provided vetidomly
selected equivalence constraints (rPEC or rNEC)seen in
Figure 2, participants perform considerably betégren

60 other participants were assigned to the two maiRrovided with rPECs than with rNECs. A set of withi

experimental conditions: highly-informative Negativor
Positive Equivalence Constraints (hiNEC or hiPEC).
additional participants performed the two conditioas a
within-subject design (with counter-balanced ordef
performing the two conditions). The performanceqrat of
these ten participants were similar to those of @te
participants in the between-experiment design;etfoee, we

subject t-tests shows that in the rPEC conditianaherage
Z-score (0.52+0.12; meantS.D.) was higher than ha t
rNEC condition (0.38+0.10), t(11)=3.46, p<0.01.

Additionally, the mean Z-score in the noEC conditio
(0.36+0.06) was significantly lower than in the PE

1 q

do not address their data separately. Thus, them w0

participants, altogether, for each of these cood#i 0.9 Mean Z-scores (and Std-Errors)
Highly informative constraints were pairs of tesimaili 08

chosen so that the two images differed in only one 079

dimension. Thus, each constraint provided infororaton g 067

the relevance of one dimension for tribe classifocaon that g 0.5 - I

trial: For a hiNEC, this dimension is necessamdievant; for N g4 |

a hiPEC, this dimension is irrelevant. Still, th®BC group 03 4 E

could first derive the irrelevant dimensions anérttinfer '

that the rest of the dimensions were relevant. &irm 0.2 7

average, half of the dimensions were relevant aifiviere 0.1

not, the amount of information provided by NECs was 0

identical to that provided by PECs. For both groupseach noEC  NEC  PEC  hiNEC  hiPEC
trial, the constraints were sufficient to derivepkoitly all Condition

relevant dimensions needed for perfect categoadaati
no participant performed perfecthee(s

Nevertheless,
results). In order that the number of constraintd he
indicative of the number of relevant dimensions, always

provided 3 constraints, sometimes providing redahda

information.

Performance Measures
We first report overall performance in the categation task
using the Z-score, which is a combined purity andusacy
measure defined by:

2* Hits
2* Hits+ Misses+ FA

_ 2* Purity* Accuracy _
Purity+ Accuracy

Figure 2: mean %core and standard error in three experim
conditions —with participants given no equivalence constrg
random constraints, or highly informative consttain

condition, t(11)=4.28,p<0.005, but not the rNEC condition,
t(11) =1.08 p=n.s.

These results are consistent with the observatiated
above, that there are inherent differences in theumt of
information carried in a PEC vs. a NEC. In our pégen
three randomly selected PECs almost always provided
sufficient information to identify the relevant démsions for

where Hits is the number of correctly selected tribe the task, while three randomly selected NECs wérest

membersMisses is the number of tribe members which were
not selected, and-A (False-Alarms) is the number of

incorrectly selected, non-tribe, members. Z-scorasge
from 0 (poor) to 1 (perfect performance). We alempared
performance using the Signal Detection Theory messul’
and criterion (Green & Swets, 1966, 1974).

Results

We present the results of three experimental ciondit In
the first condition, subjects were provided witmadamly

never informative enough for fully achieving thiga This
may explain why mean performance using rNECs iy ver
similar to that in the noEC condition.

2. Category learning from highly informative ECs

How does performance change when participants are
provided with highly informative NECs (hiNEC) andE@s
(hiPEC)? Recall that in these conditions, we seltkdhe
constraining pairs of stimuli so that each pairviaed



R. Hammer et al. / XXVII Conference of Cognitivei&we Society (CogSci2005), July 2005

information aboutexactly one relevant dimension (hiNEC),

or one non-relevant dimension (hiPEC). We shall gare
performance in these conditions to that with rPENEC and
noEC, and then compare the results of the hiPEChaxieC
conditions with one another, in greater detail.

As can be seen in Figure 2, mean Z-scores in hethiNEC
(0.57+0.24) and hiPEC (0.55%0.16) conditions
significantly higher than with noE®50)=4.95p<0.001 and

variancesf(78)=17.31p<0.001). Furthermore, the Shapiro-
Wilk test of normality revealed that the Z-scorstdbution
was normal in the hiPEC conditioly(40)=0.955p=0.20,
but not in the hiNEC conditiow(40)=0.932p<0.05.

These findings suggest that even under highly métive
constraint conditions, in which the information yiced by

areNECs is identical to that provided by PECs, pgpticits use

these constraints differently. In the hiPEC comxdhifimost of

t(50)=6.45,p<0.001, respectively. As expected, the averagehe participants did not use all of the informatpovided by

Z-scores in these conditions are also significamigyer than
with NEC (hiNEC:t(50)=3.92,<0.001; hiPECt(50)=3.66,
p<0.005), but not significantly higher than with €E

hiNEC
14
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Figure 3: Observed Zeore histograms in the hiNEC (top)
hiPEC (bottom) conditions. Dashed lines represemtGaussial
defined by the Means and Standard Deviations.

At first glance, it may appear that when NECs asighed
to provide the same amount of information as PEBsy
both lead to similar performance. However, as shamwn
Figure 3, although there was no significant differe

the constraints, which was always sufficient tof@en the
task perfectly. For this reason, hiPEC performamaes
usually moderate, and it was normally distributdd.
contrast, in the hiNEC condition, performance wibee
poor or excellent. It seems that many participaidsnot use
hiNECs correctly, but those who did obtained alnpesfect
performance. This suggests that NECs are lesgiirglas a
source of information for category learning tasks.

To analyze further the differences between uséNiEG and
hiPEC, we compared participant d’ and criteriontlmese
conditions. We found no significant difference beénm the
average d’ in hiNEC (1.87+1.10) and hiPEC (1.6440.6
t(78)=1.157 p=n.s. However, the standard deviations of the
d’ in the two conditions did differ significantky(78)=19.41,
p<0.001. Additionally, the mean criterion used ie thiNEC
condition (1.65+0.49) was significantly higher thanthe
hiPEC condition (1.27+0.35)(78)=4.03,p<0.001, and their
standard deviations also differed significanfiy78)=10.91,
p<0.005.
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Figure 4: Participant performance in the hiPEC (gight
circles) and hiNEC (filled/dark squares) conditigpistted on
ROC (Receiver Operating Characteristic) diagram. Thehek
ellipses separate the good hiNEC perfers from the poor hiNE
performers.

As seen in Figure 4, this difference in criteri@ads to a
higher number of False-Alarms (FAs) with hiPEC theth
hiNEC. We found a highly significant negative cdatn
between Hits and FAs in the hiNEC conditio(40)=-0.59,
p<0.001, but not in the hiPEC conditiof@0)=0.16p=n.s.
The above-noted highly variable performances inhiiNEC
condition, together with the Hit/FA correlation,ggest that
this group of participants may in fact represent ghstinct

between theaverage performance in the hiNEC and hiPEC subgroups: one with high Hit and low FA rates (“dbin

conditions, there was a highly significant diffecerbetween
their standard deviations (Levene’s test of homedgrof

Figure 4) and the other (“poor”) with low Hit andgh FA
rates. This division was confirmed using the K-neean
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algorithm to cluster the hiNEC group into two sulgos

(based on their Z-scores), marked by dashed edlipse

Figure 4. There is no significant Hit-FA correlatifor either
subgroup, individually, further justifying the dsion into

separate subgroups. We denote the subgroups hiNEBE€-g

and hiNEC-poor, respectively.

Comparing these subgroups, we found that the mesgo&
in the hiNEC-good subgroup (0.78+0.10) was sigaifitty

higher than in all other experimental conditions.g(e
compared to hiPECt(58)=5.98, p<0.001). On the other

participants were informed that they should take account
the dimension discriminating between each two cairstd
exemplars because it is relevant for the categioizdask.

As seen in Figure 6, “meta-knowledge” was extremely
helpful in improving participant performance in thiNEC
condition but not the hiPEC condition. Performaitehe
directed hiNEC condition (0.90+0.06) was signifittgn
higher than in the original non-directed hiNEC cibiot
(0.57+0.24)(45)=7.45p<0.001. Performance in the directed
hiNEC condition was also higher than in the hiNESd

hand, the mean Z-score for the hIiNEC-poor subgrougubgroup alone (0.78+0.10). In contrast, performeancthe

(0.35+0.13) was not significantly different fromathwith

noEC, t(30)=0.60, p=n.s., or rNECt(30)=0.07,p=n.s. (see

Figure 5). In practice, participants in the hiNEGQBp

subgroup behave as if they were not provided witly a

equivalence constraints.

Mean Z-scores (and Std-Errors)

0.9 1
0.8 1
0.7 1
0.6 1
0.5 1
0.4 1
0.3 1
0.2 1
0.1 1

=

"

hiNEC-
good

hiPEC

rPEC hiNEC-
poor
Condition
Figure 5: mean Z-score and standard error in tiNEBigooc
and hiNECpoor conditions compared to the other experim
conditions.

noEC INEC

Taken together, these findings unravel some of lthsic
differences between the way that PECs and NECsiswé.
While hiPECs intuitively provide most people witkelpful
information for category learning, hiNECs providgtlé

information to some, and enough information for @dtn

perfect categorization performance to others.

3. Category learning from highly informative ECs
together with “Meta-Knowledge”

directed hiPEC condition (0.63+0.21) was not siigaifitly
higher than in the non-directed hiPEC conditiorb$30.16)
t(45)=1.20,p=n.s. These findings indicate that participants
provided with PECs naturally operate a categozati
strategy that leads to satisfactory performanceletputhat

Mean Z-scores (and Std-Errors)

Z-score

hiPEC

hiPEC hiNEC
Condition

Directed: hiNEC

Figure 6: mean %core and standard error of the dire
hiPEC and hiNEC conditions compared to the doretec
hiPEC and hiNEC conditions. As can be seen, doesthelpe
participants only in the hiNEC condition.

achievable when provided with best-strategy “tips”.

The moderate performance even in the directed hiPEC
condition may be explained by a possibly inherent
disadvantage of PECs, amplified in our experimental
paradigm: PECs, unlike NECs, directly specify aple@vant
dimension. Thus, participants can only learn iratigewhich
dimensions are task-relevant. Since participants @ot
aware of all thepotentially task-relevant dimensions, it is

If indeed most people can effectively use PECs in aVery likely that they will miss relevant dimensiomsen
intuitive manner, while using NECs requires specifi When correctly filtering out the irrelevant dimemiss by

expertise obtained by only some people, we mayctxpat
teaching participants how to use hiNECs will subggdly

increase their performance, while teaching them howse
hiPECs will not provide as much benefit. To chebist

hypothesis, we tested 7 additional participantsinfusa

within-participant design) with exactly the sam@®BC and
“Meta-

hiNEC conditions, augmented with additional

using an optimal strategy. Missing or disregarditing
relevance of a dimension would lead to more Fallsems,
and indeed, participants in the PEC condition hiaigher
False-Alarm rates, as shown in Figure 4

Discussion

Knowledge" - guide"nes regarding the best Stratagy The goal of the current Study was to inVeStigatehHaismS

integration of constraints. Specifically, beforefpeming the
hiPEC condition, participants were informed thatlshould

underlying categorization, by comparing performanden
using Positive Equivalence Constraints (PECs) \egaiive

exclude the dimension discriminating between eagh t Equivalence Constraints (NECs). Due to the inherent

constrained exemplars (and reserve judgment aheutst),

since this dimension is irrelevant for the categation task. | [ Y [
the samelntegration of informative PECs than NECs. In faae

Before performing the hiNEC condition,

differences between PECs and NECs, we expected that
people naturally develop more effective tools for éfficient

hypothesized that this bias may be also evidennwthe two
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types of constraints are highly and equally infotirea Our
findings confirm these hypotheses, indicating tmabst
people have an inherent or early-acquired mecharficsm
deriving useful information from PECs, but not frod&Cs.

What strategies are used with PECs?

We report the somewhat surprising result, thatqrerance
with PECs derives little benefit from the availatyibf meta-
knowledge about the optimal strategy to perform tdosk.
This may be explained by one of the following:
(i) participants are already using the optimaltegg, and so
the “tips” give them no additional information, )(ii
participants’ default strategy, although differetgads to
similar performance levels as the optimal strategyjiii) the
default strategy is so natural and intuitive, thatticipants
are reluctant to shift to a potentially better &tgy.

What is the default strategy that people use wWHCS? It

seems that PECs are naturally suited to an exeikdar
strategy, based on the storage of a large numbexashples,
or to a prototype-like strategy, based on the absbn of

typical elements in the class. In our setup, howeahere are
no explicit classes, and there is little meaninthtonotion of
class exemplars or prototypes. This does not ruletioe

possibility that people still use these kinds afatdgies,
trying to infer (or guess) class examples or clasgotypes
from the constraints provided.

Recall that the only information that participaogs reliably
derive from PECs is the identity of the dimensidinat are
relevant or irrelevant. Thus, another strategy rbay to
commence with a guess of the set of all potentialgvant

learn the optimal strategy with NECs, perhaps beeait
does not involve a set complement operation. Noa¢ the
performance of the subgroup of good-hiNEC participa
was about as good as that of those provided witka-me
knowledge, suggesting that this subgroup was ablese a
similar strategy even without instruction.

Our findings point out one way in which the humayghe
reflects statistical properties of objects and gaties in the
world — most people have early-adopted tools thatuaeful
for integrating PECs since PECs are less commoaliatys
informative. This innate strategy is good enouglthst even
when being explicitly provided with a better catggation
strategy for using PECs, performance is not sigaifily
improved. In the case of NECs, only some peoplestav
useful strategy for proper use of this source &drimation.
When provided with guidelines for the best catezgiion
strategy using hiNECs, performance significantlyprioved,
further indicating that there is no inherent stygtefor
optimally integrating NECs for categorization.

The implications of the current findings may be aial for
understanding known phenomena in category learrand,
they may provide an effective tool for predicting
performance in different category learning tasks @n
example, the tendency of children to over-genegalihen
classifying objects (Neisser, 1987) may be seenaas
consequence of using mostly PECs, which, as poioted
above, can lead to disregarding relevant dimens#m a
subsequent higher rate of False-Alarms. Only latdife, is
over-generalization reduced when more refinedeggiat are
acquired, such as the use of rare, but informahie_s.

dimensions (beginning perhaps with the most salient

dimensions, corresponding to features that are camto
the first pair of exemplars seen). Afterwards, onkes out
dimensions sequentially, as evidence is accumul#ted
some dimensions are irrelevant. Participants whe thss
strategy in the hiPEC condition may miss relevdesq
salient) dimensions, resulting in many False Alarms

A third alternative strategy is the one offeredptuticipants
in the directed hiPEC experimental condition asitaithl
"meta-knowledge". This strategy, if used correcizould
lead to perfect performance. Specifically, for eaelir in a
PEC, find the single dimension which differentiabetween
the two examples, and identify this dimension aslevant.
After all the irrelevant dimensions are identifiéidd the set
of relevant dimensions (by performing a set comgiem
operation). As in the preceding strategy, the ubdhis
strategy may result in elevated False-Alarms,
participants may have difficulty inferring the sef all
possible relevant dimensions. Similarly, in realddaases,
the full group of possible dimensions may not bevkn or
even inferable — in which case using the optimaltsgy for
PECs will not guarantee perfect performance.

PECs vs. NECs
When not provided with additional instructions, Hiig

informative NECs were effectively used by only some

participants, suggesting that this source of infaion
requires a less intuitive skill. Moreover, perfomoa with
NECs, in contrast to PECs, benefited significarftigm
meta-knowledge about the optimal categorizatioatsgy.
Two interpretations can explain this
(i) Participants were more open to advice on howse

NECs because they did not have a strong intuitilea iof

what to doa priori; (ii) it was easier for the participants to

since

difference:
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