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Abstract

Multi-task learning can be shown to improve
the generalization performance of single tasks
under certain conditions. Typically, the algo-
rithmic and theoretical analysis of multi-task
learning deals with a two-level structure, in-
cluding a group of tasks and a single task.
In many situations, however, it is benefi-
cial to consider varying degrees of relatedness
among tasks, assuming that some tasks are
closely related and should contribute more
to the learning process, while other tasks are
less related but can still contribute some in-
formation to the learning process. The exten-
sion of current approaches to the multi-level
setting may not be trivial.

We propose a general framework for a full hi-
erarchical multi-task setting. We define an
explicit notion of hierarchical tasks related-
ness, where at each level we assume that some
aspects of the learning problem are shared.
We suggest a cascade approach, where at
each level of the hierarchy a learner learns
jointly the uniquely shared aspects of the
tasks by finding a single shared hypothesis.
This shared hypothesis is used to bootstrap
the preceding level in the hierarchy, forming
a hypothesis search space. We analyze suf-
ficient conditions for our approach to reach
optimality, and provide generalization guar-
antees in an empirical risk minimization set-
ting.

1. Introduction

Multi-task learning is typically studied in a flat sce-
nario, where all related tasks are similarly treated.
Here we formulate a hierarchal multi-task learning set-
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ting which breaks this symmetry between the tasks,
analyzing the potential gain in jointly learning shared
aspects of the tasks at each level of the hierarchy. We
also analyze the sample complexity of the hierarchical
multi-task learning approach.

In general, multi-task learning seeks to improve the
generalization performance of a single task by exploit-
ing information from other related tasks. Various al-
gorithmic approaches have been proposed to exploit
information from related tasks, such as the sharing
of hidden nodes in neural networks (Caruana, 1997;
Baxter, 2000), multi-task regularization of model pa-
rameters in kernel methods (Evgeniou et al., 2006),
formulating task relationships based on a task covari-
ance matrix which is used to regularize the parameters
of a single task (Zhang and Yeung, 2010), and hierar-
chical Bayesian approaches for modeling the sharing
among tasks based on a common prior (Xue et al.,
2007; Daume III, 2009).

Theoretical studies in this field focus on the reduction
of the sample complexity of a single task given other re-
lated tasks. (Baxter, 2000) analyzed the potential gain
under the assumption that all tasks share a common
inductive bias, reflected by a common near-optimal hy-
pothesis class. (Ben-David and Borbely, 2008) formu-
lated a specific notion of task relatedness as a family of
transformations of the sample generating distributions
of the tasks.

The motivation behind mutli-task approaches is that
there exists some notion of sharing between a group
of tasks and a single task within this group. Almost
all of the present multi-task approaches consider shar-
ing among tasks organized in a two level hierarchy -
a group of tasks and a single task. In many scenar-
ios it is not clear how they might extend to handle a
richer hierarchal setting, where the amount of shared
information may vary. An exception is the hierarchical
Bayesian method (Berger, 1985), where sharing is done
based on a common prior which can be decomposed
hierarchically. This method is applied to multi-task
setting in methods such as those proposed by (Xue
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et al., 2007) and (Daume III, 2009).

In this work we consider a general hierarchical multi-
task paradigm extending the common two level ap-
proach. We build our notion of shared informa-
tion among tasks on the concept of task transforma-
tions, unlike the shared priors used in the hierarchical
Bayesian method. For this we adopt the task related-
ness framework of (Ben-David and Borbely, 2008) and
extend it to the hierarchical setting. Motivated by
the potential in hierarchically grouping tasks, where
levels representing a looser notion of task relatedness
correspond to many tasks and levels representing a
stricter notion correspond to fewer tasks, we propose
a cascade approach, where at each level of the cascade
the uniquely shared aspects are learnt jointly.

In our proposed learning cascade, at each step a single
hypothesis is jointly learned by considering the union
of all tasks, and then used to create the inductive bias
for the next level in the hierarchy. Joint learning ap-
proaches, where shared aspects of the learning problem
are learnt from all the tasks together, are widely used
in hierarchical learning settings such as the well known
CART algorithm of (Brieman et al., 1984) (see (Silla
and Freitas, 2010) for a recent review). The rest
of this paper is organized as follows. In Section 2 we
review the task relatedness framework of (Ben-David
and Borbely, 2008) and extend it to a hierarchy of
task relations. We present IMT-ERM (Iterative Multi
Task-ERM), which is a hierarchical generalization of
MT-ERM. We then describe and analyze a specific
learning approach based on a learning cascade, CMT-
ERM (Cascade Multi Task-ERM).

The optimality analysis of a single step in the cascade
is presented in Section 3. In Section 4 we extend
our analysis to the ERM setting, providing generaliza-
tion error guarantees for a single stage in the hierarchy
(Theorem 2). In Theorem 3 this analysis is extended
recursively to the whole hierarchy. In Section 5 we
present an experiment demonstrating the effectiveness
of our approach. All proofs are omitted for lack of
space.

2. Hierarchical Multi-Task Paradigm

We now define our hierarchical multi-task paradigm.
We start by reviewing the non-hierarchical multi-task
paradigm in Section 2.1. In Section 2.2 we extend
this paradigm to a hierarchical one. In Section 2.3 we
describe a cascade approach to the implementation of
this paradigm, and outline some important ways which
it differs from the basic approach.

2.1. Task Relatedness Background

We start by reviewing the multi-task learning scenario
and notion of relatedness presented in (Ben-David and
Borbely, 2008), following the same notations and stat-
ing the relevant definitions. In this approach to mul-
titask learning one wishes to learn a single task, and
the role of additional related tasks is only to aid the
learning of this task. Formally, the multi-task learning
scenario can be stated as follows: Given domain X , n
tasks 1, ..., n and unknown distributions P1,...Pn over
X × {0, 1}, a learner is presented with a sequence of
random samples S1,...Sn drawn from these Pi’s respec-
tively. The learner seeks a hypothesis h : X → {0, 1}
such that, for (x, b) drawn randomly from P1, h(x) = b
with high probability. We focus on the extent to which
the samples Si, for i 6= 1 can be utilized to help find a
good hypothesis for predicting the labels of task 1.

Task relatedness is defined based on a set F of trans-
formations f : X → X (following definitions 1 and
2 in (Ben-David and Borbely, 2008)). Tasks 1 and 2
are said to be F-related if P1(x, b) = P2(f(x), b) or
P2(x, b) = P1(f(x), b). Given a hypothesis space H
over domain X , we assume F acts as a group over H,
namely F is closed under function composition and
H is closed under transformations from F . Two hy-
pothesis h1, h2 ∈ H are said to be equivalent under F
iff there exists f ∈ F such that h2 = h1 ◦ f , and
hypothesis equivalence under F is denoted by ∼F .
[h]∼F = {h ◦ f : f ∈ F} denotes a set of hypothe-
ses which are equivalent up to transformations in F .
H/ ∼F denotes the family of all equivalence classes of
H under ∼F , namely, H/ ∼F= {[h]∼F : h ∈ H}.

The learning scenario assumes that the learner gets
samples {Si : i ≤ n}, where each Si is a set of sam-
ples drawn iid from Pi. The probability distributions
are assumed to be pairwise F-related. The learner
knows the set of indices of the distributions, {1, ..., n}
and the family of functions F , but does not know the
data-generating distribution nor which specific func-
tion f relates any given pair of distributions. In this
setting, (Ben-David and Borbely, 2008) proposed to
exploit the relatedness among tasks by first finding all
aspects of the tasks which are invariant under F , and
then focus on learning the specific F-sensitive elements
of the target task. The potential benefit lies both in
the reduction of the search space from the original H
to a smaller F-sensitive subspace [h]∼F , and from the
bigger sample size available to learn the F-invariant
aspects of the task. However, the second potential
benefit is not guaranteed and depends on the complex-
ity of finding a single [h]∼F in H/ ∼F . The complexity
of finding [h]∼F is formalized using the notion of gen-
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eralized VC-dimension from (Baxter, 2000).

2.2. Hierarchical Task Relatedness

Next we extend the multi-task learning setting to a hi-
erarchical multi-task learning setting. In the hierarchi-
cal setting our objective is the same as in the original
one - the learning of a single task by exploiting addi-
tional related tasks. Our approach extends the origi-
nal one by assuming that the group of tasks {1, ..., n},
and the corresponding family of transformation func-
tions F , can be decomposed hierarchically. We denote
by l a single level in the hierarchy, 0 ≤ l ≤ L and
Tl ⊆ {1, ..., n} the group of related tasks in the l’s
level of the hierarchy. Fl ⊂ F denotes a family of
transformations for which all task in Tl are pairwise
Fl-related.

We assume that the set of transformations for each
level 0 ≤ l ≤ L− 1 can be written as a concatenation
of the set of domain transformations corresponding to
the preceding level, Fl+1, and a set of domain transfor-
mations Gl+1, hence Fl = {g ◦ f : g ∈ Gl+1, f ∈ Fl+1}.
We call the set of transformations Gl the set of shared
transformations among tasks in Tl.

Definition 1 We say that {Tl,Fl,Gl}Ll=0 is a hi-
erarchical decomposition of a set of F-related tasks
{1, ..., n} iff:

1. T0 = {1, .., n}
2. TL = {1}, hence TL represents the target task.
3. FL = {f}, where f is the identity transformation,

hence f(x) = x.
4. for all 0 ≤ l ≤ L− 1:

(a) Tl+1 ⊂ Tl
(b) ∀i, j ∈ Tl, there exists f ∈ Fl such that

Pi(x, b) = Pj(f(x), b)

(c) Tl+1 shares the set of transformations Gl+1

(d) Fl = {g ◦ f : g ∈ Gl+1, f ∈ Fl+1}.

5. Fl and Gl act as a group over H, for all 0 ≤ l ≤ L.

See Fig. 1 for an illustration of the hierarchical decom-
position.

Figure 1. An illustration of the hierarchical decomposi-
tion {Tl,Fl,Gl}Ll=0. We assume an indexed set of tasks,
{1,..,n0}, where 1 is the objective task. The size of
each group of tasks decreases as the level increases, thus:
n0 > nl−1 > nl > 1. An arrow denotes inclusion relations,
TL ⊂ Tl ⊂ Tl−1 ⊂ T0 and FL ⊂ Fl ⊂ Fl−1 ⊂ F0.

From the definition of the hierarchical decomposition
(Step 4d) we see that the set of transformations for
level l can be obtained by concatenating the set of
shared transformations of levels l+1 till L. This point
will be crucial in understanding the benefit of the cas-
cade hierarchical approach.

Lemma 1 Fl+1 ⊂ Fl, for all 0 ≤ l ≤ L− 1.

Lemma 2 Given h ∈ H, [h]∼Fl+1
⊂ [h]∼Fl

, for all

0 ≤ l ≤ L− 1.

2.3. Hierarchical Learning Paradigm - the
Cascade Approach

In this section we present and motivate our cascade ap-
proach for hierarchical multi-task learning. We start
by presenting the IMT-ERM (Iterative MT-ERM)
which generalizes the MT-ERM (Multi-Task Empirical
Risk Minimization) learning paradigm defined in (Ben-
David and Borbely, 2008) to the hierarchical setting.
This formalism serves as a basis for our discussion, mo-
tivating our proposed cascade. The cascade method is
a more constructive approach for which we can pro-
vide precise generalization guarantees; this comes at
the cost of restricting the learning scope.

We follow standard notations and denote the empirical
error of a hypothesis given sample S as:

ÊrS(h) =
|{(x, b) ∈ S : h(x) 6= b}|

|S|
.

The true error of a hypothesis is:

ErP (h) = P ({(x, b) ∈ X × {0, 1} : h(x) 6= b}).

We define the error of any hypothesis space H as:

ErP (H) = inf
h∈H

Erp(h).

For notation convenience we shall denote the i’th task
in Tl by li.

2.3.1. Iterative MT-ERM

Definition 2 Given H, n tasks hierarchically decom-
posed by {Tl,Fl,Gl}Ll=0 and their sequence of labeled
sample sets S1, .., Sn, the IMT-ERM paradigm works
as follows:

1. H0 = H.

2. for l = 0..L

(a) Pick h =

arg minh∈Hl infhl1
,...,hl|Tl|

∈[h]∼Fl

∑|Tl|
i=1Êr

Sli (hli)
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(b) Hl+1 = [h]∼Fl

3. output h� the single hypothesis in [h]∼FL
as the

learner’s hypothesis.

Note that the fact that h� is the single hypothesis in
[h]∼FL

follows directly from the definition of FL as
containing only the identity transformation.

Following the definition of hierarchical decomposition
one can readily see that for L = 1 the IMT-ERM is
exactly the MT-ERM.

The learning complexity of Step 2a, picking [h]∼Fl
∈

Hl/ ∼Fl
, is analyzed in (Ben-David and Borbely,

2008); it uses the notion of generalized VC-dimension
from (Baxter, 2000), denoted by dHl/∼Fl

(n), where n

refers to the number of tasks, |Tl| in our setting.

The generalized VC-dimension determines the
sample complexity; it has a lower bound of
sup{V Cdim([h]∼Fl

) : [h]∼Fl
∈ Hl/ ∼Fl

} and in

the general case an upper-bound of V Cdim(Hl).
This analysis captures the interrelation between the
set of transformations Fl and the hypothesis space
Hl. From Lemma 1 and Lemma 2 we know that
both sup{V Cdim([h]∼Fl

) : [h]∼Fl
∈ Hl/ ∼Fl

} and

V Cdim(Hl) monotonically decrease with l, which
determines the potential of the hierarchical approach.

The MT-ERM paradigm and its hierarchical exten-
sion IMT-ERM do not provide a constructive way of
performing Step 2a. In the following we shall consider
the conditions under which Step 2a can be replaced by
choosing a single hypothesis from the equivalence class
derived by the shared transformation at each level:
[h]∼Gl . This yields a constructive approach with an
explicit search complexity of V Cdim([h]∼Gl ), for each
level l in the hierarchy.

2.3.2. Cascade Approach

Following Definition 1, we see that each transforma-
tion f ∈ Fl can be expressed as a concatenation of
transformations from all of the shared transformation
families {Gi}Li=l+1. We propose a learning approach
where we exploit the fact that the transformations can
be decomposed into shared transformations and learn
together the shared transformations at each level of
the cascade. In order to perform this shared learning
we consider all tasks sharing a set of transformations
as a single unified task. For each such unified task rep-
resenting level l, we search for a single hypothesis in an
equivalence class [h]∼Gl where Gl is the shared family
of transformations and h is the hypothesis chosen in
the previous stage. The unified task is defined next.

For each level in the hierarchy 0 ≤ l ≤ L, we de-
fine the task representing the level as the union of
all tasks in Tl. As before we call the i’th task in Tl
li ∈ {1..n}. Let P1,...Pn be the probability distri-
butions over X × {0, 1} of tasks {1..n} respectively.
We shall now define the probability distribution over
X × {0, 1}, which describes the single task al repre-
senting the union of all tasks in Tl as the average of
the distribution of tasks in Tl. This is equivalent to
defining a joint probability space where each task is
given the same uniform prior. Hence:

Pal
(x, b) =

1

|Tl|

|Tl|∑
i=1

Pli(x, b) (1)

Lemma 3

ErPal (h) =
1

|Tl|

|Tl|∑
i=1

ErPli (h) (2)

This follows from the definition of Pal
and ErP .

We denote by Sal the union of all samples from all
tasks belonging to Tl, 0 ≤ l ≤ L. For a sufficiently
large iid sample, ÊrSal (h) converges to ErPal (h).

Next we define the CMT-ERM paradigm (Cascade
Multi-Task ERM). Here for each level 0 ≤ l ≤ L of
the hierarchy we search for an optimal hypothesis for
the unified task al. The algorithm iterates through two
steps. The first step in iteration l defines the search
space as the equivalence class [h]∼Gl of the best hy-
pothesis h from the previous iteration. In the second
step we search this equivalence class for a single best
hypothesis given task al.

Definition 3 Given H, n tasks hierarchically de-
composed by {Tl,Fl,Gl}Ll=0 and the sequence of la-
beled sample sets corresponding to each unified task
Sa0 , .., SaL , the CMT-ERM paradigm works as follows:

1. Pick h ∈ H that minimizes ÊrSa0 (h)

2. for l = 0..L

(a) Hl = [h]∼Gl

(b) Pick h ∈ Hl that minimizes ÊrSal (h)

3. output h� = h.

Note that unlike the IMT-ERM or MT-ERM
paradigms, the learning stage corresponding to the
shared transformations from all tasks in Step 2b is
a single well defined ERM problem. The parameter
governing the sample complexity of the shared learn-
ing (learning task al) can also be precisely defined -
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V Cdim([h]∼Gl ). The potential gain in such an ap-
proach lies in the increased number of samples avail-
able for the unified tasks and the decrease in search
complexity as compared to the original V Cdim(H).

In Step 1 we search over all H. This step corresponds
to task a0, which is the union over all tasks, for which
we assume a sufficient amount of samples is available.
Under certain conditions the search for an optimal hy-
pothesis in Step 1 can be avoided; for instance, we may
choose a hypothesis which has minimal false-negatives
irrespective of the number of false positives.

3. Cascade Optimality

In the cascade approach we compute the final hypoth-
esis in stages defined by the concatenation of transfor-
mations, solving at each step a simpler problem with
a larger sample. In this section we analyze the con-
ditions under which an optimal hypothesis of a sin-
gle task can be found by searching through a cascade
of shared transformations, where each transformation
fits a single level in the hierarchical decomposition de-
scribed above. We start by analyzing specific proper-
ties of the optimal transformations given our hierarchi-
cal decompositions in Section 3.1. In Sections 3.2 and
3.3 we present two properties of a cascade of shared
transformations, which are the basis of the assump-
tions under which the cascade approach can reach op-
timality. Finally, in Section 3.4 we state the assump-
tions and prove that the cascade approach can reach
optimality.

3.1. Hierarchical Task Relatedness Properties

We recall that from Lemma 2 in (Ben-David and Bor-
bely, 2008) we can deduce that for any task j ∈ Tl

ErPlj ([h]∼Fl
) = inf

h1,...h|Tl|∈[h]∼Fl

1

|Tl|

|Tl|∑
i=1

ErPli (hi) (3)

In the definition of the hierarchical decomposition
above (Definition 1), we assumed that tasks in Tl share
the set of transformations Gl. In the following we show
that any g ∈ Gl which is optimal for a single task j ∈ Tl
in the sense that it minimizes ErPlj ([h ◦ g]∼Fl

), is op-
timal for all other tasks in Tl.

Lemma 4 For each j ∈ Tl, g∗ =
arg ming∈Gl Er

Plj ([h ◦ g]∼Fl
) ⇔ ∀i ∈ Tl and ∀g ∈ Gl

ErPli ([h ◦ g∗]∼Fl
) ≤ ErPli ([h ◦ g]∼Fl

).

Lemma 5 If g′ = arg ming∈G Er
P ([h ◦ g]∼F )

and f ′ = arg minf∈F Er
P (h ◦ g′ ◦ f), then g′ =

arg ming∈G Er
P (h ◦ g ◦ f ′)

3.2. Transformation-Multiplicativity

Definition 4 Two transformations taken from two
families of transformations g ∈ G and f ∈ F are
multiplicative with respect to hypothesis h ∈ H iff
h ◦ g ◦ f(x) = h ◦ g(x) · h ◦ f(x).

It is easy to see that if g ∈ G and f ∈ F are multi-
plicative then {x|h ◦ g ◦ f(x) = 1} = {x|h ◦ g(x) =
1} ∩ {x|h ◦ f(x) = 1}. In other words, the support
of the concatenated transformation is contained in the
support of each of the transformations under hypoth-
esis h. The transformation-multiplicativity property
lets us write ErP (h ◦ g ◦ f) as ErP (h ◦ g) plus a resid-
ual term, describing the gain obtained by adding the
transformation from F . We shall denote the residual
term by Rgf , where

Rgf = (4)

P ({(x, b) ∈ X × {0, 1} : b = 1, h ◦ g(x) = 1, h ◦ f(x) = 0})
−P ({(x, b) ∈ X × {0, 1} : b = 0, h ◦ g(x) = 1, h ◦ f(x) = 0})

This term measures the volume of new errors intro-
duced when adding transformation f , while eliminat-
ing the volume of those errors of g which are corrected
for by f . Under the transformation-multiplicativity as-
sumption, adding a transformation f can change the
overall classification value only for points in the sup-
port of h◦g. In the following, for the general case (not
necessarily assuming transformation-multiplicativity)
we shall refer to this as the amount by which f ’cor-
rects’ the support of g.

Lemma 6 If transformations g ∈ G and f ∈ F are
multiplicative with respect to hypothesis h ∈ H then:

ErP (h ◦ g ◦ f) = ErP (h ◦ g) +Rgf (5)

Choosing a transformation f ∈ F which minimizes
ErP (h ◦ g ◦ f) implies that Rgf ≤ 0 as it can only
decrease the overall error. This is stated formally in
the following lemma.

Lemma 7 f= arg minf ′∈F Er
P (h◦g◦f ′)⇒ Rgf ≤ 0

Lemma 6 thus shows that under the transformation-
multiplicativity assumption, the error ErP (h ◦ g ◦ f)
can be decomposed into 2 terms: the error obtained
by choosing g ∈ G, ErP (h ◦ g), and a residual term
Rgf referring to the change in the overall classification
value of points in the support of h ◦ g when adding a
transformation f ∈ F .
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3.3. The property of Indifference

We say transformation f ∈ F is indifferent if for two
transformations from a different family of transforma-
tions g, g∗ ∈ G, where g∗ is optimal, the difference
between the amount f ’corrects’ the support of g and
the amount f ’corrects’ the support of g∗ is bounded
by the difference of the errors between g and g∗. For-
mally,

Definition 5 A transformation f ∈ F is said to
be indifferent with respect to distribution P , hy-
pothesis h and transformation g ∈ G, if for g∗ =
arg ming∈G Er

P (h ◦ g) the following holds:

Rg
∗f −Rgf ≤ ErP (h ◦ g)− ErP (h ◦ g∗) (6)

3.4. Optimality

Now we are ready to state the following two assump-
tions under which the optimal transformation gl ∈ Gl
for each of the tasks in Tl is the same as the optimal
transformation gal ∈ Gl for task al .

We use the following notations:

- gal = arg ming∈Gl Er
Pal (h◦g), the optimal transfor-

mation with respect to the task al, representing
the union of tasks in Tl.

- gl = arg ming∈Gl Er
Pli ([h ◦ g]∼Fl

), ∀i ∈ |Tl|, the op-
timal transformation which is shared by all of the
tasks in Tl (it follows from Lemma 4 that gl ex-
ists).

- f li = arg minf∈Fl
ErPli (h ◦ gl ◦ f), ∀i ∈ |Tl|, the

optimal transformation which is specific to each
of the tasks in Tl.

Assumption 1 ∀i ∈ |Tl|, both gal , f li and gl, f li are
transformation-multiplicative.

Assumption 2 ∀i ∈ |Tl|, f li is indifferent with re-
spect to distribution Pal

, the given hypothesis h and
gl ∈ Gl.
Theorem 1 Under assumptions 1 and 2:

arg min
g∈Gl

ErPal (h ◦ g) = arg min
g∈Gl

ErPli ([h ◦ g]∼Fl
),∀i ∈ Tl

4. Multi-Task Cascade ERM

In the previous section we showed that the optimal
transformation of a task can be found by consider-
ing a group of tasks together. This implies a learning
scenario where searching for the optimal transforma-
tion of a single task can be done by considering the
group of tasks sharing this transformation, thus ben-
efiting from the bigger sample size contributed from
the whole group.

Our discussion until now focused on the optimal solu-
tion. Now we extend this analysis to the case where
we cannot guarantee optimality of the solution. For
this we need to extend our assumptions to imply that
a near optimal solution for the group of tasks consid-
ered together is also near optimal for each of the tasks
considered separately, thus permitting the derivation
of an ERM approach.

To begin with, instead of considering the
transformation-multiplicativity only for the optimal
choice of transformations, we assume transformation-
multiplicativity between f li ∈ Fl, the optimal
transformation for task li ∈ Tl, and any trans-
formation g ∈ Gl which is close to the optimal
transformation, gal . Let Gεl denote the set of all
transformations in Gl which have an error bigger by
at most ε when measured according to Pal

. Formally,

Definition 6 Given hypothesis h ∈ Hl−1, g ∈ Gεl iff:

ErPal (h ◦ g) ≤ ErPal (h ◦ gal) + ε

Next we extend the indifference assumption, adding
a lower bound to the difference of residuals. Thus,
the improvement achieved by adding the transforma-
tion to a near optimal transformation is close to the
improvement when adding a transformation to an op-
timal transformation.

In order to extend our cascade approach from two lev-
els to the L+ 1 levels in the hierarchy, we extend the
assumptions to the whole hierarchy:

Cascade assumptions: for l = 0..L and h ∈ Hl−1
the chosen hypothesis for Pal−1

:

1. ∀g ∈ Gεl , ∀i ∈ |Tl| and f li = arg minf∈Fl
ErPli (h◦

g ◦f), g and f li are multiplicative with respect to
h; therefore

h ◦ g ◦ f li(x) = h ◦ g(x) · h ◦ f li(x)

2. For:

• gal = arg ming∈Gl Er
Pal (h ◦ g)

• f̂ li = arg minf∈Fl
ErPli (h ◦ gal ◦ f), ∀i ∈

[1..|Tl|]

f̂ li is indifferent with respect to the distribution
Pal

, hypothesis h and ∀g ∈ Gεl :
|
∑|Tl|
i=1R

gal ˆf li −
∑|Tl|
i=1R

g ˆf li | ≤
∑|Tl|
i=1Er

Pal (h ◦
g)−

∑|Tl|
i=1Er

Pal (h ◦ gal)

(Note that we consider H−1 to be the original hypoth-
esis space H.)
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For simplicity, in the following we shall refer to
the strong form of Assumptions 1,2 stated above
as transformation-multiplicativity and indifference re-
spectively.

We can now analyze the error bound of a hypothe-
sis composed of some original hypothesis h, a shared
transformation learnt via an ERM process g�, and the
optimal transformation for each task f li given the hy-
pothesis h ◦ g�.

Theorem 2 Let d = V Cdim([h]∼Gl ), h∗ =

arg minh∈[h]∼Gl
ErPal (h) and h� ∈ [h]∼Gl denote the

output of a standard ERM algorithm trained on task
al with sample size |Sal

|. Then for every ε and δ > 0
and if |Sal

| ≥ c0( 1
ε log

1
δ + d

ε log
1
ε ), with probability

greater than (1− δ)

∀li ∈ Tl, ErPli ([h�]∼Fl
) ≤ ErPli ([h∗]∼Fl

) + 2ε

Recall the CMT-ERM paradigm presented in Sec-
tion 2.3.2. Theorem 2 deals with the error accumu-
lated in a single stage of the cascade, in which a near
optimal shared hypothesis has been found. In the fol-
lowing theorem we extend this analysis to all levels
in the hierarchy, and conclude the overall generaliza-
tion analysis of the CMT-ERM paradigm. Theorem
3 states the generalization error for CMT-ERM when
applied to the hierarchically decomposed multi-task
learning setting:

Theorem 3 Let {Tl,Fl,Gl}Ll=0 be a hierarchi-
cal decomposition of a set of F-related tasks for
which the cascade assumptions hold. Let h∗ =
arg minh∈HEr

P1(h) and h� the output of the CMT-
ERM algorithm. For l = −1..L, let dl =
V Cdim([h]∼Gl ), εl the objective generalization error

for each step in the algorithm, ε = 2
∑L
l=−1 εl and

|Sal
| the sample size available at each step of the al-

gorithm. If δ > 0 and for every l = −1..L, |Sal
| ≥

c0( 1
εl
logLδ + dl

εl
log 1

εl
), with probability greater than

(1− δ)

ErP1(h�) ≤ ErP1(h∗) + ε

5. Experiment

In order to demonstrate when our proposed framework
achieves improved performance, we tested it in a con-
trolled manner on a synthetic dataset we had created.
For that we consider the hypothesis class of conjunc-
tion classifiers (Valiant, 1984; Haussler, 1988). We as-
sume an input space of boolean features. Each classi-
fier in this hypothesis class is expressed as a conjunc-
tion of a subset of the input boolean features.

The set of transformations F are all possible feature
swaps of length L, denoted by i1...iL - j1...jL. A feature
swap of length L is defined as swapping the values of
the features indexed by i1...iL with the values of the
features j1...jL. Each feature index appears at most
once in either of the sets, or once in both sets when a
feature is swapped with itself, i.e it = jt. For example,
a swap transformation 1, 3 - 2, 4 applied to the binary
sample 0101 will result in the transformed binary sam-
ple 1010. We decompose the set of transformations F
in the following way: for each 0 ≤ l ≤ L, Fl corre-
sponds to all swaps of length L− l among the features
that were not swapped yet. Gl+1 corresponds to all
swaps of length 1 among the non swapped features. It
is easy to see that the sets of transformations- F ,Fl
and Gl+1 indeed follow definitions 1 and 2 in (Ben-
David and Borbely, 2008). We note that each swap of
length L− l for 0 ≤ l ≤ L can be written as a swap of
size L with l self swaps.

We consider the first hypothesis to be the hypothesis
which accepts all samples. With the above notations
we do this by concatenating L features valued ’1’ to all
samples (both positive and negative) in the training
set. The first hypothesis is the conjunction of these
added L features.

We note that choosing L features for a conjunction
classifier is clearly equivalent to search for a swap
of length L given the defined conjunction over the
L dummy features concatenated to the original fea-
ture representation. We also note that practically the
search over the swap operations can be done on smaller
search space considering only swaps between the orig-
inal features and the concatenated L features.

Synthetic dataset The data defines a group of
tasks related in a hierarchical manner: the binary fea-
tures correspond to nodes in a tree-like structure, and
the number of tasks sharing each feature decreases
with the distance of the feature node from the tree
root. Leaf nodes correspond to binary classification
tasks. For all of the tasks, each negative example is
assigned a binary feature vector uniformly at random.
For a given task, each feature not on the path from
the leaf (representing the task) to the root, is assigned
a value of 1 or 0 with equal probability for the posi-
tive examples. All features on the path are assigned
the value 1. The input to the algorithm includes the
sets of examples and labels from all n tasks {Si}ni=1,
as well as the hierarchical grouping of tasks.

We search for conjunctions of L features.

For each leaf task, we consider the set {Tl}Ll=0 to corre-
spond to the grouping of tasks represented by the path
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from the leaf to the root in the dataset thus defined.
T0 corresponds to the root node representing all tasks.
TL corresponds to the leaf node representing the single
objective task. The triplet {Tl,Fl,Gl}Ll=0 clearly obeys
definition 1 being a hierarchical decomposition of a set
of F-related tasks.

We defined each set of samples Sal ∈ Sa0 , .., SaL to
correspond to the union of positive and negative sam-
ples from all tasks represented by the l’s node on the
path down from the root to the target task L.

The general cascade algorithm (definition 3) can be re-
written for this specific choice of H and G as follows:

1. Set h as the conjunction of the first L features.

2. Init Z the set of all features indices.

3. for l = 0..L

(a) find optimal h ∈ [h]∼Gl :

i. Swap the l + 1 feature with a feature
among all features in Z with index greater
than L+ 1 that minimizes ÊrSal (h)

ii. Remove this feature from Z

4. output h� = h.
It is easy to see that for this specific experimental set-
ting assumptions 1 and 2 of theorem 1 hold; proofs are
omitted due to space limitations.

Results Figure 2 shows the performance of our ap-
proach compared to standard baselines. First we con-
sider the original two step approach for learning con-
junction classifiers, the Valiant step and Haussler step
(Valiant, 1984; Haussler, 1988) denoted by ’VHConj’.
For the ’VHConj’ approach each task is trained on its
own. As a multi-task baseline we consider the popu-
lar approach for training jointly a set of linear clas-
sifiers, by minimizing a loss function (hinge loss) to-
gether with a group-lasso regularization term. This
approach is denoted by ’LinReg-L12’.

We consider a hierarchy of tasks with 64 tasks (leaves
in the hierarchy tree). We test our approach on each
task. We test performance as a function of sample size.
We show the mean classification accuracy of all tasks
averaged over 5 repetitions of the experiment.

With very few samples a conjunction classifier search-
ing for exactly L features is too restrictive as we can-
not assume enough support to discover correctly all
features. To deal with such scenarios we consider two
classifiers- the original conjunction classifier using all
the discovered features and denoted by ’FullCascade-
Conj’, and a more robust version which returns pos-
itive if L − 1 features take the value ’1’ and denoted

by ’PartialCascadeConj’. We note that the ’VConj’ is
not restricted to a pre-set number of features, thus this
heuristic does not need to be applied to it.

We clearly see that learning benefits much from our
cascade approach. The cascade conjunction approach
outperforms significantly both the original conjunction
baseline and the multi-task learning baseline. As ex-
pected for the very small sample scenario the ’Partial-
CascadeConj’ performs best. For larger samples ’Full-
CascadeConj’ improves significantly. We note that we
were also able to obtain the same results without as-
suming prior knowledge of the hierarchy using an al-
gorithm which can discover it automatically.

Figure 2. Accuracy results for the synthetic dataset exper-
iment. ’Y-axis’ corresponds to accuracy. ’X-axis’ corre-
sponds to sample size of the positive set (negative set has
the same size). Left plot corresponds to a small sample
scenario. Right plot corresponds to a large sample size
scenario. ’PartialCascadeConj’- denotes the classifier clas-
sifying as positive if L−1 features take the value ’1’; ’Full-
CascadeConj’ denotes the original conjunction classifier us-
ing all the discovered features; ’VHConj’ denotes the two
step approach based on Valiant’s step and Haussler’s step;
’LinReg-L12’ corresponds to the multi-task baseline where
training is done using the group-lasso regularization term.

6. Summary

We presented a general hierarchical multi-task learn-
ing framework, extending the commonly used two-level
hierarchy in multi-task settings to a multi-level hier-
archy. A full hierarchical view of multi-task learning
enables tasks of varying degrees of relatedness to con-
tribute in the learning process.

We consider a top-down cascade learning approach,
starting from the most abstract level, where at each
level of the hierarchy a single optimal hypothesis for
the unified task (unifying all tasks at that level) is
chosen. This hypothesis is then used to define the in-
ductive bias for the next level in the hierarchy. The
complexity of each learning stage is determined by the
size of the hypothesis equivalence class defined by ap-
plying the shared transformations in each level to the
chosen hypothesis of the previous level. We state suf-
ficient conditions for the optimality of our approach
and provide generalization guarantees.
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