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Abstract. Small sample is an acute problem in many application do-
mains, which may be partially addressed by feature selection or dimen-
sionality reduction. For the purpose of distance learning, we describe
a method for feature selection using equivalence constraints between
pairs of datapoints. The method is based on L1 regularization and op-
timization. Feature selection is then incorporated into an existing non-
parametric method for distance learning, which is based on the boost-
ing of constrained generative models. Thus the final algorithm employs
dynamical feature selection, where features are selected anew in each
boosting iteration based on the weighted training data. We tested our
algorithm on the classification of facial images, using two public do-
main databases. We show the results of extensive experiments where our
method performed much better than a number of competing methods,
including the original boosting-based distance learning method and two
commonly used Mahalanobis metrics.

Keyword: Feature Selection, Distance Learning, Small Sample, L1
regularization.

1 Introduction

A distance (or inverse similarity) function, defined for every pair of datapoints,
is a useful way to describe data. It is also a useful way to transfer knowledge
between related classes, and thus address the problems of small sample and
even one-shot learning (with only one example per new class). Distances can be
directly used for unsupervised clustering - as do spectral methods for example, or
for supervised classification - as in nearest neighbor classification. An important
special case is the family of kernel functions, which can also be used to enhance
a variety of kernel-based classification algorithms (such as kernel-SVM). Here we
are interested in the problem of learning a distance function from small sample,
when the training data is a set of equivalence constraints on pairs of datapoints,
indicating whether the pair originated from the same or different sources.

The problem of small sample is ubiquitous in application domains such as com-
puter vision and bioinformatics, where data points may be initially represented
in some high dimensional feature space, while the number of training examples
is typically much smaller than the feature space dimensionality. It may lead to
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problems of over-fitting and poor generalization. One common way to address
this problem is to reduce dimensionality, or dramatically prune the dataspace
via feature selection. We focus here on the second avenue of feature selection. We
describe below a method for feature selection based on equivalence constraints,
and incorporate the method into an existing non-parametric method for distance
learning [10].

Our feature selection method, described in Section [2.1], relies on the use of
the L1 norm in the evaluation of the cost function. There has been much recent
work on the use of concave cost functions in order to achieve sparse signal de-
composition [6], and L1 is probably the simplest such norm. Feature selection
with L1 regularization has been studied before, as in the lasso method [I7], but
see also [T9/T13]. Unlike these methods here we use both L1 optimization and reg-
ularization, i.e., the loss function defined over the training data of equivalence
constraints is also defined in terms of the L1 norm. This choice leads to a sparse
solution over the set of constraints. Thus, in a typical solution some constraints
are fully satisfied, while others may deviate largely from the target value; this
seems desirable given the discrete nature of equivalence constraints.

Distance learning from equivalence constraints has been studied extensively
in recent years. Much of this work focused on the learning of the (linear) Maha-
lanobis metric, as in [I5BI4I3I9], where feature selection is often done implicitly
or explicitly as part of the learning procedure. We use here a more powerful
non-parametric distance function learning algorithm [I0] based on boosting. The
weak learner in this algorithm computes in a semi-supervised manner a gener-
ative constrained Gaussian Mixture Model [14] to describe the data. But here
lies the problem with small sample: in each iteration, the GMM algorithm can
only work in a rather low dimensional space as it must estimate a number of
covariance matrices defined over this space. Currently, the problem is solved
by projecting the data initially into a low-dimensional space where the weak
learner has a chance of working properly. With a very small sample, this one-
time dimensionality reduction may be catastrophical, and lead to poor results.
We therefore propose to compute the dimensionality reduction afresh in each
iteration of the boosting method, see Section 221

In Section [3] we describe extensive experimental results on facial image clas-
sification, where very significant improvement is obtained. In our experiments
we used a single pair from each class of objects (each individual face), which is
an instance of 'one shot learning’ - how to learn a classifier from one example
of a new class. Distance learning offers one way to approach this problem. Our
results show that our algorithm performs better than a number of alternative
distance learning methods. Other approaches have been developed recently in
the context of object and class recognition, see for example [T22I7IT6/TT]. Also
note that in our method, we use feature selection to enhance the performance
of the weak learner in each boosting iteration as in [I§]. In a very different ap-
proach, boosting is used in [I] to select embeddings in the construction of a
discriminative classifier.



108 D. Weinshall and L. Zamir

2 Distance Learning Algorithm

As noted in the introduction, we use a non-parametric distance learning method
[10] based on boosting, where in each iteration a generative Gaussian Mixture
Model is constructed using a set of weighted equivalence constraints. This weak
learner estimates a number of covariance matrices from the training sample.
Thus, with small sample it must be used in a low dimensional space, which
can be obtained via dimensionality reduction or feature selection (or both), see
Section 2.1 Our final algorithm selects features dynamically - different features
in each boosting iteration, as described in Section

2.1 Feature Selection with L1 Optimization and Regularization

Notations. Given a set of data points, equivalence constraints over pairs of
points consist of positive constraints - denoting points which come from the same
source, and negative constraints - denoting points from different sources. Let p;
and ps denote two 1xn data points. Let AT = p; —py denote the vector difference
between two positively constrained points, A~ = p; — po denote the difference
between two negatively constrained points, and Wx+, W~ denote the weight
of constraint A™ and A~ respectively. Let A denote an n x n diagonal matrix
whose i—th diagonal element is denoted A;, N denote the number of features
to be selected, and pun denote a regularization parameter which controls the
sparseness of A as determined by N.

Problem Formulation. Feature selection is obtained using L1 regularization
and optimization, which favors sparsity in both the features selection matrix
A, and the set of satisfied constraints. The latter property implies a certain
“slack” in the constraint satisfaction, where some constraints are fully satisfied
while others behave like outliers; this seems desirable, given the discrete nature
of equivalence constraints. Thus we define an optimization problem which will
be solved (in its most general form) by linear programming. We define two
variants of the optimization problem, with some different characteristics (as will
be discussed shortly):

LP1: Linear Program version 1

Femin (Y War | AT A =3 War A7 A +un] 34l
At A~ 7
st. A=diag[A;], 0<A; <1 (1)

Given the constraints on A;, the following derivation holds:

F=min (Y War Y |AHA -3 WA Y IAT A+ v Yo A )
A+ i=1 A- i=1 :
= min ( ;Ai ( ;WNA;*—;WNA[ + ) )
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where w; = ZWA+A;_ — ZWAfAi_ + puN
A+ A~

Clearly minimizing (2] gives a solution where A; = 0 if w; > 0, and 4; = 1
if w; < 0. The regularization parameter py thus determines exactly how many
coordinates A; will have the solution 1, or in other words, exactly how many
features will be selected. Given that we want to select N features, the optimal
solution is obtained by sorting the coefficients w;, and then setting A; = 1 for
the N smallest coordinates, and A; = 0 otherwise.

LP2: Linear Program version 2

F =

min (D War | AT A+ Wa [1= [ A7 A ] 4y | N =D 4i )
At A~ 4

st. A=diag[A;], 0<A; <1 (3)

This defines a linear programming optimization problem, where A; > 0 implies
that feature 7 is selected (possibly with weight A;).

Parameters: The only free parameter in both versions is the number of features
to be selected. Weights are given by the boosting mechanism, and py is either
determined uniquely by N (in version 1, following the above derivation), or is
set to a very large constant (in version 2).

RND: Random feature selection. To evaluate the significance of the way fea-
tures are selected, we tested a third method, whereby N features are randomly
selected. This would typically lead to very poor performance in the original high
dimensional feature space, and it was therefore preceded by PCA dimensionality
reduction, followed by projecting the data onto the M most significant principal
components. This gave reasonable performance, which critically depended on the
value of M (see Fig.[d). In later comparisons this value was chosen empirically,
so as to allow optimal performance for this method.

2.2 The Final Distance Learning Algorithm

The final algorithm is shown in Alg. [[l where modifications from the original
distBoost algorithm [I0] are highlighted in boldface. In the algorithm’s de-
scription, we denote by I/Vit”-2 the weight W,y,- at iteration ¢ of constraint
At/ = (pil 7pi2)'

3 Experimental Results

3.1 Methods

Data and methodology: We used two public domain datasets: (i) The class of
faces from the Caltech dataset (Faces 1999 from
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Algorithm 1. Distance learning with feature selection

Input:

Data points: (pi,...,pn), px € R"

A set of equivalence constraints: (p;,, pi,,yi), where y; € {—1, 1}

Unlabeled pairs of points: (p;,,pi,,yi = x), implicitly defined by all uncon-
strained pairs of points

— Initialize W} ;, = 1/(n®) i1,i2 = 1,...,n (weights over pairs of points)
wy =1/n k=1,...,n (weights over data points)
— Fort=1,.,T

1. Given the original data vectors in R", obtain a lower dimensional
description in R” as follows:
e To balance the effect of positive and negative constraints, nor-
malize the weights such that:
ZA+:(P1:1 —Piy) Witli? =1 ZA*Z(PM —Piy) Witli? =1
e Select N > D features using one of the methods described in
Section 2.1}
e Given only the selected features, reduce the data dimensionality
to D with PCA, and obtain z; = G¢(p;).
2. As in [I4], fit a constrained GMM (weak learner) on weighted data points z;
in X = RP using the equivalence constraints.
3. As in [I0], generate a weak hypothesis function h : X x X — [0,1] and define
a weak distance function as hy(zs,2;) = (1 — he(zs,25)) € [0,1].
4. Compute 1t = > Wi, yifzt(:ril ,Ziy ), only over labeled pairs.
(Tiqg Tig,yi=%1)
Accept the current hzypothesis only if r, > 0.
5. Choose the hypothesis weight a; = %ln(”—”).

1—r¢

6. Update the weights of all points in X x X" as follows:

Wit — Wi, exp(—ouyihi(ai,, 2iy)) yi € {—1,1}
2 Wi1i2 eXp(—)\ * at) Yi = *

where ) is a tradeoff parameter that determines the decay rate of the unlabeled
points in the boosting process.
witl
7. Normalize: W/H! = — 12
1 > owit!
i1ig=1 12

8. Translate the weights from X x X to R™: w,’;“ = Zj W,fjl

Output: A final distance function D(pi,p;) = 31—, arhe(Ge(pi), Gi(p;))

http://www.vision.caltech.edu/archive.html), which contains images of
individuals with different lighting, expressions and backgrounds. (ii) The YaleB
dataset [8], which contains images of individuals under different illumination
conditions. Examples are shown in Fig. I Each image was represented by its
pixel gray-values, 28 x 28 in the Caltech dataset and 128 x 112 in the YaleB
dataset. 19 classes (or different individuals) were used in both datasets, with
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Fig. 1. Left: three pictures of the same individual from the YaleB database, which
contains 1920 frontal face images of 30 individuals taken under different lighting con-
ditions. Right: two images from the Caltech dataset.

training data composed of two examples randomly sampled from each class in
each experiment. This generated 19 positive equivalence constraints, and a larger
number of negative constraints. Our experiments indicated that it was sufficient
to use a subset of roughly 19 negative constraints (equal to the number of posi-
tive constraints) to achieve the best performance. The test set included 20 new
random images from each of the 19 classes.

Performance - evaluation and measures: Performance of each algorithm was
evaluated on the test set only, using the Equal Error Rate (EER) of the ROC
curve. This curve was obtained by parameterizing the distance threshold ¢: points
at distance lower than ¢ were declared ’positive’ (or same class), while others
were declared 'negative’ (or different class). The EER is the point where the
miss (false negative) rate equals the false positive rate. In some experiments we
used the learnt distance to perform clustering of the test datapoints with the
Ward agglomerative clustering algorithm. We then measured performance using
the F% = % score, where P denotes precision rate and R denotes recall rate.
Another performance measure used the k-nearest-neighbor classification, where
for each point - the k nearest points are retrieved, and classification is done in

agreement with the majority.

Algorithms: We evaluated three variants of Algorithm [, using one of the three
selection methods described in Section 2.1} accordingly, they are denoted below
as LP1, LP2 and RND. For comparison we used the following distance measures:

Euclidean metric in the original feature space.

RCA [15] - a Mahalanobis metric learning algorithm.

DMC [5] - a Mahalanobis metric learning algorithm.

FEuclidean F'S - the Euclidean metric in the lower dimensional space, obtained
using feature selection as described in Section 211

5. DB-PCA - the original distBoost algorithm, where dimensionality is initially
reduced by projecting the data onto the D largest principal components.

==

Algorithm parameters: We used 150 boosting rounds for all methods (LP1, LP2,
RND, DB-PCA). The number of features N to be selected in each iteration
was 80 for the Caltech dataset, and 20 for the YaleB dataset. The dimension D
subsequently used by the weak learner was chosen to be the maximal possible.
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Fig. 2. Results using the Caltech facial image dataset. Left: the ROC curve of eight
distance measures. Right: summary of the Equal Error Rate of the ROC curves (left)
with standard error (ste) bars, for all algorithms.
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Fig. 3. Results using the YaleB facial image dataset, including clustering results (with
the Ward algorithm) measured by F' 1on the left, and the summary of the Equal Error

Rate of the ROC curves for all algorithms on the right. Ste bars are also shown.

3.2 Results

The performance of the various algorithms in the different experiments is sum-
marized in Figs. B Bl Fig. @ provides visualization of the features (or pixels)
selected by the algorithm, while Fig. [5] shows the dependency of the results on
the number of features which have been selected. Fig. 6l shows the behavior of the
different algorithms as a function of the boosting iteration. Finally, Fig. [1 shows
performance evaluation on totally new classes, including faces of individuals that
the algorithms have never seen before.

3.3 Discussion

The results in Figs. 2], 3 clearly show that feature selection improves performance
significantly. (Note that although the errors may appear relatively high, given the
difficulty of the task - with so few training examples - these are state-of-the-art
results.) Moreover, Fig. [0 shows that this advantage is maintained even when
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Fig. 4. Visualization of the features selection process using the YaleB dataset. All the
features selected by the algorithm up to a certain iteration are shown in white. From
left to right, we show iteration 4, 20, and 150 respectively.
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Fig. 5. Caltech facial image dataset. Left: the fraction of features (out of 784 image
pixels) used by the hypotheses of the LPI and LP2 methods as a function of the

boosting iteration number. Right: EER scores as a function of the fraction of the total
number of features selected by the LPI and LP2 methods.
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Fig. 6. Caltech facial image dataset: Left: EER scores as a function of the number of
iterations. Right: Clustering performance of method RND as a function of the number
of top principal components chosen for representation of the data ().

presented with completely novel classes (a learning to learn scenraio), which
is one of the important motivations for learning distance functions instead of
classifiers. When comparing the two main feature selection variants - LPI and
LP2 (see definition in Section 21I), we see comparable performance. But recall
that LP1 has a tremendous computational advantage, since its only computation
involves sorting and it does not need to solve a linear programming problem.
Thus LP1, with slightly better performance, is clearly preferable. The third



114 D. Weinshall and L. Zamir

0.7 s 1
Ward Clustering Scores 'Jg
0.6 K%
£ s \*\*\I\i\{_ﬂ
a
05 K] .
(s}
_ 06 B :
04 § : = S Euclidean
8 ——DMC
0.3 [_IEuclidean 5 04 —RCA
[ oMe ° EuclideanFs
0.2 [RCA =z DBPCA
f—F——+F—F —3
[ EuclideanFs ﬁ 0.2 —LP1
0.1 [ IpBPCA H ——RND
HlLP1 £
0 [ RND - g o

10 15
# of Neighbours

Fig. 7. Results on YaleB when tested on 10 totally novel classes - individuals that the
algorithms have never seen before. Left: F’ 1 clustering scores. Right: K-nearest-neighbor
classification scores.

variant - RND - usually performs overall less well. More importantly, its good
performance critically depends on the number of features used for the random
sampling (see Fig. [Blright), an unknown parameter apriori, which makes this
variant even less appealing.

Both LP1 and LP2do not use all the original features. This is most clearly seen
in the results with YaleB dataset, where only 12% of the initial features are used,
as is visualized in Fig.[d This may give them yet another significant advantage
over alternative distance learning methods in some applications, where features
are expensive to compute. In this respect, the advantage of the LP2 variant is
more pronounced, as shown in Fig. Bl Finally, all the results above are reported
for very small samples - with 2 examples from each of 19 classes. The relative
advantage of the feature selection variants disappears when the sample increases.

4 Summary

We described a distance learning method which is based on boosting combined
with feature selection, using equivalence constraints on pairs of datapoints. In
a facial image classification task and with very few training examples, the new
method performs much better than the alternative algorithms we have tried. The
underlying reason may be that feature selection combined with boosting allows
the distance learning algorithm to look at more features in the data, while being
able to estimate only a small number of parameters in each round. Thus, within
this very difficult domain of image classification from very small sample (or learn-
ing to learn), our algorithm achieves the goal of advancing the state-of-the-art.
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