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In a previous work (WeinshalI1986), a model for competition between sexually
reproducing and asexually reproducing (e.g., vegetative or parthenogenetic) indi-
viduals of the same diploid population was investigated. It was assumed that the
population periodically undergoes n modes of selection (e.g., it is periodically
infested by n sorts of parasite; see Haldane 1949;Maynard Smith 1978;Hamilton
1980;Hamilton et al. 1980).It was also assumed that, at a given locus, n alterna-
tive alleles, At. . . . , Am each makes its carrier immune to a specific type of
parasite. Likewise, there are both sexuat and asexual representatives of each
genotype A;A.j(i,j = 1, . . . , n) making up the population (e.g., sexuality is
determined by another locus). The sexual and the asexual individuals of the same
genotype were assumed equal in all aspects, except for their way of reproduction:

- an asexual individual was assumed to produce, on the average, ~ times as many
offspring as a sexual individual of the same genotype. (Especially interesting is the
case of a parthenogenetic mutant producing twice as many offspring as a sexual
individual in a population whose males do not help to raise offspring.) Sexual
individuals were assumed to mate at random.

Under these assumptions, it has been shown that if n = 2, then for all ~ > 1and
for any effect of the two parasites on the three genotypes, the population is bound
to become fully asexual. If n ;:: 3 and if the mortality among individuals that are
not immune is sufficiently high, then the sexually reproducing individuals become
fixed in the population, independently of the cost of sex ~. This is the case, more
generally, for any k-ploid population, provided that the number of alternative
parasites is larger than k (the ploidy number of the population). A similar result
was obtained for a haploid population with recombination among sexually repro-
ducing individuals.

Quite important for the applicability of the model to low-fertility populations is
the relatively low toll of mortality by parasitism that is required in order to
maintain the stability of sexual reproduction. In some variants of the model, the
required toll is less than 50% of all newborn offspring when the advantage of
parthenogenesis is ~ = 2. (For a special consideration of this phenomenon, see
also Eshel and WeinshallI987.)
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A crucial question for the evolution and maintenance of sex, however, concerns
the stability of sexual reproduction against a partially sexual mutant rather than
against an absolutely nonsexual one. Moreover, since partially sexual reproduc-
tion is quite common in nature, especially among plants, one is interested in the
existence and, indeed, the specification of some stable positive rate of sexuality in
the population, that is, a strategy of partial sexuality which, when established in
the population, is stable in the face of any mutant. Even more desirable is the
possibility of some global analysis investigating the evolution of such a so-called
"optimal rate of sexuality." A question of special interest is under what condi-
tions full sexuality is the optimal rate, in the sense that a fully sexual population is
stable in the face of any mutant that decreases the rate of sexuality and, moreover,
that a partially sexual population is unstable in the face of any mutant that tends to
increase the rate of sexuality (cf. Eshel and Feldman 1982, 1984).

In this work we investigate a two-locus diploid population in which individuals
can reproduce both asexually and sexually, with random mating among sexually
reproducing individuals. Selection operates directly on one locus in exactly the
same way as assumed earlier (Weinshall 1986). The proportion 0 ::5T ::5 1 of
sexually produced offspring is determined, however, by another modifier locus
without pleiotropic effects. Since, except for a singular case, all genotypes in this
model are at least partially sexual, one should consider the effect of recombination
between the two loci.

Analysis is first carried out for the case of three alleles and three environments
(parasites) with certain death of the "unfit." The existence of a certain rate of
sexuality, which is stable in the face of all other possible strategies of partial
sexuality, is proved; its behavior as a function of ~ and r (the rate of recombina-
tion) is investigated in the next section. Of particular interest is the range of
parameters for which T = 1 (full sexuality) is the only stable strategy of reproduc-
tion.

We use computer simulations in order to generalize these results and to investi-
gate further the situation of more than three seasons (parasites), with the possibil-
ity of few intermediate periods of relaxation with heterozygote effect and a
substantially lower intensity of selection against the less fit homozygote. We
demonstrate the existence of an "optimal" sexuality rate in the sense specified
above, and we investigate its dependence upon the parameters of the model. We
are specifically interested in the effect of n (the total number of parasites) on the
range of parameters for which full sexuality is the only stable strategy of repro-
duction.

THE GENERAL MODEL AND ANALYSIS OF THE CASE n = 3

Consider a large diploid population in which each individual can invest in both
sexual and asexual reproduction and sexually reproducing individuals mate at
random. An individual is said to have a rate 0 ::5T ::51 of sexuality (to be called
T-sexual) if it invests a proportion 0 ::5T ::5 1of its resourcesin sexualreproduc-
tion. The amount of resources needed to produce one sexual offspring is assumed
to be larger (by a factor ~ ~ 1) than the amount of resources needed to produce
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one asexual offspring (see Weins hall 1986 and references therein). Thus, the
proportion of sexually produced offspring born to parents with the rate of sexual-
ity T is

TRIll-
13 = TRIll-+ 0 - T)R

T

T + 0 - T)1l- '
0)

~

where R denotes the total resources allocated by an individual to reproduction.
Assume now that the population consists of the genotypes AiBjAjJo., where the

combination A,Aj in one locus determines the viability of the individual at any
given season, and the combination BJJo. in a modifier locus determines its rate of
sexuality. We assume n alleles, AJ, . . . , Am represented in the first locus,
corresponding to n successive environments (seasons), say S J, . . . , Sm with the
following viability coefficients:

I

8 Aftk
W(Si) = 1 A,Aj

1 + h A,Ai

where 1 » 8 and h can assume any value larger than - 1. These seasons follow
each other repeatedly, with possibly some intermediate stage of relaxation, in
which all genotypes are equally successful and heterozygotes have a possible
advantage. We also assume a recombination rate of 0 ~ r ~ 0.5 between the main
locus A and the modifier locus B.

Consider first the case for n = 3 (three different seasons of selection), 8 = 0
(certain death of individuals that are not immune), no heterozygote advantage,
and no intermediate periods of relaxation. Assume that the population is fixed on
allele BT in the second locus, determining a rate of sexuality T, with some propor-
tion of a rare mutant allele Bo.determining some sexuality rate a =FT as heterozy-
gote BJJo..

At the end of season SI, the only individuals to survive in the population are
those carrying the combination AtAJ, AtA2' or AIA3 at the main locus. Thus,
ignoring the negligible fraction of homozygous mutants Bo.Bo.,the only genotypes
carrying the mutant allele Bo. at the modifier locus are, at that time, AtBo.lAIBn
AIBo.lA2Bn AtBo.IA~T' A2Bo.IAtBT' and A~o.IAIBT. Their frequencies are denoted
by 2EII, 2Et2, 2EI3,2E2,2E3,respectively. LetEI = IJ=t EIj, such thatforalli = 1,2,
3, Ei is the frequency of the mutant chromosome A;Bo. at the end of season St.

The indexes i andj for the above Eij'Shave the following meanings: 1 stands for
the most recently resistant allele, 2 for the allele needed for the next catastrophe,
and 3 for the allele needed in the preceding catastrophe. Thus, the frequencies of
the five surviving genotypes A2Bo.IA2BT'A2Bo.IA~T' A2Bo.IAtBT' A~o.IA2BT, and
AtBo.lA2BT after season S2 are denoted by 2EII', 2EI2', 2EI3', 2E2', and 2E3', respec-
tively. Likewise, the vector q = (qJ, q2, q3) indicates the equilibrium frequencies
of the alleles AJ, A2, and A3 after season St in the originally T-sexual population.
However, applying the symmetry among the three alleles, we can deduce that, at
all times, qt is the equilibrium frequency of the most recently favored allele, q2 is
the equilibrium frequency of the allele needed for the next catastrophe, and q3 is
the equilibrium frequency of the allele needed in the preceding catastrophe (see
Weinshall 1986).

j, k =Fi
j =Fi

(

.
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By straightforward calculations (as specified in Appendix A), one can show that

2ql - 1 = Tq~/W (2a)

2q2 = 2Tq2q3/W (2b)

2q3 = [2Tq2ql + 2(1 - T)~q2]/W ; (2c)

w, the average fitness in the population at equilibrium, is given by W = Tq2(2 - q2)
+ 2(1 - T)~q2. An immediate result, used later in this work, is

W = Tq3 . (3)

Assume that the population is at equilibrium with respect to At. A2' and A3
when Ba invades the population. Thus, the vector of frequencies ql,q2,q3 is the
actual frequencies of A.. A2' and A3 (not always in this order, however). Accord-
ingly, before S2 we have the following gametes' frequencies among the parents
(after recombination and before selection):

freq(A2BT) = q2 + O(E) ,

freq(A~T) = q3 + O(E) ,

freq(A1BT) = ql + O(E) ,

freq(A2Ba) = (1 - r)E2 + rE12 = E2'

freq(A~a) = (1 - r)E3 + rEl3 = E3,

freq(A1Ba) = Ell + (1 - r)(E12 + El3) + r(E2 + E3) = E~ ,

for E = I~=l Ej.
To calculate the frequency 2Ell' ofthe genotype A2Ba/A2BTafter season S2, note

that no individual of the genotype A2A2 could possibly survive the preceding
season, S 1; hence, all representatives of this genotype are offspring from sexual
reproduction. The frequency of the combination A2Ba among all gametes, at the
end of season S 1, is E2'and a fraction a of all the carriers of this gamete reproduce
sexually.Theprobabilitythat an individualat the endof seasonS1 willreproduce
sexually and transmit the gamete A2Ba is, therefore, aE2 + O(E).Assuming random
mating among sexually reproducing individuals, the probability that a gamete
A2Ba, transmitted through sexual reproduction, will combine with a gamete A2BT
is, indeed, q2 + O(E). Hence,

Ell' = V2freq(A2Ba/A2BT) = aQ2E1!w+ O(E), (4)

where the coefficient of normalization w, say the fitness of the population, is the
sum of frequencies of all surviving offspring, born to both sexual and asexual
reproduction.

In the same way, we obtain

E12'= V2freq(A2Ba/A~T)= aQ3E1!w+ O(E) (5)

and

E2' = V2freq(A~a/A2BT) = aQ2E3Iw+ O(E). (6)

(Note that neither A~a/A2BT nor A2BaIA~T could possibly survive the sea-
son Sl.)

.



------- -- - -

r ' 762 THE AMERICAN NATURALIST

To calculate the frequency 2En' (or 2E3')ofthe genotype (A2BaIA1BT)AIBaIA2BT'
note that a proportion E2(Ed of aU parents at the end of season S 1 were of this
genotype and that a proportion (1 - a) of them reproduced asexually with a rate
of success , relative to the success of sexual reproduction. Hence,

En' = Y2freq(A2BaIA1BT) = [aqlE2 + (1 - a)J.LE2]/w+ O(E) (7)

E3' = Y2freq(A1BaIA2BT) = [aq2El + (1 - a)J.LEdlw + O(E) , (8)

where w is the sum of the numerators of the right-hand sides of equations (5)-(8).
Because of the symmetry of the alleles in this model, the same transformation

takes the Eij'S through S3 and S2 back to the initial five genotypes. Iterating the
above transformation three times like this, we get the change in the relative
frequencies of the five mutant genotypes that exist after S 1and before S2 during
one cycle of catastrophes. It is, therefore, sufficient to analyze the one-stage
transformation to see whether the new mutant genotypes increase their frequency
under the assumed selection or vice versa. Note, however, that at each iteration
the transformation is the same but the meaning ofthe Eij'Sand the q;'s is changed.

Denote by M* the matrix of the linear approximation near E = (Ell, E12,En, E2,
E3) = 0 and let

M = wM* =

0
0
0

arq2

arq3

0

0

0

a(1 - r)q2

a(1 - r)q3

a(1 - r)ql
+ (1 - a)J.L

0

0
0
0 . (9)arql

~

0 arq2
aq2 a(1 - r)q2 a(1 - r)q2

+ (1 - a)....

Since M is a nonnegative matrix, we know that its leading eigenvalue is real and
positive. Moreover, for r > 0 it can readily be verified that M3is strictly positive
(this is equivalent to the claim that, no matter what mutant genotype started the
cycle, after one cycle of selection there is a positive probability for a great-
grandson of aUthe five possible mutant genotypes). It therefore follows from the
Perron-Frobenius theorem that the leading eigenvalue ofM is also simple (Le., a
simple real root to the characteristic equation of M) for r > O. Denote this
eigenvalue by p(q, a), where q = q,..(T)is given by equations (2). (Note that p is
also a function of J.Land r which, at the moment, we keep fixed.) Mter some
manipulations, the characteristic equation of M, divided by the independent
variable x, may be written as

det(xI - M)
IjI(x) = x = IjIr...[q...(T),a; x]

= (x - arq2)(x- arq3)x2- X(X- arq3)arq2

x [a(1 - r)q2+ (1 - a) ] - (x - arq3)a2(1- a)J.Lq~(1- 2r) (10)

- a3q~x(1- r)[r2q3+ (1 - 2r) + rq2]

- a2q2x(l - r)2q3(l- a) - a2x2q2qlr(1- r) ,

0

arq2

a(l - r)q2

arq2

.
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and x = p(q, a) is the largest root of this fourth-degree polynomial.
Note that for r = O,I\1(x)= X[X3- aZ(1 - a)~qz(qz + q3) - a3q~];the real and

positive leading eigenvalue of M is therefore simple (there are no multiple real
roots to the equation l\1(x) = 0) when r = O. Hence, p(q, a) is real, positive, and
simple for all the values of r.

For the matrix of linear approximation M*, we know that M* = Mlw; its leading
eigenvalue is thus

p*(q, a) = p(q, a)lw . (11)

But for the neutral mutation a = 'T,p*(q, 'T) = 1; thus,

w = p(q, 'T).

Inserting equation (12) into equation (11) yields

(12)

p*(q, a) = p(q, a)/p(q, 'T). (13)

This implies that the allele BTfor sexuality rate 'T,once fixed in the population, is
stable against the modifier mutant B« if

p(q, a)/p(q, 'T)< 1 . (14)

The sexuality rate 'T,once fixed in the population, is stable against any modifier
allele B« if condition (14) holds for any a oF 'Tor, equivalently, if the function
p(q, a) achieves its maximum over all possible a's at a = 'T.

Definition: Such a sexuality rate 'T, if it exists, will be called an evolutionarily
stable sexuality rate for given parameters ~ and r.

Recall that p(q, a) is the maximal solution of the equation I\1r",[q",('T),a; x] = 0
and that it is a simple positive root. It follows that l\1(x)increases in the neighbor-
hood of x = p and that the first derivative of l\1(x)with respect to x is strictly
positive for x ~ p (because the absolute value of p is larger than the absolute value
of any other root, real or complex). Moreover, from equations (12) and (3) we
know that p(q, 'T)= W = q3'T.Using the continuity ofl\1(x), we reach the following
conclusion.

Lemma I: 'Tis an evolutionarily stable sexuality rate if and only if I\1r",[q",('T),a;
x]lx=Q3T,as a function of a, achieves its minimum over O:s a:S 1at the point a = 'T.

In other words, for

f(a) = frIJ.T(a) = I\1r1J.[q",('T),a; q3'T] , (15)

'Tis an evolutionarily stable sexuality rate if and only iff('T) is the minimum off(a),
with 0 :s a :s 1.

The following lemmas are needed to establish proposition 1, which proves the
existence of such 'T and characterizes it.

Lemma 2: (a) For any ~ > 0, 0 < 'T:S 1and 0 < r < Yz,J(a) is a polynomial of the
fourth degree withf(O) > O,['(a)I«=o < 0 and lim..-oof(a) = - 00 . (b) For r = 0,
f(a) is a polynomial ofthe third degree withf(O) > 0,[' (a) 1«=0 = O,["(a)I«=o < 0
and lim.-oof(a) = 00 if ~ > qz/(qz + q3). (It is easy to show that 4/11 > qz/(qz + q3),

.
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and we are mainly interested in the case I-L2: 1.) (c) For r = Yz,J(a)is a polynomial
of the third degree withf(O) > 0, f'(a)la=o < 0 and lim..-oof(a) = - 00.

Proof: Employing equations (10) and (15), one obtains by straightforward calcu-
lations

f(a) = X4 - ax3r(qz + q3) - a2x2q2r(1 - q3 - r)

- a3q~(1 - r)x[(1 - 2r) + rq2]

- a(1 - a)rq2rl-L - a2(1 - a)xq2(1 - 2r)(q2 + q3)1-L

+ a3(1 - a)rq~q3(1 - 2r)1-L,

with x = q3T, and lemma 2 immediately follows.
Let

(16)

I-L* = I-L*(r) = [2q2q3r(1 - r) + qj(q3 - q2)r + 3q~(1 - r)(1 - 2r) (17)

+ 3~r(1 - r)]/[q2q3(1 - r) + tfz(1 - r)(1 - 2r)] ,

where q = q (T)IT= I. When a = T = 1, I-L* is the root off' as a function of I-L.The
importance of this expression will be clarified in proposition 1 below.

Lemma 3: I-L* increases with r from I-L*(0) = 1.05 to I-L*(Yz) = 1.38.(The proof of
this lemma is given in Appendix B.)

From lemma 2, it follows thatfr""T(a)has one local minimumat the most when
I-L> 0, O:s r:S Yz,and 0 < T:S 1. This minimum, when it exists, is denoted by a*(T)
= a* r (T).

Lemma 4: (a) Whenever it exists, a*(T) is a continuous and differentiable
function of T. (b) li~o a*(T) > o. (c) If for given I-Land r there exists a value T*
such that a*(T*) = T*, then T* 2: ¥3. (d) If I-L> 1, a*(T) exists for all 0 < T:s 1. (The
proof of this lemma is given in Appendix C.)

Proposition 1: For any rate of recombination r between the main locus and the
modifier locus, there is a fixed value I-L* = I-L*(r)> 1being defined in equation (17)
and characterized by lemma 3 such that (a) if I-L :S I-L*, then T = 1 (Le., full
sexuality) is an evolutionarily stable rate of sexuality; and (b) if I-L> I-L*, then there
exists a (positive) evolutionarily stable rate of sexuality T with ¥3 :S T < 1.

Proof: (a) Employing equation (16), differentiatingf,.""T(a) with respect to a, and
inserting T = 1, a = 1, and x = q3(1) (as given by eqs. 2), one can immediately
verify that

~
i.if, (a) I i.iala=. < 0

if I-L < I-L*, where I-L* is given by equation (17). (Recall that I-L* is a function of r
only.) Also, from lemma 2,

i.if, (a)/i.iala=o < 0

for 0 < I-L(if r > 0; for r = 0, i.if, (a)/i.ia< 0 for a sufficientlysmall).
It follows from equation (16) that i.if, (a)/i.iala=. is a linear function of I-L (be-

cause q (1) does not depend on I-L)and therefore changes sign only once, at
I-L= I-L*, as I-Ldecreases. Sincef, (a) has (at most) one local minimum over [0,00)
and sincef, (a) is a continuous function of I-L,either the positive local minimum of
f, (a) is larger than 1 for all 0 < I-L :S I-L* or it ralls within the interval (0,1) for
all 0 < I-L:S I-L*(if it exists). However, by straightforwardcalculationsone can

.
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readily verify that for ILsufficiently small, frjJ.!(a)does not achieve a local minimum
over 0 < a < I; hence, this is true for all IL< IL*. Thus, when IL< IL*, frjJ.!(a)
is a decreasing function of a for all 0 :5 a :5 I, obtaining its minimum over this in-
terval at a = T = I. Employing lemma I, T = 1 is an evolutionarily stable rate
of sexuality.

(b) Suppose IL > IL*. From lemma 4(b) , it follows that a = 0 cannot be an
evolutionarily stable rate. From the inequality

aJ,.jJ.!(a)/aala=\ > 0

proved above for IL> IL*, it follows that a = 1 cannot be an evolutionarily stable
rate of sexuality.

To prove the existence of an evolutionarily stable rate of sexuality 0 < T < I,
employ the function a*(T) as defined in lemma 4. This lemma implies that a*(T) is
defined for all 0 < T:5 1 if IL> IL*> I; that a*(T), when defined, is a continuous
function of T; and that lim., o a*(T) is strictly positive. Also, since

afrjJ.\(a)1aala= \ > 0

for IL > IL*, it follows that a *(1) satisfies a *(1) < I. Hence there exists at least one
value 0 < T* < 1 with a*(T*) = T*.

In Appendix D it is shown that J,.jJ.T*(T*) < J,.jJ.T*(I)so that

J,.jJ.T*[a*(T*)]= miOosas! J,.jJ.T*(a). (18)

From lemma 1 it therefore follows that T* is an evolutionarily stable rate of
sexuality. From lemma 4 it also follows that T* ;:::¥3.

Conclusions: (I) An evolutionarily stable rate of sexuality Talways exists where
T ;:::¥3. (2) If the cost of sex factor ILis not too high, say 1.38 when r = V2(see
lemma 3), then absolute sexuality T = 1 is the evolutionarily stable strategy. (3)
The stability of pure sexuality becomes more likely as the rate of recombination
between the main locus and the modifier locus increases.

~

GLOBAL, BEHAVIOR OF THE GENERAL MODEL: A COMPUTER SIMULA nON MODEL

To study the global behavior of the model, a computer program that simulates
the selection process on the population has been used. We are interested in the
existence of a stable sexuality rate in the general model and how it is affected by
some change in any of the variables such as n, the number of different catas-
trophes; IL,the cost of sex factor; 8, the survival probability of the unfit homozy-
gote during a catastrophe; r, the recombination rate; s, the number of intermediate
rest seasons between two successive catastrophes; and k, the heterozygote advan-
tage in a rest season.

Each of the followinggraphs represents the results of the selection process for a
different set of parameters; a point (x,y) would indicate the case in which an
x-sexual population (of the genotype BxBx)is invaded by a new dominant mutant
By (whose carrier is y-sexual) in small frequencies. By enters the population for
those (x,y) points in regions marked" success" and is eliminated in regions
marked "failure." Thus, figures 1-4 illustrate cases that hold for the parameters
of the general model as defined above.

.
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FIG. 1 (left).-Success or failure of a heterozygotic mutant with a rate of sexuality y in a
population with a rate of sexuality x. When h = Yz,k = 0,1\ = 0, n = 3, S = 0, j.I.= 2, and r =
Yz,the unbeatable rate of sexuality, T, is 0.85. Note that for all y ~ T, the straight line x 55 T is

in the failure domain, which means that x = T is stable in the face of any mutation. For any x
~ T, the straight line y 55 T is in the success domain, which means that a mutation y = T is
always established in the population. Moreover, for any value x ~ T, the range for a
successful mutation y is shown to be some interval around T, which increases as x becomes
farther from T.

FIG. 2 (right).-When h = Yz, k = -0.17,1\ = 0, n = 5, S = 2, j.I. = 2.5, and r = 0, the
unbeatable rate of sexuality, T, is 0.67. The straight line x 55 T is still in the failure domain, and
y 55 T is in the successdomain. Note, however, that for certain values of x (say, around 0.2)
the population is invasible either by mutations in an interval around T or by those that
determine a rate of sexuality close to one. These, in turn, are unstable to a mutation close
to T.
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FIG. 3 (left).-When h = Yz,k = -0.17,1\ = 0.0001, n = 4, S = 2, j.I.= 3, and r = 0, the
unbeatable rate of sexuality, T, is 0.5.

FIG. 4 (right).-When h = 0, k = -0.17,1\ = 0, n = 6, S = I, j.I.= 1.8, and r = 0.3, the
unbeatable rate of sexuality is one. A mutation is successful if and only if it determines, as a
heterozygote, a rate of sexuality higher than tbe prevailing one.
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As can be seen from the above examples, a stable sexuality rate T does exist in
the general case and it is unique. Moreover, in all the examples being studied, the
stable rate of sexuality T has the property of evolutionary genetic stability (EGS,
see Eshel and Feldman 1982); namely, T is stable against any invading mutation,
and any other rate of sexuality, when fixed in the population, is unstable against
those mutations that determine, as heterozygotes, rates of sexuality closer to T
than to the rate of sexuality of the wild type (see also Motro 1982a,b, 1983).

Figures 5-8 show the behavior of this stable sexuality rate T when one of the
variables is changed and all the others are fixed as follows: h = 0, k = 0,8 = 0, n
= 3, s = 0, IJ. = 2, r = V2.

A conspicuous property of T, as demonstrated in the figures, is that it is always
positive. Absolute asexuality, T = 0, has not been found stable in any of the
investigated examples. However, when 8 is increased above 0, figures 9 and 10
show that what happens to a y-sexual mutant in an x-sexual population does not
necessarily define a stable rate 'Tas has been the case so far. If 8 is small enough,
such T exists. For larger 8's, Tis locally stable only in the sense that it succeeds
against all a-sexual mutants for a's above some positive threshold, whereas a-
sexual populations for some a's under this threshold fail against highly sexual
mutants with T = 1. For still larger 8's, the only stable sexual rate is T = O.For
larger values of 8, with the rest of the parameters remaining the same, the
situation is illustrated by figures 9 and 10.

We know from the preceding section that a stable sexuality rate T is not
necessarily the sexuality rate that brings the fitness of the population to its
maximum. Let a sexuality rate ~be called best if it brings the total fitness of the

population to a maximum. Using a computer program to calculate q...(T)exactly
from equations (2), we see that for the case in which n = 3,8 = 0, h = 0, and IJ.=
2, the total fitness of the population is maximized for ~ = 0.96. However, the
stable sexuality rate T satisfies 0.74 :5 T :5 0.84 for the different possible values of
the recombination rate. The highest (and closest to ~) value of T is obtained for
r = V2.

SUMMARY

A model of seasonal selection acting on a prime locus with a modifierlocus that
determines the sexuality rate of the individual has been proposed. A fluctuating
environment was assumed, such that in each generation some catastrophe may
occur, in which case the only individuals that survive carry an allele resistant to
the current catastrophe on the prime locus and the other individuals are most
likely exterminated. Under such selection pressure, the proportion of the whole
population that is exterminated depends on the number of possible catastrophes.
For three catastrophes, possibly half to two-thirds but no more of the population
may die (see WeinshallI986). We have investigated how this process affects the
modifier locus that determines the sexuality rate where, for some T, a 'T-sexual
individual is one that produces a proportion Tof its descendants sexually and the
rest asexually.

.
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generations.
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where k = 0,8 = 0.0015, n = 3, s = 0, II-= 2, and r = V2.An unbeatable rate of sexuality atT
"" 0.8 still exists.
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FIG. IO.-Success or failure of a y-mutant in a population with a fixed rate of sexuality x,
where k = 0,1\ = 0.003, n = 3, s = 0, IL= 2, and r = Y2.Two rates of sexuality, Tt = 0 and Tz
= 0.7, are stable only against mutations of small effect, but none is stable against all
mutations.

We have shown that, in general, as long as the catastrophes are intensive
enough, there is one and only one evolutionarilystable sexualityrate T, in the
sense that a T-sexualpopulation is stable in the face of any mutant in the modifier
locus. Likewise, in any other type of population, a T-sexualmutant is likely to
become fixed even if it appears at first in small frequencies. This stable sexuality
rate decreases with the cost of sex and with the duration of the rest period
between two consecutive catastrophes. It increases with the number of possible
catastrophes. At any rate, if the intensity of a catastrophe is high enough, some
positive sexuality rate is always favored over complete asexuality. Moreover, if
the cost of sex is not too high (e.g., a sexual descendant demands up to 1.4 times
the resources needed for an asexual descendant), the fixed sexuality rate is one; in
other words, there is complete sexuality.
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APPENDIX A

FREQUENCIES OF ALLELES IN A PARTIAL-SEXUALITY EQUILIBRIUM

In a T-sexual population, we have defined the vector q = (qt. q2, q3) to indicate the
equilibrium frequencies of At. A2, and A3 as follows: qt. the equilibrium frequency of the
most recently favored allele; q2, the equilibrium frequency of the allele needed for the next
catastrophe; and q3, the equilibrium frequency of the allele needed in the preceding
catastrophe (see WeinshalI1986). Thus, after St. qt. q2, and q3 indicate the frequencies of
At. A2, and A3, respectively.

.
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After random mating and selection of an 5rtype generation, we obtain

freq(A2A2) = Tq~lw,
freq(A2A3)= 2Tq2qy-W,
freq(A2At) = [2Tq2qt + 2(1 - T)IJ./12]/iV

freq(AtAt) = freq(AtA3) = freq(A~3) = 0 ,

for iV,the mean fitness of the population.
However, from the definition of (qlo q2, q3), we know that qlo q2, and q3 indicate the

frequencies of A2, A3, and Alo respectively, after 52. That is,

freq(A2A2) = 2qt - I ,
freq(A2A3) = 2q2 ,

freq(A2At) = 2q3 .
This led us to the equations defining the equilibrium frequencies vector q (eqs. 2).

Result 1:

q~ + q3 = 2q2[T + (1 - T)IJ.]/T. (AI)

Proof: From equation (3) and the definition of iV,Tq3 = 2q2[T+ (1 - T)IJ.] - Tq~;
therefore, q~ + q3 = 2q2[T+ (I - T)IJ.]/T.

Conclusion:

IJ.~ I -+ q3T :S 2M2. (A2)

Result 2:

q2 :S q3 :S qt . .. --- .(A1)

Proof: (a) From equation (AI), q2 + q3 ~ q~ + q3 = 2q2[T + (I - T)IJ.]/T~ 2q2; therefore,
q3 ~ q2. (b) From equation (AI) we get qt ~ Y2,such that q2, q3 S qt.

As a marginal result of the proof of result 2, we obtain result 3.
Result 3:

q2 :S Y4, q3 :S Y2, qt ~ Y2. (A4)

Inserting equation (A4) into equation (AI) obtains result 4.
Result 4:

IJ.~ I -+ q3T ~ % q2 .
Result 5: q2 is a root of the third-degree polynomial

2~q2 + 2q2(~ - Tq2)(~ + T - Tq2) = T~ ~ = 2[T + (I - T)IJ.].

(A5)

(A6)

APPENDIX B

THE PROOF OF LEMMA 3

Note, first, that IJ.*(r)is well defined, since we know that q..(T)I~-tdoes not depend on IJ.
from equations (2). Thus, IJ.*(r)is a function of r only. For

*( ) - 2q3r + 3q2(1 - 2r) + 3q~r+ r q}(q3 - q~IJ. r - ,
q3 + q2(l - 2r) (1 - r) q2q3 + q~(l - 2r)

derivation with respect to r gives

dIJ.*(r) = (2q3 + 3q~)(q2 + q3) - 6q2q3 + ? - 2r)dr [q3 + q2(1 - 2r)]2 I - r)

+ r qj(q3- q~2~
(1 - r) [q2q3+ qW - 2r)]2

qj(q3 - q~
q2q3+ q~(l - 2r)

.
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From equations (A1) and (A3) it follows that q~ + q3 ~ 2q2 and q3 ~ q2. In addition, for
T = 1, q2 = 0.16, q3 = 0.296, and ql = 0.544 (see WeinshaU 1986), such that q3 < 2q2. Thus,

dtJ.*(r) > 6q~ - q3(q2 + q3) > 6q~ - 2q2(q2 + 2q~ = 0
dr [q3 + q2(1 - 2r)]2 [q3 + q2(1 - 2r)j2 .

APPENDIX C

THE PROOF OF LEMMA 4

(a) If a*(T) is defined for a givj:n value T = TO(given tJ.and r), then a*(To) is the only point
in which iJ/,fJ.T(a)/iJaintersects the x-axis from below. From the fact thatf(a) is at most a
fourth-degree°polynomialwith lim..-oof(a) = lim..- -oof(a) = - 00 (lemma 2), it follows that
iJ2f(a)/a2a is strictly positive. Hence, from the theorem of implicit functions, it follows that
a*(T) is defined in the vicinity of TO,that it is continuous there, and that

da*(T)
I

= -iJ2/'fJ.T(a)
1 /

a2/'",TO(a)

IdT T-TO iJaiJT T=TO.U=U*(ToJ a2a U=U*(ToJ .
(b) It follows from Appendix A that, for a T small enough,

ql = ¥2 + 0(1) ,

q2 = T/4tJ.+ O(T) ,

q3 = '12+ 0(1) ,

x = q3T = 'I2T+ O(T) ,

(C1)

which implies that

f(a) = {- [(1 - 2rW2tJ.a2(1- a)]/8tJ.+ r [Y2(1- 2r)tJ.a3(1- a)]/16tJ.2}r + o(r)
(C2)

= (1 - 2r)a2(1 - a)(ra/2tJ. - 1)/16 + o(r) .
Hence, for r ~ '12,the minimumpoint a*(T)off(a) tends, as T- 0, to the minimumpoint of
a2(1 - a) (ral2tJ. - 1),which is readily shown to be of positive value. A similar argument
holds for r = '12.

(c) For Tsuch that a*(T) = T,it followsthat
iJf(a)

I

_2 2 20 = -
iJ = - tJ.[(1 - 2T)-rq2q3r + (2 - 3T)T q2q3(1 - 2r)(q2 + q3)
a U=T

- (3 - 4T>rq~q3r(1 - 2r)] - ~q~(q2 + q3)r

- 2~qjq2r(1 - q3 - r) - 3~q~q3(1 - r)[(1 - 2r) + rq2J.

f

Thus, since T > 0,

T = [q3r+ 2(q2 + q3)(1 - 2r) - 3q2r(1 - 2r)]/{2q3r + 3(q2 + q3)(1 - 2r) - 4q2r(1 - 2r)

- [q~(q2 + q3)r + 2qjq2r(1 - q3 - r) + 3q~q3(1 - r)(1 - 2r + rq~]/f.I.ll2q3}.

Using the results in Appendix A, one can show that

T = [2q3(1 - r) + 2q2(1 - 2r) + q2r(1 - r) + 3q2r2]/{3q3(1 - r) + 3q2(1- 2r) + 4q2r2

- [(ql - q3)q3r + 4q2r(1 - r) + 3q2(1- r)(1 - 2r) + q~r(1- r)]/ } .
Since the numerator is always positive, the denominator must be positive as well for

T > 0, and therefore

T ~ [2q3(1 - r) + 2q2(1- 2r) + 3q2r2]/[3q3(1- r) + 3q2(1- 2r) + 4q2r2] ~ ¥3 .
From Appendix A and the expression above, it follows that Tis approximately ¥3for a

large cost of sex, tJ..independent of r (note that q depends on tJ.).

.
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(d) We show first that a/(a)/aal"'-2 > 0 if > 1, where

a/(a)/aal",-2 = - rq2qh3 - rq~T3- 4r(1 - r)q2qj~ + 4rq2qj~

- 12(1 - r)q~q3T(1- 2r) - 12r(1 - r)q~q3T (C3)

+ [3rq2qj~ + 8(1 - 2r)q~q3T + 8(1 - 2r)q2qh - 20r(1 - 2r)q~q3].

(i) Take r s 1 - 2r, such that r s Y3.
Since r s Y3and q3T~ 7/4q2for > 1 (see eq. AS), it follows, for a part ofthe coefficient

of in equation (C3), that

~~ (1 - 2r)q2qjT - 20r(1 - 2r)q~q3 = (1 - 2r)q2q3 (~~ q3T - 20rq2)

(
80 7 20

)
(C4)

~ (1 - ?r)q2q3 214q2 - Tq2 = 0 .
Since q3 s Y2and q3Ts 2!J.q2for > 1 (see eqs. A4, A2), it follows, for one of the other
elements in equation (C3), that

- rq~~ ~ - rqj~2!J.q2 ~ - rq2qj~ . (C5)

From inserting relations (C4) and (C5) into equation (C3), it is sufficient to show that

>jl (C6)

for

jl = [rq2qj~ + 4r(1 - r)q2q3T - 4rq2qh + 12(1 - r)q~(1 - 2r)

+ 12r(1 - r)q~]/[2rq2q3T + 8(1 - 2r)q~ + 88 (1 - 2r)q2qy2l]. (C7)

Note that, since q3 ~ 714q2,

jl s [2rq2q3T/(1 - 2r) + 2rq2q3T+ 12q~+ 12rq~+ 12,2q~/(1- 2r) - 12rq~

- rq2qh(4 - T)/(1 - 2r)]/[2rq2q3T/(1 - 2r) + q~ + 40q2qy21].

From the assumption of r s Y3and relation (AS), which implies that q2 s '4/7q3Ts "17q3 when
> I, it further follows that

jl s [2rq2q3T/(1 - 2r) + 12q~ + ¥3q2q3T- 12rq~(1 - q2)

- rq2qjT(4 - T - 64/49)/(1 - 2r)]/[2rq2q3T/(1 - 2r) + 12q~ + 4Oq2qy21] ;

thus, jl s 1.
(b) Take r > 1 - 2r, such that Y2~ r> Y3.Since in this case r s Y2,replace equation (C4)

by

(40n)(1 - 2r)q2qjT - 20r(1 - 2r)q~q3 = (1 - 2r)q2q3[(40/7)q3T- 20rq2J (C8)

~ (1 - 2r)q2q3[(40/7)(7/4)q2 - (20/2)q2] = o.
Consequently, jl will be

jl = [rq2qj~ + 4r(1 - r)q2q3T - 4rq2qh + 12(1 - r)q~(1 - 2r)

+ 12r(1 - r)q~]/[2rq2q3T + 8(1 - 2r)q~ + 16(1 - 2r)q2qy7].

Using the same arguments, one obtains

jl s [2rq2q3T/(1 - 2r) + 2rq2q3T+ 12q~(1- r) + 12rq~ + 12r2q~/(1 - 2r)

- rq2qjT(4 - T)/(1 - 2r)]/[2rq2q3T/(1 - 2r) + 8q~ + 16q2qY7].

(C9)

.
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Since I - r ~ ¥3, r ~ V2, q2 ~ V4, and also q2 ~ 4/7q3T for fJ.> I (see eq. AS), it can be shown
that

jl ~ {2rq2q3T/(l - 2r) + 8q~ + q2q3T(l + 12. V2. V4. 4/7)

- rq2qjT[4- T - 12 . V2(4/7)2T]/(l- 2r)}/[2rq2q3T/(l- 2r) + 8q~ + 16q2q317];
thus, jl ~ 1.

Hence, jl ~ I always, which proves that condition (C6) holds for all r and Tas long as
fJ.> 1.

Sincef' (0) < 0 for r > 0 and f' (2) > 0 for fJ.> I, as has been shownfor rand Tgiven,f( a)
has a minimum for any given 0 < T ~ I, 0 ~ r ~ V2,and fJ.> I because of continuity.

APPENDIX D

THE PROOF OF EQUATION (18)

To complete the proof of proposition I, it remains to be shown thatf""To(T*)</"",T°(l). For
this, denote

A = /"",T°(l) - f""TO(T*) .

For x = q3T,we employequation(l5) to obtain

A = (l - T*)[-~r(q2 + q3) - rrq2(l - r - q3)(l + T*)
- q~x(1- r)(l - 2r + rq~(l + T*+ T*2)]

- fJ.(l - T*)[ - rrq2T* - xq2(q2+ q3)(l - 2r)T*2+ rq~q3(l - 2r)T*3].
However, since 8,ho(a)/8al"'-To = 0,

A = A - (l - T*) 8fTO(a)/aal"'-TO

= (l - T*)2q2q3T*2(-{q3r(1 - r - q3) + (2 + lIT*)q2(l - r)(l - 2r + rq2)}

+ fJ.[rq3+ 2(q2 + q3)(l - 2r) - 3rq2(l - 2r)]) .
That is,

sign
A = A* = rq3(fJ.- 1) + rq3(q3 + r) + q2(l - 2r)(l - r)(4fJ. - 2 - I/T*)

+ (l - 2r)fJ.2(q3- q~ - r(1 - r)q~(2+ I/T*) + fJ.r{1- 2r)q2.

(01)

(D2)

Since T* ;:::V2by lemma 4(c),

A* ;:::A** = (fJ.- 1)[rq3 + 4q2(l - r)(l - 2r)] + rq3(q3+ r)

+ (I - 2r)fJ.[2(q3- q~ + rq~ - 4r(1 - r)q~ .
With some calculations one can show, using Appendix A, that if A** achieves its

minimum over -00 < r < 00, this minimum is achieved for r;:::Y2if fJ.> 1. Hence, at least
when fJ.> I, A**(r) obtains its minimum over the interval [0,V2)on either r = V2or r = o. In
either case, since q2 ~ q3 ~ V2from equations (A3) and (A4),

A**(r,fJ.,T)I,= 1/2= V2q3(fJ. - 1) + V2q3(V2 + q3) - q~
;::: V2q3[fJ.- I + (V2- q2) + (q3 - q2)] ;:::0 ,

A**(r,fJ.,T)I,-o= 4q2(fJ.- 1) + 2fJ.(q3- q~ ;:::o.
Thus, A* ;:::A** ;:::0, and, therefore, A ;:::0, which completes the proof.

.
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