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Abstract

The infrequent occurrence of overfitting in deep neural net-
works is perplexing: contrary to theoretical expectations, in-
creasing model size often enhances performance in practice.
But what if overfitting does occur, though restricted to spe-
cific sub-regions of the data space? In this work, we propose a
novel score that captures the forgetting rate of deep models on
validation data. We posit that this score quantifies local over-
fitting: a decline in performance confined to certain regions of
the data space. We then show empirically that local overfitting
occurs regardless of the presence of traditional overfitting.
Using the framework of deep over-parametrized linear mod-
els, we offer a certain theoretical characterization of forgotten
knowledge, and show that it correlates with knowledge for-
gotten by real deep models. Finally, we devise a new ensem-
ble method that aims to recover forgotten knowledge, relying
solely on the training history of a single network. When com-
bined with knowledge distillation, this method will enhance
the performance of a trained model without adding inference
costs. Extensive empirical evaluations demonstrate the effi-
cacy of our method across multiple datasets, contemporary
neural network architectures, and training protocols.

1 Introduction

Overfitting a training set is considered a fundamental chal-
lenge in machine learning. Theoretical analyses predict that
as a model gains additional degrees of freedom, its capacity
to fit a given training dataset increases. Consequently, there
is a point where the model becomes too specialized for a
particular training set, leading to an increase in its gener-
alization error. In deep learning, one would expect to see
increased generalization error as the number of parame-
ters and/or training epochs increases. Surprisingly, even vast
deep neural networks with billions of parameters seldom
adhere to this expectation, and overfitting as a function of
epochs is almost never observed (Liu et al. 2022). Typically,
a significant increase in the number of parameters still re-
sults in enhanced performance, or occasionally in peculiar
phenomena like the double descent in test error (Annavarapu
2021), see Section 3. Clearly, there exists a gap between our
classical understanding of overfitting and the empirical re-
sults observed when training modern neural networks.
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Figure 1: Local overfitting and forgetting in a binary prob-
lem, where blue and orange denote the different classes,
and circles mark the validation set. The initial (left) and fi-
nal (right) separators of a hypothetical learning method are
shown, where ® marks prediction errors. Clearly the final
classifier has a smaller generalization error, but now one
point at the top is *forgotten’.

To bridge this gap, we present a fresh perspective on over-
fitting. Instead of solely assessing it through a decline in val-
idation accuracy, we propose to monitor what we term the
model’s forget fraction. This metric quantifies the portion of
test data (or validation set) that the model initially classifies
correctly but misclassifies as training proceeds (see illustra-
tion in Fig. 1). Throughout this paper we term the decline in
test accuracy as “forgetting”, to emphasize that the model’s
ability to correctly classify portions of the data is reduced.
In Section 3, we investigate various benchmark datasets, ob-
serving this phenomenon even in the absence of overfitting
as conventionally defined, i.e., when test accuracy increases
throughout. Notably, this occurs in competitive networks de-
spite the implementation of modern techniques to mitigate
overfitting, such as data augmentation and dropout. Our em-
pirical investigation also reveals that forgetting of patterns
occurs alongside the learning of new patterns in the training
set, explaining why the traditional definition of overfitting
fails to capture this phenomenon.

Formal investigation of the phenomenon of forgotten
knowledge is challenging, particularly in the context of deep
neural networks which are not easily amenable to formal
analysis. Instead, in Section 4 we adopt the framework
of over-parameterized deep linear networks. This frame-
work involves non-linear optimization and has previously
offered valuable insights into the learning processes of prac-
tical deep networks (Fukumizu 1998; Saxe, McClelland, and



Ganguli 2014; Arora, Cohen, and Hazan 2018; Arora et al.
2019; Hu, Xiao, and Pennington 2020). Within such models,
employing gradient descent for learning reveals a straight-
forward and elegant characterization of the model’s evolu-
tion (Hacohen and Weinshall 2022).

We expand upon this analysis, deriving an analytical de-
scription of the data points forgotten at each gradient de-
scent step. As this analysis pertains specifically to deep lin-
ear models, it’s crucial to correlate its findings with the for-
gotten knowledge in competitive neural networks. Intrigu-
ingly, when comparing these findings with the same image
datasets utilized in our experiments, we observe significant
overlap between the sets. This implies that the proposed
theoretical characterization might offer partial insight into
the phenomenon of forgotten knowledge and the underlying
causes of local overfitting.

Based on the empirical observations reported in Section 3,
we propose in Section 5 a method that can effectively reduce
the forgetting of test data, and thus improve the final accu-
racy and reduce overfitting. More specifically, we propose a
new prediction method that combines knowledge gained in
different stages of training. The method delivers a weighted
average of the class probability output vector between the
final model and a set of checkpoints of the model from mid-
training, where the checkpoints and their weights are cho-
sen in an iterative manner using a validation dataset and our
forget metric. The purpose is two-fold: First, an improve-
ment upon the original model by our method will serve as
another strong indication that models indeed forget useful
knowledge in the late stages of training. Second, to provide a
proof-of-concept that this lost knowledge can be recovered,
even with methods as simple as ours.

In Section 6 we describe the empirical validation of our
method in a series of experiments over image classification
datasets with and without label noise, using various network
architectures, including in particular modern networks over
Imagenet. The results indicate that our method is universally
useful and generally improves upon the original model, thus
fulfilling its two mentioned goals. When compared with al-
ternative methods that use the network’s training history, our
method shows comparable or improved performance, while
being more general and easy to use (both in implementation
and hyper-parameter tuning). Unlike some methods, it does
not depend on additional training choices that require much
more time and effort to tune the new hyper-parameters.

Our main contributions. (i) A novel perspective on over-
fitting, capturing the notion of local overfitting. (ii) Empir-
ical evidence that overfitting occurs locally even without a
decrease in overall generalization. (iii) Analysis of the rela-
tion between forgetting and PCA. (iv) A simple and effective
method to reduce overfitting, and its empirical validation.

2 Related Work

Study of forgetting in prior work. Most existing stud-
ies examine the forgetting of training data, where certain
training points are initially memorized but later forgotten.
This typically occurs when the network cannot fully mem-
orize the training set. In contrast, our work focuses on the
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forgetting of validation points, which arises when the net-
work successfully memorizes the entire training set. Build-
ing on Arpit et al. (2017), who show that networks first
learn “’simple” patterns before transitioning to memorizing
noisy data, we analyze the later stages of learning, particu-
larly in the context of the double descent phenomenon. An-
other related but distinct phenomenon is “catastrophic for-
getting” (McCloskey and Cohen 1989), which occurs in con-
tinual learning settings where the training data evolves over
time—unlike the static training scenario considered here.

Ensemble learning. Ensemble learning has been studied
extensively (see Polikar 2012; Ganaie et al. 2022; Yang, Lv,
and Chen 2023). Our work belongs to a line of works called
“implicit ensemble learning”, in which only a single network
is learned in a way that “mimics” ensemble learning (Srivas-
tava et al. 2014). Utilizing checkpoints from the training his-
tory as a ’cost-effective’ ensemble has also been considered.
This was achieved by either considering the last epochs and
averaging their probability outputs (Xie, Xu, and Chuang
2013), or by employing exponential moving average (EMA)
on all the weights throughout training (Polyak and Juditsky
1992). The latter method does not always succeed in reduc-
ing overfitting, as discussed in (Izmailov et al. 2018).

Several methods (Izmailov et al. 2018; Garipov et al.
2018; Huang et al. 2017) modify the training protocol to
converge to multiple local minima, which are then com-
bined into an ensemble classifier. While these approaches
show promise (Noppitak and Surinta 2022), they add com-
plexity to training and may even hurt performance (Guo, Jin,
and Liu 2023). Our comparisons (see Table 3) demonstrate
that our simpler method either matches or outperforms these
techniques in all studied cases.

Ensemble methods can impose significant computational
demands during inference, especially for large ensembles.
Knowledge distillation (Hinton, Vinyals, and Dean 2015)
addresses this challenge by training a single student model
to replicate the ensemble’s predictions, effectively eliminat-
ing the increased computational costs. This approach typ-
ically maintains the ensemble’s performance and, in high-
noise scenarios, may outperform the ensemble itself (Jeong
and Chung 2024; Stern, Shwartz, and Weinshall 2024).

Studies of overfitting and double descent. Double descent
with respect to model size has been studied empirically in
(Belkin et al. 2019; Nakkiran et al. 2021), while epoch-wise
double descent (which is the phenomenon analyzed here)
was studied in (Stephenson and Lee 2021; Heckel and Yil-
maz 2020). These studies analyzed when and how epoch-
wise double descent occurs, specifically in data with label
noise, and explored ways to avoid it (sometimes at the cost
of reduced generalization). Essentially, our research identi-
fies a similar phenomenon in data without label noise. It is
complementary to the study of ”benign overfitting”, e.g., the
fact that models can achieve perfect fit to the train data while
still obtaining good performance over the test data.

3 Opverfitting Revisited

The textbook definition of overfitting entails the co-
occurrence of increasing train accuracy and decreasing gen-
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Figure 2: (a)-(b): Blue denotes test accuracy (Y -axis) as a function of epoch (X -axis). Among those correctly recognized in
each epoch e, orange denotes the fraction that remains correctly recognized at the end. The test accuracy (blue) shows a clear
double ascent of accuracy, which is much less pronounced in the orange curve. During the decrease in test accuracy - the range
of epochs between the first and second dashed red vertical lines - the large gap between the blue and orange plots indicates the
fraction of test data that has been correctly learned in the first ascent and then forgotten, without ever being re-learned in the
later recovery period of the second ascent. (c): The difference between the number of clean and noisy datapoints at each epoch
during the second ascent of test accuracy (the epochs after the second dashed red vertical line), counting datapoints with large
loss only. Positive (negative) value indicates that clean (noisy) datapoints are more dominant in the corresponding epoch.

eralization. Let acc(e, S) denote the accuracy over set S in
epoch e - some epoch in mid-training, F the total number of
epochs, and T the test' dataset. Using test accuracy to ap-
proximate generalization, this implies that overfitting occurs
at epoch e when acc(e, T') > acc(E,T).

We begin by investigating the hypothesis that portions of
the test data T’ may be forgotten by the network during train-
ing. When we examine the ’epoch-wise double descent’,
which frequently occurs during training on datasets with sig-
nificant label noise, we indeed observe that a notable forget-
ting of the test data coincides with the memorization of noisy
labels. Here, forgetting serves as an objective indicator of
overfitting. When we further examine the training of mod-
ern networks on standard datasets (devoid of label noise),
where overfitting (as traditionally defined) is absent, we dis-
cover a similar phenomenon (though of weaker magnitude):
the networks still appear to forget certain sub-regions of the
test population. This observation, we assert, signifies a sig-
nificant and more subtle form of overfitting in deep learning.

Local overfitting. Let M. denote the subset of the test data
mislabeled by the network at some epoch e. We define below
two scores L. and F:

acc(e, Mg) - |Mg|
7|

CLCC(E, Me) i ‘Me|
T

F— L= M
The forget fraction F, represents the fraction of test points
correctly classified at epoch e but misclassified by the final
model. L. represents the fraction of test points misclassified
at epoch e but correctly classified by the final model. The
relationship acc(E, T) = acc(e, T) + L. — F, follows?. In
line with the classical definition of overfitting, if L. < F,,
overfitting occurs since acc(E,T) < acc(e,T).

'Below, "test set’ and "validation set’ are used interchangeably.
2acc(E,T) — L. = acc(e, T) — F, is the fraction of test points
correctly classified in both e and E.
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But what if L, > F, Ve? By its classical definition over-
fitting does not occur since the test accuracy increases con-
tinuously. Nevertheless, there may still be local overfitting
as defined above, since I, > 0 indicates that data has been
forgotten even if L, > F..

Reflections on the epoch-wise double descent. Epoch-
wise double descent (see Fig. 2) is an empirical observation
(Belkin et al. 2019), which shows that neural networks can
improve their performance even after overfitting, thus caus-
ing double descent in test error during training (or double-
ascent in test accuracy). This phenomenon is characteristic
of learning from data with label noise, and is strongly re-
lated to overfitting since the dip in test accuracy co-occurs
with the memorization of noisy labels.

We examine the behavior of score F, in this context and
make a novel observation: when we focus on the fraction of
data correctly classified by the network during the second
rise in test accuracy, we observe that the data newly mem-
orized during these epochs often differs from the data for-
gotten during the overfitting phase (the dip in accuracy). In
fact, most of this data has been previously misclassified (see
Figs. 2a-2b). Fig. 2c further illustrate that during the later
stages of training on data with label noise, the majority of
the data being memorized is, in fact, data with clean labels,
which explains the second increase in test accuracy. It thus
appears that epoch-wise double descent is caused by the si-
multaneous learning of general (but hard to learn) patterns
from clean data, and irrelevant features of noisy data.

Forgetting in the absence of label noise When training
deep networks on visual benchmark datasets without added
label noise, double descent rarely occurs, if ever. In contrast,
we observe that local overfitting, as captured by our new
score F,, commonly occurs.

To show this, we trained various neural networks
(ConvNets: Resnet, ConvNeXt; Visual transformers: ViT,
MaxViT) on various datasets (CIFAR-100, TinyImagenet,
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sizes, while F, increases with network size. (b) Within the
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Imagenet) using a variety of optimizers (SGD, AdamW) and
learning rate schedulers (cosine annealing, steplr). In Fig. 3a
we report the results, showing that all networks forget some
portion of the data during training as in the label noise sce-
nario, even if the test accuracy never decreases. Fig. 3b
demonstrates that this effect is not simply due to random
fluctuations: many test examples that are incorrectly classi-
fied post training have been correctly classified during much
of the training. These results are connected to overfitting in
Fig. 3a: when investigating larger models and/or relatively
small amounts of train data, which are scenarios that are ex-
pected to increase overfitting based on theoretical consid-
erations, we see larger forget fraction I, (see Figs. 5-6 in
App. A3 for additional results).

In summary, we see that neural networks can, and often
will, “forget” significant portions of the test population as
their training proceeds. In a sense, the networks are overfit-
ting, but this only occurs at some limited sub-regions of the
world. The reason this failing is not captured by the classi-
cal definition of overfitting is that the networks continue to
learn new general patterns simultaneously. In Section 5 we
discuss how we can harness this observation to improve the
network’s performance.

4 Forgotten Knowledge: Theory & Exps

To gain insight into the nature of knowledge forgotten while
training a deep model with Gradient Descent (GD), we an-
alyze over-parameterized deep linear networks trained by
GD. These models are constructed through the concatena-
tion of linear operators in a multi-class classification sce-
nario: y = Wy, - ... - Wix, where x € R<. For simplicity,
we focus on the binary case with two classes, suggesting
that similar qualitative outcomes would apply to the more
general multi-class model. Accordingly, we redefine the ob-
jective function as follows:

min > Wy - Waix; — gl 2
i=1

Wi,...,.Wg, 4

3 All references to appendices are to be found in the complete
archived version (Stern, Yaacoby, and Weinshall 2024).
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Above the matrices {W; }-, represent the 2D matrices cor-
responding to L layers of a deep linear network, and points
{x;}"_, represent the training set with labeling function
y; = %1 for the first and second classes, respectively. Note
that w = Hll: 1, Wi is arow vector that defines the resulting
separator between the classes. The classifier is defined as:

f(x) = sign (Hzl:L Wlx) forx € RY.

Preliminaries. Letw™ = Hll: I Wl(”) represent the sep-

arator after n GD steps, where w™ = [w(™, ... w("] €
R, For convenience, we rotate the data representation so
that its axes align with the eigenvectors of the data’s covari-
ance matrix. Hacohen and Weinshall (2022) showed that the
convergence rate of the ;' element of w with respect to n is
exponential, governed by the corresponding j*" eigenvalue:

0 t
wj(-n) o )\?wj( )4 [1— AJJws?, Aj=1—vs;L (3)
Here, w(®) denotes the separator at initialization, w°?* de-
notes the optimal separator (which can be derived analyti-
cally from the objective function), s; represents the 4 sin-
gular value of the data, and + is the learning rate. Notably,

while w°P! is unique, the specific solution at convergence
(W E | is not.

4.1 Forget Time in Deep Linear Models

Let A denote diag({);}) - a diagonal matrix in R*¢, and I
the identity matrix. It follows from (3) that
w™ ~ wOA” + woP [ — A" 4)

We say that a point is forgotten if it is classified cor-
rectly at initialization, but not so at the end of training.
Let x denote a forgotten datapoint, and let N denote the
number of GD steps at the end of training. Since by defi-
nition f(x) = sign(w™x), it follows that x is forgotten iff
{w®yx > 0} and {wMyx < 0}.

Let us define the forget time of point x as follows:

Definition 1 (Forget time). GD iteration 1 that satisfies

'w(ﬁ)yx <0 5)

w™yx >0 Vn <n

Claim 1. Each forgotten point has a finite forget time n.

Proof. Since {w@yx > 0} and {w™Myx < 0}, (5) fol-
lows by induction. O

Note that Def 1 corresponds with the Forget time seen in
deep networks (cf. Fig. 3b). The empirical investigation of
this correspondence is discussed in App. B (see Fig. 7).

To characterize the time at which a point is forgotten, we
inspect the rate with which F(n) = w(yx changes with
n. We begin by assuming that the learning rate -y is infinites-
imal, so that terms of magnitude O(~+?) can be neglected.



Using (4) and the Taylor expansion of A; from (3)
F(n) ~ (w<0>

= w° nyrZ o _

Opt> A"yx + wPlyx

t
Op )\"y:r]

= w° yx + Z — opt [l—nvsJ-L+O('y2)]y{L'j

= wOyx —nyL Z(wj(p) w)ys;z; + O(7?)

=1
It follows that
dF 0 o t
0 LZ O wsia+0(2) (6

Discussion. Recall that {s;} is the set of singular values,
ordered such that sy > s > --- > sg, and x; is the pro-
jection of point x onto the j™ eigenvector. From (6), the rate
at which a point is forgotten, if at all, depends on vector
[sj;];, in addition to the random vector w(®) — " and la-
bel y. All else being equal, a point will be forgotten faster if
the length of its spectral decomposition vector [x;] is domi-
nated by its first components, indicating that most of its mass
is concentrated in the leading principal components.

4.2 Spectral Properties of Forgotten Images

When working with datasets of natural images, where it
has been shown that the singular values decrease rapidly at
an approximately exponential rate (Hyvirinen, Hurri, and
Hoyer 2009), the role of the singular values becomes even
more pronounced. Hacohen and Weinshall (2022) argued
that in the limiting case, the components of the separating
hyperplane w°P will be learned sequentially, one at a time.
In essence, the model first captures the projection of w°P?
onto the data’s leading eigenvector, then onto the subsequent
eigenvectors in order. For similar considerations, this rea-
soning also holds in the multi-class scenario.

This analysis suggests that PCA of the raw data governs
the learning of the linear separator. We therefore hypothe-
size that forgotten points with substantial projections onto
the leading principal components are more likely to be for-
gotten early, and vice versa. To empirically test this predic-
tion, we must first establish some key definitions.

Let WPt ¢ R*? denote the optimal solution of the
multi-class linear model with ¢ classes and the Lo loss. Let
W (k) denote the projection of WP on the first k principal
components of the raw data.

Definition 2. Let S(k) denote the set of points that are cor-
rectly classified by W (k') for some k' > k, but incorrectly
classified by W°Pt. Similarly, let M(n) denote the set of
points correctly classified by the trained deep model after
n' > n epochs, but incorrectly classified by the final model.

To empirically investigate the prediction above, we cor-
relate the two sets S(k) and M (n) after establishing cor-
respondence n = ak + [ between the ranges of indices k
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and n. We examined this correlation using the CIFAR100
dataset, a linear model trained using the images’ RGB rep-
resentation, and the corresponding deep model from the ex-
periments reported in Section 6. Interestingly, the respective
sets S(k) and M(n) show significant correlation, as seen
in Fig. 4. Since deep networks also learn a representation,
we repeated the experiment with alternative learned feature
spaces, obtaining similar results (see Fig. 8 in App. B).
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Figure 4: Empirical results, correlating the sets of examples
forgotten during the training of a DNN and those forgotten
during the training of a deep linear network. Note in (d) that
early on, roughly % of the points to be forgotten by our deep
model are also forgotten by the deep linear model.

S Recover Forgotten Knowledge: Algorithm

In Section 3 we showed that neural networks often achieve
better performance in mid-training on a subset of the test
data, even when the test accuracy is monotonically increas-
ing with training epochs. Here we aim to integrate the
knowledge obtained in mid- and post-training epochs, dur-
ing inference time, in order to improve performance. To this
end we must determine: (i) which versions of the model to
use; (ii) how to combine them with the post-training model;
and (iii) how to weigh each model in the final ensemble.

Choosing an early epoch of the network. Given a set of
epochs {1,..., E'} and corresponding forget rates {F,}.,
we first single out the model n 4 obtained at epoch A =
argmazecyi,... gy Fe. This epoch is most likely to correctly
fix mistakes of the model on "forgotten” test data.

Combining the predictors. Next, using validation data we
determine the relative weights of the two models - the fi-
nal model n g, and the intermediate model n 4 with maximal
forget fraction. Since the accuracy of ng is typically much
higher than n 4, and in order not to harm the ensemble’s per-
formance, we expect to assign ng a higher weight.

Improving robustness. To improve our method’s robust-
ness to the choice of epoch A, we use a window of epochs
around A, denoted by {ns—_w,..., 04, ..., WA+ }- The vec-
tors of probabilities computed by each checkpoint are aver-



aged before forming an ensemble with ng. In our experi-
ments, we use a fixed window w = 1, achieving close to op-
timal results as verified in the ablation study (see App. G.9).

Iterative selection of models. As we now have a new pre-
dictor, we can find another alternative predictor from the
training history that maximizes accuracy on the data mis-
classified by the new predictor, in order to combine their
knowledge as described. This can be repeated iteratively, un-
til no further improvement is achieved.

Choosing hyper-parameters. In order to compute F, and
assign optimal model weights and window size, we use a
validation set, which is a part of the labeled data not shown
to the model during initial training. This is done post train-
ing as it has no influence over the training process, and
thus doesn’t incur additional training cost. We follow com-
mon practice, and show in App. G.1 that after optimizing
these hyper-parameters, it is possible to retrain the model on
the complete training set while maintaining the same hyper-
parameters. The performance of our method thus trained is
superior to alternative methods trained on the same data.

Pseudo-code for our method. We name our method
KnowledgeFusion (KF), and provide its pseudo-code in
Alg 1. There, we call functions that: (i) calculate the for-
get value per epoch on some validation data, given the pre-
dictions at each epoch (calc_early_forget); and (ii) calculate
the probability of each class for a given example and a list
of predictors (get_class_probs).

Algorithm 1: Knowledge Fusion (KF)

Input: Checkpoints of trained model {no,...,ng}, W, test-pt ©
Output: prediction for x
{A1,...,Ar}. { €1, ...,ex } < calc_early_forget({ no,...ne})
prob < get_class_probs|E]
fori < 1tok do
proba < mean(get_class_probs[A4; —w : A; + w))
prob < g; x proba + (1 — &;) * prob
end for
prediction < argmax(prob)
Return prediction

Knowledge distillation post-processing. The proposed
method enhances the performance of any trained model with
a minor increase in training costs. However, ensemble clas-
sifiers incur higher inference costs. To address this, knowl-
edge distillation can be employed with a further increase in
training costs, to deliver a single model that achieves perfor-
mance comparable to the ensemble while maintaining infer-
ence costs comparable to the original model.

6 Empirical Evaluation
6.1 Main Results

In this section we evaluate the performance of our method
as compared to the original predictor, i.e. the network after
training, and other baselines. We use various image classi-
fication datasets, neural network architectures, and training
schemes. The main results are presented in Tables 1-3, fol-
lowed by a brief review of our extensive ablation study and
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additional comparisons in Section 6.2. All references to ap-
pendices below are to be found in the complete archived ver-
sion of this paper (Stern, Yaacoby, and Weinshall 2024).

Specifically, in Table 1 we report results while using mul-
tiple architectures trained on CIFAR-100, TinyImagenet and
Imagenet, with different learning rate schedulers and opti-
mizers. For comparison, we report the results of both the
original predictor and some baselines. Additional results for
scenarios connected to overfitting are shown in Table 2 and
App. F, where we test our method on these datasets with in-
jected symmetric and asymmetric label noise (see App. E),
as well as on a real label noise dataset (AnimallON). Note
that, as customary, the label noise exists only in the train data
while the test data remains clean for model evaluation.

In Table 3 and App. F we compare our method to addi-
tional methods that adjust the training protocol itself, using
both clean and noisy datasets. We employ these methods us-
ing the same network architecture as our own, after a suit-
able hyper-parameter tuning.

In each experiment we use half of the test data for vali-
dation, to compute our method’s hyper-parameters (the list
of alternative epochs and {e;}), and then test the result
on the remaining test data. The accuracy reported here is
only on the remaining test data, averaged over three ran-
dom splits of validation and test data, using different random
seeds. In App. G.1 we report results on the original train/test
split, where a subset of the training data is set aside for
hyper-parameter tuning. As customary, these same param-
eters are later used with models trained on the full training
set, demonstratively without deteriorating the results.

Baselines Our method incurs the training cost of a single
model, and thus, following the methodology of (Huang et al.
2017), we compare ourselves to methods that require the
same amount of training time. The first group of baselines
includes methods that do not alter the training process:

* Single network: the original network, after training.
Horizontal ensemble (Xie, Xu, and Chuang 2013): this
method uses a set of epochs at the end of the training, and
delivers their average probability outputs (with the same
number of checkpoints as we do).

Fixed jumps: this baseline was used in (Huang et al.
2017), where several checkpoints of the network, equally
spaced through time, are taken as an ensemble.

The second group includes methods that alter the train-
ing protocol. While this is not a directly comparable set
of methods, as they focus on a complementary way to im-
prove performance, we report their results in order to further
validate the usefulness of our method. This group includes
Snapshot ensemble (Huang et al. 2017), Stochastic Weight
Averaging (SWA) (Izmailov et al. 2018) and Fast Geomet-
ric Ensembling (FGE) (Garipov et al. 2018), see details in
App. D. Comparisons to additional baselines that are rel-
evant to resisting overfitting, including early stopping and
test time augmentation, are discussed in App. G.5. Full im-
plementation details are provided in App. E.

6.2 Ablation Study

We conducted an extensive ablation study in order to in-
vestigate the limitations, and some practical aspects, of our



Method/Dataset | CIFAR-100 TinyImagenet Imagenet

architecture Resnet18 Resnet18 Resnet50 | ConvNeXtlarge | ViT16base | MaxViT tiny
single network 78.07 £ .28 64.95 + .24 75.74 £ .14 82.92 + .11 79.16 £ .1 82.51 + .15
horizontal (i) 78.15 £+ .17 64.89 4+ .18 76.46 + .14 83.13 £.1 79.11 £ .1 82.77+ .1
fixed jumps (i) 78.04 + .23 66.54 &+ .35 75.5 £ .09 82.37+ .1 78.67 + .08 83.38 +£.1
KF (ours) (i) 78.33+ .08 || 66.98+.37 | 75.88+.14 | 83.18+.16 | 79.93+.11 | 83.34+ .04
horizontal (00) 78.23 + .17 65.11 + .3 76.42 + .1 83.02 + .06 79.53 + .13 82.93 + .14
fixed jumps (o00) | 79.17 £ .08 68.24 £+ .38 75.72 £ .18 83.86 + .06 79.11 £ .13 83.78 + .15
KF (ours) (c0) 79.13 + .14 68.5 + .36 76.52 + .16 83.96 + .09 80.34 + .08 | 83.81 + .14
improvement | 1.05+.14 || 354+.14 || .78+.04 | 1.03+13 | 1.17+.08 | 1.29+.02

Table 1: Mean (over random validation/test splits) test accuracy (in percent) and standard error on image classification datasets,
comparing our method and baselines described in the text. The last row shows the improvement of the best performer over the
single network. Suffixes: (i) denotes a limited budget scenario, in which we use our method in a non-iterative manner; (co)
denotes the unlimited budget scenario, where we use our full iterative version. In each case, the baselines employ the same

number of checkpoints as our method.

Method/Dataset | Animall0N CIFAR-100 asym CIFAR-100 sym TinyImagenet

% label noise 8% 20% ‘ 40% 20% ‘ 40% 20% ‘ 40%
single network 85.9+ .3 67.1+.5 | 494+ .3 65.4+.3 | 56.9+.1 56.2+.2 | 49.8+.3
fixed jumps (c0) 871+ 4 73.9+.1 | 599+ .6 728+ .1 66.5 + .1 60.0+.8 | 54.16 .3
horizontal (00) 86.3 £ .3 7344+ .1 | 585+ .1 7114+ .38 | 65.2+.1 59.3+.3 | 51.7+ .2
KF (ours) (o0) 878+ .4 742+.1|621+.5 | 728+.1 | 67.0+.1 || 628+.2 | 570+t .5
improvement | 19+4 [ 71+£6 [126+.2 | 74+ 4 [101+.1] 66+.1 | 72+.1

Table 2: Mean test accuracy (in percent) and standard error of Resnet 18, comparing our method and the baselines on datasets
with large label noise and significant overfitting. We include the Animal10N dataset, which has innate label noise.

Method/Dataset | CIFAR-100 || Animall0N CIFAR-100 asym CIFAR-100 sym

% label noise 0% H 8% H 20% | 40% H 20% | 40%
FGE (c0) 789+ 4 86.5 £ 0.6 67.1+.2 | 481+ .3 66.5+.1 | 52.1+.1
SWA (00) 78.8+ .1 88.1+.2 66.6 .1 | 46.9+ .2 65.6 .4 | 50.0%+.1
snapshot (00) 784+ .1 86.8 £ .3 721+ .4 | 528+ .6 70.8+.5 | 63.8+.2
KF (ours) (c0) 79.3 + .2 878+ .4 742+.1|621+.5 | 728+.1 | 67.0+.1

Table 3: Mean test accuracy of Resnet18, using for baseline methods that alter the training procedure.

method. Due to space limitation, we only provide here a
brief overview of the results, and postpone the full descrip-
tion to App. G. The results can be summarized as follows:
(i) §G.1 shows that a separate validation set is not really
necessary for the method to work well. (i) §G.2 investi-
gates how many checkpoints are needed for the method to
be effective, showing that only 5 — 10% of the past check-
points are sufficient. (iii) §G.3 investigates the added value
of our method when using only a partial hyper-parameter
search, which leads to sub-optimal training. Interestingly,
our method is shown to be even more beneficial in the sub-
optimal regime, with a smaller gap between the optimal
and sub-optimal networks. (iv) §G.4 shows that our method
is effective in a transfer learning scenario, when using a
pre-trained network. (v) §G.5 shows that our method out-
performs Exponential-Moving-Average (EMA), early stop-
ping and test time augmentation. (vi) §G.6 shows that our
method’s benefit increases as the number of parameters
grows. (vii) §G.7 shows that much of the improvement of a
regular ensemble of independent networks can often be ob-
tained by using our method at a much lower cost. (viii) §G.8
shows that our method does not have negative effects on the
model’s fairness. (ix) §G.9 shows that using a window of
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size w=1 is both necessary and near optimal.

7 Summary and Conclusions

We revisited the problem of overfitting in deep learning,
proposing to track the forgetting of validation data in or-
der to detect local overfitting. We connected our new per-
spective with the epoch wise double descent phenomenon,
empirically extending its scope while demonstrating that a
similar effect occurs in benchmark datasets with clean la-
bels. Inspired by these new empirical observations, we con-
structed a simple yet general method to improve classifica-
tion at inference time. We then empirically demonstrated its
effectiveness on many datasets and modern network archi-
tectures. The method improves modern networks by around
1% accuracy over Imagenet, and is especially useful in some
transfer learning settings where its benefit is large and its
overhead is very small. Most importantly, the success of the
method to improve upon the original model shows that in-
deed models forget useful knowledge at the late stages of
learning, and serves as a proof of concept that recovering
this knowledge can be useful to improve performance.
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