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Abstract

Deep neural networks have become the method of choice
for solving many classification tasks, largely because they
can fit very complex functions defined over raw data. The
downside of such powerful learners is the danger of over-
fit. In this paper, we introduce a novel ensemble classifier
for deep networks that effectively overcomes overfitting by
combining models generated at specific intermediate epochs
during training. Our method allows for the incorporation of
useful knowledge obtained by the models during the overfit-
ting phase without deterioration of the general performance,
which is usually missed when early stopping is used.
To motivate this approach, we begin with the theoretical
analysis of a regression model, whose prediction – that the
variance among classifiers increases when overfit occurs – is
demonstrated empirically in deep networks in common use.
Guided by these results, we construct a new ensemble-based
prediction method, where the prediction is determined
by the class that attains the most consensual prediction
throughout the training epochs. Using multiple image and
text classification datasets, we show that when regular
ensembles suffer from overfit, our method eliminates the
harmful reduction in generalization due to overfit, and often
even surpasses the performance obtained by early stopping.
Our method is easy to implement and can be integrated with
any training scheme and architecture, without additional
prior knowledge beyond the training set. It is thus a practical
and useful tool to overcome overfit. Code is available at
https://github.com/uristern123/United-We-Stand-Using-
Epoch-wise-Agreement-of-Ensembles-to-Combat-Overfit.

1 Introduction
Deep supervised learning has achieved exceptional results
in various image recognition tasks in recent years. This im-
pressive success is largely attributed to two factors – ready
access to very large annotated datasets, and powerful archi-
tectures involving a huge number of parameters, thus capa-
ble of learning very complex functions from large datasets.
However, when training very large models, we face the risk
of overfit – when models are fine-tuned to irrelevant details
in the training set. It is defined here as the co-occurrence
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(a) Illustrative example with 3 models (b) Final predictions

Figure 1: An illustrative example, showing the hypothetical behav-
ior of an ensemble of size 3. (a) Visualization of each model’s pre-
diction over time, given as input a car image falsely labeled as a
banana. (b) The final prediction of the 3 models (top row), regular
ensemble (bottom left), and our method (bottom right).

of increase in training accuracy and decrease in test accu-
racy, which implies poorer generalization as training pro-
ceeds. Not surprisingly, given the gravity of this issue, a va-
riety of measures have been developed through the years to
combat overfit, as reviewed in Section 2.

One important cause of overfit in deep learning is the
existence of false labels in the dataset (also termed ”noisy
labels”), which the network nevertheless is able to memo-
rize. Empirically, such noisy labels are known to be memo-
rized late by deep networks (Arpit et al. 2017), resulting in
overfit - errors that occur later in training. As deep learning
requires large annotated datasets, the problem of false la-
bels often arises in real applications, medical data being an
important example (Karimi et al. 2020), where the reliable
labeling of data is expensive. Moreover, cheap alternatives
such as crowd-sourcing or automatic labeling typically in-
troduce noisy labels to the dataset (Nicholson, Sheng, and
Zhang 2016). It is thus important to develop additional tools
for combating overfit, especially heavy overfit caused by
noisy labels, which is our goal in this paper.

Many methods have been developed to reduce overfit (See
Section 2), often by adding some form of regularization to
the network’s training. One important example is early stop-
ping, where the training is concluded ahead of time to avoid
overfit. The problem with early stopping is that models can
learn useful features from the data even as they are overfit-
ting, which raises the need for additional methods that re-
duce overfit without limiting the training or the model.

Our proposed method belongs to the family of deep en-
semble classifiers. Differently from most methods, our new
ensemble classifier does not only consider the final predic-
tions of the networks in the ensemble, but also tracks the



networks’ responses as learning proceeds. In this context,
we recall recent empirical findings (Hacohen, Choshen, and
Weinshall 2020; Pliushch et al. 2021), which show that when
the predictions of networks over the train and test data are
tracked through time, almost all the networks will either pre-
dict correctly the correct label or almost all will fail. These
findings imply that deep networks demonstrate high agree-
ment per epoch in their predictions of correct labels. But
while all the networks are shown to succeed together, they
may still fail in different ways, as visualized in Fig. 1. Here
we pursue the hypothesis that such diversity can be ex-
ploited to distinguish between false predictions and cor-
rect ones, most effectively when overfit occurs.

Our work begins by investigating the hypothesis men-
tioned above, where we study networks’ agreement over
false prediction both theoretically and empirically. We start
with the theoretical analysis of a regression model (Sec-
tion 4.1), which reinforces the intuition that overfit increases
the prediction variance between linear models. Accordingly,
we make two conjectures: (i) ensembles become more ef-
fective when overfit occurs; (ii) the agreement between net-
works is reduced when overfit occurs. These conjectures are
verified empirically in Section 4.2 while evaluating deep net-
works in common use. We see that ensemble classifiers in-
deed improve performance when overfit occurs. However,
overfit is not eliminated. Conjecture (ii) is validated with a
new empirical result: the variance of correct test predictions
is much smaller than the variance of false predictions.

The aforementioned empirical result implies that correct
predictions at inference time can be distinguished from false
ones by looking at the variance in predictions between mul-
tiple networks throughout the training epochs. This is used
to construct a new algorithm for ensemble-based prediction,
which is much more resistant to overfit (see Section 5.1).
This method is then tested on different image classification
and text classification datasets with label noise where the
networks manifest significant overfit (see Section 5.2). In
these experiments we see two positive effects of our method:
(i) overfit is eliminated in almost all the experiments (except
in extreme cases of label noise), showing that the method is
robust against overfit; (ii) its performance is superior to the
ensemble’s best epoch, when identified for early stopping.

To conclude, our main contribution is a new method for
ensemble-based prediction, which is resistant to overfit, and
does not require any prior knowledge on the data or changes
to the training protocol. It is applicable with any network
and dataset, easy to implement, and is effective as a prac-
tical tool against overfit. Most importantly, when the mod-
els are still able to learn useful patterns from the data af-
ter the occurrence of overfit, for example, when the test er-
ror shows ”double descent” (see Stephenson and Lee 2021;
Nakkiran et al. 2021; Stern and Weinshall 2023), our meth-
ods allows the user to use this forgotten knowledge while
reducing overfit, outperforming the optimal early stopping.
Finally, our method can be readily incorporated with exist-
ing methods, which are designed to combat overfit, in order
to boost their performance, as shown in Section 6.

2 Prior Work
Previous work on combating overfit can be largely divided
into two groups, which are not mutually exclusive. The first
group, which includes the majority of works, focuses on
modifying the learning process in order to prevent or reduce
overfit. These include various forms of data augmentation
(Shorten and Khoshgoftaar 2019) and regularization tech-
niques, such as dropout (Srivastava et al. 2014), weight de-
cay (Krogh and Hertz 1991), batch normalization (Ioffe and
Szegedy 2015) and early stopping - the termination of train-
ing before overfit occurs. Such methods come at a cost, as
they (and specifically early stopping) often limit the ability
of the model to learn useful features from the training data
in the late stages of learning, and even in the overfit phase,
wherein useful features can still be learned by the model
(Stern and Weinshall 2023). Many methods have also been
suggested for training under the presence of label noise, a
known cause for overfit, see (Song et al. 2022) for a recent
review.

The second group, to which our method belongs, comes
into play after learning is concluded. Such methods involve
the design of post-processing algorithms to be invoked dur-
ing inference time (e.g., Lee et al. 2019). Relevant work,
when dealing with label noise, includes (Zhang, Lee, and
Agarwal 2021; Bae et al. 2022). An ensemble classifier is
used in (Salman and Liu 2019) to combat overfit due to in-
sufficient training data, using network confidence to filter
out erroneous predictions. Our method differs primarily in
that it provides labels for all points, implicitly correcting
false labels of regular ensembles, which is achieved by re-
lying on a novel analysis of the ensemble’s predictions.

One benefit of the second approach is that it doesn’t re-
quire additional time for training, e.g., by way of re-training
or data-specific hyper-parameter tuning, which is a ma-
jor drawback of the first approach. Additionally, methods
from the second group can be incorporated into any train-
ing scheme, which is useful when methods from the first
group fail to completely eliminate overfit. Lastly, methods
from this group do not prevent the model from learning use-
ful features at the late stages of training, as some of the first
group methods do.

Ensemble methods. Engaging a set of classifiers, rather
than a single one, is an established methodology to deal with
errors (Hansen and Salamon 1990). Ensembles of deep neu-
ral networks are typically aggregated by simple yet useful
methods. The two most widely used aggregation methods
are the majority vote and class probabilities average (Lak-
shminarayanan, Pritzel, and Blundell 2017) of the ensemble.

Generating diversity in the ensemble can be done in a va-
riety of ways (Li, Wang, and Ding 2018; Ganaie, Hu et al.
2021), such as training with different datasets, as in bagging
(Breiman 1996) and boosting (Freund and Schapire 1997),
or by varying weights and hyper-parameters (Wenzel et al.
2020). A natural cause of diversity is learning from noisy la-
bels, as illustrated in (Shwartz, Stern, and Weinshall 2022),
where ensembles of neural networks are used to identify
such labels. As ensembles are expensive, some papers fo-
cus on minimizing their cost rather than maximizing their
performance, see for example (Wen, Tran, and Ba 2020).



3 Methodology
Notations Let N denote the number of networks in an en-
semble of deep neural networks trained independently on a
training dataset with C classes for E epochs using Stochas-
tic Gradient Descent (SGD), and tested after each epoch of
training on the test set T. Let fe

i (x) denote the prediction of
network i for x ∈ T in epoch e. Ne(x) denotes the ensemble
prediction in each epoch e, defined as:

Ne(x) = argmax
c∈C

N∑
i=1

1[fe
i (x)=c] (1)

Label noise generates overfit As deep models can mem-
orize any data distribution, having false labels in the training
set (also termed noisy labels) leads networks to overfit, since
their test accuracy decreases by the end of training when
false labels are being memorized. We thus expose our mod-
els to data with label noise in order to evaluate robustness
to heavy overfit. We evaluate our method on: (i) datasets
with synthetic label noise, (ii) real-world datasets with la-
bel noise crafted via unreliable web-labeling (Clothing1M,
Webvision), and (iii) a dataset with inherent label noise due
to inherently confusing data for annotators (Animal10N).

Injecting label noise To generate data with synthetic label
noise, we use two standard noise models (Patrini et al. 2017):

1. Symmetric noise: a fraction p ∈ {0.2, 0.4, 0.6} of
the labels is selected randomly. Each selected label is
switched to any other label with equal probability.

2. Asymmetric noise: a fraction p of the labels is selected
randomly. Each selected label is switched to another la-
bel using a deterministic permutation function.

Inter-Model Agreement In order to measure agreement
between different models during inference time, we define
below in (2) an Agreement score. This score measures the
average fraction of networks in the ensemble that predict
class c at point x in a set of training epochs E .

Agr(x, c) =
1

N |E|
∑
e∈E

N∑
i=1

1[fe
i (x)=c] (2)

4 Overfit and Ensemble Classifiers
In this section we study, theoretically and empirically, the
dynamics of ensembles when overfit actually occurs (fur-
ther motivation can be found in App. A). We begin with
a theoretical analysis of a regression model of linear clas-
sifiers (Section 4.1), showing that the agreement between
such classifiers decreases when overfit occurs. In Section 4.2
we empirically study the relevance of this result to deep
learning, showing that the same phenomenon occurs also
with deep neural networks. We conclude in Section 4.3 with
the analysis of the onset time of correct and false predic-
tions. This empirical analysis shows that false predictions
caused by overfit are associated with lower agreement scores
as compared to the correct predictions, implying that false
predictions are less common throughout the training than
the corresponding correct predictions. Later in Section 5.1,
these results guide the construction of a new ensemble-based
prediction algorithm, which is resistant to overfit.

4.1 Overfit in linear models: theoretical result
Since deep learning models are difficult to analyze theo-
retically, common practice invokes simple models (such as
linear regression) that can be theoretically analyzed, whose
analysis may shed light on the behavior of actual deep mod-
els. Accordingly, we formally analyze an ensemble of lin-
ear regression models trained using gradient descent via the
perspective of their agreement. Our analysis culminates in
a theorem, which states that the agreement between linear
regression models decreases when overfit occurs in all the
models and their individual generalization error increases.

Theorem. Assume that all models are trained using the
same training set, and all suffer from overfit at the same
time. Then, under reasonable assumptions, the disagreement
between the models increases at the time overfit occurs.

Here is a brief sketch of the proof (see App. B):

1. We measure Disagreement by the empirical variance
over models of the error vector at each test point, av-
eraged over the test examples.

2. We prove the following (intuitive) Lemma 1: Overfit oc-
curs in a model iff the gradient step of the model, which
is computed from the training set, is negatively corre-
lated with a vector unknown to the learner - the gradi-
ent step defined by the test set.

3. We show that under certain asymptotic assumptions,
the disagreement is approximately−ρ, where ρ denotes
the average correlation between each network’s gradi-
ent step when computed using either the training set
or the test set. It now readily follows from Lemma 1
that if overfit occurs in all the models then the average
correlation ρ must be negative, and the aforementioned
disagreement score increases.

4.2 Overfit in deep networks: empirical study
We discuss in the introduction known findings concerning
ensembles of deep models, which imply that all networks
are likely to succeed or fail together in their prediction. How-
ever, it is still possible that they fail in different ways, where
each network predicts a different false label. With overfit in
particular, they may favor different false labels at different
epochs (see illustration in Fig. 1).

We therefore start our empirical investigation by analyz-
ing the variance of false predictions (or errors) in such en-
sembles. We use datasets injected with label noise in this
study, in order to amplify the prevalence of overfit. The di-
versity in the ensembles has 2 sources: (i) different random
initialization, and (ii) different random mini-batches within
each epoch, where all networks train on the full datasets.

More specifically, we begin by training an ensemble of
N DNNs on noisy labeled datasets and then isolate the test
points with erroneous prediction in the last epoch. Using this
set of points, we compute the Error Consensus Score (ECS),
which measures the number of networks that agree on each
erroneous prediction (from 1 to N ). In Fig. 2 we plot some
empirical histograms of ECS.

The results in Fig. 2 indicate that when erroneous predic-
tions are concerned, their distribution seems to have a large



(a) Cifar10 20% AsN (b) Cifar100 60% SN (c) Cifar100 10% AsN

Figure 2: Histograms of ECS - the number of networks that agree
on each erroneous prediction, for an ensemble of 5 networks. ’SN’
denotes symmetric noise, and ’AsN’ asymmetric noise.

variance. In fact, in many of our study cases, the minority
value (ECS < N

2 ) dominates the distribution. We also see
that in more difficult settings (e.g., Cifar100), more mistakes
are made by the majority, making the ensemble unable to
correct them. We therefore conjecture that ensemble classi-
fiers will be effective in correcting erroneous predictions in
cases of overfit. In addition, we conjecture that with minor
overfit, ensembles will only make a little difference.

(a) Cifar10, 60% symmetric noise (b) Cifar100, 40% sym noise

Figure 3: Test accuracy over the epochs of a single network (green)
and ensemble (red) trained on a dataset with label noise. For com-
parison, we also show the test accuracy of a single network (blue)
and ensemble (orange) trained on the clean data only.

These conjectures are supported by our empirical results,
in experiments involving various datasets and noise settings,
as shown in Fig. 3 and Table 1. In particular, Fig. 3 clearly
shows that the benefit of the ensemble classifier is much
larger when there is significant overfit, which is seen when
the training data has significant label noise. However, Fig. 3
also shows that while ensembles improve accuracy when
there is overfit, they do not eliminate the phenomenon -
there is still performance deterioration as training proceeds.
The ”rebound” in test accuracy of the single network is due
to the ”epoch-wise double descent” phenomenon, see details
in (Stephenson and Lee 2021; Nakkiran et al. 2021).

4.3 Remember your history and avoid overfit

(a) Cifar10, 60% SN (b) TinyImg, 40% SN (c) Imagenet100, 40% SN

Figure 4: Histograms of the margin score (3), where blue indicates
correct predictions and orange erroneous predictions.

Algorithm 1: max Agreement Prediction (MAP)

Input:fe
i (x) - the prediction of network i for test example

x ∈ T, ∀x, i, e ∈ E
Output: final prediction ∀x ∈ T
for x in T do

final prediction arr[x]← argmax
c

Agr(x, c)

end for
Return final prediction arr;

Ensembles are most effective when the predictions of the
different members of the ensemble show a large variance,
as discussed above. In this section, we inspect another po-
tential source of variability - a prediction’s persistence. Fol-
lowing our theoretical and empirical analysis and the agree-
ment score defined in (2), we hypothesize that since erro-
neous predictions on the test examples have large variance,
correct predictions will have larger persistence (agreement)
than erroneous ones, amplifying the difference between the
two.

In order to test this conjecture, we use the agreement score
(2) defined in Section 3. More specifically, we compare the
agreement score of the ensemble’s final prediction in epoch
E (NE(x)) with the agreement score of the most agreed
upon label, which is different from the final prediction:

AgrMargin(x, y) = Agr(x, y)−max
c̸=y

Agr(x, c)

y = NE(x)
(3)

Fig. 4 shows histograms of score (3), separated to correct
and erroneous predictions. Clearly, most of the predictions
with negative margin scores are false, while the vast major-
ity of the correct predictions have a positive score. The phe-
nomenon is rather general, shown in a variety of conditions
in which overfit is enhanced by injecting label noise.

5 Proposed Method (MAP)
We present a new ensemble classifier algorithm called Max
Agreement Prediction (MAP) in Section 5.1. Extensive ex-
periments, demonstrating its superior performance, are de-
scribed in Section 5.3.

5.1 Algorithm
Fig. 4 shows that empirically, the agreement margin score in
(3) can be reliably used to identify false predictions. We take
this result one step further and propose to use the ensem-
ble statistics of agreement score in order to select the label
prediction, instead of the usual practice of selecting NE(x)
from (1). Specifically, we propose the following prediction
selection rule:

y(x) = argmax
c

Agr(x, c) (4)

We use this score in Alg. 1 and test it in Section 5.3, where
its boost in performance is shown.



(a) Cifar10, 40% symmetric noise (b) Cifar100, 20% asymmetric noise (c) Cifar100, 20% symmetric noise (d) TinyImg, 20% symmetric noise

Figure 5: Mean test accuracy of our method (MAP, in red) in each training epoch (X-axis), compared with the following baselines: (i) A
single network trained on the noisy dataset (orange). (ii) An ensemble trained on the noisy dataset (green). (iii) An oracle of a single network
trained on the clean subset of the data (dotted blue). Our method shows significant and stable improvement, and largely eliminates the
overfit caused by the noisy labels. Note that even though in some cases the test accuracy of the network/ensemble improves at the late stages
of the training, it is often inferior compared to its past performance, and is always inferior to our method’s performance.

5.2 Empirical setup
To evaluate our method with different levels of overfit we
use image and text classification datasets with injected noisy
labels (Cifar10/100, TinyImagenet, Imagenet100, MNLI,
QNLI, QQP) and datasets with native label noise (Webvi-
sion50, Clothing1M, Animal10N). Training involves com-
mon methods known to reduce overfit, such as data aug-
mentation, batch normalization and weight decay, in order to
capture our method’s added value in combatting overfit. We
defer full discussion of the implementation details to App. E.

As comparison baseline we use the following methods:
(i) A single network of the same architecture and similarly
trained. (ii) The same ensemble while using the ‘majority
vote’ prediction rule - NE(x) defined in (1). (iii) The same
ensemble while using the ‘class probabilities average’ pre-
diction rule. The last 2 baselines are instances of a ‘regular
ensemble’, reflecting methods in common use that incur the
same training cost as our method. A comparison with meth-
ods of comparable inference time are discussed in Section 6.

Additionally, we compare our method to alternative post-
processing methods, which also aim to improve classifica-
tion at inference time. To assure a fair comparison, all the
results are obtained using the same network architectures in
the ensemble, which is most relevant to the methods that
make use of an ensemble as we do (Salman and Liu 2019;
Lee et al. 2019). The method described in (Bae et al. 2022)
is executed several times with random seeds, the results of
which are processed by the majority vote as commonly done.

Lastly, we test our method’s added value when integrated
with two existing methods for training ensembles: (i) batch
ensemble (Wen, Tran, and Ba 2020), which aims to reduce
costs; and (ii) hyper ensemble (Wenzel et al. 2020), which
aims to increase the ensemble’s diversity by using different
hyper-parameters as well as different initialization.

5.3 Results
Fig. 5 and Table 1 summarize the test accuracy results. As
performance drop becomes more severe (e.g., due to in-
creased label noise), our method significantly outperforms
the regular ensemble (both majority vote and class probabil-
ities average) at the end of the training. It often outperforms
optimal early stopping (i.e. the ensemble’s best performance

before the overfit, see Fig. 5). Lastly, Table 3 shows that our
method is complementary to ensemble training methods that
aim to increase diversity or decrease their cost.

Importantly, note that MAP eliminates the overfit in al-
most all cases: when inspecting the case studies shown in
Fig. 5, we clearly see that the test accuracy does not dete-
riorate when MAP is used, unlike a single network and the
regular ensemble, making it a superior alternative to early
stopping. Only in severe, unrealistic settings of label noise
(such as 40% asymmetric noise) do we see a deterioration in
our method’s performance in the late stages of the training
(though MAP still outperforms the regular ensemble), but
such cases are not common.

5.4 Limitations
Our method has two main limitations: (i) the need for mul-
tiple network training, and (ii) the need to save multiple
checkpoints of the network during training to be used at in-
ference time. Using multiple GPUs can mitigate these limi-
tations, both for parallel training and inference. Not less im-
portantly, in Section 6 and Table 3 we show that training a
few networks and saving only a few checkpoints for each
one (equally spaced through time), suffice for optimal or al-
most optimal results.

6 Ablation Study
Our method requires the training of a few networks and
the retaining of multiple checkpoints from each one, which
is computationally costly. This is justified by the large im-
provement achieved using our method, as shown above. In
order to evaluate the practical implication of those added
complexities, we investigate in Section 6.1 the effect of the
number of networks in the ensemble on the final outcome
of a regular ensemble and of our method, and in Section 6.2
the effect of using only a small subset of the training check-
points. In Section 6.3 we evaluate our method on datasets in
which the size of the training set is small, which is another
known cause for overfit, and without label noise. In sec-
tion 6.4 we check our method’s additive value when unique
methods for learning with label noise are used.

Summarizing the full ablation results, even with a few net-
works and a few checkpoints for each, our method achieves



Method/Dataset Cifar10 sym Cifar100 sym Clothing1M
% label noise 20% 40% 60% 20% 40% 60% 38% (est)
single network 85.4± .1 67.7± .6 43.5± .5 67.0± .2 51.1± .2 32.2± .4 65.1± .1
majority vote ensemble 90.1± .2 78.5± .7 54.0± .4 73.5± .2 61.2± .4 42.8± .2 66.0± .2
probability average ensemble 90.5 79.5 56.6 74.9 64.2 46.3 67.1
MAP 93.2± .1 90.0± .1 83.8± .7 76.7± .1 69.7± .5 60.0± .4 71.7± .1

Method/Dataset TinyImagenet sym Imagenet100 sym
% label noise 20% 40% 20% 40%
single network 54.5± .7 40.3± .2 76.4± .5 64.9± .1
majority vote ensemble 62.0± .1 50.3± .4 82.8± .2 75.5± .5
probability average ensemble 64.0 53.2 83.9 77.9
MAP 66.0± .1 60.1± .1 83.9± .1 80.9± .3

Method/Dataset Cifar10 asym Cifar100 asym Animal10N
% label noise 10% 20% 40% 10% 20% 40% 8% (est)
single network 90.8± .1 83.1± .2 59.7± .3 74.1± .2 67.5± .2 47.5± .1 86.0
majority vote ensemble 93.5± .1 88.4± .2 64.0± .4 79.0± .1 73.7± .1 53.4± .2 87.3
probability average ensemble 93.4 88.6 63.3 79.8 74.5 52.9 87.9
MAP 95.2± .1 94.4± .2 85.6± .2 80.6± .08 77.7± .1 57.5± .2 87.4

Method/Dataset mnli qnli qqp
% label noise 20% 40% 20% 40% 20% 40%
single network 79.3± .07 74.5± .06 86.0± .05 74.5± .05 85.7± .04 75.6± .04
majority vote ensemble 81.6± .2 76.7± .2 87.3± .1 74.6± .4 88.1± .1 76.3± .1
probability average ensemble 82.1 77.3 87.5 74.3 88.2 77.0
MAP 82.6± .09 79.3± .1 89.0± .1 82.5± .08 88.8± .05 82.2± .1

Table 1: Mean test accuracy (in percent) and standard error, comparing our method (MAP) and some baselines. In the top 3 tables, we show
results with 4 image datasets with injected label noise and 2 image datasets with presumed label noise marked by (est). In the bottom table,
we show results with 3 text datasets with injected label noise.

Method/Dataset Cifar10 sym Cifar100 sym TinyImagenet sym Clothing1M
% label noise 20% 40% 20% 40% 20% 40% 38% (est)
RoG 87.4 81.8 64.3 55.6 - - 68.0
consensus 87.4± .3 74.7± .3 71.0± .4 41.9± .1 23.7± .2 18.5± .3 66.9
NPC 89.8 77.5 73.7 61.5 62.1 50.3 70.8
MAP 93.2± .07 90.0± .1 76.7± .1 69.7± .5 66.0± .1 60.1± .06 71.7± .2

Table 2: Mean test accuracy (in percent) and standard error, comparing our method (MAP) to some of the post-processing methods discussed
above. We report 3 image datasets with injected label noise and a single dataset with presumed annotation errors marked by (est). Source of
alternative methods results: RoG from (Lee et al. 2019), consensus (Salman and Liu 2019) and NPC (Bae et al. 2022) results are recomputed
using our settings and our own implementation.

Method BatchEnsemble Hyper-ensemble
% label noise (sym) 20% 40% 20% 40%
original accuracy 69.5 52.8 72.1 61.3
adding MAP 72.5 60.1 74.1 67.6

Method BatchEnsemble Hyper-ensemble
% label noise (asym) 10% 20% 10% 20%
original accuracy 75.7 67.8 76.9 71.2
adding MAP 77.8 71.1 77.5 75.3

Table 3: The added value of our method when integrated with 2
existing ensemble methods designed to either decrease cost or in-
crease diversity, using Cifar100 with injected label noise.

optimal or near-optimal performance, making it practical
and useful even with limited computational resources. In-
terestingly, our method can be combined with methods for
learning with noisy labels, improving performance when
such methods fail to eliminate overfit. Our method is also
useful when the training set is very small. Finally, the emerg-

ing picture is robust to changes in the networks’ architecture,
and our method maintains its benefit over alternative deep
ensemble. Additional results, concerning the effect of archi-
tecture and training choices, are described in App. D.

(a) Cifar10, 20% asymmetric noise (b) Cifar100, 40% symmetric noise

Figure 6: test accuracy of a regular ensemble and MAP when vary-
ing the size of the ensemble, where the x-axis denotes the number
of networks in the ensemble.



6.1 The effect of ensemble size
In the results shown in Table 1, all ensemble classifiers use
the same number of trained networks (5). However, when
considering the number of networks evaluated at inference
time and in order to achieve a fair comparison between reg-
ular ensembles and our method, we repeat the study with-
out limiting the ensemble’s size. Accordingly, we report ac-
curacy at the point where the addition of models does not
improve performance, see results in Table 4. Notably, our
method maintains its superiority. Moreover, we see that with
MAP - even a few networks achieve optimal or close to op-
timal results, making it practical for use (see Fig. 6).

Method/Dataset Cifar10 sym Cifar100 sym
% label noise 20% 40% 20% 40%
MAP (5) 93.3 90.0 76.6 70.1
majority vote (opt) 91.8 84.2 77.3 69.1
MAP (opt) 93.5 90.7 77.4 71.3

Method/Dataset Cifar10 asym Cifar100 asym
% label noise 20% 40% 20% 40%
MAP (5) 94.4 85.7 77.9 57.3
majority vote (opt) 90.5 66.5 76.6 56.1
MAP (opt) 94.5 86.9 78.4 59.1

Table 4: Comparing ensembles with optimal size, denoted (opt),
beyond which adding more networks does not improve the ensem-
ble performance, to our method with 5 and opt networks.

6.2 How many checkpoints are needed?
The agreement score in (2) can be estimated from any subset
of epochs. Fig. 7 shows test accuracy when using a subset of
the training epochs, equally spaced through time, showing
that even a few checkpoints are sufficient to achieve the same
accuracy (or close to it) as when using all the epochs.

(a) Cifar10 40% AsN (b) Cifar100 60% SN (c) TinyImg 20% SN (d) Cifar100 20% AsN

Figure 7: Test accuracy of MAP when using only a fraction of the
epochs (equally spaced) per number of epochs. ’SN’ denotes sym-
metric noise, and ’AsN’ asymmetric noise.

6.3 Performance evaluation on clean datasets

(a) TinyImagenet (b) Cifar100 (c) Imagenet 50 classes

Figure 8: X-axis: number of datapoints per class. Y-axis: fraction of
predictions of a regular ensemble, which MAP changes from true
to false (orange) and from false to true (blue). MAP outperforms
the ensemble whenever the blue curve lies above the orange curve.

We evaluate our method on clean datasets of different
sizes, where overfit can be much smaller or nonexistent. Re-
sults are shown in Fig. 8. Clearly, MAP can be beneficial in
such circumstances as well.

6.4 Combining MAP with unique method for
learning with label noise

In recent years, many methods have been developed to im-
prove the model’s robustness to the existence of noisy labels
in the training set. As label noise is a major cause of overfit,
we wanted to check whether our method can provide addi-
tional performance gain on top of such methods, especially
when they do not fully manage to eliminate the overfit. In
Table 5 we test our method on models trained with the ELR
method (Liu et al. 2020), and show that our method can still
provide significant added value to this method.

Method/Dataset TinyImagenet
% label noise (sym) 20% 40% 60%
ELR 57.5 47.8 25.9
ELR ensemble 61.6 54.0 33.3
ELR + MAP 62.3 57.4 47.2

Table 5: A competitive method for learning with label noise - ELR
(Liu et al. 2020), and its performance with and without MAP.

7 Conclusions
Overfit is a notorious problem, which afflicts deep learn-
ing, especially in the context of real-life data. In this paper,
we propose a new ensemble classifier based on a collection
of deep networks, termed MAP, which uses the evolution
of predictions in each model to generate predictions that in
most cases are resistant to overfit. This result is consistently
shown using various datasets, including both textual and im-
age data, in a variety of settings that exhibit heavy overfit.
The method is based on a new empirical result, which shows
that the agreement among deep networks decreases with the
occurrence of overfit. Further support is provided by the the-
oretical analysis of a linear regression model.

Our empirical study focused for the most part, though not
entirely, on datasets with noisy labels, a real-world condi-
tion that creates heavy overfitting, where our method is most
useful. In almost all cases, the method’s resistance to overfit
is maintained even when the level of noise is very high. In
such cases, our method significantly outperforms regular en-
sembles, as well as other post-processing methods designed
specifically to handle noisy labels. Its advantage over early
stopping, shown in Fig. 5, is particularly interesting, as it
shows that our method could, in some cases, allow the user
to harness the new ”knowledge” learned by the model at the
late stages of training - even after overfit has occurred - while
minimizing the damages of overfit.

Our method has some practical advantages. Notably, it is
easy to implement and can be readily used at post-processing
with almost any method, network, and dataset. This is ac-
complished without any change to the training process and
without any additional hyper-parameter tuning. Since our
method is only employed at post-processing, when no over-
fit is suspected it can be completely avoided. Thus, it serves
as a practical tool to combat overfit (with or without label
noise in the training set), especially when large amounts of
correctly labeled data are difficult to acquire.
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Appendix
A Ensembles improve robustness to errors

(a) 3 decision boundaries (b) Ensemble classifier

Figure 9: (a) A 2D classification example, with a single false label
(in red) and an ensemble of 3 models, each trained to overfit the
false label. (b) The black line marks the correct decision boundary
of the data’s empirical distribution. The decision boundary of an
ensemble classifier, based on the majority vote of the 3 instances
in (a), is shown in pink. It is clearly closer to the correct decision
boundary than any of the 3 members of the ensemble.

Ensemble-based methods deliver some statistics of the
distribution of predictions, seeking a better estimator of the
prediction of the correct classifier, and are expected to be
effective in reducing error when there is variance in the clas-
sifiers’ predictions. In Fig. 9 we demonstrate this intuition
with a simple toy problem, a 2D example with two classes
and label noise. In Fig. 9a we show three possible decision
boundaries (models), obtained since the fitting procedure is
assumed to be stochastic. Because the training set has an er-
roneous label, the models deviate largely from the true sep-
arator. In Fig. 9b we plot the decision boundary of the en-
semble constructed using these models (in pink), which is
clearly superior, being closer to the true separator (in black).

B Overfit and inter-model correlation
In this section we formally analyze the relation between two
type of scores, which measure either overfit or inter-model
agreement. Overfit is a condition that can occur during the
training of deep neural networks. It is characterized by the
co-occurring decrease of train error or loss, which is contin-
uously minimized during the training of a deep model, and
the increase of test error or loss, which is the ideal measure
one would have liked to minimize and which determines
the network’s generalization error. An agreement score mea-
sures how similar the models are in their predictions.

We start by introducing the model and some notations in
Section B.1. In Section B.2 we prove the main result: the oc-
currence of overfit at time s in all the models of the ensemble
implies that the agreement between the models decreases.

B.1 Model and notations

Model. We analyze the agreement between an ensemble
of Q models, computed by solving the linear regression
problem with Gradient Descent (GD) and random initializa-
tion. In this problem, the learner estimates a linear function
f(x) : Rd → R, where x ∈ Rd denotes an input vector and
y ∈ R the desired output. Given a training set of M pairs
{xm, ym}Mm=1, let X ∈ Rd×M denote the training input - a
matrix whose mth column is xm ∈ Rd, and let row vector
y ∈ RM denote the output vector whose mth element is ym.
When solving a linear regression problem, we seek a row
vector ŵ ∈ RD that satisfies

ŵ = argminw L(w), L(w) =
1

2
∥wX − y∥2F (5)

To solve (5) with GD, we perform at each iterative step s ≥
1 the following computation:

ws+1 =ws − µ∆ws

∆ws =
∂L(X)
∂w

∣∣∣∣
w=ws

= wsΣXX − ΣY X

ΣXX = XX⊤, ΣY X = yX⊤

(6)

for some random initialization vector w0 ∈ RM where usu-
ally E[w0] = 0, and learning rate µ. Henceforth we omit the
index s when self evident from context.

As a final remark, when we use the notation ∥A∥ below,
it denotes the operator norm of the symmetric matrix A,
namely, its largest singular value.

Additional notations
• Index i ∈ [Q] denotes a network instance, and t denotes

the test data. For simplicity and with some risk of no-
tation abuse, let Q and Q′ also denote sets of indices,
either training or test. Specifically, Q = [1, . . . , Q] and
Q′ = [1, . . . , Q, t].

• We use function notation, where {X(i), y(i)} is the
training set of network i and {X(t), y(t)} is the test set.
Thus

ΣXX(j) = X(j)X(j)⊤,ΣY X(j) = y(j)X(j)⊤ j ∈ Q′



• Similarly, w(i) ∈ Rd is the model learned by network i,
and ∆w(i) is the gradient step of w(i), where

∆w(i) = w(i)ΣXX(i)− ΣY X(i) i ∈ Q

• e(i, j) denotes a function, which maps indices i ∈ Q, j ∈
Q′ to the cross error of model i on data j - the classifi-
cation error vector when using model w(i) to estimate
y(j). Let M ′ = M if j ∈ Q is a training index, and
M ′ = N if j ∈ {t} .Then we can write

e(i, j) : Q×Q′ → RM ′
e(i, j) = w(i)X(j)− y(j)

=⇒ ∆w(i) = e(i, i)X(i)⊤

Note that in this notation, e(i, t) is the classification error
vector when using model i, which is trained on data X(i),
to estimate the desired outcome on the test data - y(t).
∥e(i, t)∥F is the test error, estimate of the generalization
error, of classifier i.

• Let ∆(i, j) denote the cross gradient:

∆(i, j) = e(i, j)X(j)⊤ = w(i)ΣXX(j)− ΣY X(j)

=⇒ ∆w(i) = ∆(i, i)
(7)

After each GD step, the model and the error are updated as
follows:

w̃(i) = w(i)− µ∆w(i)

ẽ(i, j) = w̃(i)X(j)− y(j) = e(i, j)− µ∆(i, i)X(j)

We note that at step s and ∀i, j ∈ Q, w̃(i) is a random vector
in Rd, and ẽ(i, j) is a random vector in RM . If j ∈ {t}, then
ẽ(i, j) = ẽ(i, t) is a random vector in RN .
Test error random variable. Let N denote the number of
test examples. Note that {e(i, t)}Qi=1 is a set of Q test errors
vectors in RN , where the nth component of the ith vector
e(i, t)n captures the test error of model i on test example n.
In effect, it is a sample of size Q from the random variable
e(∗, t)n. This random variable captures the error over test
point n of a model computed from a random sample of M
training examples. The empirical variance of this random
variable will be used to estimate the agreement between the
models.
Overfit. Overfit occurs at step s if

∥ẽ(i, t)∥2F > ∥e(i, t)∥2F (8)

Measuring inter-model agreement. For our analysis, we
need a score to measure agreement between the predictions
of Q linear functions. This measure is chosen to be the vari-
ance of the test error among models. Accordingly, we will
measure disagreement by the empirical variance of the test
error random variable ẽ(∗, t)n, average over all test exam-
ples n ∈ [N ].

More specifically, consider an ensemble of linear models
{w(i)}Qi=1 trained on set X to minimize (5) with s gradient
steps, where i denotes the index of a network instance and Q
the number of network instances. Using the test error vectors
of these models e(i, t), we compute the empirical variance of

each element var[e(∗, t)n], and sum over the test examples
n ∈ [N ]:

N∑
n=1

σ2[e(∗, t)n] =
N∑

n=1

1

2Q2

Q∑
i=1

Q∑
j=1

|e(i, t)n − e(j, t)n|2

=
1

2Q2

Q∑
i=1

Q∑
j=1

∥e(i, t)− e(j, t)∥2

Definition 1 (Inter-model DisAgreement.). The disagree-
ment among a set of Q linear models {w(i)}Qi=1 at step s
is defined as follows

DisAg(s) =
1

2Q2

Q∑
i=1

Q∑
j=1

∥e(i, t)− e(j, t)∥2 (9)

B.2 Overfit and Inter-Network Agreement
We first prove Lemma 1, which has the following intuitive
interpretation: overfit occurs in model i iff the gradient step
of model i (denoted ∆w(i)), which is computed using the
training set, is negatively correlated with the ’correct’ gradi-
ent step - the one we would have obtained had we known the
test set (this unattainable vector is denoted ∆(i, t)).
Lemma 1. Assume that the learning rate µ is small enough
so that we can neglect terms that are O(µ2). Then in each
gradient descent step s, overfit occurs iff the gradient step
∆w(i) of network i is negatively correlated with the cross
gradient ∆(i, t).

Proof. Starting from (8)

(overfit) ⇐⇒ ∥ẽ(i, t)∥2F > ∥e(i, t)∥2F
⇐⇒ ∥ẽ(i, t)∥2F − ∥e(i, t)∥2F > 0

⇐⇒ ∥e(i, t)− µ∆(i, i)X(t)∥2F − ∥e(i, t)∥2F > 0

⇐⇒ − 2µ∆(i, i)X(t)e(i, t)⊤ +O(µ2) > 0

⇐⇒ ∆(i, i) ·∆(i, t) < 0

⇐⇒ ∆w(i) ·∆(i, t) < 0

Lemma 2 claims that if the magnitude of the gradient step
µ is small enough, then the operator norm of matrix I −
µΣXX is smaller than 1. The implication is that a geometric
sum of this matrix converges, a technical result which will
be used later.
Lemma 2. For any invertible covariance matrix ΣXX there
exists µ̂ > 0, such that µ < µ̂ =⇒ ∥I − µΣXX∥ < 1.

Proof. Since ΣXX is positive-definite, we can write ΣXX =
USU⊤ for orthogonal matrix U and the diagonal matrix of
singular values S = diag{si}. It follows that I − µΣXX =
Udiag{1 − µsi}U⊤, a matrix whose largest singular value
is 1−µsd. Since by assumption sd > 0, the lemma follows.

Our last Lemma 3 claims that eventually, after sufficiently
many gradient steps, the expected value of the solution is
exactly the closed-form solution of the vector that minimizes
the loss.



Lemma 3. Assume that ∥I − µΣXX∥ < 1 and ΣXX is in-
vertible. If the number of gradient steps s is large enough so
that ∥I − µΣXX∥s can be neglected, then

E[ws] ≈ ΣY XΣ
−1
XX (10)

Proof. Starting from (6), we can show that

ws = w0(I − µΣXX)
s−1 + µΣY X

s−1∑
k=1

(I − µΣXX)
k−1

Since E(w0) = 0

E(ws) = E(w0)(I − µΣXX)
s−1 + µΣY X

s−1∑
k=1

(I − µΣXX)
k−1

= µΣY X

s−1∑
k=1

(I − µΣXX)
k−1

Given the lemma’s assumptions, this expression can be eval-
uated and simplified:

E(ws) = µΣY X [I − (I − µΣXX)]
−1[I − (I − µΣXX)

s−1]

= ΣY XΣ
−1
XX − ΣY XΣ

−1
XX(I − µΣXX)

s−1

≈ ΣY XΣ
−1
XX

From (9) it follows that a decrease in inter-model agree-
ment at step s, which is implied by increased test variance
among models, is indicated by the following inequality:

C =DisAg(s)−DisAg(s− 1)

=
1

2Q2

Q∑
i,j=1

∥ẽ(i, t)− ẽ(j, t)∥2−

1

2Q2

Q∑
i,j=1

∥e(i, t)− e(j, t)∥2 > 0

(11)

Theorem. Assume that all models see the same training set,
denoted as X(i) = X ∀i ∈ [Q], and that the training data
covariance matrix ΣXX is full rank.

We make the following asymptotic assumptions, which are
loosely phrased but can be rigorously defined with addi-
tional notations:

1. The learning rate µ is small enough so that ∥I−µΣXX∥ <
1 (from Lemma 2), and additionally we can neglect terms
that are O(µ2).

2. The number of gradient steps s is large enough so that
∥I − µΣXX∥s can be neglected.

3. The number of models Q is large enough so that using the
law of large numbers, we get 1

Q

∑Q
i=1 w(i) ≈ E[w].

Finally, we assume that overfit occurs at time s in all the
models of the ensemble. In other words, at time s the gener-
alization error does not decrease in all the models.

When these assumptions hold, the agreement between the
models decreases.

Proof. (11) can be rearranged as follows

C =
1

2Q2

Q∑
i,j=1

∥[e(i, t)− µ∆(i, i)X(t)]− [e(j, t)−

µ∆(j, j)X(t)]∥2 − 1

2Q2

Q∑
i,j=1

∥e(i, t)− e(j, t)∥2

=
1

Q2

Q∑
i,j=1

−µ[e(i, t)− e(j, t)] · [∆(i, i)X(t)]−

∆(j, j)X(t)] +O(µ2)

=
µ

Q2

Q∑
i,j=1

[∆(i, i) ·∆(j, t) + ∆(j, j) ·∆(i, t)]−

[∆(i, i) ·∆(i, t) + ∆(j, j) ·∆(j, t)] +O(µ2)

where the last transition follows from e(i, t)X(t)⊤ =
∆(i, t). Using assumption 2

C = µ(C′ − C′′) +O(µ2) ≈ µ(C′ − C′′) (12)
where

C′′ =
1

Q2

Q∑
i,j=1

[∆(i, i) ·∆(i, t) + ∆(j, j) ·∆(j, t)]

=
2

Q

Q∑
i=1

∆(i, i) ·∆(i, t)

(13)

and

C′ =
1

Q2

Q∑
i,j=1

[∆(i, i) ·∆(j, t) + ∆(j, j) ·∆(i, t)]

=
1

Q

Q∑
i=1

∆(i, i) · 1
Q

Q∑
j=1

∆(j, t)+

1

Q

Q∑
j=1

∆(j, j) · 1
Q

Q∑
i=1

∆(i, t)

=
1

Q

Q∑
i=1

∆(i, i) · 2
Q

Q∑
j=1

∆(j, t)

(14)

Next, we prove that C′ is approximately 0. We first deduce
from assumptions 1 and 4 that

1

Q

Q∑
i=1

∆(i, i) =
1

Q

Q∑
i=1

w(i)ΣXX(i)− ΣY X(i)

=

(
1

Q

Q∑
i=1

w(i)

)
ΣXX − ΣY X ≈ E[w]ΣXX − ΣY X

From assumption 3 and Lemma 3, we have that E[w] ≈
ΣY XΣ

−1
XX . Thus

1

Q

Q∑
i=1

∆(i, i) ≈ E[w]ΣXX − ΣY X

≈ ΣY XΣ
−1
XXΣXX − ΣY X = 0



Method/Test Adversarial network Transfer learning Different architectures Different optimizer
single network 52.0 54.9 52.2 29.4
ensemble 59.9 63.9 61.4 42.6
MAP 68.7 70.1 68.9 58.5

Table 6: Additional ablation results. In the adversarial network setting, one network provides random predictions. In general, the single
network shows the best network in the ensemble.

From this derivation and (14) we may conclude that C′ ≈ 0.
Thus

C ≈ −µC′′ = −µ 2

Q

Q∑
i=1

∆(i, i) ·∆(i, t) (15)

If overfit occurs at time s in all the models of the ensem-
ble, then C > 0 from Lemma 1 and (15). From (11) we may
conclude that the inter-model agreement decreases, which
concludes the proof.

D Additional ablation results
We present in this appendix additional ablation results,
demonstrating that our method is not dependent on specific
architecture, optimizer and hyper-parameters, and is even ro-
bust to the presence of an adversarial network in the ensem-
ble. Fig. 10 shows results from experiments with different
network architecture or learning rate scheduler. In all cases,
our method still successfully eliminates the overfit.

We have also tested our method on a few other settings of
interest:

• We tested our method on ensembles of different networks
architectures/sizes trained in the same manner, and saw
that the method is still effective in its performance im-
provement, showing comparable improvement to the one
presented in Table 1.

• Transfer learning - we tested our method when initial
weights are taken from pretraining (Imagenet), and saw
our method still provides large improvement in its final
performance.

• Using different optimizer - we also tested our method
when using a different optimizer (adamw) - our method
still shows large improvement in performance.

• Having an adversarial network in the ensemble - inter-
estingly, we also saw that due to the usage of multiple
networks, our method is robust to the usage of a network
that is poorly trained, or even provides random predic-
tions, which is another advantage of our method.

The full results appear in Table 6. All experiments were
done with densenet121 trained on Cifar100 with 40% sym-
metric noise, except transfer learning, where our network
choice was resnet18 pre-trained on Imagenet.

E Implementation details
Implementation details We used the following datasets
in our experiments: Cifar10/100 (Krizhevsky, Hinton et al.
2009) with 50, 000 training images of 10/100 classes re-
spectively; TinyImagenet (Le and Yang 2015) with 100,000

(a) Cifar100, 40% noise, const lr (b) Cifar100, 40% noise, resnet32

Figure 10: Test accuracy of MAP, different lr (a) and architecture
(b).

training images of 200 classes; and Imagenet100 (cf.
(Van Gansbeke et al. 2020)), which is a subset of 100 classes
from Imagenet (Deng et al. 2009) with 1300 training im-
ages per class. In these datasets, in order to amplify over-
fit, we used standard methods for injecting label noise (see
above). As in all empirical studies and in order to evaluate
the generalization error correctly, the test set is kept clean.
We used three additional datasets, Clothing1M (Xiao et al.
2015), Webvision (Li et al. 2017) and Animal10N (Song,
Kim, and Lee 2019)), which are known to contain real label
noise caused by automatic labeling (Clothing1M and Web-
vision) or human annotation mistakes (Animal10N). In We-
bvision, following (Pleiss et al. 2020), we used only the first
50 classes from Flickr and Google - around 100,000 im-
ages. For the NLP classification tasks, we used tasks from
the GLUE benchmark (Wang et al. 2018), including MNLI,
QNLI and QQP.

In our experiments the ensemble contained 5 networks
and was trained for 200 epochs (except clothing, on which
it was trained for 80 epochs). We used batch-size of 32,
learning rate of 0.01, SGD optimizer with momentum of
0.9 and weight decay of 5e-4, cosine annealing scheduler,
and standard augmentations (horizontal flip, random crops).
For Cifar10/100, TinyImagenet and Imagenet100 we used
DenseNet with width of 32 and batch normalization layers.
For Clothing1M we used Resnet50 pretrained on Imagenet,
while for Animal10N and Webvision we trained resnet50
from scratch. For elr (Liu et al. 2020) we used their im-
plementation and hyperparameters. For HyperEnsembles we
used different values of learning rate, ranging from 0.01 to
0.1 at equal distances, using ensembles of 4 networks. For
Batchensembles, we used 4 networks of wide-resnet, at the
recommended settings. For the NLP classification tasks we
used bert-base-cased (Devlin et al. 2018) with hugging face
(Sanh et al 2021) implementation as our model, with batch
size of 32, learning rate of 2e-5, max sequence length of
128, and 4 training epochs. We tested the networks every
1
10 epoch. Experiments were conducted on a cluster of GPU
type AmpereA10. Each experiment reports the mean and
standard error (ste) results over 3 repetitions.


