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Abstract

Spike sorting is the task of clustering spike shapes recorded by a micro-
electrode according to the source neuron. It is a complicated problem,
which requires a lot of human labor, partly due to non-stationary nature
of the data. We propose an automated technique for the clustering of non-
stationary Gaussian sources in a Bayesian framework. At a first search
stage, data is divided into short time frames and candidate descriptions
of the data as a mixture of Gaussians are computed for each frame. At
a second stage transition probabilities between candidate mixtures are
computed, and a globally optimal clustering is found as the MAP so-
lution of the resulting probabilistic model. Transition probabilities are
computed using local stationarity assumptions and are based on a Gaus-
sian version of the Jensen-Shannon divergence. The method was tested
on several spike data recordings and shown to successfully cope with
movement, merges and splits of clusters.

1 Introduction

Neural spike activity is recorded with a micro-electrode which normally picks up the ac-
tivity of multiple neurons. Spike sorting is the task of finding a clustering of the spike data
such that each cluster contains the spikes generated by a different neuron. Currently, this
task is mostly done manually. It is a tedious mission, requiring many hours of human work
for a single recording session. Many algorithms were proposed in order to help automating
this process (see [7] for a review, [9],[10]), and some were implemented to provide a help-
ing tool for manual sorting [8]. However, the ability of suggested algorithms to replace the
human worker has been quite limited.

One of the main obstacles for a successful application is the non-stationary nature of
the data [7]. The primary source of this non-stationarity are slight movements of the
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recording electrode. Slight drifts of the electrode’s location, which are almost inevitable,
cause changes in the typical shapes of recorded spikes over time. Other sources of non-
stationarity are variable background noise, and, sometimes, changes in the characteristic
spike generated by a neuron. The increasing usage of multiple electrode recordings turns
non-stationarity into an acute problem, since electrodes are placed in a single location for
long durations.

Using a representation with the first 2 PCA coefficients (which preserves up to 93% of the
variance of the original recordings [1]), a human can cluster spikes by visual inspection.
When dividing the data into small enough time frames, a cluster density can be approxi-
mated by a multivariate Gaussian with a general covariance matrix without loosing much
accuracy [7]. Problematic scenarios which can appear due to non-stationarity are exem-
plified in section 4.2 and include: (1) Movements and considerable shape changes of the
clusters over time, (2) Two clusters which are reasonably well-separated may move until
they converge and become indistinguishable. A split of a single cluster is possible in the
same manner.

Most spike sorting algorithms don’t address the presented difficulties at all, as they assume
full stationarity of the data. Some methods [4, 11] try to cope with the lack of stationarity by
grouping data into many small clusters and identifying the clusters that can be combined
to represent the activity of a single unit. In the second stage, [4] uses ISI information
to understand which clusters cannot be combined, while [11] bases this decision on the
density of points between clusters. In [3] a semi-automated method is suggested, in which
each time frame is clustered manually, and then the correspondence between clusters in
consecutive time frames is established automatically. The correspondence is determined
by a heuristic score, and the algorithm doesn’t handle merge or split scenarios.

In this paper we suggest a new fully automated technique to solve the clustering problem
for non-stationary Gaussian sources in a Bayesian framework. We divide the data into
short time frames in which stationarity is a reasonable assumption. We then look for good
mixture of Gaussians descriptions of the data in each time frame independently. Transi-
tion probabilities between local mixture solutions are introduced, and a globally optimal
clustering solution is computed by finding the Maximum-A-Posteriori (MAP) solution of
the resulting probabilistic model. The global optimization allows the algorithm to success-
fully disambiguate problematic time frames and exhibit close to human performance. We
present the outline of the algorithm in section 2. The transition probabilities are computed
by optimization of a score based on the Jensen-Shannon divergence for Gaussians; they are
described in section 3. Empirical results and validation are presented in section 4.

2 Clustering using a chain of Gaussian mixtures

Denote the observable spike data by D = {d}, where each spike d ∈ Rn is de-
scribed by the vector of it’s PCA coefficients. We break the data into T disjoint groups

{Dt = {dti}
Nt

i=1}
T

t=1
. In each frame we assume the data can be well approximated by a

mixture of Gaussians, where each Gaussian corresponds to a single neuron. Each Gaussian
in the mixture may have a different covariance matrix. The number of components in the
mixture is not known a-priory, but is assumed to be within a certain range (we used 1-6).

In the search stage, we use a standard EM (Expectation-Maximization) algorithm to find
a set of M t candidate mixture descriptions for each time frame t. We build the set of
candidates using a three step process. First we run the EM algorithm with different values
for the ’number of clusters’ parameter and different initial conditions. In a second step, we
import to each time frame t the best mixture solutions found in the neighboring time frames
[t − k, .., t+ k] (k = 2 was used). Solutions are imported both by simply adding them to
the candidate list and by adapting them to the new time frame. The adaptation is done by



using the solution as the initial conditions for the EM and running a low number of EM
rounds. This mixing of solutions between time frames is repeated several times. Finally,
the solution list in each time frame is pruned to remove similar solutions.

In order to handle outliers, which are usually background spikes or non-spike events, each
mixture candidate contains an additional ’background model’ Gaussian. This model’s pa-
rameters are set to µt,K ·Σt where µt,Σt are the statistics of time frame t and K > 1 is a
constant. Only the weight of this model is allowed to change during the EM process.

Denote the found models by {Θt
i}
T,Mt

t=1,i=1. Each mixture model is given by a triplet

Θt
i = {αti,l, µ

t
i,l,Σ

t
i,l}

Ki,t

l=1
where these denote the Gaussian mixture’s weights, means, and

covariances respectively. Given these candidate models we define a discrete random vector
H = {ht}

T

t=1 in which each component ht has a value range of {1, 2, ..,M t}. ”ht = j”
has the semantics of ”at time frame t the data is distributed according to the candidate mix-
ture Θt

j”. In addition we define for each spike dti a hidden discrete ’label’ random variable
lti .

This label indicates which Gaussian in the local mixture hypothesis is the source of the

spike. Denote by Lt = {lti}
Nt

i=1 the vector of labels of time frame t, and by L the vector of
all the labels.
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Figure 1: (A) A Bayesian network model of the data generation process. The network has an HMM
structure, but unlike HMM it does not have fixed states and transition probabilities over time. The
variables and the CPDs are explained in section 2. (B) A Bayesian network representation of the
relations between the data and the hidden labels (see section 3.1). The visible labels and the sampled
data points are independent given the hidden labels.

We describe the probabilistic relations betweenD,L, andH using a Bayesian network with
the structure seen in figure 1A. Using the network structure and an i.i.d sample assumption
the joint log probability decomposes into

log p(h1) +

T∑

t=2

logP (ht|ht−1) +

T∑

t=1

Nt∑

i=1

[logP (lti |h
t) + logP (dti|l

t
i , h

t)] (1)

We wish to maximize this log-likelihood over all possible choices of L,H . Notice that
by maximizing the probability of both data and labels we avoid the tendency to prefer
mixtures with many Gaussians, which appears when maximizing the probability for the
data alone. The conditional probability distributions (CPDs) of the points’ labels and the
points themselves given an assignment to H are given by

logP (lti = j|ht = i) = logαti,j (2)

log p(dti |l
t
i = j, ht = i) = −

1

2
[n log 2π + log |Σti,j | + (dti − µti,j)

t
Σti,j

−1
(dti − µti,j)]

The transition CPDs of the form p(ht|ht−1) are described in section 3. For the first frame’s
prior we use a uniform CPD. The MAP solution for the model is found using the Viterbi al-
gorithm. Labels are then unified using the correspondences established between the chosen
mixtures in consecutive time frames.



3 A statistical distance between mixtures

The transition CPDs of the form p(ht|ht−1) are based on the assumption that the Gaussian
sources’ distributions are approximately stationary in pairs of consecutive time frames.
Under this assumption, two mixtures candidates estimated at consecutive time frames are
viewed as two samples from a single unknown Gaussian mixture. We assume that each
Gaussian component from any of the two mixtures arises from a single Gaussian compo-
nent in the joint hidden mixture, and so the hidden mixture induces a partition of the set of
visible components into clusters. Gaussian components in the same cluster are assumed to
arise from the same hidden source. Our estimate of p(ht = j|ht−1 = i) is based on the
probability of seeing two large samples with different empirical distributions (Θt−1

i and Θt
j

respectively) under the assumption of such a single joint mixture. In 3.1, the estimation of
the transition probability is formalized as an optimization of a Jensen-Shannon based score
over the possible partitions of the Gaussian components set.

If the family of allowed hidden mixture models isn’t further constrained, the optimization
problem derived in 3.1 is trivially and uninterestingly solved by choosing the most detailed
partition (each visible Gaussian component is a singleton). This happens because a richer
partition, which doesn’t merge many Gaussians, gets a higher score. In 3.2 we suggest
natural constraints on the family of allowed partitions in the two cases of constant and
variable number of clusters through time, and present algorithms for both cases.

3.1 A Jensen-Shannon based transition score

Assume that in two consecutive time frames we saw two labeled samples
(X1, L1), (X2, L2) of sizes N1, N2 with empirical distributions Θ1,Θ2 respectively. By
’empirical distribution’, or ’type’ in the notation of [2], we denote the ML parameters of
the sample, for both the multinomial distribution of the mixture weights and the Gaus-
sian distributions of the components. As stated above, we assume that the joint sample
of size N = N1 + N2 is generated by a hidden Gaussian mixture Θ12 with K12 com-
ponents, and its components are determined by a partition of the set of all components in
Θ1,Θ2. For convenience of notation, let us order this set of K1 + K2 Gaussians and re-
fer to them (and their parameters respectively) using one index. We can define a function
R : {1, ..,K1 +K2} → {1, ..,K12} which matches each visible Gaussian component in
Θ1 or Θ2 to it’s hidden source component in Θ12. Denote the labels of the sample points

under the hidden mixture Z = {zji }
Nj

i=1, j = 1, 2. The values of these variables are given
by zji = R(lji ), where lji is the label index in the set of all components.

The probabilistic dependence between a data point, it’s visible label, and it’s hidden label is
explained by the Bayesian network model in figure 1B. We assume a data point is obtained
by choosing a hidden label and then sample the point from the relevant hidden component.
The visible label is then sampled based on the hidden label using a multinomial distribution
with parameters Ψ = {Ψj

i}, where Ψj
i is the probability of visible label i given hidden label

j (since Z is deterministic given L, Ψi
j = 0 for i 6= R(j)). Denote this model (which is

fully determined by R,Ψ and Θ12) by M12.

We wish to estimate P ((X1, L1) ∼ Θ1|(X2, L2) ∼ Θ2,M12). We Use ML approxima-
tions and arguments based on the method of types [2] to approximate this probability and
optimize it with respect to Θ12 and Ψ. The obtained result is (the derivation is omitted)

P ((X1, L1) ∼ Θ1|(X2, L2) ∼ Θ2,M12) ≈ (3)

max
R

exp(−N ·

K12∑

i=1

αi12

∑

{j:R(j)=i}

ψijDkl(G(x|µj ,Σj)|G(x|µi12,Σ
i
12)))



where G(X |µ,Σ) denotes a Gaussian distribution with the parameters µ,Σ and the opti-
mized Θ12,Ψ appearing here are given as follows. Denote by wi (i ∈ {1, ..,K1 + K2})
the weight of model i in a naive joint mixture of Θ1,Θ2, i.e. wi =

Nj

N
αi where j = 1 if

component i is part of Θ1 and the same for j = 2.

αi12 =
∑

{j:R(j)=i}

wj , ψ
R(j)
j =

wj

α
R(j)
12

, µi12 =
∑

{j:R(j)=i}

ψijµj (4)

Σi12 =
∑

{j:R(j)=i}

ψij(Σj + (µj − µi12)(µj − µi12)
t)

Notice that the parameters of a hidden Gaussian µi and Σi are just the mean and covariance
of

∑
j:R(j)=i Ψ

i
jG(X |µj ,Σj). The summation over j in expression (3) can be recognized

as the Jensen-Shannon divergence between the components assigned to the hidden source
i, under Gaussian assumptions.

For a given parametric family, the JS-divergence is a non-negative measurement which
can be used to test whether several samples are derived from a single distribution from the
family or from a mixture of different ones [6]. The JS-divergence is computed for a mixture
of n empirical distributions P1, .., Pn with mixture weights π1, .., πn. In the Gaussian
case, denote the mean and covariance of the component distributions by {µi,Σi}

n

i=1. The
mean and covariance of the mixture distribution µ∗, σ∗ are a function of the means and
covariances of the components, with the formulae given in (4) for µi12,Σi12. The Gaussian
JS-divergence is given by

JSGπ1,..,πn
(P1, .., Pn) =

n∑

i=1

πiDkl(G(x|µi,Σi), G(x|µ∗,Σ∗)) (5)

= H(G(µ∗|Σ∗) −

n∑

i=1

πiH(G|µi,Σi) =
1

2
(log |Σ∗| −

n∑

i=1

πi log |Σi|)

using this identity in (3), and setting Θ1 = Θt
j ,Θ2 = Θt−1

i , we finally get the following
expression for the transition probability

logP (ht = j|ht−1 = i) = −N · max
R

K12∑

i=1

αi12JS
G
{ψi

j
:R(j)=i}({G(x|µj ,Σj) : R(j) = i}) (6)

3.2 Constrained optimization and algorithms

Consider first the case in which a one-to-one correspondence is assumed between clusters
in two consecutive frames, and hence the number of Gaussian components K is constant
over all the time frames. In this case, a mapping R is allowed iff it maps to each hidden
source i a single Gaussian from mixture Θ1 and a single Gaussian from Θ2. Denoting
the Gaussians matched to hidden i by R−1

1 (i), R−1
2 (i), the transition score (6) takes the

form of −N · max
R

K∑
i=1

S(R−1
1 (i), R−1

2 (i)). Such an optimization of a pairwise matching

score can be seen as a search for a maximal perfect matching in a weighted bipartite graph.
The nodes of the graph are the Gaussian components of Θ1,Θ2 and the edges’ weights are
given by the scores S(a, b). The global optimum of this problem can be efficiently found
using the Hungarian algorithm [5] in O(n3), which is unproblematic in our case.

The one-to-one correspondence assumption is too strong for many data sets in the spike
sorting application, as it ignores the phenomena of splits and merges of clusters. We wish



to allow such phenomena, but nevertheless enforce strong (though not perfect) demands of
correspondence between the Gaussians in two consecutive frames. In order to achieve such
balance, we would like to put the following constraints on the allowed partitions R:

1. Each cluster of R should contain exactly one Gaussian from Θ1 or exactly one
Gaussian from Θ2. Hence assignment of different Gaussians from the same mix-
ture to the same hidden source is limited only for cases of a split or a merge.

2. The label entropy of the partition R should satisfy

H(α1
12, .., α

K12

12 ) ≤
N1

N
H(α1

1, .., α
K1

1 ) +
N2

N
H(α1

2, .., α
K2

2 ) (7)

Intuitively, the second constraint limits the allowed partitions to ones which are not richer
than the visible partition, i.e. do not have a much bigger number of clusters. Note that the
most detailed partition (the partition into singletons) has a label entropy given by the r.h.s
of inequality (7) plus H(N1

N
, N2

N
), which is one bit for N1 = N2. This extra bit is the price

of using the concatenated ’rich’ mixture, and we look for mixtures which do not pay such
an extra price.

The optimization for this family of R doesn’t seem to have an efficient global optimization
technique, and thus we resort to a greedy procedure. Specifically, we use a bottom up
agglomerative algorithm. We start from the most detailed partition (each Gaussian is a
singleton) and merge two clusters of the partition at each round. Only merges that comply
with the first constraint are considered. At each round we look for a merge which incurs a
minimal loss to the accumulated Jensen-Shannon score and a maximal loss to the mixture
label entropy. For two Gaussian clusters (α1, µ1,Σ1), (α2, µ2,Σ2) these two quantities are
given by

∆ log JS = −N(w1 + w2)JS
G
π1,π2

(G(x|µ1,Σ1), G(x|µ2,Σ2)) (8)

∆H = −N(w1 + w2)H(π1, π2)

where π1, π2 are w1

w1+w2

, w2

w1+w2

and wi are as in (4). We choose at each round the merge
which minimizes the ratio between these two quantities. The algorithm terminates when
the accumulated label entropy reduction is bigger than H(N1

N
, N2

N
) or when no allowed

merges exist anymore. In the second case, it may happen that the partition R found by the
algorithm violates the constraint (7). We nevertheless compute the score based on the R
found, since this partition obeys the first constraint and usually it is not far from satisfying
the second.

4 Empirical results

4.1 Experimental design and data acquisition

Neural data were acquired from the dorsal and ventral pre-motor (PMd, PMv) cortices
of two Macaque monkeys performing a prehension (reaching and grasping) task. At the
beginning of each trial, an object was presented in one of six locations. Following a delay
period, a Go signal prompted the monkey to reach for, grasp, and hold the target object. A
recording session typically lasted 2 hours during which monkeys completed 600 trials.

During each session 16 independently-movable glass-plated tungsten micro-electrodes
were inserted through the dura, 8 into each area. Signals from these electrodes were am-
plified (10K), bandpass filtered (1-6000Hz), sampled (25 kHz), stored on disk (Alpha-Map
5.4, Alpha-Omega Eng.), and subjected to 3-stage preprocessing. (1) Line influences were
cleaned by pulse-triggered averaging: the signal following a pulse was averaged over many



f 1

2

score Number of frames (%) Number of electrodes (%)
0.90-1.00 419 (51%) 3 (15%)
0.80-0.90 308 (37%) 8 (40%)
0.70-0.80 63 (8%) 5 (25%)
0.58-0.70 32 (4%) 4 (20%)

Table 1: Match scores between manual and automatic clustering. The rows list the appearance
frequencies of different f 1

2

scores.

pulses and subtracted from the original in an adaptive manner. (2) Spikes were detected
by a modified second derivative algorithm (7 samples backwards and 11 forward), accen-
tuating spiky features; segments that crossed an adaptive threshold were identified. Within
each segment, a potential spike’s peak was defined as the time of the maximal derivative.
If a sharper spike was not encountered within 1.2ms, 64 samples (10 before peak and 53
after) were registered. (3) Waveforms were re-aligned s.t. each started at the point of max-
imal fit with 2 library PCs (accounting, on average, for 82% and 11% of the variance, [1]).
Aligned waveforms were projected onto the PC basis to arrive at two coefficients.

4.2 Results and validation

24
1

24

1

2
34

1

2
3 4

1

2
3

4

1 12
3

4
1 2

3

4
1 2

3

4

1
2

3

4

(0.68) (0.81) (0.98) (0.97) (0.94)

Figure 2: Frames 3,13,24,34, and 40 from a 68-frames data set. Each frame contains 1000 spikes,
plotted here according to their first two PCs. In this data one cluster is constantly moving, and an-
other splits into several distinguished clusters. The top and bottom rows show manual and automatic
clustering solutions respectively. Notice that during the split process of the cluster at the bottom left
corner some ambiguous time frames exist in which 1,2, or 3 cluster descriptions are all reasonable.
This ambiguity can be resolved using global considerations of past and future time frames. By finding
the MAP solution over all time frames, the algorithm manages such considerations. The numbers be-
low the images show the f 1

2

score of the local match between the manual and the automatic clustering
solutions (see text).

We tested the algorithm using recordings of 20 electrodes containing a total of 822 time
frames. Spike trains were manually clustered by a skilled user in the environment of Alpha-
Sort 4.0 (Alpha-Omega Eng.). The manual and automatic clustering were compared using
a combined measure of precision P and recall R scores. Specifically, the score used was
f 1

2

= 2PR
R+P . Figure 2 demonstrates the performance of the algorithm using a particularly

non-stationary data set.

Statistics of the match between manual and automated clustering are described in table 1.
In order to understand the score’s scale we note that a random clustering (with the same
label distribution as the manual clustering) gets an f 1

2

score of 0.5. The trivial clustering
which assigns all the points to the same label gets mean scores of 0.73 and 0.67 for single



frame matching and whole electrode matching respectively. The scores of single frames
are much higher than the full electrode scores, since the problem is much harder in the
latter case. A single wrong correspondence between two consecutive frames may reduce
the electrode’s score dramatically, while being unnoticed by the single frame score. In most
cases the algorithm gives reasonably evolving clustering, even when it disagrees with the
manual solution. Examples can be seen at the first author’s site.

Low matching scores between the manual and the automatic clustering may result from
inherent ambiguity in the data. As a preliminary assessment of this hypothesis we obtained
a second, independent, manual clustering for the data set for which we got the lowest
match scores. The matching scores between manual and automatic clustering are presented
in figure 3A.
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Figure 3: (A) Comparison of our automatic clustering with 2 independent manual clustering solu-
tions for our worst matched data set. Note that there is also a low match between the human solutions,
forming a nearly equilateral triangle. (B) Functional validation of clustering results: (1) At the be-
ginning of a recording session, three clusters were identified. (2) 107 minutes later, some shifted
their position. They were tracked continuously. (3) The top left cluster (number 3) moved the most.
During the delay periods of the first 100 trials, this unit had directional tuning, as illustrated (dashed
lines are 99% confidence limits). (4) Although the cluster’s position changed, its tuning curve’s
characteristics during later trials were similar.

In some cases, validity of the automatic clustering can be assessed by checking functional
properties associated with the underlying neurons. In figure 3B we present such a validation
for a successfully tracked cluster.
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